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Local semicircle law for Curie-Weiss type ensembles
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Abstract

We derive local semicircle laws for random matrices with exchangeable entries which
exhibit correlations that decay slowly in the dimension N of the matrix. To be precise,
any `-point correlation E[Y1 · · ·Y`] between distinct matrix entries Y1, . . . , Y` may
decay at a rate of only N−`/2. We call our ensembles of (high temperature) Curie-
Weiss type, and Curie-Weiss(β)-distributed entries directly fit within our framework in
the high temperature regime β ∈ [0, 1]. Using rank-one perturbations, we show that
even in the low-temperature regime β ∈ (1,∞), where `-point correlations survive in
the limit, the local semicircle law still holds after rescaling the matrix entries with a
constant which depends on β but not on N .
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1 Introduction

The local semicircle law is a relatively recent result that was derived to gain a more
detailed understanding of the convergence of the empirical spectral distributions (ESDs)
of random matrices to the semicircle distribution. Further, it was also used to establish
universality results for Wigner matrices. A common formulation of this type of theorem
is a uniform alignment of the Stieltjes transforms of the ESDs σN and the semicircle
distribution σ, see [6], for example. Another formulation of the local law is as follows,
cf. [34]: For any sequence of intervals (IN )N , whose diameter is not decaying to zero
too quickly, σN (IN ) can be well approximated by σ(IN ) for large N . In fact, the second
formulation of the local law will follow from the first, as we will show further below
in Theorem A.8. And it is precisely this second formulation which lends the local law
its name: Even when zooming in onto smaller and smaller intervals, the ESDs are
well-approximated by the semicircle distribution (see also [20] for a translation of this
convergence concept to the setting of classical probability theory).
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Curie-Weiss type ensembles

Although there were some previous results into the direction of a local law in [26]
and [14], it is safe to say that on the level of strength available today, it was established
by Erdős, Schlein and Yau in [13] and by Tao and Vu in [33]. Ever since, the results were
strengthened (see [23] and [22], for example) and proof layouts were refined to make
the theory more accessible to a broader audience. Indeed, the local laws are displayed
in a pedagogical manner in the text [6] by Benaych-Georges and Knowles and the book
[15] by Erdős and Yau. Both of these texts have their roots in the joint publication [11].

As the semicircle law itself, the local semicircle law was initially considered for
random matrices with independent and identically distributed entries, see [13]. After
the seminal work [13] the local semicircle law was established rapidly for more and
more general classes of complex Hermitian or real symmetric random matrices with
independent entries. For example, in [11] such a result was derived under the assump-
tions that the entries are centered, that the variances of the matrix entries sum up to
1 along rows and columns, and that certain upper bounds on these variances and on
higher moments of the entries are satisfied. A few years later, [3] provided a local law
in an even more general setting where stochasticity of the matrix of variances is not
required. In this situation the limit law is generally not the semicircle. Instead, its
Stieltjes transformation is determined by the quadratic vector equation (see [3] and
references therein, in particular [27, 32] where the importance of the quadratic vector
equation was already observed).

In a next step it is reasonable to relax the independence condition. A natural way
to do this is to assume that correlations between matrix entries are decaying with a
growing distance within the matrix (modulo symmetry of the matrix). With respect to
local laws, the following results for such ensembles can be found in the literature: In [1],
the local law was proved for random matrices with correlated Gaussian entries, where
the covariance matrix is assumed to possess a certain translation invariant structure. In
[2], ensembles with correlated entries were considered, where the correlation decays
arbitrarily polynomially fast in the distance of the entries. This result has been improved
by [12] (who reference an older preprint version of [2]), where fast polynomial decay is
assumed only for entries outside of neighborhoods of a size growing slower than

√
N ,

and a slower correlation decay between entries within these neighborhoods. Another
correlation structure was analyzed in [8], where correlation was only allowed for entries
close to each other and independence was assumed otherwise. What all four mentioned
publications have in common is that the local semicircle law is not the main object of
interest, but rather the existence of some local limit.

Another way to relax the independence assumption is to assume exchangeability for
the matrix entries. In order to discuss such classes of models we begin by reminding the
reader of some results on the level of the global law that are relevant for our results. In
[30] the random matrices are filled from an infinite sequence of exchangeable random
variables. Observe that for this class of randomness there is no decay of correlations
neither with respect to some spatial structure nor with respect to the dimension of the
matrix. As a consequence the limiting spectral behavior has a new feature even on the
level of the global law. In [30] a semicircle law is proved for such matrices, however as a
rule with a support that is random. This has to do with the fact that the arithmetic mean
of an (infinite) exchangeable sequence of random variables converges in distribution to a
measure µ which is not concentrated in a single point except for the case of independent
variables. De Finetti’s theorem states that the distribution of an infinite sequence of
exchangeable random variables is in fact a mixture of product measures with respect
to the measure µ (see e. g. [25] for the general case and [29] for the {0, 1}-valued case).
We call µ the de-Finetti measure.

In the papers [24] and [31] the authors follow a path interpolating between indepen-
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Curie-Weiss type ensembles

dence and exchangeability in the above sense by considering exchangeable ({−1, 1}-
valued) random variables for each matrix but with a de-Finetti measure µN which
depends on the dimension N of the matrix. The measures µN they consider are more and
more concentrated near a single point [24] or near two points [31]. In fact, their main
example is a Curie-Weiss process, described by a Gibbs measure which is well-known in
statistical physics. This process marks a threshold between independence and the full
exchangeability in the following sense: Depending on a parameter of the model, β in
physics interpreted as an inverse temperature, the arithmetic mean of the Curie-Weiss
ensemble converges in distribution to a Dirac measure concentrated in a single point
(β ≤ 1) or to a measure concentrated in two points (β > 1). This establishes a phase
transition in the behavior of the model, in a sense from ‘near independent’ to ‘strongly
correlated’. The model exhibits correlation between the random variables which is
decaying for β ≤ 1 with increasing dimension N but is constant (due to exchangeability)
within the random matrix of given dimension N . The papers [24] and [31] prove a global
semicircle law in probability both for β ≤ 1 and for β > 1.

Before returning to local laws we mention a few more results on the global scale
for related models. Limit laws for random matrices with Curie-Weiss spins were first
proved in [21] where independent diagonals were filled with Curie-Weiss entries and a
phase transition from the semicircle law to the limit laws of random Toeplitz matrices
could be shown at the critical temperature (β = 1). The above mentioned results of
[24, 31] were strengthened to almost sure convergence in [19] where, in addition,
they were generalized to corresponding ensembles of band matrices. Also in [19], a
correlated Gaussian ensemble fitting the framework of [24] was introduced, which has
its roots in the analysis of [17]. In [7], the results in [19] were further improved and
expanded, in particular allowing for block matrices with Curie-Weiss spins, where the
limiting spectral distribution need not be the semicircle distribution anymore. In [18],
Marchenko-Pastur and semicircle laws for sample covariance matrices with Curie-Weiss
entries were derived.

Let us now return to the discussion of the local laws that are the main focus of the
present paper. It continues the analysis of the first author in [16], where he answered
a question of the second author that was in part motivated by the desire to establish
a local law for ensembles with Curie-Weiss distributed entries studied in [24], see
Example 2.8. Our investigations led us to introduce matrix ensembles of Curie-Weiss
type, see Definition 2.7. These ensembles share two important features with Curie-
Weiss ensembles in the high temperature regime (β ≤ 1). First, there is slow decay of
correlations as a function of the matrix dimension N . In fact, it follows from condition
(2.2) of Definition 2.7 that the `-point correlation E[Y1 · · ·Y`] between any ` distinct matrix
entries in the upper right half of the matrix may decay at a rate of order N−`/2, a rate
that is actually assumed in the critical case β = 1. Note again that there is no decay with
respect to a spatial structure so that the results of [1, 2, 8, 12] do not apply to our models.
Instead, and this is the second property that Curie-Weiss type ensembles share with
Curie-Weiss ensembles, we require for each N that the matrix entries have a de-Finetti
representation (i.e. a representation as a mixture of product measures). Just for the sake
of clarity we remind the reader that de Finetti’s theorem applies to infinite sequences of
random variables. For finite sequences of random variables, exchangeability is a weaker
condition than assuming a de-Finetti representation as we do (cf. [4]).

A crucial aspect of our definition of Curie-Weiss type ensembles is that it also allows
to treat the low temperature case (β > 1) in which the correlations do not decay at all. In
this case we can apply a (random) rank 1 perturbation that leads to an auxiliary matrix
ensemble with decaying correlations but without the Curie-Weiss property of having
spin entries ±1. Therefore, additional conditions (2.3) and (2.5) in combination with
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Curie-Weiss type ensembles

(2.6) need to be introduced that are trivially satisfied in the spin case. These conditions
are then used to prove certain large-deviation inequalities, see Theorems 3.2 and 3.3,
that are central in the proof of the local law. In order to indicate that Curie-Weiss type
ensembles might also be useful in other contexts we present in Example 2.9 a specific
Gaussian matrix ensemble with correlated entries that can be shown to be of Curie-Weiss
type.

We close the Introduction by describing the plan of the paper with an outline of the
main idea of the proof.

Section 2 begins with a sequence of definitions that lead to our main object of study,
the ensembles of Curie-Weiss type introduced in Definition 2.7. We then argue that
Curie-Weiss(β) ensembles fall into this class for 0 ≤ β ≤ 1 (Example 2.8) as well as a
specific family of correlated Gaussian ensembles (Example 2.9). After recalling some
basic concepts that have proved to be useful in establishing local laws, we formulate
with Theorem 2.12 our main result, a weak local law for Curie-Weiss type ensembles.
The remainder of Section 2 is then devoted to formulate and prove a weak local law for
Curie-Weiss(β) ensembles with β > 1 (Theorem 2.15), where correlations do not decay
with the matrix dimension N and an auxiliary ensemble is introduced by a (random) rank
1 perturbation that allows the application of Theorem 2.12.

