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Abstract

We consider the asymmetric exclusion process with a driven tagged particle on Z
which has different jump rates from other particles. When the non-tagged particles
have non-nearest-neighbor jump rates , we show that the tagged particle can have a
speed which has a different sign from the mean derived from its jump rates. We also
show the existence of some non-trivial invariant measures for the environment process
viewed from the tagged particle. Our arguments are based on coupling, martingale
methods, and analyzing currents through fixed bonds.
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1 Introduction

The exclusion process on the lattice Z¢ with a driven tagged particle can be formally
described as: a collection of red particles and a tagged green particle performing
continuous-time random walks on the lattice Z¢ with respect to the exclusion rule, i.e.
at most one particle is at each site and jumps are suppressed if the target site is already
occupied. Red particles have independent exponential clocks with rates A = )" p(2).
When a clock rings, the particle at site z jumps to a vacant site x + z with probability £ (/\Z);
the jump is suppressed if the site = + z is occupied. The green tagged particle follows
similar rules, but it has different jump rates ¢(.). In particular, for both types of particles,
the jump rates p(.) and ¢(.) are independent of where the particles are. We would like to
study the long-time behavior of the displacement D; of the tagged particle.

The behavior of the tagged particle is mostly studied when p(.) = ¢(.). Limit theorems
for the displacement D; were obtained by works [1, 21, 10, 12, 26, 24]. The environment
process &; viewed from the tagged particle turns out to be a convenient tool to study: &;
denotes the sites occupied by the red particles relative to the tagged particle. There is a
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class of invariant and ergodic measures for &;: Bernoulli measures p, with parameter
p (0 < p <1). As a consequence, the speed of the tagged particle can be computed
explicitly as (1 — p) >, z - q(z). For details on the exclusion process, the tagged particle
process, and their invariant measures when p(.) = ¢(.), see Chapter II1.4 [15]. The
fluctuation of D; in equilibrium is known to be subdiffusive when d = 1 and p(.) = ¢(.)
are nearest-neighbor symmetric [1], and diffusive in most other finite-range cases
[10, 12, 26, 24]. A powerful method, developed by Kipnis and Varadhan [12], is to
study the additive functionals of reversible Markov processes. It is also extended to
asymmetric models [26, 24]. The only open cases are when non-mean-zero p(.) = ¢(.)
is non-nearest-neighbor in dimension d = 1, and when p(.) = ¢(.) is non-mean-zero in
dimension d = 2.

The case where d = 1, p(.) = ¢(.) are nearest-neighbor is special. Particles are
trapped, and orders are preserved. The gaps between particles follow a zero-range
process [10]. The displacement D, can be considered jointly with the current through
the bond between 0 and 1 in either the zero-range process[10], or the exclusion process
[23]. On the other hand, when jump rates p(.) are symmetric, we can use the stirring
system to construct the symmetric exclusion process, see Chapter VIII.4 [18]. With these
considerations, one can study the density fields and apply hydrodynamic limit results to
analyze the displacement D;. Some related works are [1, 9, 23, 5, 7].

However, when jump rates p(.),q(.) are different and non-nearest-neighbor, the
asymptotic behavior of the displacement D, is less understood. A primary difficulty
in providing rigorous proofs is the lack of explicit knowledge of invariant measures
for the environment process, which is essential in the analysis in [1, 12, 26, 24]. The
difference between p(.) and ¢(.) introduces asymmetry making explicit computations
of invariant measures seemingly impossible. In dimension d < 2, it is unclear whether
there are multiple invariant measures for different values of density p, except for two
trivial ones, Bernoulli measures pg and p;. In d > 3, Loulakis’s result [19] provides a
partial answer when p(.) is symmetric. Also, in dimension d = 1, the orders of gaps
between particles are no longer preserved due to the non-nearest-neighbor assumption
on p(.). Meanwhile, we should notice two special cases in general one-dimensional
asymmetric models without a tagged particle: in asymmetric exclusion process, there
are stationary blocking measures [4, 6]; in the totally asymmetric simple K-exclusion
process, invariant measures are also unknown [22]. In the former model, blocking
measures are nontranslation invariant measures concentrated on configurations that are
completely occupied by particles after some point to the positive infinity and completely
empty before some point to the negative infinity. The existence of blocking measures
in principle implies the displacement D; of a tagged particle may grow sub-linearly
because their neighbor particles often block particle jumps. For the K-exclusion process,
Seppalainen [22] managed to show the hydrodynamic limit of the system even though
the invariant measures are unknown. His arguments are based on coupling the process
with a growth model.

Alternatively, when p(.) is different from ¢(.), we can view the tagged particle in the
exclusion process as a special particle driven by an external force, and consider our
model as a perturbed system of the case when p(.) equals ¢(.). One approach is to verify
the Einstein relation, which connects mobility and diffusivity. The mobility describes the
speed of the tagged particle in the perturbed system, while the diffusivity describes the
variance of the tagged particle in the unperturbed system. For exclusion processes, the
Einstein relation is verified in some symmetric and reversible scenarios [14, 19, 20]. In
dimension d = 1, when p(.) is symmetric and p(.), ¢(.) are nearest-neighbor, Landim, Olla
and Volchan, by studying the dynamics of gaps, [20] showed that the displacement D,
grows as /¢, and there is an Einstein relation for D;. They further conjectured that D,
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grows linearly in ¢t when the mean ) z - ¢(2) is positive, and p(.) is non-nearest-neighbor
in d = 1 or general in d > 2. This conjecture is partially verified when d > 3 and p(.) is
symmetric [19], and it remains open for most of the other cases. When ¢(.) is close to
p(.), one can show the displacement D, grows linearly in ¢ with a corresponding Einstein
relation [19]. However, the speed of the tagged particle is unknown because there is no
explicit formula for the invariant measures. For a mixing dynamical environment with a
positive spectral gap, Komorowski and Olla [14] obtained a full expansion of invariant
measures, and showed the explicit speed and the corresponding Einstein relation.

Another approach is to study the currents through a fixed bond in the one-dimensional
asymmetric exclusion process (AEP) with coupling arguments. The current describes the
average number of particles across a site, and it is a natural object to study especially
when ) z-p(z) is non-zero. Liggett [16, 17] computed the currents and limiting measure
in AEP explicitly for a class of general initial measures by couplings. For a more general
class of asymmetric conservative particle systems with a blockage, one can show a
hydrodynamic limit result with a coupling argument different from Liggett’s [2]. In
these systems, the current across the blockage is a key quantity in the hydrodynamic
limit because it describes the densities near the blockage. Although this second type of
couplings is different from Liggett’s [16, 17], it is available in the one-dimensional AEP
case. When jump rates p(.) satisfy certain monotonicity conditions, Ferrari, Lebowitz,
and Speer [6] showed a coupling of two AEPs and applied this coupling to prove the
existence of blocking measures. In the case of our model, when a driven tagged particle
is present, we can also consider the current across a particular site, the (moving) tagged
particle, and obtain estimates of currents by coupling different AEPs with a driven
tagged particle.

This article will consider the case where d = 1 and p(.) is non-nearest-neighbor and
asymmetric with a positive mean ) z - p(z) > 0. The main tools are the couplings and
martingale arguments. There are two types of couplings similar to those in [6, 16, 17].
These two types of couplings allow us to compare currents in different processes and
obtain estimates of currents. With martingale arguments, we can relate estimates of
currents to estimates of the displacement D; and some invariant measures. In the end,
we will show that the displacement D, grows linearly in ¢ in three scenarios (Theorems
2.1, 2.2, 2.3). These results suggest behavior of the tagged particle depends on jump
rates p(.),q(.) and the initial measure in a nontrivial way. By characterizing some
nontrivial invariant measure, we will show that the tagged particle can have a positive
speed in AEP even when it has a negative drift, >, z - ¢(z) < 0 (Theorem 2.3). We will
make some mild assumptions in the next section.

2 Notation and results

In this section, we first introduce the problem and describe the environment process
viewed from the tagged particle; next we describe the assumptions and introduce some
notation; and lastly we state the main results and provide an outline of the proofs.

A configuration £(.) on Z \ {0} indicates which sites are occupied relative to the
tagged particle: £(x) = 1 if site z is occupied, and {(z) = 0 otherwise. The collection of
all configurations X = {0, 1}Z\{0} forms a state space for the environment process &;.

Local functions on X are functions of the form ¢(£(x1),...,&(z,)) for some finite
integer n, such that ¢ : {0,1}" — R. We will use C to denote the space of local functions
on Z \ {0} and M; to denote the space of probability measures on X. Examples of local
functions are:

€a(6) = H &(z), Ais a finite subset of Z \ {0}. (2.1)

z€A
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When A = {z} for some integer x, we abuse the notation and write it as £,. We will
always use subscript to stress that &, is a local function. We also hope this will not cause
confusion when ¢, is the configuration at time ¢, as we will see in a moment.

The environment process & with respect to the simple exclusion process is a Feller
process. Starting from any initial configuration in X, &; is described by its generator
L = L°® + L[*". The action of L on any local function f is given by:

Lf(€) =(L* + L") f(€)
D ply —@)(@) (1= Ey) (FE€) = £())

z,y#0

+)a(z) (1= £(2)) (f(6:6) = f(€)) (2.2)

z#0

where 7Y represents the configuration after exchanging particles at sites x and y of &,

£(z) fz#zy
EY(2)=(€&(y) ifz=2 (2.3)
{(z) ifz=y

and 0.¢ represents the configuration shifted by —z unit due to the jump of the tagged
particle to an empty site z,

Ex+2) ifex#—2

2.4
&(2) ifr=—z2 @4

(0:8)(x) = {

The generator L°* corresponds to the motion of red particles, while the generator L*"
corresponds to the motion of the tagged particle.

Denote by IP7? the probability measure on the space of cadlag paths on X starting
from a deterministic configuration &, = 7, and let P**:¢ = [ P9 diy(n) when the initial
configuration & is distributed according to some measure 1y on X. We also denote by
[E¥0:9 the expectation with respect to P**:4. A special initial measure is the step measure
{10, which concentrates on the configuration &, with {(z) = 1, for z < 0, and £(z) = 0,
for x > 0. Also, we use P**:* and ¥ in the case when ¢(.) is a zero function.

Lastly, we will denote by D, the displacement of the green tagged particle up to
time ¢. Initially, Dy = 0 a.s. When ¢(.) is nearest-neighbor, we can represent D; as the
difference of numbers of right and left jumps, see (3.9) in section 3. The main problem
is to investigate the long time behavior of D; when ¢(.) is different from p(.).

To illustrate the result, we consider the case where red particles have positive drifts

w:ZZ~p(z)>O (2.5)

z

while the tagged particle has jump rates ¢(.). We want p(.) to satisfy the following
assumptions:

Al (Radially Decreasing and Range 2) p(—1) > p(—2), p(1) > p(2), and p(k) = 0 for all
|k| > 2.

A2 (Positive Mean) p(2) = p(—2) > 0, and p(1) > p(—1).

It turns out that these assumptions can be generalized and we can get similar results. We
will mention them and give outlines of their proofs after the proofs of the main results.
See Remark 7.1 and Remark 8.4 at the ends of sections 7, 8. For the more general cases,
we assume p(.) satisfies
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A'l (Radially Decreasing) p(z) is increasing on (—oo, —1] and decreasing on [1, c0),
A2 (Positive Mean) p(k) > p(—k) for all k£ > 0, and p(k) > p(—k) for some k,
A'3 (Finite-range) there is an R > 0 such that p(x) = 0 for |z| > R.

Our main results are the ballistic behavior of a driven tagged particle in asymmetric
exclusion processes under different assumptions. The first result is the most natural one.
When the initial measure is the step measure p; o and the tagged particle has only pure
left jump rates, it has a ballistic behavior towards left, i.e. % has a strictly negative
asymptotic upper bound.

Theorem 2.1. (Ballistic Behavior of a Tagged Particle in AEP with Only Left Jumps)

Consider the AEP with a driven tagged particle. Let the jump rates p(.) for the red
particles satisfy A1 and A2, and the jump rates ¢(.) be supported on negative axis with
q(—1) > 0. Then, starting from the step initial measure pu, o, there exists a negative
constant c such that

D
lim sup —t <ec<0, PPo? —qg.s,
t—00

When the tagged particle can jump in both directions, we can also obtain ballistic
behavior. In the case when p(.) = ¢(.), and the initial measure is the Bernoulli measure
1, for some 0 < p < 1, the tagged particle has a speed (1—p) >, z-p(2), see [18]. Now, if
we change the jump rate ¢(.) such that the drift ) |, z-¢(z) is greater than ), z - p(z), we
expect its mean displacement to have the same asymptotic lower bound, (1—-p) >, z-p(2).
The second result confirms that under some conditions on p(.) and ¢(.), the displacement
D, has an asymptotic lower bound (1 —p) >, z - p(z). For the second result, we make the
following assumptions on jump rates p(.), q(.).

A”1 (Supports) p(.) has a support on —2,—1,1; ¢(.) has a support on —1,1,2,
A2 (Radially decreasing) p(—1) > p(—2), ¢(1) > ¢(2) >0,
A’3 (Dominance and Positive) ¢(1) > p(1),¢(—1) < p(—1), w=>"_ z-p(z) > 0.

Theorem 2.2. (Ballistic Behavior of a Fast Tagged Particle in AEP)

Consider the AEP with a driven tagged particle. Let the jump rates p(.), q(.) satisfy
assumptions A”1, A”2, and A”3. Then, starting from a Bernoulli product measure i, with
p € (0,1) (on {0,1}%\{%), we have

D
liminf =% > (1 — p) Zz -p(z), PF»9 — a.s.

t—oo ¢

The assumptions on jump rates imply that we can couple two continuous-time random
walks with jump rates p(.), ¢(.) such that the walk with ¢(.) always stays on the right of
the walk with p(.). The supports of jump rates p(.), ¢(.) imply red particles do not jump to
the right of the tagged particle, and the tagged particle does not jump to the left of red
particles.See Remark 8.2 in section 8 below for some discussion on these assumptions.

The final result is that a slow tagged particle in AEP can follow the general behavior
of red particles even if it has jump rates ¢(.) with a negative mean ), z - ¢(z) < 0. By
slow, we mean that the size of ¢(.), >, ¢(2), is sufficiently small relative to w = ), z-p(2).

Theorem 2.3. (Ballistic Behavior of a Slow Tagged Particle in AEP)

Consider the AEP with a driven tagged particle. Let the jump rates for the red
particles satisfy assumptions A1 and A2. Then, there exist nearest-neighbor jump rates
q(.) for the tagged particle and an ergodic invariant measure v, for the environment
process viewed from the tagged particle such that, under P9, we have
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a. the tagged particle has a negative drift: —q(—1) + q(1) <0,
b. the tagged particle has a positive speed under IP"<'4, that is,

. D
lim =% =m > 0, P"9 — q.s.
t—oo t

In these results, we have shown ballistic behavior of the tagged particle in AEP. With
arguments to be introduced in section 3, the ballistic behavior (with estimates) implies
the existence of some non-trivial invariant measures, measures other than y or y;, for
the environment process viewed from the tagged particle. In the driven tagged particle
problem, the invariant measure is in general impossible to compute due to the break
of symmetry. The Bernoulli product measure is no longer invariant. In principle, there
could be multiple invariant measures, which makes the behavior of the tagged particle
hard to predict.

To get these three results, we use similar ideas. The proofs of Theorem 2.1 and
Theorem 2.3 are similar, and they are in section 7. The proof of Theorem 2.2 is in section
8. We will mainly discuss the approach to Theorem 2.3. It consists of three parts.

We first start from any initial measure vy and obtain a candidate ¥ for the invariant
measure in Theorem 2.3 and some estimates of the displacement D;. Let N; be the
number of red particles which initially start from the left of the tagged particle and move
to the right of the tagged particle by time ¢. By standard martingale arguments and an
algebraic identity, we can see that, up to an error of ¢(1) — ¢(—1), a multiple of "4 [%]
is a lower bound for E*0¢ [£:]. This is done in section 3. On the other hand, we will
show that the speed of the tagged particle is [E¥09 [%] if vy is ergodic. This is done in
section 7.

Next, we want to prove a positive lower bound for [E¥0-¢ [%] for some vy, and we
use two steps. The first step is to obtain an estimate for 07 [N;] — E*-° [N;], which
allows us to consider the case where the tagged particle does not move. This estimate
indicates that the case when the tagged particle is moving slowly can be viewed as
a pertubation of the case when the tagged particle is fixed. This estimate requires a
coupling result, which is the main subject in section 4. The existence of coupling requires
mainly assumptions A'1 and A’'3, and we will show it in Appendix A.

The second step is to prove a positive current E*0:° [%} for some initial measure vj.
When the tagged particle does not move, the environment process evolves as the AEP
with a blockage at site 0. A blockage is simply a site which particles are not allowed
to jump to. We consider the case where vy is the step measure p; ¢ and prove that the
current is strictly positive by contradiction. The idea is to consider the limiting measure
of an invariant measure under translations {77} in the Cesaro sense. We will get an
estimate for this limiting measure by comparing this process with another process called
asymmetric exclusion process (AEP) on the half-line even though with creation and
annihilation. The analysis of the latter process requires a second coupling argument,
and follows results and ideas of Liggett, [16, 17]. The second step is done in section 5
and section 6.

We end this section with some remarks on the coupling result to be introduced in
section 4 and the current through a fixed bond.

Remark 2.4. 1. Ferrari, Lebowitz, and Speer considered a coupling in [6]. This is the
same as the couplings in section 4. We give an alternative construction in Appendix
A. See Lemma 4.2 in [6] and Theorem A.4 in Appendix A. The main improvement in
this article is the couplings of two environment processes when the tagged particle
has jump rates different from p(.).
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2. If p(2) > p(—1) + 2p(—2), we can obtain a positive lower bound for 1E*0[N;]
using couplings in section 4. However, the proof does not work with the general
assumption Al so we will use arguments in section 5 and section 6 instead.

3. The step initial measure p; ¢ gives us the maximal value for limsup,_, ., %IE)”O’O [N].
By Theorem 2.2 from [2] and the couplings in section 4, we can get positive lower
bounds for %]E”Ovo [N:] for more general initial measures vy, such as Bernoulli
measures u, for p close to 0 or 1. This is indeed a hydrodynamic limit result for the

AEP with a blockage.

4. The current through a fixed bond in the AEP with a blockage is of independent
interest. The current in the usual AEP starting from a step initial measure p; o
is computed explicitly by Liggett [16, 17] as iz,z -p(z). However, in the case
where there is a local perturbation, the size of current is open. Whether the value
of the current in the perturbed system is strictly smaller than } }" z - p(z) is not
well understood, and it is known as the “Slow Bond Problem”. Recently, there
is a progress in the nearest-neighbor case by Basu, Sidoravicius and Sly [3]. In
the current article, we will show the lower bound in the perturbed case is strictly
positive in some non-nearest-neighbor cases (Theorem 5.5).