Section 3 contains the proof of our main result Theorem 2.12. Our proof follows
closely the arguments presented in [6] for the case of independent entries, in particular
the proof of the weak local law in [6, Section 5]. As the strategy of proof is described
lucidly in [6, Section 4] we now focus on the differences between the present paper and
[6]. Crucial in the proof of the local law are the estimates contained in [6, Lemma 5.4]
that correspond to our Lemma 3.1. The assumption of centeredness and independence
of the matrix entries enters the poof of [6, Lemma 5.4] via the large deviation bounds
provided by [6, Lemma 3.6]. It is here where we need to deviate from [6]. With
Theorem 3.2 we remove the assumption of centeredness which is necessary as in our
de-Finetti representation we have a mixture of independent ensembles that are generally
not centered. Theorem 3.3 then generalizes from independent entries to entries of
de-Finetti type and it is in the proof of this theorem where the conditions (2.2) - (2.6) of
Definition 2.7 are used and their origin can be understood.

In the Appendix, we present various extensions and corollaries of Theorem 2.12.
With help of the general Lemma A.1, we extend the uniformness of Theorem 2.12 in
Theorem A.2. We use this result in combination with Lemma A.5 to prove Theorem A.6,
which analyzes the approximation of the semicircle density by a kernel density estimate
which is based on the empirical spectral distribution. Lastly, in Theorem A.7 and
Theorem A.8 we analyze absolute and relative differences of interval probabilities of the
empirical spectral distributions and the semicircle distribution.

2 Setup and main results

2.1 Ensembles of Curie-Weiss type

We will first explain some notation and introduce random matrices of Curie-Weiss type.
The expectation operator E will always denote the expectation with respect to a generic
probability space (Ω,A,P). Euclidian spaces Rn will always be equipped with Borel-σ-
algebras induced by the standard topology. The spaceM1(R) of all probability measures
on R will be equipped with the topology of weak convergence and the associated Borel σ-
algebra. In addition, probability spaces with finite sample space will always be equipped
with the power set as σ-algebra. If I is an index set and for all i ∈ I, Zi is a mathematical
object, then we write ZI ..= (Zi)i∈I . On the other hand, if for all i ∈ I, Mi is a set, then
we write M I ..=

∏
i∈IMi as the cartesian product. Lastly, if we write a = a(b), where a is
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Curie-Weiss type ensembles

an expression and b is a parameter vector, then this means that a depends on the choice
of b. The following definition is based on [28] and [31].

Definition 2.1. Let I be a finite index set and YI be a family of R-valued random
variables on some probability space (Ω,A,P). Then the random vector YI is called of
de-Finetti type, if there is a probability space (T, T , µ) and a measurable mapping

P : (T, T ) −→ M1(R)

t 7−→ Pt

such that for all measurable sets B ⊆ RI , we find

P(YI ∈ B) =

∫
T

P⊗It (B)dµ(t), (2.1)

where P⊗It
..= ⊗i∈IPt is the I-fold product measure on RI .

It should be noted that for a random vector YI to be of de-Finetti type is solely a
property of the distribution of YI and not a property of the probability space on which
YI is defined. To be more precise, it means that the push-forward distribution PYI is
a mixture of product distributions P⊗It , t ∈ T . In this context, µ is also called mixing
distribution or simply mixture. We will also call (T, T , µ, P ) mixing space. Further
properties of de-Finetti type variables are clarified in the following remark:

Remark 2.2. Let YI be of de-Finetti type as in Definition 2.1, then we observe:

1. For any subset J ⊆ I, YJ is of de-Finetti type with respect to the same mixing space
(T, T , µ, P ).

2. For any t ∈ T , the coordinates of the identity map on (RI , P⊗It ) are i.i.d. Pt-
distributed.

3. The random variables YI are exchangeable, that is, if π : I → I is a bijection, then
(Yi)i∈I and (Yπ(i))i∈I have the same distribution.

Lemma 2.3. Let YI be of de-Finetti type with respect to the mixing space (T, T , µ, P ).
Then it holds for any measurable function F : RI → C:

EF (YI) =

∫
T

∫
RI
F (yI)dP

⊗I
t (yI)dµ(t),

where the left-hand side of the equation is well-defined iff the right-hand side is.

Proof. The statement follows by standard arguments: The claim is easily verified for
step functions of the form F =

∑K
k=1 αk1Ak , where K ∈ N, αk ≥ 0 and Ak ⊆ Rk are

measurable. The case for F ≥ 0 is then concluded via Beppo-Levi. The R-valued case
is seen by decomposing F = F+ − F−, and the final C-valued case is then shown by
decomposing F = ReF + i ImF .

A prominent example of random variables of de-Finetti type is given by Curie-Weiss
spins:

Definition 2.4. Let M ∈ N be arbitrary and Y1, . . . , YM be random variables defined
on some probability space (Ω,A,P). Let β ≥ 0, then we say that Y1, . . . , YM are Curie-
Weiss(β,M )-distributed, if for all y1, . . . , yM ∈ {−1, 1} we have that

P(Y1 = y1, . . . , YM = yM ) =
1

Zβ,M
· e

β
2M (

∑
yi)

2

,

where Zβ,M is a normalization constant. The parameter β is called inverse temperature.
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Curie-Weiss type ensembles

The Curie-Weiss(β,M ) distribution is used to model the behavior of M ferromagnetic
particles (spins) at the inverse temperature β. At low temperatures, that is, if β is
large, all magnetic spins are likely to have the same alignment, resembling a strong
magnetic effect. In contrast, at high temperatures (if β is small), spins can act almost
independently, resembling a weak magnetic effect. At infinitely high temperature,
that is, if β = 0, Curie-Weiss spins are simply i.i.d. Rademacher distributed random
variables. For details on the Curie-Weiss model we refer to [9], [35] and [28]. The
Curie-Weiss distribution is an important model in statistical mechanics. It is exactly
solvable and features a phase transition at β = 1. The behavior of Curie-Weiss spins
differs significantly in the regimes β = 0, β ∈ (0, 1), β = 1 and β ∈ (1,∞), as exemplified
by the next lemma. In particular, we will see exactly at which speed `-point correlations
between Curie-Weiss spins decay, and that for β > 1 these correlations do not vanish at
all:

Lemma 2.5. Fix ` ∈ N and let for all M ≥ `, (Y
(M)
1 , . . . , Y

(M)
` ) be part of a Curie-

Weiss(β,M ) distributed random vector. If ` is even, the following statements hold:

i) If β = 0, then EY (M)
1 · · ·Y (M)

` = 0.

ii) If β ∈ (0, 1), then for some constant c = c(β, `) > 0:

EY
(M)
1 · · ·Y (M)

` ∼ cM−`/2 as M →∞.

iii) If β = 1, then for some constant c = c(`) > 0:

EY
(M)
1 · · ·Y (M)

` ∼ cM−`/4 as M →∞.

iv) If β ∈ (1,∞), then

EY
(M)
1 · · ·Y (M)

` ∼ c`

as M → ∞, where c = c(β) ∈ (0, 1) is the unique positive number such that
tanh(βc) = c.

If ` is odd, then for all β ≥ 0 one has EY (M)
1 · · ·Y (M)

` = 0.

Proof. See Theorem 5.17 in [28].

The next theorem shows that the discrete distribution of Curie-Weiss spins has a
de-Finetti representation in the sense of Definition 2.1.

Theorem 2.6. If Y1, . . . , YM are Curie-Weiss(β,M )-distributed with β ≥ 0, then they are
of de-Finetti type with respect to the mixing space ((−1, 1),B(−1,1), µ

β
M , P ), where

P : (−1, 1) −→ M1(R)

t 7−→ Pt =
1− t

2
δ−1 +

1 + t

2
δ1.

Here, B(−1,1) denotes the Borel σ-algebra over the interval (−1, 1) and µβM is the Dirac

measure δ0 for β = 0, whereas if β > 0, µβM is the Lebesgue-continuous probability
distribution with density on (−1, 1) given by

t 7→ fM (t) ..= C · e
−M2 Fβ(t)

1− t2
1(−1,1)(t),

where C = C(β,M) is a normalization constant and for all t ∈ (−1, 1) we define

Fβ(t) ..=
1

β

(
1

2
ln

(
1 + t

1− t

))2

+ ln(1− t2).
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Curie-Weiss type ensembles

Further, if β ≤ 1, the mixtures (µβM )M∈N satisfy the following moment decay:

∀ p ∈ 2N :

∫
(−1,+1)

tpdµβM (t) ≤ Kβ,p

M
p
4

,

where Kβ,p ∈ R+ is a constant that depends on β and p only.

Proof. This was shown rigorously in [28], see Theorem 5.6, Remark 5.7, Proposition 5.9
and Theorem 5.17 in their text.

The Curie-Weiss type ensembles (sequences of random matrices) which we study in
this paper are defined as follows:

Definition 2.7. An ensemble of real symmetric random matrices N ×N matrices (HN )N
is called of (high temperature) Curie-Weiss type, if:

a) For all N ∈ N it holds

(HN (i, j))1≤i≤j≤N =

(
1√
N
XN (i, j)

)
1≤i≤j≤N

,

where (XN (i, j))1≤i≤j≤N is of de-Finetti type with respect to some mixing space
(TN , TN , µN , P (N)).

b) Set for all `,N ∈ N and t ∈ TN , m(`)
N (t) ..=

∫
R
x`dP (N)

t (x) the `-th moment of P (N)
t .

Then it holds:

∀ p ∈ 2N : ∃Kp ∈ R+ : ∀N ∈ N :

First moment condition:

∫
TN

|m(1)
N (t)|pdµN (t) ≤ Kp

N
p
2

(2.2)

Second moment condition:

∫
TN

|1−m(2)
N (t)|pdµN (t) ≤ Kp

N
p
2

(2.3)

Central first moment condition: ∀ t ∈ TN :

∫
R

|y −m(1)
N (t)|pdP (N)

t (y) ≤ Kp(t)

(2.4)

Central second moment condition: ∀ t ∈ TN :

∫
R

|y2 −m(2)
N (t)|pdP (N)

t (y) ≤ Kp(t)

(2.5)

where Kp(t) = K
(N)
p (t) is a family of constants satisfying

∀ p ∈ 2N : ∀N ∈ N :

∫
TN

Kp(t)dµN (t) ≤ Kp and

∫
TN

K2
p(t)dµN (t) ≤ Kp. (2.6)

Notationally, for the remainder of this paper, we set [N ] ..= {1, . . . , N} for all N ∈ N.

Example 2.8. Let 0 ≤ β be arbitrary and let for each N ∈ N the random variables
(X̃N (i, j))i,j∈[N ] be Curie-Weiss(β,N2)-distributed. Define the Curie-Weiss(β) ensemble
(HN )N by setting

∀N ∈ N : ∀ (i, j) ∈ [N ]2 : HN (i, j) =

{
1√
N
X̃N (i, j) if i ≤ j

1√
N
X̃N (j, i) if i > j.

.

If β ∈ [0, 1], by Theorem 2.6, (HN )N is an ensemble of Curie-Weiss type with mixtures
(µN )N ..= (µβN2)N . To see this, condition a) in Definition 2.7 is clear by construction
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where the spaces (TN , TN ) and the map P (N) are the same for all N , only the mixture

µN changes with N . For condition b), note that m(1)
N (t) = t and m(2)

N (t) = 1 for all N ∈ N
and t ∈ (−1, 1). So by Lemmas 2.3 and 2.5, Conditions (2.2), (2.3), (2.4), (2.5), and (2.6)
are satisfied.

Example 2.9. In this example we shall see that specific families of correlated Gaus-
sian ensembles easily fit within the framework of Definition 2.7. Fix some number
α ≥ 1 and let (XN (i, j))1≤i≤j≤N be of de-Finetti type with respect to the mixing space

(TN , TN , µN , P (N)) = (R,B,N (0, N−α), (P
(N)
t )t∈R), where P (N)

t = Pt = N (t, 1). In other
words, we have a two-step random experiment where in the first step we choose a com-
mon mean t ∈ R according to N (0, N−α), and in the second step we choose N(N + 1)/2

i.i.d. realizations of N (t, 1). Then m
(1)
N (t) = t, m(2)

N (t) = 1 + t2 and for p ∈ 2N, verifying
the conditions of Definition 2.7:

(2.2)

∫
R

|m(1)
N (t)|pdµN (t) =

∫
R

tpdN (0, N−α)(t) =
(p− 1)!!

N
αp
2

(2.3)

∫
R

|1−m(2)
N (t)|pdµN (t) =

∫
R

t2pdN (0, N−α)(t) =
(2p− 1)!!

Nαp

(2.4)

∫
R

|y −m(1)
N (t)|pdPt(y) =

∫
R

(y − t)pdN (t, 1)(y) = (p− 1)!!

(2.5)

∫
R

|y2 −m(2)
N (t)|pdPt(y) =

∫
R

(y2 − t2 − 1)pdN (t, 1)(y)

≤
∫
R

4p(y2p + t2p + 1)dN (0, 1)(y) = 4p(2p− 1)!! + 4pt2p + 4p

(2.6)

∫
R

(p− 1)!!dN (0, N−α)(t) = (p− 1)!! and∫
R

4p(2p− 1)!! + 4pt2p + 4pdN (0, N−α)(t) ≤ 3 · 4p(2p− 1)!!

We conclude that with the choice for the constant Kp
..= 3 · 4p(2p− 1)!!, all conditions of

Definition 2.7 are satisfied. As it turns out, the distribution of X ..= (XN (i, j))1≤i≤j≤N
can be identified as a multivariate correlated Gaussian ensemble. To this end, set
d ..= N(N + 1)/2 and let λ ∈ Rd be arbitrary. We calculate

E exp(i 〈λ | X〉) =

∫
R

∫
Rd

exp(i 〈λ | x〉)dP⊗dt (x)dN (0, N−α)(t)

=

∫
R

exp

(
it
∑

λi −
1

2

∑
λ2
i

)
dN (0, N−α)(t)

= exp

(
−1

2

∑
λ2
i

)
exp

(
−(
∑

λi)
2 1

2Nα

)
= exp

(
−1

2

〈(
I +

1

Nα
E
)
λ | λ

〉)
,

which is the characteristic function of a Rd valued Gaussian correlated random vector
with variance 1 +N−α and covariances N−α. In our calculation, we used Lemma 2.3 in
the first step, the characteristic function of N (t, 1)⊗d in the second, the characteristic
function of N (0, N−α) in the third step, and in the last step I denotes the d× d identity
matrix and E the d× d matrix with entries 1.

2.2 Stochastic domination, Resolvents and Stieltjes transforms

For the statement of the local law and its proof we need the concepts of stochastic
domination, resolvents and Stieltjes transforms. The first time the concept of stochastic
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domination was used was in [10]. We will say that a statement which depends on N ∈ N
holds v-finally, where v is a parameter(-vector), if the statement holds for all N ≥ N∗(v).

Definition 2.10. Let X = X(N) be a sequence of complex-valued and Y = Y (N) be
a sequence of non-negative random variables, then we say that X is stochastically
dominated by Y , if for all ε,D > 0 there is a constant Cε,D ≥ 0 such that

∀ N ∈ N : P
(
|X(N)| > N εY (N)

)
≤ Cε,D

ND
.

In this case, we write X ≺ Y or X(N) ≺ Y (N). If both X and Y depend on a possi-
bly N -dependent index set U = U (N), such that X =

(
X(N)(u), N ∈ N, u ∈ U (N)

)
and

Y =
(
Y (N)(u), N ∈ N, u ∈ U (N)

)
, then we say that X is stochastically dominated by Y

uniformly in u ∈ U , if for all ε,D > 0 we can find a Cε,D ≥ 0 such that

∀N ∈ N : sup
u∈U(N)

P
(
|X(N)(u)| > N εY (N)(u)

)
≤ Cε,D

ND
. (2.7)

In this case, we write X ≺ Y or X(u) ≺ Y (u), u ∈ U or X(N)(u) ≺ Y (N)(u), u ∈ U (N),
where the first version is used if U is clear from the context. In above situation, if all Y (u)

are strictly positive, then we say that X is stochastically dominated by Y , simultaneously
in u ∈ U , if for all ε,D > 0 we can find a Cε,D ≥ 0, such that

∀N ∈ N : P

(
sup

u∈U(N)

|X(N)(u)|
Y (N)(u)

> N ε

)
≤ Cε,D

ND
,

and then we write supu∈U |X(u)|/Y (u) ≺ 1 or supu∈U(N) |X(N)(u)|/Y (N)(u) ≺ 1.

Remark 2.11. Simultaneous stochastic domination implies uniform stochastic domina-
tion (for the other direction, see Lemma A.1). Further, in order to show X ≺ Y , it suffices
to show that (2.7) holds for all ε small enough, that is, for all ε ∈ (0, ε0] for some ε0 > 0.
In addition, it suffices to show (2.7) for (ε,D)-finally all N ∈ N.

Stochastic domination admits several important and intuitive rules of calculation.
For example, ≺ is transitive and reflexive, and if X1 ≺ Y1 and X2 ≺ Y1, then both
X1 +X2 ≺ Y1 + Y2 and X1 ·X2 ≺ Y1 · Y2. For more rules of calculation and their proofs,
see e.g. [16]. In what follows, we will follow largely the notation in [6]. In particular, we
will drop the index N from many – but not all – N -dependent quantities. Let H = HN

be an ensemble of Curie-Weiss type, z ∈ C\R, then we denote by G(z) ..= (H − z)−1 its
resolvent at z. The resolvent G of H carries all the spectral information of H which is
contained in its empirical spectral distribution

σ = σN ..=
1

N

N∑
i=1

δλi , (2.8)

where λ1, . . . , λN are the eigenvalues of H, which are all real-valued due to the symmetry
of H. The relationship between G and σ is given by inspecting the Stieltjes transform
s ..= Sσ of σ. In general, the Stieltjes transform Sν of a probability measure ν on (R,B) is
given by the map

Sν : C+ −→ C+

z 7−→
∫
R

1

x− z
dν(x),

so using (2.8) we obtain

s(z) = Sσ(z) =

∫
R

1

x− z
dσ(x) =

1

N

N∑
i=1

1

λi − z
=

1

N
trG(z).
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As N → ∞ we want to analyze the weak convergence behavior of σ to the semicircle
distribution µ, which is the probability distribution on (R,B) with Lebesgue density
x 7→ fσ(x) ..= (2π)−1

√
(4− x2)+. We denote by m ..= Sµ the Stieltjes transform of µ. Then

we obtain with [5, p. 32]:

∀ z ∈ C+ : m(z) =
−z +

√
z2 − 4

2
.

2.3 Main results

We are now ready to state the main results of this paper. Notationally, whenever a
z ∈ C+ is considered, we set

η ..= η(z) ..= Im(z), E ..= E(z) ..= Re(z) and κ ..= κ(z) ..= ||E| − 2|. (2.9)

Theorem 2.12. Fix τ ∈ (0, 1) and define the domains

DN (τ) ..=

[
−1

τ
,

1

τ

]
+ i

[
1

N1−τ ,
1

τ

]
and D∗N (τ) ..= [−2 + τ, 2− τ ] + i

[
1

N1−τ ,
1

τ

]
.

Let H be a Curie-Weiss type ensemble, G(z) = (H − z)−1 and

Λ(z) ..= max
i,j
|Gij(z)−m(z)δij |.