3 Invariant measure and the lower bound for the displacement of
a tagged particle

In this section, we will assume that ¢(.) is nearest-neighbor and p(2) = p(—2) > 0, and
assumptions A2, Al are in force. This simplifies the computation, for some generalization,
see Remark 7.1. We construct a candidate invariant measure by using the empirical
measures. We also relate the displacement D; of the tagged particle to the current
through bond (—1,1). Most results in this section are shown by standard martingale
arguments.

We start with a tightness result on M; with weak topology. Since X = {0, I}Zd\{(’}
is equipped with the product topology, it is compact. By Prokhorov’s Theorem, M; is
precompact with the weak topology.

Define the (random) empirical measure u; for process & and its mean v; by their
actions on local functions:

t
ety =4 [ rie)as @)
and

e fy = gl [ (e as (32)

forall f in C and t > 0. We also have continuity at ¢t = 0, vy = lim, | 4. By precompact-
ness of M;, we can obtain a measure 7 as the weak limit of a subsequence v, . It is an
invariant measure by Theorem B7 [15].

Let F; := o(& : s < t) and let N; be the net number of the red particles moving
from the left of the tagged particle to the right of the tagged particle up to time ¢ (or
the integrated current through bond (-1,1)). Since the tagged particle has only nearest-
neighbor jumps, the jumps of the tagged particle do not change the value of N, and NV,
is the difference of two numbers:

Ne=Ry— L = ZX{is:&;l'l,65(1):1,55(*1):0} - ZX{gs:a:}l,fs(1>:0,£5(71):1} 3.3)
s<t s<t
Under P%9, R, has (varying) jump rates A\;(&) = p(2)(1 — &(1))&(—1), and L, has
(varying) jump rates A2(&) = p(—2)(1 — &(—1))&(1). By using P*0:%-martingales, and
uniform integrability, we can obtain the following result:
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Lemma 3.1. Let p(.) satisfy assumptions A2 and Al. For a sequence of T, 1 oo,
v = lim,,_,~ v, exists, and ¥ is an invariant measure for the environment process &;.
We have

(7,C_11) = lim B {J\;T} , (3.4)

n— oo n

where C_11 = p(2)é_1(1 — &1)) — p(—2)&1(1 — £€-1). Furthermore, if there is a Cy > 0,
such that

N,
lim inf E¥09 [t] > (C, (3.5)
t—o0 t
we also have
Co
v,E_ 1 — > —>0. 3.6
(7,61 —&1) 2 =) > (3.6)
Proof. We write two P*°-9-martingales
t
M, =R; — / A1(&s) ds 3.7)
0
N t
Mt = Lt — / A2(§s) ds. (38)
0

These two martingales are generalizations of the classical martingale for a Poisson
process n; with a rate A\, n; — A\t. Combining them, we can get a P*>?— martingale,

t
Nt—/ C_11(&) ds.
0

For more details, see Chapter 6.2 [13]. Taking expectation with respect to P**:?, we
obtain )

(vr,, p(2)€-1(1 = &) = p(=2)&(1 = €-1)) = 7 B[N, |
Passing through the weak limit, we get the equation (3.4). As L; and R; are both domi-
nated by a Poisson Process with rate 1, {#t},.; and {%

ft }+>1 are uniformly integrable.
Using p(2) = p(—2), we get (3.6) from (3.4),(3.5). O

We can also write the displacement of the tagged particle D; as the difference of two
numbers, r; and /;, the numbers of right jumps and left jumps of the tagged particle:

Dy =1 =l = Zx{sﬁalss_} - ZX{&:efl&S_}' (3.9)

s<t s<t

With a similar argument, we see the displacement D; has a lower bound which is a
multiple of Cy, up to an error (the difference of ¢(—1) and ¢(1)):

Lemma 3.2. Let jump rates p(.) satisfy assumptions A2 and Al, and ¢(.) be nearest-
neighbor. There is a sequence of T, 1 oo such that v = lim,_, v7, exists and it is
invariant, and D; has an estimate:

D
q(l)(l?, 1-— §1> - Q(*1)<l7, 1-— {_1> = liginfEVO’q {tt] . (3.10)
Furthermore, if (3.5) holds with Cy > 0, then
lim inf E¥0-¢ D > @Co = (g(=1) — q(1)). (3.11)
t—00 t - p(2)
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Proof. 1t is almost the same as that of Lemma 3.1. We notice that, I; — ¢(— fo (1-

és(—1))ds and r; — g(1 jo )) ds are IP*0-9- martingales, and that the left hand side
of (3.10) can be rewritten as

q(1) (7,61 = &) = (¢(=1) —q(1)) (7, 1 = 1) - -

We use liminf in (3.10) to emphasize that the initial measure v is arbitrary, and D;
may not satisfy a law of large numbers. From the estimate (3.11) in Lemma 3.2, we can
get a positive mean for the displacement when the tagged particle has almost symmetric
jump rates, i.e. when ¢(—1) —¢(1) is small, and C} is positive. For the next three sections,
we will show how to get a positive Cy with (3.5) in Lemmas 3.1 and 3.2 for some vj.

4 An error estimate and couplings of particles on Z

The main result of this section is Theorem 4.4, which gives an estimate of the error
Ev0:4 [N;] — E¥:0 [N;], where ¢(.) is nearest-neighbor (for extensions, see Remark 4.5).
This estimate allows us to consider the problem with a fixed tagged particle instead of a
moving tagged particle. The proof relies on couplings of two auxiliary processes, which
is the main tool in this section. The couplings are similar to those in [2, 6]. Under the
couplings of two auxiliary processes, we will have one auxiliary process which moves
“faster” than the other process. We will order particles in increasing order, and compare
the positions of particles in two processes in pairs. Typically, the “faster” process has
particles with larger coordinates relative to their paired particles in the “slower” process.
By coupling jumps of particles, we can preserve the relative orders of paired particles in
both processes for all time ¢ > 0. Next, we introduce some notions, and show the proof
of Theorem 4.4 at the end of this section.

4.1 Auxiliary processes

We can view the environment process &; of the asymmetric exclusion process with
a tagged particle in another way. We can label all red particles according to the initial
configuration in an ascending order, and track their relative positions with respect to
the tagged particle.

Starting from an initial configuration £ with infinitely many particles on both sides of
zero, we label particles with their initial positions as Xy = (X;)icz € (Z\ {0})% = X. In
particular, )?0 satisfies

<X o< X< Xog< X1 < X<l 4.1)

and
¢(z) =14 X, =z, for some i.

To extend to the case when there are finitely many particles to the right or the left
of zero, it is also convenient for us to add particles at +oco and —oo, and therefore, we
would enlarge the state space to X = (7 \ {0} |J{—o0, c0})%. For example, for the step
measure [ 0, we can label particles as:

<X 9g=3< X 1 =2<Xg=-1<Xi=0< Xo=0< ...

Also, there is no particular rule for the choice of X, with respect to the tagged partlcle.

For each initial configuration XO satisfying (4.1), there is a Markov process X, with
generator L corresponding to the process &, with initial configuration £. In particular, we
will introduce many re-labelings to keep )?t satisfying (4.1) for any ¢ > 0. There are two
types of jumps for the auxiliary process, corresponding to jumps (2.3) and (2.4). The first
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occurs when the i-th red particle jumps to an empty target site X; + z; the second occurs
when the tagged particle jumps to an empty target site z. Due to nearest-neighbor jump
rates ¢(.), a jump of the tagged particle does not result in change of labels, while a jump
of a red particle requires re-labelings of particles between the particle and its target site
so that (4.1) holds. Note that there are multiple )_('0 corresponding to &, so to the process
¢; there correspond multiple processes )?t.

Let Ti,z)_(' and ©,X represent the configurations after these two jumps respectively.
See (4.2), (4.4), (4.6) below for their expressions. We can see two examples for these
two types of jumps in Figure 1 and Figure 2.

-o e < ® = o X

Xy X X-1 Tagged Xo

o—eo—o—0 = ° X' =T 3,X
XLy X', X'y Tagged X

-—o o—®—o—e - X
X3 X X-1 Tagged Xo
o—o B o o @ X' -0 ,X
X'y X7, TaggedXL Xy

Figure 2: Tagged Particle Jumps -2 Units

For any z # 0, we have 0.X as,
(©.X);, = X; — 2. (4.2)

For z > 0, we denote the index of the right-most particle to the left of site X; + z by
1;,(X),

I ,(X) = max{k : X, < X; + z}. (4.3)
When a positive jump is possible for the i-th particle, we have the new configuration
described by

X; if j <iorj>I.(X)
(T3.X); = X;01  ifi<j<I.(X) : (4.4)

The conditions for these two types of jumps to occurare 4; , = {X,;, + 2z ¢ X uU{0}} and
B. = {z ¢ X|J{0}}, respectively. Here we also think of X as a subset of Z \ {0} (instead
of Z\ {0} U {—00,00}).

For negative jumps z < 0, we can think of the dynamics by reversing the lattice Z.
That is, with a change of variable, Y = {Y;};cz = R(X), we have

(REX)) =vi=—X_, 4.5)

K3
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(T;-X) = R(T_; - -(R(X)) (4.6)
L (X)=—I_; _(R(X)) =min{k: X > X; + 2} (4.7)

For z = 0, we take T o as the identity map and I; O(X) =1.
Therefore, we can write down the generator L for the auxiliary process X, by its
action on local functions F : X — R (i.e. F(X ) depends on a finite set {X;}) as:

LF(X) =(L** + L*M)F(X)
=2 X+ ) () |F(T,.X) - F(X)]

+Z )p, (X) { (@y)?)—F()?)] 4.8)

The transition rates are p(z,y) = p(y — z) if x,y # 0, 00, and p(x, y) = 0 otherwise.