Then it holds

max(Λ(z), |s(z)−m(z)|) ≺
1√
Nη√

κ+ η + 1√
Nη

, z ∈ DN (τ) (2.10)

so in particular

max(Λ(z), |s(z)−m(z)|) ≺ 1√
Nη

, z ∈ D∗N (τ). (2.11)

Note that each (2.10) and (2.11) are to be viewed as two separate statements in that
each of the terms in the maximum is dominated by the error term on the right hand side.
By properties of ≺, this is equivalent to the maximum being dominated. For corollaries
and many implications of Theorem 2.12, we refer the reader to Appendix A.

Remark 2.13. In the literature, the statement of the form of Theorem 2.12 is called
weak local law – see Proposition 5.1 in [6] and Theorem 7.1 in [15] – since in the study
of independent entries, smaller error bounds are known to hold (except for the term Λ(z)

in (2.11)). The authors of the current paper plan to derive such stronger results also for
Curie-Weiss type ensembles. It should be noted that our error term is slightly smaller
than those in the cited statements, since

1√
Nη√

κ+ η + 1√
Nη

≤ 1

(Nη)
1
4

and

1√
Nη√

κ+ η + 1√
Nη

≤ 1√
Nηκ

. (2.12)

However, the error term we use also appears naturally in the works of [6] and [15] who
then chose to simplify it probably because it only serves there as an intermediate step to
prove the strong local law. In the present paper, the bound in (2.10) is the final bound
and we left it in this form.

Corollary 2.14. Let β ∈ [0, 1] and (HN )N be a Curie-Weiss(β) ensemble as in Exam-
ple 2.8. Then as argued there, (HN )N is an ensemble of Curie-Weiss type. Therefore, the
local law as in Theorem 2.12 holds for the Curie-Weiss(β) ensemble.
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Next, we would like to analyze what can be said about the Curie-Weiss(β) ensemble
(HN )N = (N−1/2XN )N if β > 1. Here, `-point correlations EXN (i1, j1) · · ·XN (i`, j`)

– where XN (i1, j1) . . . , XN (i`, j`) are distinct random spins in XN – do not vanish as
N → ∞. In [31] it was shown that the semicirlce law holds in probability for the
ensemble ((1− c(β)2)−1/2HN )N , where c(β) > 0 defines the unique solution in (0, 1) of
the equation tanh(βc) = c. Additionally, by the work in [19] it immediately follows that
the semicircle law holds almost surely for ((1 − c(β)2)−1/2HN )N . Now, the question is
whether the limit law also holds locally for ((1− c(β)2)−1/2HN )N .

Theorem 2.15. Let β > 1 and (HN )N be a Curie-Weiss(β) ensemble as in Example 2.8.
Then for the rescaled ensemble ((1− c(β)2)−1/2HN )N the local semicircle law holds, that
is,

|s(z)−m(z)| ≺
1√
Nη√

κ+ η + 1√
Nη

, z ∈ DN (τ) (2.13)

as well as

|s(z)−m(z)| ≺ 1√
Nη

, z ∈ D∗N (τ). (2.14)

Theorem 2.15 is proved by showing that a rank-1 perturbation of (HN )N is, in fact, of
Curie-Weiss type as in Definition 2.7, and by seeing that a rank-1 perturbation does not
affect the local law for |s(z)−m(z)|.

Let us explain the heuristics behind the proof of Theorem 2.15, using the notation
of Theorem 2.6. If β > 1, it is well-known that the mixing distribution µβN will converge
weakly to the probability measure 1/2 · δ−c + 1/2 · δc where c = c(β) is as above. As a
result, for large N the entries in the upper right triangle of XN =

√
NHN , where HN is

a Curie-Weiss(β) ensemble, are approximately either i.i.d. Pc or P−c distributed (with
corresponding means c resp. −c and variance 1− c2 in both cases), each with probability
1/2, depending on if µβN drew c or −c. For each of these cases, we standardize XN so
that its upper right triangle contains i.i.d. standardized entries, resembling the Wigner
case. To this end, denote by EN the N ×N matrix consisting entirely of ones, and set

YN ..=
1√

1− c2
(XN − 1SN>0cEN + 1SN≤0cEN ),

where SN , the sum of the spins of the upper right triangle of XN , is a proxy to decide
whether µβN tends to c or −c. Now for each realization, YN is just a rank 1 perturbation
of (1 − c2)−1/2XN , leaving the limiting spectral distribution of the N−1/2-normalized
ensemble unchanged. This was the initial approach in [31]. In our situation it is unclear
whether YN is of de-Finetti type, so we do not know whether it is a Curie-Weiss type
ensemble as in Definition 2.7. The solution is to find a different random variable to
decide when to add or subtract cEN . The key idea now is that we use a very specific
construction of the probability space on which our Curie-Weiss ensembles are defined.
We use the product space ⊗N∈N(MN ⊗ SN ), whereMN

..= ((−1, 1),B((−1, 1)), µβN2) and

SN equals {±1}N×N , the latter equipped with kernels (P⊗N
2

t )t∈(−1,1). On each factor

(MN ⊗ SN ) we define the probability measure µβN2(dt) ⊗ P⊗N
2

t , which is the product

of a probability measure and a kernel. Denote by Mβ
N resp. X̃N the projection onto

the first resp. second component of (MN ⊗ SN ), then we obtain mixing variables Mβ
N

which is µβN2 distributed alongside Curie-Weiss(β,N2)-distributed random variables X̃N

which are utilized in Example 2.8 to produce the Curie-Weiss(β) ensemble XN . Now we
consider

ZN ..=
1√

1− c2
(XN − 1Mβ

N>0cEN + 1Mβ
N≤0cEN ).

The ensemble ZN is, in fact, of de-Finetti type:
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Lemma 2.16. Set Zij ..= ZN (i, j) for all (i, j) ∈ I ..= {1 ≤ i ≤ j ≤ N}. Then ZI is of
de-Finetti type with mixing space ((−1, 1),B(−1,1), µ

β
N2 , P̃ ), where for all t ∈ (−1, 1) and

with c = c(β) as above, we define

P̃t ..=


1+t

2 δ 1−c√
1−c2

+ 1−t
2 δ −1−c√

1−c2
t > 0,

1+t
2 δ 1+c√

1−c2
+ 1−t

2 δ −1+c√
1−c2

t ≤ 0.

Further, denoting by m̃(`)(t) ..=
∫
R
x`dP̃t the `-th moment of P̃t, we obtain

m̃(1)(t) =

{
1√

1−c2 (t− c), t > 0,
1√

1−c2 (t+ c), t ≤ 0,

1− m̃(2)(t) =

{
2c

1−c2 (t− c), t > 0,
−2c
1−c2 (t+ c), t ≤ 0.

Proof. For the duration of this proof, set Xij
..= XN (i, j) for all (i, j) ∈ I. We observe that

ZI takes values in {
±1− c√

1− c2

}I
∪̇
{
±1 + c√

1− c2

}I
.

Now let zI be an arbitrary element in above set, w.l.o.g. zI ∈ {(±1 + c)/
√

1− c2}I . Let
yI ..=

√
1− c2zI and xI ..= yI − c ∈ {±1}I . Then

P(ZI = zI) = P(XI − c1Mβ
N>0 + c1Mβ

N≤0 = yI)

=

∫
(−1,1)

P(XI − c1Mβ
N>0 + c1Mβ

N≤0 = yI |Mβ
N = t)PM

β
N (dt)

=

∫
(−1,0)

P(XI = xI |Mβ
N = t)PM

β
N (dt) =

∫
(−1,1)

P̃⊗It (zI)µ
β
N2(dt),

The moment calculations for m̃(1) and 1− m̃(2) are straightforward.

Lemma 2.17. The ensemble N−1/2ZN – which is a rank one perturbation of ((1 −
c(β)2)−1/2HN )N – is a Curie-Weiss type ensemble as in Definition 2.7.

Proof. In Lemma 2.16 we have just shown that (ZN (i, j))1≤i≤j≤N is of de-Finetti type
with mixture µβN2 as in Theorem 2.6, but with map t 7→ P̃t as in Lemma 2.16. Thus,
condition a) of Definition 2.7 is satisfied. It remains to verify conditions (2.2), (2.3),
(2.4), (2.5), and (2.6). Note that in our setting, only the mixing distribution µβN2 depends
on N , but not the associated space T = TN = (−1, 1), nor the maps t 7→ P̃t and the
moments m̃(l)(t). For the proof, we need two well-known facts about the distributions
µβN2 on (−1, 1) when β > 1, see e.g. Lemma 6 in [31] (where c = c(β) ∈ (0, 1) such that
tanh(cβ) = c):

(CW1) ∃C, δ > 0 : ∀N ∈ N : µβN2([−c/2, c/2]) ≤ Ce−δN2

,

(CW2) ∀ ` ∈ N : ∃C` > 0 : ∀N ∈ N :
∫ 1

c/2
|t− c|`µβN2(dt) ≤ C`

N`
.

To show (2.2), we calculate for p ∈ 2N:∫
(−1,1)

|m̃(1)(t)|pµβN2(dt) = 2

∫
(0,1)

(
t− c√
1− c2

)p
µβN2(dt)

≤ 2

(
c√

1− c2

)p
Ce−δN

2

+
2Cp

(
√

1− c2)pNp
≤ Const(p, c)

Np
≤ Const(p, c)

Np/2
,
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where in the first step, we used Lemma 2.16 and that the measure µβN2 is symmetric. In
the second step, we split integration over (0, c/2) and (c/2, 1) and used (CW1) and (CW2).
This shows (2.2), and (2.3) can be shown analogously, since again – by Lemma 2.16 –
we basically integrate over |t− c|p resp. |t+ c|p. Conditions (2.4) and(2.5) are satisfied
since there is a compact subset of R in which the support of every probability measure
P̃t is contained. Moreover, this implies that the bounds Kp(t) can be chosen independent
of t, implying (2.6).

The last ingredient for the proof of Theorem 2.15 is the following lemma:

Lemma 2.18. Let Y be an Hermitian N ×N matrix, E be an arbitrary Hermitian N ×N
matrix of rank k. Then it holds for all z ∈ C+:∣∣tr [(Y − z)−1

]
− tr

[
(Y + E − z)−1

]∣∣ ≤ 2k

η
.

Proof. Unitary transformations of Y and Y + E do not affect the l.h.s. of the statement,
so we may assume E(1, 1), . . . , E(k, k) 6= 0 but all other entries of E vanish. We define for
all i = 1, . . . , k the matrix Ei such that Ei(j, j) = E(j, j) for all j ∈ {1, . . . , i} but all other
entries of Ei vanish. In particular, Ek = E . Further let E0 be the matrix consisting entirely
of zeros. Then – denoting for any N ×N matrix M and l ∈ {1, . . . , N} by M (l) the l-th
principal minor of M – we calculate

tr
[
(Y − z)−1

]
− tr

[
(Y + E − z)−1

]
=

k−1∑
i=0

(
tr
[
(Y + Ei − z)−1

]
− tr

[
(Y + Ei+1 − z)−1

])
=

k−1∑
i=0

(
tr
[
(Y + Ei − z)−1

]
− tr

[
((Y + Ei)(i+1) − z)−1

])
+

k−1∑
i=0

(
tr
[
((Y + Ei+1)(i+1) − z)−1

]
− tr

[
(Y + Ei+1 − z)−1

])
where for the second equality we used that (Y + Ei)(i+1) = (Y + Ei+1)(i+1) for all i =

0, . . . , k − 1. Taking absolute values, applying the triangle inequality and then the bound
(A.1.12) in [5] yields the statement.

Proof of Theorem 2.15. Let β > 1 and (HN )N be Curie-Weiss(β) ensemble. Denote by
sN the Stieltjes transform corresponding to ((1− c(β)2)−1/2HN )N and by s̃N the Stieltjes
transformation corresponding to the ensemble N−1/2ZN as defined above, which is of
Curie-Weiss type and a rank one perturbation of ((1− c(β)2)−1/2HN )N by Lemma 2.17.

|s̃N (z)− sN (z)| ≺ 1

Nη
, z ∈ C+

by Lemma 2.18. The proof is concluded by using the estimates on |s̃N −m| obtained by
Theorem 2.12.

3 Proof of Theorem 2.12

For the proof of Theorem 2.12, we follow the strategy used in [6] to prove their
Proposition 5.1. Their proof works for independent entries, and it is a key observation
that the ingredients which actually use the independence condition are exactly the
so-called “large deviation bounds”, stated in Lemma 3.6 in [6].

To begin the proof, note that it suffices to show the statements in (2.10) and (2.11)
for Λ(z), since then by averaging, we obtain the ≺ bounds for |s(z)−m(z)|, hence for
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the maximum. Now we proceed along the lines of [6] and reveal the changes we made.
We introduce the following notation: We write Λ∗ ..= maxi 6=j |Gij |. Using the Schur
complement formula, we obtain

1

Gii
= Hii − z −

(i)∑
k,l

HikG
(i)
kl Hli. (3.1)

Here, if T ⊆ {1, . . . , N} is a subset, the sum
∑(T )
k,l denotes the sum over all k, l ∈

{1, . . . , N}\T , and G(T )(z) denotes the resolvent of the matrix (Hi,j)i,j /∈T at z. We decom-
pose the expression (3.1) as follows:

1

Gii
= −z − s+ Yi

where Yi ..= Hii +Ai − Zi with Zi ..= Z
(1)
i + Z

(2)
i , where

Ai ..=
1

N

∑
k

GkiGik
Gii

, Z
(1)
i

..=

(i)∑
k 6=l

HikG
(i)
kl Hli, Z

(2)
i

..=

(i)∑
k

(
|Hik|2 −

1

N

)
G

(i)
kk .

As it turns out in the analysis of the local law, the only problematic component of the
error term Yi is Zi: Practically all the work the local law requires is to show the smallness
of Zi. In what follows we set

φ ..= 1Λ≤N−τ/10 .

The following lemma contains the main≺ estimates needed for the proof of Theorem 2.12,
cf. Lemma 5.4 in [6].

Lemma 3.1. In the above setting, we obtain

(φ+ 1η≥1) (Λ∗ + |Ai|+ |Zi|+ |Gii − s|) ≺

√
Imm+ |s−m|

Nη
, (3.2)

uniformly over all z ∈ DN (τ) and i ∈ {1, . . . , N}
Note that (3.2) consists of eight separate ≺ statements. The proof of Lemma 3.1

can be conducted as in [6], but since we deal with correlated entries, we need new so
called “large deviation bounds” as in Lemma 3.6 in [6] to deal with terms |Zi|. Thus,
the main work is to establish these bounds in our situation, which we carry out further
below after the discussion of the remainder of the proof of Theorem 2.12 (culminating in
Corollary 3.4). So assuming we have established Lemma 3.1, we would like to show

Λ(z) ≺
1√
Nη√

κ+ η + 1√
Nη

, z ∈ DN (τ). (3.3)

This is achieved by adjusting the proof of Lemma 5.7 in [6] to our setting: We first
establish the initial estimate

Λ ≺ 1√
N
, z ∈ DN (τ) ∩ {z ∈ C, η ≥ 1}, (3.4)

which can be conducted as in Lemma 5.6 in [6]. Then, in a second step, we fix E ∈
[−τ−1, τ−1] and set ηk ..= 1 − kN−3 for all k = 0, 1, . . . ,m(N) ..= bN3 −N2+τc. Then for
all these k we find ηk ≥ ηm(N) ≥ 1− (N3 −N2+τ )N−3 = Nτ−1. Setting zk ..= E + iηk for
all k ∈ {0, 1, . . . ,m(N)} it suffices to show that

Λ(zk) ≺
1√
Nηk√

κ+ ηk + 1√
Nηk

, k ∈ {0, 1, . . . ,m(N)}, (3.5)
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where the constants Cε,D do not depend on E. Then, by Lipschitzity of all terms involved,
this establishes (3.3).

To show (3.5), pick ε ∈ (0, τ/16), D > 0 and set δk ..= (Nηk)−1/2. Further, define the
sets

Ξk ..=

{
Λ(zk) ≤ N3ε δk√

κ+ ηk + δk

}
and Ωk ..=

{
|s(zk)−m(zk)| ≤ N ε δk√

κ+ ηk + δk

}
Note that our sets Ξk deviate from the respective set in exposition in [6] to accomodate
our choice of the error term, cf. Remark 2.13. However, the proof goes through as
in [6] using the bootstrapping technique explained there: For each k ≥ 1, it can be
shown that Ξk ∩ Ωk has high probability when conditioned on Ξk−1 ∩ Ωk−1. Here, we
repeatedly use that the indicator φ is active so that we can employ Lemma 3.1. In each
step, only a negligible amount of probability is lost from the initial estimate (3.4), so that
independently of our initial choice of E, we eventually observe

sup
k∈{0,1,...,m(N)}

P(Ξck) ≤ N3(1 +N3)
Cε,D
ND

,

which establishes (3.5) and thus finishes the proof (modulo the large deviation estimates),
since we may choose D arbitrarily large.

It is left to establish the large deviation bounds as in Lemma 3.6 in [6] to deal with
terms |Zi| in Lemma 3.1. We present the two-step approach developed in [16]. In the first
step, our Theorem 3.2 generalizes Lemmas D.1, D.2 and D.3 in [6] to independent random
variables with a common expectation t ∈ C which may differ from zero. Notationally, for
the remainder of this paper, sums over “i 6= j ∈ [N ]” are over all i and j in {1, . . . , N}
with i 6= j.

Theorem 3.2. Let N ∈ N be arbitrary, (ai,j)i,j∈[N ] and (bi)i∈[N ] be deterministic complex
numbers, (Yi)i∈[N ] and (Zi)i∈[N ] be complex-valued random variables with common
expectation m(1) ∈ C, so that the whole family W ..= {Yi | i ∈ [N ]} ∪ {Zi | i ∈ [N ]} is
independent. Further, we assume that for all p ≥ 2 there exists a µp ∈ R+ such that
‖W −m(1)‖p ≤ µp for all W ∈ W. Then we obtain for all p ≥ 2:

i)

∥∥∥∥∥ ∑i∈[N ]

biYi

∥∥∥∥∥
p

≤
(
Apµp +

√
N |m(1)|

)√ ∑
i∈[N ]

|bi|2,

ii)

∥∥∥∥∥ ∑
i,j∈[N ]

ai,jYiZj

∥∥∥∥∥
p

≤
(
A2
pµ

2
p + 2Apµp

√
N |m(1)|+N |m(1)|2

)√ ∑
i,j∈[N ]

|ai,j |2,

iii)

∥∥∥∥∥ ∑
i 6=j∈[N ]

ai,jYiYj

∥∥∥∥∥
p

≤
(

4A2
pµ

2
p + 2Apµp

√
N |m(1)|+N |m(1)|2

)√ ∑
i6=j∈[N ]

|ai,j |2.

where Ap ∈ R+ is a constant which depends only on p.

Proof. We show statement iii) first. Surely, (Yi − m(1))i are centered and uniformly
‖ · ‖p–bounded by µp for all p ≥ 2. For p ≥ 2 we find:∥∥∥∥∥∥
∑

i 6=j∈[N ]

ai,jYiYj

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i 6=j∈[N ]

ai,j(Yi −m(1))(Yj −m(1))

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

i 6=j∈[N ]

ai,jm
(1)(Yj −m(1))

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

i 6=j∈[N ]

ai,jm
(1)(Yi −m(1))

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

i6=j∈[N ]

ai,j(m
(1))2

∥∥∥∥∥∥
p

=: T1 + T2 + T3 + T4.
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We will now proceed to analyze the four terms separately. To bound T1, we have by
Lemma D.3 in [6] that

T1 ≤ 4A2
pµ

2
p

√ ∑
i 6=j∈[N ]

|ai,j |2.