4.2 Shifts of labels

In the environment process, a jump of the tagged particle influences coordinates of
all red particles (and does not change labels of particles), while jumps of red particles
influence only finitely many coordinates (and change labels of particles). In order to
couple jumps of the tagged particle with jumps of red particles and preserve the order
of the two processes, we use shifts of labels to offset the global effect on coordinates
from jumps of the tagged particle.

For couplings, we also consider two other versions of auxiliary processes with shifts
of labels, which correspond to the same process &;. Let Sz)? represents the configuration
after shifting labels by z,

(S.X); = Xj4.. (4.9)
-@ ® o ® » ® X
X3 X X Tagged Xo
5— o —o—m—o o X' =0_,X
Xy X0, TaggedXi1 X5
5— o —o —m—o & X" =S5 ,00_,X
X0 Xy Tagged Xy Xy

Figure 3: Tagged Particle Jumps -2 Units with Labels Shifted

In addition to shifting configurations when a tagged particle jumps, we can also shift
labels after shifting the configurations. See Figure 3. We obtain the first version by
adding a shift of labels by z after the tagged particle has a left jump with z units, that is,

LoF(X) =(1% 4+ L + M) F(X)
=Y p(Xe Xo - 2)a, (X) [F(T,.X) - F(X)]

+3 " aW)1s, (%) [F(S,00,%) - F(X)]

y<0
+3 aly)1p,(X) [F(@y)?) - F()?)} (4.10)
y>0
EJP 27 (2022), paper 40. https://www.imstat.org/ejp
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Similarly, we can have the second version by shifting labels after the tagged particle
takes a right jump. See Figure 4 below for an example when the tagged particle has a
right jump with size 1.

LrF(X) =(L" + L™ + L") F(X)
- Zp Xi, X + 2)1a, (X)) [F(T;.X) - F()?)}

+Z Y)ip, (X [(@ X) - F()?)}

y<0
+> aly { (S, 00,X) — ()Z’)} (4.11)
y>0
-@ o o ® » = ° X
X3 X X1 Tagged Xo
-o o—c—m—e o X' —0,X
XL, XL Tagged X5 Xi
-o e B —@ & X" =5,00,X
Xy X7, TaggedXL Xy

Figure 4: Tagged Particle Jumps 1 Unit with Labels Shifted

We will use X} = ()?0, G, p,q) to denote the auxiliary process with )ZO as the initial
configuration, and generator GG. In particulgr, G is one gf the forms (4.8),(4.11), and
(4.10) with p, g as parameters. And we use P(X0:G-2:9) or PX+ to denote the corresponding
probability measure on the space of cadlag paths on X. )50 can also be random.

4.3 Couplings of auxiliary processes and error estimates

There is a natural partial order on the set X:
X>Y e X, >Y,;, foralli. (4.12)

With this partial order,we can define that two auxiliary processes Xt = (XO, G,p,q) and
Y: = (Yo,G',p,q’) are coupled by stochastic ordering.

Definition 4.1. We denote )?t - }7}, if two auxiliary processes Xt and 17; can be coupled:
that is, there exists ajomt process Zf (Wy, Vi), with a joint generator 2 on the space
of local functions F : X x X — R, such that

1. Wt ZYZ,PZt —a.s

2. 7, has marginals as X, and Y,. That is, for any local functions Fl()f7 )7) = Hl()?)
and F5(X,Y) = Ho(Y), we have,

QF (X,Y) = GH(X)
QF(X,Y) = G'Hy(Y)
Wo £ Xo, Vo £ Y.

Our main step towards Theorem 4.4 is the existence of couplings of auxiliary pro-
cesses. The construction of the couplings is done in Appendix A.
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Theorem 4.2. Let p(.) satisfy assumption Al and two initial configurations satisfy
X, >Y,. For any ¢(.), we can couple below two pairs of auxiliary processes:

(X(),f/R,Z%Q) t (}707-2/;1970) (413)
(XOaf/7pa0) = ()707iLap7q)' (414)
Proof. See Theorem A.4 in Appendix A. O

Remark 4.3. The couplings (4.13), (4.14) are valid for more general jump rates p(.), see
Theorem A.4. We can also extend Theorems 2.2, 2.1, and 2.3 when couplings 4.13 and
4.14 are valid for more general jump rates p(.), ¢(.). For details, see Remarks 7.1 and
8.4.

Above two couplings provide a lower bound and an upper bound of the error
Evo-4 [N;] — E*0:° [N;] respectively, and we can estimate the error by the number of
jumps of the tagged particle.

Theorem 4.4. Let p(.) satisfy assumption Al, and the tagged particle take nearest-
neighbor jumps, with rates q(—1),¢(1). For any (deterministic) initial configuration &,
and anyt > 0,

[ESC[N] — ESO[N,]| < ¢t (q(1) + g(—1)). (4.15)

Proof. To get (4.15), we will use couplings from Theorem 4.2 to obtain two inequalities,

ES? [Ny — ESC[N;] > —ES9 1], (4.16)
ESY [N, —ESC[N,] < ES9[L]. (4.17)
With the fact that I, — q(— fo 1))ds and r; — q( )fg(l — &4(1)) ds are Pvo-2-

martingales, we derive (4.15) from (4 16) and (4.17).
To get (4.16) and (4.17), we can consider the following. For any non-zero configura-
tion ¢ in X, we can label the particles as X = {X, }icz,

<X <X 1 <X <0<X; <X, <

and equality occurs if both sides are oo or —00. By Theorem 4.2, from the same initial
configuration &, we have two couplings with XU = YO = Zo,
Xt = (X07£R5p7 Q) = ()Z:Ovzvpv 0) = }_}t
Y, = (Xo,L,p,0) = (Xo, L1, p,q) = Z. (4.18)
Consider a function F : X — 7, F(X) = max{i : X; < —1}. It is decreasing in X, that
is,if X > Y
F(X)<F(®) (4.19)

Therefore, we get, under two joint distributions (one for the coupling )?t > }7,5 and
the other for the coupling Y; >~ Z;) and Xy =Y, = Zo,

F(Xy) — F(X,) > F(Yy) — F(Y)), a.s., (4.20)
F(Yy) — F(Y;) > F(Zo) — F(Zy), a.s.. (4.21)

Notice that the derivation of (4.20) and (4.21) does not require ¢(.) to be nearest-
neighbor.

On the other hand, when ¢(.) is nearest-neighbor, jumps of the tagged particle do not
move particles between positive and negative axes, but they may shift labels. See Figure
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4. For X}, we can use a decomposition similar to those in (3.3) and (3.9), and see that
the change in the label of the right-most particle on the negative axis by time ¢ comes
from three sources: jumps of red particles through bond (—1,1) (Ng(t)), right jumps of
the tagged particle (r;(t)) and left jumps of the tagged particle (I¢(t)). In particular,
each first type of jump contributes 1 to the change, each second type of jump contributes
1 to the change, and each third type of jump contributes 0 to the change. Therefore, we
obtain

F(Xo) — F(X;) = Ng(t) +r¢(t), (4.22)

where N (t),r(t) are the same as N, for the corresponding environment process &;.
Similarly, we obtain two identities for processes }7;, th,

F(Y) — F(Y;) = Ny(t), (4.23)
F(Zo) — F(Zy) = Nz(t) — 15(t), (4.24)

where [;(t) is the same as [; for process Z(t).
Taking expectations on (4.20) rewritten in terms of (4.22) and (4.23), we get

ES9 [N,] + ES? [r,] > ESO [NVy],

which implies (4.16); taking expectations of (4.21), rewritten in terms of (4.23) and
(4.24), we get (4.17). O

Remark 4.5. We can obtain further results with similar proofs of Theorem 4.4. We will
assume that p(-) satisfies assumption Al so that couplings in Theorem 4.2 are possible.
We mention these results without giving detailed proofs.

1. When ¢(.) is non-nearest-neighbor and finite-range, we can find an estimate similar
to (4.15): there is a Cr > 0 depending on the range R’ of ¢(.) such that,

B0 [Ny] = B0 [N]| < Cre Y q(2) - t. (4.25)
We outline the proof of (4.25): we can first obtain couplings (4.18) by Theorem
4.2. Then, we can apply couplings (4.18) to the decreasing function F()Z ) =
max{i : X; < —1} and get (4.20) and (4.21). Each side of (4.20) is the same as the
integrated current N; through the bond (—1,1) for the corresponding environment
process & up to a term corresponding to the shift of labels. For example, we can
take the auxiliary process X, = (207 Lgr,p, q). Every jump changing the value of the
integrated current N; also changes the value F()Z't) by the same amount, except
for right jumps of the tagged particle. A right jump of size z decreases F()Z't) by an
additional amount z, so we can get (4.22)

by interpreting N () as the integrated current IV; through the bond (-1, 1) for its
corresponding environment process, and 7 ¢(t) as the sum of right jump sizes of the
tagged particle. Similarly, we can derive (4.23) and (4.24) with new interpretations.
Therefore, we can get (4.25) by taking expectations and the fact that

max {E [rz ()] ,E[lg(®)]} < RZq(z) - t.
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2. From the coupling, we can use Kingman Subadditive Ergodic Theorem to show
the convergence of % when the initial measure is the step measure (i o, and the
tagged particle does not move, ¢ = 0:

P00 _ . (4.26)

)

N, 1
lim =% = lim JEoO [N

t—o0 t—o0

See Remark 2.4 and Lemma 4.8 in [2], or see (7.6) in the proof of Theorem 2.1.

5 Current in AEP with a blockage

In this section, we will show the current in AEP with a blockage at the origin has a
positive lower bound (Theorem 5.5).The existence of a positive lower bound helps us to
show that the tagged particle has a positive speed under P¥=¢, for some small ¢(.) and
some ergodic measure v, for the environment process.