For T2 (and analogously for T3) we obtain through Lemma D.1 in [6] that

T2 = |m(1)|

∥∥∥∥∥∥
∑
j∈[N ]

 ∑
i∈[N ]\{j}

ai,j

 (Yj −m(1))

∥∥∥∥∥∥
p

≤ |m(1)|Apµp

√√√√√∑
j∈[N ]

∣∣∣∣∣∣
∑

i∈[N ]\{j}

ai,j

∣∣∣∣∣∣
2

≤
√
N |m(1)|Apµp

√ ∑
i 6=j∈[N ]

|ai,j |2,

where we used that the Cauchy-Schwarz inequality. Lastly, we obtain

T4 =

∣∣∣∣∣∣
∑

i 6=j∈[N ]

ai,j(m
(1))2

∣∣∣∣∣∣ = |m(1)|2
∣∣∣∣∣∣
∑

i6=j∈[N ]

ai,j

∣∣∣∣∣∣
≤ |m(1)|2

√ ∑
i 6=j∈[N ]

|ai,j |2 ·
√
N2 = N |m(1)|2

√ ∑
i6=j∈[N ]

|ai,j |2.

This shows that iii) holds. Now ii) is shown analogously to iii), with the difference that
sums over i and j are always over [N ] without further restrictions such as i 6= j. In
addition, instead of using Lemma D.3 in [6] to bound T1, we then use Lemma D.2 in [6]
(where constants are smaller, thus we can replace 4A2

pµ
2
p by A2

pµ
2
p).

To show that i) holds, we calculate for p ≥ 2:∥∥∥∥∥∥
∑
i∈[N ]

biYi

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[N ]

bi((Yi −m(1)) +m(1))

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[N ]

bi(Yi −m(1))

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[N ]

bim
(1)

∥∥∥∥∥∥
p

≤ Apµp
√∑
i∈[N ]

|bi|2 + |m(1)|

∣∣∣∣∣∣
∑
i∈[N ]

bi

∣∣∣∣∣∣ ≤ (Apµp + |m(1)|
√
N)

√∑
i∈[N ]

|bi|2,

where in the third step we used Lemma D.1 in [6], and in the fourth step we used the
Cauchy-Schwarz inequality.

We proceed to show the main large deviations result in relation to the stochastic
order relation ≺.

Theorem 3.3. Let for all N ∈ N, Y = Y (N) and W = W (N) be N -dependent objects that
satisfy the following for all N ∈ N:

• W = W (N) is a finite index set.

• YW = (Yi)i∈W = (Y
(N)
i )i∈W (N) = Y

(N)

W (N) is a tuple of random variables of de-Finetti

type with respect to some mixing space (TN , TN , µN , P (N)).

Further, denote for all subsets K ⊆W by FW (RK) the set of tuples C = (Ci)i∈W , where
for each i ∈ W , Ci : RK → C is a complex-valued measurable function. Analogously,
define for all subsets K ⊆ W by FW×W (RK) the set of tuples C = (Ci,j)i,j∈W , where
for all i, j ∈ W , Ci,j : RK → C is a complex-valued measurable function. Then if the
mapping P (N) : TN −→M1(R) satisfies the first moment condition (2.2) and the central
first moment condition (2.4) as well as (2.6), we obtain the following large deviation
bounds:
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i)
∑
i∈I

Bi[YK ]Yi ≺
√∑
i∈I
|Bi[YK ]|2, uniformly over all pairwise disjoint subsets I,K ⊆

W with #I ≤ N , and B ∈ FW (RK).

ii)
∑

i∈I,j∈J
YiAi,j [YK ]Yj ≺

√ ∑
i∈I,j∈J

|Ai,j [YK ]|2, uniformly over all pairwise disjoint

subsets I, J,K ⊆W with #I = #J ≤ N , and A ∈ FW×W (RK).

iii)
∑

i,j∈I,i6=j
YiAi,j [YK ]Yj ≺

√ ∑
i,j∈I,i6=j

|Ai,j [YK ]|2, uniformly over all pairwise disjoint

subsets I,K ⊆W with #I ≤ N , and A ∈ FW×W (RK).

Further, if the mapping P (N) : TN −→ M1(R) satisfies the second moment condition
(2.3) and the central second moment condition (2.5) as well as (2.6), the same bounds
as in i), ii) and iii) hold after replacing Yi and Yj on the l.h.s. by 1 − Y 2

i and 1 − Y 2
j ,

respectively.

Proof. We prove iii) first: Let ε,D > 0 be arbitrary and choose p ∈ 2N with p ≥ 2 so large
that pε > D. Now, we pick an N ∈ N, then choose pairwise disjoint subsets I,K ⊆W (N)

with #I ≤ N and A ∈ FW×W (RK) arbitrarily. To avoid division by zero, we define the
set:

A3
..=

yK ∈ RK | ∑
i,j∈I,i6=j

|Ai,j [yK ]|2 > 0

 .

Then we calculate (explanations below, sums over “i 6= j” are over all i, j ∈ I with i 6= j):

P


∣∣∣∣∣∣
∑
i 6=j

YiAi,j [YK ]Yj

∣∣∣∣∣∣ > N ε

∑
i 6=j

|Ai,j [YK ]|2
 1

2


= P


∣∣∣∣∣∣∣
∑
i 6=j YiAi,j [YK ]Yj(∑
i 6=j |Ai,j [YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3
(YK) > Npε

 ≤ 1

Npε
E

∣∣∣∣∣∣∣
∑
i 6=j YiAi,j [YK ]Yj(∑
i6=j |Ai,j [YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3
(YK)

=
1

Npε

∫
T (N)

∫
RK

∫
RI

∣∣∣∣∣∣∣
∑
i 6=j yiAi,j [yK ]yj(∑
i 6=j |Ai,j [yK ]|2

) 1
2

∣∣∣∣∣∣∣
p

dP⊗It (yI)1A3(yK)dP⊗Kt (yK)dµN (t)

≤ 1

Npε

∫
T (N)

∫
RK

[
4A2

pK
2/p
p (t) + 2ApK

1/p
p (t)

√
N |m(1)

N (t)|+N |m(1)
N (t)|2

]p
dP⊗Kt (yK)dµN (t)

≤ 1

Npε

∫
T (N)

4p
[
4pA2p

p K
2
p(t) + 2pAppKp(t)N

p
2 |m(1)

N (t)|p +Np|m(1)
N (t)|2p

]
dµN (t)

≤ 1

Npε

(
42pA2p

p Kp + 8pApp
√
KpK2p +K2p

)
≤ 1

ND
· const(p(ε,D)),

where the first step follows from the fact that for the event in the probability to hold not all
Ai,j [YK ] may vanish, in the third step we used Lemma 2.3, in the fourth step we used part
iii) of Theorem 3.2 (notice that the R-valued coordinates (yi)i∈I are independent under

P⊗It and have expectation m
(1)
N (t) ∈ R, and also (

∫
R
|yi −m(1)

N (t)|pdPt(yi))1/p ≤ K
1/p
p (t)

by (2.4), which makes Theorem 3.2 applicable. Further, #I ≤ N , in the fifth step we
used that for a, b, c ≥ 0 and p ∈ N we have (a + b + c)p ≤ 4p(ap + bp + cp). In the
sixth step, we used (2.2), (2.6), and the Cauchy-Schwarz inequality. Lastly, note that
const(p(ε,D)) ..= 42pA2p

p Kp+ 8pApp
√
KpK2p+K2p denotes a constant which depends only

on p, which in turn depends only on the choices of ε and D. In particular, this constant
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does not depend on the choice of N ∈ N, the sets I and K or the function tuple A. This
shows iii). To show ii), we can proceed analogously to the proof of part iii), using part
ii) of Theorem 3.2 instead of part iii). We will show i) in the setting of the last statement,
that is, we will replace Yi by 1− Y 2

i : Let ε,D > 0 be arbitrary and choose p ∈ 2N with
p ≥ 2 so large that pε > D. Now, we pick an N ∈ N, then choose pairwise disjoint subsets
I,K ⊆ W (N) with #I ≤ N and B ∈ FW (RK) arbitrarily. To avoid division by zero, we
define the set

A1
..=

{
yK ∈ RK :

∑
i∈I
|Bi[yK ]|2 > 0

}
.

Now we calculate, with step-by-step explanations found below, and all sums over i are
for i ∈ I:

P

∣∣∣∣∣∑
i

(1− Y 2
i )Bi[YK ]

∣∣∣∣∣ > N ε

(∑
i

|Bi[YK ]|2
) 1

2


= P

(∣∣∣∣∣
∑
i(1− Y 2

i )Bi[YK ]

(
∑
i |Bi[YK ]|2)

1
2

∣∣∣∣∣
p

1A1(YK) > Npε

)

≤ 1

Npε
E

∣∣∣∣∣
∑
i(1− Y 2

i )Bi[YK ]

(
∑
i |Bi[YK ]|2)

1
2

∣∣∣∣∣
p

1A1(YK)

=
1

Npε

∫
T (N)

∫
RK

∫
RI

∣∣∣∣∣
∑
i(1− y2

i )Bi[yK ]

(
∑
i |Bi[yK ]|2)

1
2

∣∣∣∣∣
p

dP⊗It (yI)1A1(yK)dP⊗Kt (yK)dµN (t)

≤ 1

Npε

∫
T (N)

∫
RK

[
ApK

1/p
p (t) +

√
N |1−m(2)

N (t)|
]p

dP⊗Kt (yK)dµN (t)

≤ 1

Npε

∫
T (N)

2p
[
AppKp(t) +N

p
2 |1−m(2)

N (t)|p
]

dµN (t)

≤ 1

Npε

(
2pAppKp +Kp

)
≤ 1

ND
· const(p(ε,D)),

where the first step follows from the fact that for the event in the probability to hold not
all Bi[YK ] may vanish, in the third step we used Lemma 2.3, in the fourth step we used
part i) of Theorem 3.2 (notice that the R-valued coordinates (1− y2

i )i∈I are independent

under P⊗It and have expectation 1−m(2)
N (t) ∈ R, and also for all t ∈ T (N):

(∫
R

|1− y2
i − (1−m(2)

N (t))|pdPt(yi)
)1/p

≤ K1/p
p (t)

by (2.5), which makes Theorem 3.2 applicable. Further, #I ≤ N , in the fifth step we
used that for a, b ≥ 0 and p ∈ N we have (a+ b)p ≤ 2p(ap + bp). In the sixth step, we used
(2.3) and (2.6). Lastly, note that const(p(ε,D)) ..= 2pAppKp +Kp denotes a constant which
depends only on p, which in turn depends only on the choices of ε and D. In particular,
this constant does not depend on the choice of N ∈ N, the sets I and K or the function
tuple B. This shows i).