5.1 Currents and densities in equilibrium

In sections 5, 6, we make the following assumptions on p(.,.). Let p(.,.) be jump rates
for a continuous-time random walk on Z with the following conditions:

1. p(.,.) is translation invariant: p(z,y) = p(y — ).

2. p(x,x+ k) =p(k) > p(—k) = p(x + k,x) for all k > 0, and a strict inequality holds
for some k.

3. p(.,.) has a finite jump range R > 1: p(k) =0, |k| > R. Assume further p(R) > 0.

Notice that the assumptions A1, A2 are sufficient for the above assumptions, but not
necessary. Also, we don’t need Al or A’'1, which is the main condition for the existence
of couplings in section 4; instead, the second assumption above is the main condition
for this section. It enables us to construct an increasing sequence G;, which will be
important in the proof of Lemma 5.3.

We will consider a process, the AEP on lattice Z with a blockage at the origin, i.e.,
the AEP with a tagged particle when ¢ = 0, and quantities C, , that are currents through
bond (z,y).

The AEP on lattice Z with a blockage at the origin has a generator L defined by its
action on a local function f,

L) = Y pl,y)n) 1 =) (f0™) = f0)), (5.1)

z,y7#0

which is the same as (2.2) when ¢ = 0. Assume the initial configuration is the step
measure [ o for the rest of this section. Recall that C_; ; was defined in Lemma 3.1. In
general, for any « < y, we can define the current C, , through bond (z,y) as:

Coy= > (051 —mn;) = p@im;(1 =) (5.2)

1<z,y<j,

1,j#0

Theorem 5.5 is the main result for the next two sections. Before its statement and
proof, we shall see three lemmas on invariant measures with respect to L, and currents
C,,y. The first two lemmas are direct consequences of translation invariance and finite
range of p(.,.) and they are standard. In the third lemma, we will need the second
condition on p(.,.). The first lemma says the mean of current C, 41 is constant in = with

respect to an invariant measure.
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Lemma 5.1. For an invariant measure v with respect to the generator L defined in (5.1),
we have, for any x # —1,0,
<177C-T737+1> = <D,C_171>. (53)

Proof. The change of density at site x is due to the difference between currents through
bonds (z — 1,z) and (z,z + 1). Computing Ln, for z # —1,0,1, we get

Lm = Ug—12 — CJ;,;L’-i-lv
L77—1 = C—z,—l - C—l,la
L771 = 071,1 - 01,2.

We show the first one, and the next two are similar: for any = # —1,0, 1, we have

Lne =Y pli, ))mi (1= n;) (07 = na)

1,740

= Z p(i,x)m (1 - 77$) - Z P(x,j)% (1 - nj)
i#0,x J#0z

_Z p(i,x)n; (1 —ne) —plx, d)n. (1 —n)) .
1#0,z

On the other hand, we can check pairs (i, j) contributing to the difference Cy_1 , — Cy o1

Cota—Cagrr= (i, ))mi(1=n;) = p(,i)n; (1 —n,))
i<zx—1,x<j,
4,20
- Z (p(i, 3)ni(L = m3) — p(4, 8)n; (1 — ns))
i<z, x+1<j,
i,j7#0

= > (G 3yt = ;) = p(G D)y (1 = i)
léfvijjiégzy,
- > (= ny) = p( i (1 —mi))
i=z,x+1<j,
i,j#£0

= > (px)m(1 —n.) — p(z,i)na(1— 1))
i<zr—1,
0
+ Z Z T 772 nz) _p<x7i)nz(1 - 771)) = L77:1:7
z+1<14,
i£0

where interchanging ¢ and j in the third last line results in a change of sign.
Taking expectation with respect to the invariant measure v, we get (5.3). O

Consider translation operators 7; on the state space X’ = {0,1}%, fori,j € Z,
(mm)(4) = n(j + ).
We define translations on local functions f and on measures v by
7if () = f(7in), (5.4)
(rav, f) = (v, i f) (5.5)

In particular, we have that 7,m; = 1,1, (v, ;) = (V, Nitj)-
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The second lemma says that any weak limit v* of the Cesaro means of 7 under
translation is a mixture of Bernoulli measures p,, 0 < p < 1. This is because v* is
translation invariant and invariant with respect to the generator Ly for AEP. Recall that
the generator Ly acts on a local function f by, see [11],

Lof(n) = Y ply —z)n(z) (1 =) (F0™Y) = f(n)). (5.6)

T, YyEL

Lemma 5.2. Let ¥ be an invariant measure with respect to the generator L. Any weak
limit v* of the Cesaro means of U under translation:

2

. . 1
v = lim v, = lim — E U, (5.7)
k—oo 'k k—o0 Ny, “ ]
im

is translation invariant and invariant with respect to the generator Ly for AEP. That is,
for any local function f,

(v, f), (5.8)
0, (5.9)

<V*7Tmf>

<V*7 L0f>

where L is translation invariant. In particular, there is a probability measure w, on
[0, 1], such that

v* :/ppdwp. (5.10)

Proof. By Theorem VIII.3.9 [18], we only need to show translation invariance and
invariance ((5.8), (5.9)) to get (5.10). The proofs for both are similar.

For any local function f, which is a bounded function on {0, 1}# depending on finitely
many &,

Nk

(vp, ) :nik Z<Ti’777—1f>

=1

1 &
= Ti ’77f
- ;( 17, f)

1
=(v | Or|— ).
Wi ) +05 (=)
Also, as v is invariant with respect to L and Lg7; = 7; Ly, we can compare (5.1) with
(5.6) and get,

23

(Vs Lo f) :nik Z(Tﬂl Lof)

— > 0, Lo(mf))
— S L) + oo S (B - D)

In the last line, since f is local, (Lo — L)(7; f) is non-zero for finitely many 4. Taking limits
as nx — 0o, we get (5.8) and (5.9). O
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The third lemma says if an invariant measure 7 has a current with a zero mean and
some weak limit v* of its Cesaro means under translation is a Bernoulli measure o with
density 0, the densities of positive sites are identically 0 for .

Lemma 5.3. Let v be an invariant measure with respect to the generator L, and v* be
a weak limit of its Cesaro means defined in (5.7). If (7,C_11) = 0 and (v*,n,) = 0 for
some x (which implies for all x since v* is translation invariant), we have (v,n,) = 0 for
all z > 0.

Proof. We will divide the proof into 3 steps.

S1. Define a quantity G;:

With identities p(y, z) = p(z, y) +p(y, ) —p(z,y) and 0, (1 —ny) =1y (1 —1z) = 0z — 1y,
from (5.2), we get

<Dv Ci,i+1> :<l77 Z p(y - x)(nz - 771/)>

e<ii+1<y

+, Y (ply—2) —ple—y))ny(1 —n.)).

r<i,i+1<y

Therefore, by Lemma 5.1, we have, fori > R, (7,C; ;+1) = 0, and

Z py — z) (v, 0y — Na)

w<i,i+1<y

= > (y—=)—ple—y) (70,1 —n)). (5.11)
r<i,i+1<y
The choice for i > R is to avoid z,y = 0 for any term inside the sum.

Notice that there is some symmetry on the left hand side of (5.11), which allows us
to rewrite (5.11) as a backward difference for some sequence (G;);>r

> ply—2) @y —na) = Gip1 — G, (5.12)
r<i,i+1<y

We will prove (5.12). Indeed, we can expand the left hand side of (5.11), and
rearrange terms according to (7, n;4;), for j = —(R—1),—(R —2),...,R. We will
get 2R terms with coefficients b;,

R
Sooopy—a)moy —ne) = Y bi(migg),
@<i,i+1<y j=—(R-1)
where b; can be computed explicitly as
R .
p(k forj >1
by — § 2k=i P VO = (5.13)
ST (k) L forj <0
The coefficients b; are “odd” in the sense that
b_(j—1y=—bj, forj=1,..., R (5.14)
From (5.14), we can find 2R 4 1 “even” numbers with boundary conditions ar =
a_Rp = 0,
a_; =ay, forj=0,1,... R, (5.15)
EJP 27 (2022), paper 40. https://www.imstat.org/ejp
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and rewrite b; as a (negative) forward difference

bj:aj_lfaj, fOI"jzf(R71>,...,R. (516)
We can also express a; in terms of p(.) explicitly as
R
aj= > (k—|jl)p(k)., for |j| =0,1,...,R. (5.17)
k=ljl+1

One can see (5.16) by working on an example. For example, when R = 2, we have
4 “odd” terms,
_b27 _bh b17 b27

and we can find 5 “even terms” 0, bs, bo + b1, b2, 0 and write the 4 odd terms as
0 —ba,ba — (b2 + b1), (ba + b1) — ba, ba — 0.

In fact, (5.16) is a direct consequence of the symmetry (5.14), and it does not rely
on the explicit expressions (5.13), (5.17). From (5.16), we can apply the summation
by parts formula to the left hand side of (5.11) and get (5.12),
R R
Soobimmisy = > (aj-1—a;){7nigg)
j=—(R-1) j=—(R-1)
R-1 R—
= D aimmip) - Y, a4 (7nig)
j=—(R-1) j=—(R-1)
=Gy — Gy, (5.18)

[

for all i > R, which is the forward difference of a sequence (G;). The sequence (G;)
is unique up to a constant, and we can use the last equality of (5.18) and express
G, in the matrix form,

Gi= Y aj(B,miyy) = Avs, (5.19)

where A is a row vector with 2R — 1 positive entries a; = Zﬁ:lj\ﬂ (k— 7)) p(k),
for |j| < R —1, and v; is a column vector with 2R — 1 nonnegative entries (7, 7;+,),
for [j| < R —1.

Convergence of (G;);>r:

By the assumption p(k) > p(—k) for k > 0, we have the right hand side of (5.11) is
positive. Also, (5.19) implies that G; is bounded uniformly for : > R. Therefore, we
get the monotone convergence of (G;);>g:

G;te asitoo. (5.20)

From (v*,n,) = 0to (7,n,) = 0:
As the Cesaro limit of a sequence is the same as its limit when both limits exist,
by the definition (5.7) of v*, (5.19), and (5.20), we get ¢ = 0 from linearity. With
strictly positive entries in A, we get, for i > R,

Gi = AUZ‘ = 0,

and all entries in v; are 0. In particular, (7,7,4+;) = 0, for all indices i + j with
i+j>R—(R—1)=1. 0

We should notice that to write GG; in forms of (5.19), we need 7 > R. It is because we
don’t want terms involving p(0, z) or p(x,0). This condition holds for sites sufficiently
right to the origin. We will see similar conditions in Theorem 5.4 and Lemma 6.1 involved.
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5.2 Proof of positive currents in AEP with a blockage

The theorem below will be proved in section 6.3. It says, if the initial configuration
has no particles after some point x > 0, v* is dominated by 1, in the sense of (5.21).

Let’s recall from section 3 that the mean of empirical measures v; is defined by its action

on local functions (v, f) = 1 E° [ fg f(ns) ds} for some initial measure .

Theorem 5.4. Consider the AEP on lattice Z with a blockage at the origin and p(.) has
a positive mean Y z - p(z) > 0. Let v be a weak limit of the mean of empirical measures
vy, , and v* be defined via a subsequence mentioned in (5.7). If there is an x > R such
that (v, n,) = 0 for ally > =, we will have, for any finite set A C Z,

W T ne) < Guas T med = 27140 (5.21)

z€A T€A

Proof. See Corollary 6.4. O

Theorem 5.5 is the main result of sections 5, 6. It says the current through bond
(—1,1) is strictly positive for the AEP on Z when the initial measure is the step measure
t1,0. We will prove it by contradiction.

Theorem 5.5. Suppose p(.,.) satisfy assumptions at the beginning of subsection 5.1.

For the AEP on lattice Z with a blockage at the origin, there is a lower bound C; > 0 for
the current through bond (—1,1),

lim inf 1IE’“"”O [Ny] = liminf (1, C_1 1) = Cy > 0. (5.22)

t—oo ¢ t—o00 ?
Proof. Let N; be the (net) number of particles jumping through bond (-1, 1) by time ¢,
which is the same as (3.3) when the tagged particle is not moving. Under the initial
measure [, there are no particles on the positive axis, we can see that V; is the same
as the number of particles on the positive axis at time ¢, and therefore N; > 0. Together
with the fact that N; — fg C_11(ns) ds is a P#10:0- martingale (see Chapter 6.2 [13]), we
get that

1
Cy = lim inf(vy, C_1 1) = liminf E]Ef“»mo [N¢] > 0.
—00

t—o0

Suppose C; = 0. By tightness, there is an invariant measure v with a zero current
(7,C-11) =0. By Lemma 5.1, (#,C; 11) = 0, for > R. We have

1 s,
(Vne CRR+1) = v > (70, Cr 1)
i=1

1o,
= Z<1/, Crti,pti+1) = 0.
i=1

. . N . 1 Nk _
Then, for any weak limit v* = limy_, I/;;k = limy_ o i Zi:l U,

<I/*,CR}R+1> =0. (523)

On the other hand, by Lemma 5.2, v* is a mixture of Bernoulli measures (on {0, 1}Z),
that is, v* = [ u,dw, for some probability measure w,. A computation shows

(o:Crorr) =p(L=p) > (p(i,5) = p(4,1) = p(1 = p)w, (5.24)
i<R,j>R+1
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where w is the mean drift for p(.,.)

w= Y (p(i,§)—p(i, 1) =Y k-p(k). (5.25)

i<R,j>R+1 k

By assumption 2 for p(.,.), this sum (5.24) is strictly positive unless p = 0 or 1. As a
consequence, v* is a convex combination of py and

v* = couo + c1p, (5.26)

Wlth Co —+ c1 = 1.
By Theorem 5.4, we have ¢; < 2~14l, for any finite set A C Z. This implies ¢; = 0 and
co = 1. Then, by Lemma 5.3, we have, for z > 0,

(v*,ngy) =0, and (7,n,) = 0. (5.27)

By the particle-hole duality, (i.e. viewing holes as particles, viewing particles as holes,
and reversing Z \ {0}, we can get the dynamics of holes the same as the dynamic of
particles in the AEP with a blockage at site 0), we get a result like (5.27): for z < 0,

(7,ne) = 1. (5.28)

(5.27) and (5.28) imply the current (7, C_; ;) is strictly positive, which is a contradiction.
O

6 AEP on half-line with creation and annihilation

To show Theorem 5.4, we will consider an auxiliary process: the AEP on the half-line
with creation and annihilation. This model has a long history and was studied by Liggett
in [16] and [17]. We will use some results from [16] and [17] to show the estimate (5.21)
in Theorem 5.4.

6.1 Comparison between AEP on half-line with creation and AEP with a block-
age

We first describe the AEP on the half-line with only creation formally as follows.
Particles move according to asymmetric exclusion process on half-line [1, o0) with jump
rates p(z,y) = p(y — z). If a positive site y > 0 is vacant, a particle is created at y with a
rate ) ., p(y — ). Also, no particles are allowed to jump out of the positive half-line.
Alternatively, if we consider the AEP on Z with an immediate creation of particles on
(—o0, 0] when sites are vacant, the dynamic restricted to the positive axis is the same as
the dynamic of the AEP on the half-line with creation.

The first lemma connects the AEP with a blockage at site 0 with the AEP on the
half-line with creation. Denote by 7, the AEP with a blockage at site 0, which has a
probability measure P; denote by (; the AEP on the half-line with creation, which has a
probability measure Q.

Lemma 6.1. Suppose AEP with a blockage at site 0 starts from the initial measure
t1,0 and the AEP on the halfline with creation starts from the Bernoulli measure pg on
positive axis. Then, for any finite subset A C Z,, and any t > 0,

P(n(x+R)=1,forallz € A) < Q({(z) =1, for all x € A), (6.1)

where R is the range of jump rates p(.) as defined at the beginning of section 5. We use
R to avoid sites too close to the origin.
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Proof. In the AEP with a blockage, we use independent exponential clocks with rates
p(z,x + z) to indicate times of potential jumps from a site z to a site x + z. These clocks
also help us to interpret movements of holes. When a potential jump from site x to z + 2
occurs, a hole at site x can interchange with another hole at site x 4+ z (even though the
interchanging doesn’t affect the configuration), but its jump to a site x + z occupied by
a particle is suppressed. Then, we can obtain an intermediate process ¢; by labeling
holes and particles in the AEP with a blockage as different classes of “particles” and
suppressing certain jumps. In this intermediate process, there are three classes of
particles, we label each class by 1, 2, or 3. Holes and particles in the AEP with a blockage
are labeled according to the following rules:

a. a particle in the AEP with a blockage is always a first-class particles and labeled “1”
in the intermediate process;

b. a hole in the AEP with a blockage at any time is either a second-class particle or a
third-class particle;

c. a hole becomes a second-class particle once it visits or starts from a site on (—oo, R],
and its label becomes ”27;

d. a hole is always a third-class particle if it never visits or starts from a site on
(—o0, R], and its label stays ”3”.

We will also suppress a jump from site x to « 4+ z (in addition to those jumps suppressed
due to the target site x 4 z already occupied by a particle in the P-process)

if  has a third-class particle and x + z has a second-class or third-class particle.
(6.2)
(6.2) does not affect the P-process because both the second-class and third-class “parti-
cles” are holes, but under (6.2), only jumps from a site with a particle of a larger label to
a site with a particle of a smaller label is allowed. We will denote by P the probability
measure corresponding to ¢;.

See Figure 5 for an example. ¢,, is the a configuration at time ¢, > 0 with a specific
labeling of three classes of particles. In particular, the hole at the site 4 is labeled a
second-class particle. ¢, is the configuration after a (first-class) particle jumps from —1
to 1, a (second-class) particle jumps from 2 to 3, and a (second-class) particle jumps from
4 to 6 in ¢+,; ¢, is a configuration at a general time ¢o.

R=2
N Py = o o o o ¢t0
1 1 Blockage 2 2 3 2 3 3
- = ® & S S o
1 Blockage 1 2 2 3 3 2
o » o °® S o o i,
2 1 Blockage 1 1 3 1 2 1

Figure 5: The AEP with a Blockage and 3 Classes of Particles

The intermediate process ¢; connects both the P-process and Q-process. On one
hand, it follows from the rules that the first-class particles in ¢; correspond to particles
in the P-process. We have that for any finite subset A C Z,t >0

P(¢y(x) =1,forallz € A+ R) = P(n,(z) = 1,forall z € A+ R). (6.3)
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On the other hand, the dynamics of the third-class particles (on (R, 00)) in ¢; are identical
to the dynamics of holes in the @Q-process (on (0, c0)) when the Q-process has an initial
measure . We can see this because a third-class particle is not created; a third-class
particle is affected by either being moved from a site y > R to a new site z > R, when
the site x is occupied previously by a non-third-class particle and a potential jump from
x to y occurs, or being removed from the system due to a jump from a site z < R to y.
This is the same as a hole at a site y — R in the Q)-process: a hole at site y — R is affected
by either being moved to a new site x — R > 0, when the site z is occupied previously
by a particle, and a jump from site z — R to y — R occurs, or a hole is affected by being
removed from the system due to a jump from a site  — R < 0 to y. Therefore, together
with the initial measure p, ¢ for the P-process, we can get that for any finite subset
ACZy, t>0

P(¢y(x) # 3,forall z € A+ R) = Q(¢,(z) # 0,for all z € A). (6.4)
As a consequence of (6.3) and (6.4),

P(n(z) =1,forall x € A+ R) §]5(¢>t(:c) =1lor2forallz € A+ R)
=Q(¢(z) = 1,forall z € A).