The next corollary verifies all applications of large deviation bounds needed for the
main estimates, Lemma 3.1. In particular, with the next corollary at hand, Lemma 3.1
can be proven as in [6].

Corollary 3.4. In the above setting, we obtain uniformly over all z ∈ C+ and i 6= j ∈
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{1, . . . , N}:

i) Z
(1)
i =

(i)∑
k 6=l

HikG
(i)
kl Hli ≺

 1

N2

(i)∑
k,l

|G(i)
kl |

2

 1
2

(3.6)

ii) Z
(2)
i =

(i)∑
k

(
|Hik|2 −

1

N

)
G

(i)
kk ≺

 1

N2

(i)∑
k

|G(i)
kk |

2

 1
2

(3.7)

iii)

(ij)∑
k,l

HikG
(ij)
kl Hlj ≺

 1

N2

(ij)∑
k,l

|G(ij)
kl |

2

 1
2

(3.8)

Proof. We prove i) first: Note that for all N ∈ N and i ∈ [N ], the N − 1 entries
√
NHik =

Xik, k 6= i, are distinct entries from the family (XN (a, b))1≤a≤b≤N , which is of de-Finetti
type with mixture µN satisfying the first moment condition (2.2) and the central first
moment condition (2.4). Further, for any z ∈ C+ and k 6= l ∈ {1, . . . , N}\{i} we have that
(H(i)−z)−1(i, j) is a complex function of variables in (XN (i, j))1≤i≤j≤N disjoint from those
in (XN (i, j))1≤a≤b≤N . Therefore, the statement follows with Theorem 3.3. Statement
iii) is shown analogously, and for statement ii) as well, using the last statement in
Theorem 3.3.

A Implications of Theorem 2.12

Theorem 2.12 is a statement about the supremum of certain probabilities. It can be
strengthened by taking the supremum inside the probability, which is possible due to
the Lipschitz continuity of all quantities involved. This will imply that ≺ does not only
hold uniformly for z ∈ DN (τ), but also simultaneously for these z (cf. Definition 2.10).

We formulate a general theorem, which is of help when lifting uniform ≺-statements
to simultaneous ones. To this end, in addition to the domains D∗N (τ) and DN (τ), we
define the encompassing domains

∀ τ ∈ (0, 1) : ∀N ∈ N : CN (τ) ..=

[
−1

τ
,

1

τ

]
+ i

[
1

N
,

1

τ

]
.

For any sequence of regions GN ⊆ CN (τ) and fixed L ∈ N, define the subsets

GLN ..= GN ∩
1

NL
(Z+ iZ).

For example, we might consider the regions G4
N for GN ..= DN (τ). We notice that G4

N

forms a 2
N4 -net in GN , which means that any z ∈ GN is 2

N4 -close to some z′ ∈ G4
N . The

following theorem generalizes Remark 2.7 in [6].

Lemma A.1. Suppose we are given stochastic domination of the form

F
(N)
i (z) ≺ Ψ(N)(z), i ∈ IN , z ∈ GLN ,

where for all N ∈ N:

• GN ⊆ CN (τ) is a non-empty subset with a geometry such that GLN forms a 2
NL

-net in
GN .

• (F
(N)
i )i∈IN is a family of complex-valued functions on CN (τ), where #IN ≤ C1N

d1

and for all i ∈ IN , F (N)
i is C2N

d2 -Lipschitz-continuous on CN (τ),
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• Ψ(N) is an R+-valued function on CN (τ), which is C3N
d3 -Lipschitz-continuous and

bounded from below by 1
C4Nd4

,

where C1, . . . , C4 > 0, d1, . . . , d4 > 0 are N -independent constants and L > max(d2 +

d4, d3 + d4). Then we obtain the simultaneous statement:

sup
z∈GN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
≺ 1. (A.1)

Proof. The following statements hold trivially for all N ∈ N:

i) #GLN ≤ #DLN ≤
3

τ
NL · 2

τ
NL =: C5N

2L, ii) ∀ z ∈ GN : ∃ z′ ∈ GLN : |z − z′| ≤ 2

NL
.

Step 1: (A.1) holds if GN is replaced by GLN .
This is easily done by the following calculation for ε,D > 0 arbitrary:

P

(
sup
z∈GLN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
> N ε

)
≤
∑
z∈GLN

∑
i∈IN

P

(
|F (N)
i (z)|

Ψ(N)(z)
> N ε

)
≤ C5N

2LC1N
d1
Cε,D
ND

This concludes the first step by shifting D ; D + 2L + d1 and absorbing C1 · C5 into
Cε,D+2L+d1 .

Step 2: Extension from GLN to GN .
Now, Lipschitz-continuity comes into play: For an arbitrary ε > 0, suppose

∃ z ∈ GN , ∃ i ∈ IN : |F (N)
i (z)| > Ψ(N)(z)N ε.

Then there exists a z′ ∈ GLN with |z − z′| ≤ 2
NL

, and then due to Lipschitz-continuity of

F
(N)
i and Ψ(N):

|F (N)
i (z′)| > Ψ(N)(z′)N ε − 2

NL
· C2N

d2 − 2

NL
· C3N

d3+ε.

It follows, using the lower bound on Ψ(N):

|F (N)
i (z′)|

Ψ(N)(z′)
> N ε − 2

C2N
d2 + C3N

d3+ε

NLΨ(N)(z′)
≥ N ε − 2C4N

d4
C2N

d2 + C3N
d3+ε

NL
.

We may assume w.l.o.g. that ε ∈ (0, L− d3 − d4) (see Remark 2.11). Then

∃N(ε) ∈ N : ∀N ≥ N(ε) : N ε − 2C4N
d4
C2N

d2 + C3N
d3+ε

NL
> N

ε
2 .

We have shown that for all N ≥ N(ε):[
∃ z ∈ GN , ∃ i ∈ IN :

|F (N)
i (z)|

Ψ(N)(z)
> N ε

]
⇒

[
∃ z′ ∈ GLN , ∃ i ∈ IN :

|F (N)
i (z′)|

Ψ(N)(z′)
> N

ε
2

]
.

Therefore, if D > 0 is arbitrary, we obtain for all N ≥ N(ε):

P

(
sup
z∈GN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
> N ε

)
≤ P

(
sup
z∈GLN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
> N

ε
2

)
≤
C ε

2 ,D

ND
,

where we used Step 1 for the last inequality. This concludes the proof by choosing
constants as (ε,D) 7→ C ε

2 ,D
and with Remark 2.11.
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We will now show that Theorem 2.12 actually holds simultaneously.

Theorem A.2 (Simultaneous Local Law for Curie-Weiss-Type Ensembles). In the setting
of the local law for Curie-Weiss type ensembles (Theorem 2.12) we obtain

sup
z∈DN (τ)

max(Λ(z), |s(z)−m(z)|)
1√
Nη√

κ+η+ 1√
Nη

≺ 1 (A.2)

as well as

sup
z∈D∗N (τ)

max(Λ(z), |s(z)−m(z)|)
1√
Nη

≺ 1. (A.3)

Proof. Elementary calculations show that on the encompassing domains CN (τ),
|s(z)−m(z)| is 2N2-Lipschitz and Λ(z) is N2-Lipschitz, hence F (N)(z) ..= max(Λ(z),

|sN (z)− s(z)|) is 2N2-Lipschitz. Further, on CN (τ) the error terms

Ψ
(N)
1 (z) ..=

1√
Nη√

κ+ η + 1√
Nη

and Ψ
(N)
2 (z) ..=

1√
Nη

are 3N/τ resp. N/2-Lipschitz and lower bounded by τ/(2
√
N) resp.

√
τ/N . Further, by

Theorem 2.12 we know that F (N)(z) ≺ Ψ(N)(z), z ∈ D4
N (τ). Therefore, the statement

follows directly with Lemma A.1.

Corollary A.3. In the situation of Theorem 2.12, we find

sup
z∈DN (τ)

|s(z)−m(z)| ≺ 1

N
τ
4

and sup
z∈D∗N (τ)

|s(z)−m(z)| ≺ 1

N
τ
2

Proof. Since for any z ∈ DN (τ) we find 1/(Nη)
1
4 ≤ 1/

(
N/N1−τ) 1

4 = N−
τ
4 , it follows

sup
z∈DN (τ)

|s(z)−m(z)|
1

N
τ
4

≤ sup
z∈DN (τ)

|s(z)−m(z)|
1√
Nη√

κ+η+ 1√
Nη

≺ 1

by Theorem A.2. Multiplying both sides by 1/Nτ/4 concludes the proof for the first
statement, and the second statement follows analogously.

Theorem A.2 immediately yields Corollary A.3, which allows us to conclude that with
high probability, s converges uniformly to m on a growing domain DN (τ) that approaches
the real axis. Before venturing further into further corollaries, we recall how Stieltjes
transforms can be used to analyze weak convergence, and why it is important for the
imaginary part to reach the real axis.