6.2 Couplings in the AEP with creation and annihilation

By the above lemma, we can study the asymptotic behavior of the AEP on half-line
with only creation. The main theorem of this section is Theorem 6.3. The proof of
Theorem 6.3 can be derived from results in [17], with stochastic orderings (couplings).
We start with some notion and results from [16] and [17].

Consider a subset D,, , = {m,m +1,...,n} C Z, for m < n < co, the configuration
space on D,, ,, is X, , = {0, 1}D""v", and a probability measure v, , on X,, ,. We can
extend vy, , to a measure on X_ o o, = {0, 1}% by taking product measure: let \, p € [0, 1],
we can have

Umniag =ty 5" @ Vg @ p T, (6.5)
Um, 003\ :,U/)TOO)m71 ® Um, 00, (6.6)
where u;m’mfl is a Bernoulli measure with density A on X_ ,,—1 = {0, 1}{i‘i<m} and

1> is a Bernoulli measure with density p on X1, = {0,1}{#>"). With this
extension, we can compare measures on different X,, ,, with partial orders on the space
of measures on X_ .

We first define partial orders on the space of configurations X_ o
n>&<n(x) > E(x) forall z € Z. (6.7)

Then we can define partial orders on the space of probability measures via stochastic
ordering:

v>u< (v, f) > (u, f)for all fincreasing (with respect to (6.7)). (6.8)

We will consider the AEP with creation and annihilation on both a finite system and an
infinite system. The former is a process on X,, ,, with a generator Q;\n”n and a semigroup
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Spib.. Q:f acts on a local function f by

m,n

O fm = > (pz A1 =) +py,2)(L - M) (f(n*) = F()

r<m,y€Dm n

+ Y ayn@)(1 = p) +ply,x)p (1= () (F0") = f(n))

€D ny>n

+ > play)n() (L—n) (F0™Y) = f(n)), (6.9)

Z,Y€EDm n

where

n(z) , otherwise

{1—77(95) yifz=u

And the latter is a process on X,,, o, with a generator Q;}wo and a semigroup Sﬁwo.
Q;\nm acts on a local function f by

Dfm) =D (A1 =n) +ply, )1 = M) (f0*) — f(n))

r<m,y>m

+ > pl,yn(@) (1=n) (f0™) = f(n)). (6.10)

z,y=m

6.3 Liggett’s results and their consequences

Below are results from [16] and [17]. Particularly, the monotonicity in the first part
of Lemma 6.2 guarantees interchanging of limits. Recall x;" is a Bernoulli measure on
Xm,n with density p.

Lemma 6.2. Assume 1 > A > p >0, and m < n < oco. Let u;\;f;(t) = u;oo’m_l ®
(upem Sk, (t)) @ pith>°. Then we have,

m,n

1. In the sense of (6.8), the probability measure v,;" (t) is increasing in parameters
m,n,t, A and p.

2. Let Upmnin,p = liMygoo yﬁ;{jl(t). Um,n;r,p converges to a unique limit 0y, , as n goes
t0 00. And Tpix p = limypoa p1y ™71 @ (U S), o (1))

m,00

3. Forn —m > 2R, the current in D, ,, has two lower bounds:
(Um,nixps Coor1) = w-max{A(1 = A), p(1 — p)} (6.11)
where w =3, kp(k),see (2.5).

Proof. The first part of Lemma 6.2 is proved in Theorems 2.4, 2.13 in [16]. The second
part is a consequence of the monotonicity in parameters from the first part and the
Trotter Theorem, see Proposition 2.2 in [16]. We only show the last equality:

i i1 8 (52, (0) = lim i (1 (7 S30) @ )

tToo 1100
— lim li —oo,m—1 m,n Q\,p t n+1,00
B ™" S 0) @ v
=lim lim vM* (¢
lim lim i (£)

= lim lim Uz\,b’/;(t) = Upix,p-
ntoo tToo ’

In particular, the first line is by Proposition 2.2 [16], and the interchanging of limits in
the fourth line is by the monotonicity in parameters n,t from the first part. The third
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part of Lemma 6.2 is by the proof of Proposition 2.6 in [17]. It is a consequence of the
monotonicity of ,, ;»,, in m,n and a direct computation of currents at two boundaries
Cr—1,m and Cp, n41. Indeed, we can compute (7, n:x,p, Cr—1,m),

(Zm.mixp: Cm—1.m) = Z (@, YA Pmninp: L= 1y) = Y, 2) (1 = A) (Vm,nin s My)

> Z (p(xvy)/\<l7y+l,n;>\,pa 1- 77y> —p(y,x)(l - )‘)<Dy+17'rt;>\,p’ 77y>)

rz<m<y

where we use that 7y, n: , and Uy 1 n.» , are product measures in the first line and the
third line, we use that 7, 5. , is increasing in m, n in the second line, and we use (2.5)
to get the last equality. Repeating this for (7, n;x,p, Cn,nt1) We get

<Dm,n;)\,pa Cn,n+1> = Z (p(xa y)(l - p)<l7m7n;/\,pv 771> - p(ya m)l)<l7m,n;/\,pa 1- 77I>)
r<n+1<y

> Z (p(ma y)(l - P)<’7m,r—1;>\,pv %) - p(ya I)p<’7m,r—1;>\,p7 1- 77%>)
r<n+1<y

=w - p(1—p).

Then, we can use the same argument as Lemma 5.1. From a direct computation, we get
that forz =m,...,n,

Qﬁ{f)nﬁz = Ugzg—1,2 — Ca:,:r:+1~
From the first point, 7, ), is the limiting measure 7y, .2, = limspoo uﬁ;ﬁl(t), and
therefore it is invariant with respect to Q;\n”n Taking expectation, we obtain that the

expected values of currents are constant forallz =m —1,...,n

<17m,n;)\,p; Cr,x+1> = <17m,n;)\,pa Cm—l,m>7
which implies (6.11) from the lower bounds. O

The main theorem of this section says the AEP on half-line with creation has a limiting
measure. When translated along the positive direction, the limiting measure converges
to the Bernoulli measure [ in the Cesaro sense. This corresponds to the limiting
measure of usual AEP being the Bernoulli measure I when the initial measure is the
step measure .

Theorem 6.3. Assume the AEP on half-line with creation has the initial configuration
with only holes in positive sites. Let m; be measures on {0, 1}%+ with (m¢, [],c 4 72) =
Q(¢(x) =1, for all x € A) for any finite subset A C Z.,. Then we have the following,

lim m; = m exists (6.12)
t—o00
1 N
im — 7 — 9—|4]
ng{(lxD N E (m, | I Ny = 27140 (6.13)

i=1 r€A+1

Proof. Assume )\ > p, from Lemma 6.2, ¥,,.,, is the limiting measure of V;}L’f;l(t) ast,n go

to co. It is also increasing in m, A, p. Therefore, we can define a unique limiting measure
(A, p), which is also increasing in A and p,

p(A, p) = Hm Uy, (6.14)

m—r oo
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It is also the same as the limit of the Cesaro means of 7,, , under translation:

TiVm;,p :nhﬁnolo TiVm,n;\,p = nlggo Um—in—i;\,p = Vm—i;\,p»

N
. _ o1 _
/‘()‘a P) = ]\}l_rgo TNVm;x,p = 1\}1—{%0 N § - TiVm;\,p-
i=

On the other hand, we see that the limit (), p) is translation invariant (due to Cesaro
mean) and invariant with respect to Ly, following similar arguments in Lemma 5.2.
Indeed, for any local function f on {0,1}% (Q;\n’oon)f is well-defined and

(0, o) f = (LoTs)f

for i > C(m, f) > 0. Then, we get for ¢ large,

<17m—i;A,p7 L0f> :<Ti17m;>\,p7 L0f> = <77m;>\,p7 (LOTi)f>
:<Dm;/\,pv (Qi\nooTZ)f> = <Dm:,>\,p7 Qi\n,oo(’r’if» =0.

where the last equality is a consequence of the point 2 in Lemma 6.2: we see that 7, ,
is the limiting measure, and therefore it is invariant with respect to Q;\n,oo by Theorem B7,
[15]. Taking limit as ¢ goes to oo, we get (u(A, p), Lo f) = 0. Therefore, (), p) is a mixture
of Bernoulli measures. For any Bernoulli measure 1, by (5.24), (1, Cr,r+1) = wp(1—p).
As a consequence, we get an upper bound, for any A > p,

(1(X, p), Cr,r41) < ~w, (6.15)

| =

and equality holds if and only if u(), p) = fh1-
The lower bound (6.11) in Lemma 6.2 indicates (1 (3,0),Cr.ry1) > tw, (1 (1,3),

Cr,rt+1) > fw. We see that x (3,0) and 4 (1, ) are Bernoulli measures with the same

density 1,
1 1
I (2,0> =p (1, 2) =

Together with monotonicity in ), p, we get for A > 7 > p,

1 1
[ =u<270> </~L(A,p)<u<1,2> =p1- (6.16)

We can conclude the proof by letting A = 1, p = 0, and identifying m; as the restriction
of yé:go(t) on X . Taking weak limits (again by Lemma 6.2), we get (6.13)

N
Nhinoozlv;@ IT n) = @, 0), I] ne) = 27141 -

rEA+1 z€A

We give the proof of Theorem 5.4 as a corollary of Theorem 6.3.