For any probability measure ν on (R,B), there is a close relationship between Sν and
ν, which is observed by analyzing the function (where η > 0 is fixed)

R 3 E 7→ 1

π
ImSν(E + iη) =

∫
R

1

π

η

(x− E)2 + η2
ν(dx) = (Pη ∗ ν)(E), (A.4)

where ∗ is the convolution and for any η > 0, Pη : R → R is the Cauchy kernel, that
is, ∀x ∈ R : Pη(x) ..= 1

π
η

x2+η2 , which is the Lebesgue density function of the Cauchy
probability distribution with scale parameter η. Denoting the Lebesgue measure on
(R,B) by λλ, we find (Pη ∗ ν)λλ = (Pηλλ) ∗ ν, that is, the function in (A.4) is a well-defined
λλ-density for the convolution (Pηλλ) ∗ ν. Further, it can be verified that i) Pηλλ ↘ δ0
weakly as η ↘ 0, ii) the convolution is continuous with respect to weak convergence
(if νn → ν weakly and ν′n → ν′ weakly, then νn ∗ ν′n → ν ∗ ν′ weakly) and iii) the Dirac
measure δ0 is the neutral element of convolution. We conclude that (Pη ∗ν)λλ→ δ0 ∗ν = ν

weakly as η ↘ 0, which proves the following well-known lemma:
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Lemma A.4. Let ν be a probability measure on (R,B). Then for any interval I ⊆ R with
ν(∂I) = 0, we find:

ν(I) = lim
η↘0

[(Pη ∗ ν)λλ](I) = lim
η↘0

1

π

∫
I

ImSν(E + iη)λλ(dE).

Thus, any finite measure ν on (R,B) is uniquely determined by Sν .

Let σN be the ESDs of a sequence of Hermitian N ×N matrices XN . Assume that
σN converges weakly almost surely to the semicircle distribution σ, that is, conver-
gence takes place on a measurable set A with P(A) = 1. By the discussion preceding
Lemma A.4, we find on A that the following commutative diagram holds, where all
arrows indicate weak convergence:

(Pη ∗ σN )λλ (Pη ∗ σ)λλ

δ0 ∗ σN = σN σ

η ↘ 0

N →∞

N →∞

η ↘ 0
N→∞
η↘0

In particular, the diagonal arrow indicates weak convergence (PηN ∗σN )λλ→ σ as N →∞
for any sequence ηN ↘ 0. But this does not tell us if also densities align, that is, if also
Pη ∗ σN → fσ in some sense, for example uniformly over a specified compact interval. If
η = ηN drops too quickly to zero as N →∞, then PηN ∗ σN will have steep peaks at each
eigenvalue, thus will not approximate the density of the semicircle distribution uniformly.
To illustrate this effect, we simulate an ESD of a 100× 100 random matrix X100, where
(
√

100X100(i, j))1≤i≤j≤100 are independent Rademacher distributed random variables.
The density estimates at bandwidths η1

..= N−1/2 = 1/10 and η2
..= N−1 = 1/100 are

shown in Figure 1.

Figure 1: Red lines: fσ. Blue lines: 1
π ImSσ100(·+ iη) = Pη ∗ σ100. Grey bars: eigenvalue

locations. Left figure: η = η1. Right figure: η = η2.

As we see in Figure 1, we already obtain a decent approximation by the semicircle
density when η = η1, despite the low N = 100. But after reducing the scale from
η1 to η2, we observe that we do not obtain a useful approximation by the semicircle
density anymore. Indeed, the scale N−1 is too fast to obtain uniform convergence of the
estimated density to the target density, whereas a scale of N−(1−τ) for any τ ∈ (0, 1) is
sufficient, see our Theorem A.6, which explains Figure 1 in that it shows that we do have
uniform convergence of the densities.
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Before we turn to Theorem A.6, we establish that as η ↘ 0, the function E 7→
1
π Imm(E + iη), that is Pη ∗ σ, converges uniformly to fσ over any compact interval and
with a speed of O(

√
η).

Lemma A.5. Let C ≥ 2 be arbitrary, then we obtain for any η ∈ (0, C]:

sup
E∈[−C,C]

∣∣∣∣ 1π Im(m(E + iη))− fσ(E)

∣∣∣∣ ≤√Cη.
Proof. Elementary calculations show that if (a+ ib)2 = c+ id, where a, c, d ∈ R and b > 0,
then

b =

√
−c+

√
c2 + d2

2
. (A.5)

With C ≥ 2 and z = E + iη, where E ∈ [−C,C] and η > 0, we find that z2 − 4 =

E2 − η2 − 4 + i2Eη, hence with (A.5):

1

π
Imm(z) = − Im(z)

2π
+

Im(
√
z2 − 4)

2π

=
1

2π

−η +

√
4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2

2

 .

Assuming at first that E ∈ [−2, 2], we find

∣∣∣∣ 1π Imm(z)− fσ(E)

∣∣∣∣ ≤ η

2π
+

1

2π

√4 + η2 − E2 +
√

(E2 − η2 − 4)2 + 4E2η2

2
−
√

4− E2

.
Using that

√
· is uniformly continuous with modulus of continuity

√
·, it suffices to analyze

the difference of the arguments, which will then yield the desired upper bound. Now
assuming that E ∈ [−C,C]\[−2, 2] we find

∣∣∣∣ 1π Imm(z)− fσ(E)

∣∣∣∣ =

∣∣∣∣∣∣ 1

2π

−η +

√
4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2

2

∣∣∣∣∣∣ .
Considering the cases η2 ≤ E2 − 4 and η2 > E2 − 4 separately and using |E| > 2, we
obtain

4 + η2 − E2 +
√

(E2 − η2 − 4)2 + 4E2η2 ≤ 2η2 + 2Cη,

which yields the desired upper bound.

Theorem A.6. In the situation of Theorem 2.12, define the scale ηN ..= 1/N1−τ for all
N ∈ N and assume τ < 2/3. Then

sup
E∈[−τ−1,τ−1]

∣∣∣∣ 1π Im(s(E + iηN ))− fσ(E)

∣∣∣∣ ≺ 1

N
τ
4
.

Proof. Due to Corollary A.3,

sup
E∈[−τ−1,τ−1]

∣∣∣∣ 1π Im(s(E + iηN ))− 1

π
Im(m(E + iηN ))

∣∣∣∣ ≺ 1

N
τ
4
.

The statement follows with Lemma A.5, which gives

sup
E∈[−τ−1,τ−1]

∣∣∣∣ 1π Im(m(E + iηN ))− fσ(E)

∣∣∣∣ ≺ √ηN =
1

N
1
2−

τ
2

.
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Theorem A.6 states in particular that at the scale ηN = N−(1−τ) (τ ∈ (0, 1) fixed), we
find uniform convergence in probability of PηN ∗ σN to fσ on the interval [−τ−1, τ−1],
where we have strong control on the probability estimates. In his publication [26],
Khorunzhy showed for the Wigner case that for arbitrary but fixed E ∈ (−2, 2) and for
slower scales ηN = N−(1−τ) (τ ∈ (3/4, 1) fixed), PηN ∗ σN (E) → fσ(E) in probability.
Moreover, he showed that this does not hold in general for scales that decay too
quickly, such as the scale ηN = N−1, see his Remark 4 on page 149 in above mentioned
publication. See also Figure 1 on page 22 for a visulization of these findings.

We have seen that Theorem 2.12 and Theorem A.2 guarantee closeness of the Stieltjes
transforms of the ESDs and of the semicircle distribution. Theorem A.6 shows that this
implies that fσ can be approximated well by a kernel density estimate PηN ∗ σN .

Next, we state a semicircle law on small scales, which is a probabilistic evaluation
of how well the semicircle distribution predicts the fraction of eigenvalues in given
intervals I ⊆ R. Interestingly, a variant of the following theorem (see Theorem A.8
below) even constitutes the local law per se in [34]. Notationally, if A ⊆ R is a subset,
denote by I(A) the set of all intervals I ⊆ A.

Theorem A.7 (Semicircle Law on Small Scales). In the setting of the local law for Curie-
Weiss type ensembles (Theorem 2.12), we obtain the two statements

sup
I∈I(R)

|σN (I)− σ(I)| ≺ 1

N
1
4

and sup
I∈I([−2+τ,2−τ ])

|σN (I)− σ(I)| ≺ 1

N
1
2

.

Proof. The proof can be carried out analogously to the proof of Theorem 2.8 in [6].

Due to Theorem A.7, for any ε ∈ (0, 1/4) and D > 0 we find a constant Cε,D ≥ 0 such
that

∀N ∈ N : P

(
sup

I∈I(R)

|σN (I)− σ(I)| ≤ N ε

N
1
4

)
> 1− Cε,D

ND
, (A.6)

This tells us that when predicting interval probabilities of σN by those of σ, the absolute
error will be bounded by N−(1/4−ε). Note that for small intervals this is not a good
statement: Then the error bound of N−(1/4−ε) is useless, since both σN (I) and σ(I) are
small anyway. The natural way to remedy this would be to consider the relative deviation
σN (I)/σ(I). This yields the following theorem, which for Tao and Vu actually constitutes
“The Local Semicircle Law” (instead of a statement as Theorem 2.12 involving Stieltjes
transforms), see their Theorem 7 in [34, p. 7].

Theorem A.8 (Interval-Type Local Semicircle Laws). In the setting of Theorem 2.12, we
obtain

i) For all τ ∈ (0, 1/4):

sup
I∈I(R)

|I|≥ 1

N1/4−τ

|σN (I)− σ(I)|
|I|

≺ 1

Nτ
.

ii) For all τ ∈ (0, 1/2):

sup
I∈I([−2+τ,2−τ ])
|I|≥ 1

N1/2−τ

∣∣∣∣σN (I)

σ(I)
− 1

∣∣∣∣ ≺ 1

Nτ
.

Proof. From Theorem A.7 it follows immediately that

sup
I∈I(R)

|I|≥ 1

N1/4−τ

|σN (I)− σ(I)|
|I|

≤ sup
I∈I(R)

|σN (I)− σ(I)|N 1
4−τ ≺ 1

Nτ
,
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which proves statement i), and ii) can be shown analogously by using the second
statement of Theorem A.7.
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