Corollary 6.4. (proof of Theorem 5.4) Let v be a weak limit of the mean of empirical
measures vr,, and v* be a weak limit of the Cesaro means of v under translation (5.7).
Then for any finite set A C Z,

v I ne) <2710 (6.17)
z€A
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Proof. Consider some weak limit 7 of the means of the empirical measure for the P-
process defined by (3.2) along some sequence (). By (6.1) and (6.12), we have that, for
any A C Z4

1 [t
(v, H NetR) :nlirgog/() P(ns(x+ R) =1,forallz € A)ds

€A
< lim —/ Q(ns(z) =1,forall z € A)ds
n—oo t
:nlgr;ot—/ ms,an yds = ( m an
€A z€A

Then, for i > 0,

<Ti’7a H 77r+R> = <77> H 771+R+z S m H 7795—0—1

T€A T€EA z€A

Therefore, by (6.13) and (5.7), the definition of v*,

W ] esr) < Jim Z L e = 27141

z€A z€EA

We can extend the inequality to any subset A of Z since v* is translation invariant by
Lemma 5.2. O

7 Proofs of Theorem 2.1 and Theorem 2.3

In this section, we prove Theorems 2.1 and 2.3. Let’s start with the proof of Theorem
2.3, and we will see that the proof of Theorem 2.1 follows similar arguments.

Proof. (Theorem 2.3) We divide the proof into two steps.

Stepl. Existence of ¢(.) and ergodic measure v, for the environment process &;:

By Theorem 5.5, we can define C; := liminf;_,o, +E#*.0:* [N}] > 0. Then by Theorem 4.4,
for any nearest-neighbor ¢(.), we have Cy := C; — (¢(1) + ¢(—1)), such that

1
lim inf gE’“’O’q [Ny] > Co.

t—o0

As a consequence, by Lemma 3.2, there is an invariant measure © for the environment
process &, such that

. 10, Dyl q(1)
it B0 | 24 — (5, 7) > 94, — 1) - a(w) 7.1)
where

&) =a1)A - &) —q(-1)(1 = &)
We can choose g(—1) > ¢(1), to obtain a strict positive lower bound for (7.1).

On the other hand, the collection of invariant measures satisfying (7.1) forms a
nonempty closed convex compact set by tightness. Then, there is an extremal point v,
which is ergodic for the environment process &;, and v, also satisfies (7.1)

ver ) > cho ~ (g(=1) - g(1)) > 0. (7.2)
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Step2. The positive speed of the tagged particle:

We can use P¥<'— martingales,(see (3.7),(3.8))

M, = D, - /O F(€) ds,

where M, is a martingale with quadratic variance of order ¢. As v, is invariant and
ergodic for the environment process ;, we apply Ergodic Theorem, and get

D
lim =% = (v, f) >0, P"?—q.s. (7.3)
t—oo t B

In the case when the tagged particle only has pure left jumps, following arguments
in Step 2 of the above proof, we only need to show that liminf;_, % fo tf(&s)ds < cfor
some ¢ < 0.

Proof. (Theorem 2.1) We first use arguments similar to the proof of Theorem 4.4. Since
jump rates p(.) satisfy A1, we can use Theorem 4.2 to get a coupling

Xt = ()20717/1:5,])7 q) i ()?Oai’7pa 0) = if‘t
Then under some joint distribution, we have (4.20)

F(Xy) - F(X)) = F(Yy) - F(Y,) , ass.

—

for the decreasing function F(X) = max{i : X; < —1}. When the tagged particle does
not jump to the right, each side of (4.20) is identical to the number of red particles
through bond (—1,1) by time ¢ (integrated current through bond (-1,1)). The above
inequality (4.20) is equivalent to

N)?(t) > N?(t) a.s., (7.4)

which implies that
el .1
htrgg)lf ;N)?(t) > hglol.}f ;N?(t) ,a.s. (7.5)

It is worth noting that due to non-nearest-neighbor jumps of the tagged particle, N¢(t)
in (7.4) is different from the N¢(t) described before (4.22) because a left jump of the
tagged particle can increase N¢(t) when there is a red particle between the tagged
particle and its target site (see Figure 3 for instance). For more details on N e (t), see
point 1 in Remark 4.5.

We can use the the Kingman Subadditive Ergodic Theorem and Theorem 5.5 to get
that the right hand side of (7.5) is a positive constant C1,

1 1 1
liminf ~ Ny (t) = lim ~ Ny (t) = hminf;E/“»O’O [Ny] =: C1 > 0. (7.6)

t—o0 t—oo t t—00
Indeed, due to the step initial measure p,0, we can label particles initially as }70 = (Y))icz,
where
— 1 if1 <0
Y, = 7 1 < .
400 ifi >0
At any fixed time ¢, we can get a new (random) configuration }7,5’ > 17,5 from 17,5 by

“increasing” all the red particles in Y; that are on the positive axis to 400, and “increasing”
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all the other red particles to fill the “rightmost” holes on the negative axis. More precisely,
in view of Ny (t) = F'(Yy) — F(Y;) > 0, the new configuration Y/ = (Y/(t))icz is

Y/

7

® = i—14+ Ng(t) ifi < —Ng(t)
|+ ifi > —Ng(t)’

which dominates Y; = (Y;(t)):ez because for each i < —Ny(t) = —max{i : Yi(t) < -1},

Yi(t) = (Yil®) = Yiey (8)) + Yivy 0 (8)
<(i=Np(®) +(-1) =Y/(1),
and for each i > —Ny (1),
Y;(t) < 400 =Y/ (1).

It is also immediate that }7{ is identical to the initial configuration Y, = (Y;)iez, but with
Ny (t) (random) shifts of labels. Hence, we have

SnomYo =Y =Y. (7.7)

Then by Theorem 4.2, we can couple two auxiliary processes qu, Y}H with initial configu-
rations Y/, Y},
Zs = (SN?(t)?Oa Z7p7 0) = (ﬁh Eapa 0) = )_}t-i-s' (7.8)
Applying the argument for (7.4), we can get the subadditivity for N, for any s > 0,
Ny(s) > Ng(t+s) — Ng(t) as., (7.9)

where N;(s) has the same distribution as Ny (s) because Zy and Y, are the same up
to Ny(t) (random) shifts of labels, and Nz(s), Ny(s) are differences of labels, see
arguments before (7.4). From (7.8) and (7.9), we can apply the Kingman Subadditive
Ergodic Theorem to get the convergence in (7.6), and identify the limit by Theorem 5.5.
This is also a proof for the second point in Remark 2.4.

On the other hand, for the environment process of AEP with a driven tagged particle,
we can compute LE_; by (2.2) and the fact that p(.) is supported on [—2,2], and ¢(.) is
supported on the negative axis. We can bound it above by

L& =(1-¢&) Z p(2)-1- — &1 Z p(2)(1 =& 142)

z#0,—1 z#0,1
+3 a(2) (1= &) (mres — 1)
2<0
<A=& | D pE+a=D ]+ D ez -¢&)
27#0,—1 z<—1
—& Y p(x)(1 =&y (7.10)
z>1

Also, we can compute CA’_M by adding an extra term to (5.2), which corresponds to the
jump of the tagged particle,

Coap =p(21(1—&) —p(=2)&(1—¢ +Z )1 =€) ( > fz'>

z2<2'<0

<p2)E(l=&)+ Y q(z)(1 = &) (—z - 1). (7.11)

z<~—1
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Notice that the negative term in the last inequality of (7.10) is the same as the first
term p(2)§_1(1 — &) on the right hand side of (7.11). Therefore, we can bound the sum
L¢_1 + C_1,1 by summing the other positive terms in (7.10), (7.11), and bound the sum

by a multiple of f =37, _;z-q(2)(1-&),

LEy+Coiy <(1-¢0) (Zp >+Z )(1—¢)

Z P( ) Cy
e iy

f, (7.12)

where Cy = q(—1) + >, p(2).
We can use three P#1.0°9— martingales, (see (3.7), (3.8), and Chapter 6.2 [13])

_/Oté_l,wss)ds, &i(-1) - /OLg (&) ds, Dy /f . o3

which all have quadratic variance of order ¢. Dividing by ¢ and taking limits, we see
from (7.5) and |&(—1)| < 1 that, P#1.0:9-a.s.,

1 [ 1
lim inf;/o C_1.1(&) ds= ligglf {N)?(t) > Ch,

t—o0
t

lim 1 LE 1 (&) ds = Jim % (&(=1) = &o(=1)) = 0.
0 o0

t—oo t

Together with (7.12), we get P#1.0:9 — a_s.

I . -1)C
lim sup = / F(€)ds < — ( D) 1iminff/ (Lg,1 1, 1) ds <~ 15D 0y
t— o0 t—oo T [ ’ Cy
Choosing ¢ := ClTDp( < 0, we obtain
. D, . 1/t
limsup — =limsup— [ f(&)ds <c<0, PHLOT_—gg. (7.15)
t—o00 t—o00 t 0 O

We can extend Theorem 2.1 and Theorem 2.3 to the case with more general jump
rates p(.), q(.).
Remark 7.1. We can have more general p(.) and ¢(.). We assume that p(.) satisfies
assumptions A'1, and A’'3, so that couplings in Theorem 4.2 are still possible by Theorem
A4,

1. To generalize Theorem 2.1, p(.) satisfies additional assumption A2, and ¢(.) is
supported only on the negative axis with ¢(z) > 0 for all 0 < —z < R, where [—R, R]
contains the support of p(.). Then the displacement D, satisfies (7.15) for some
c<0.

The proof is similar to that of Theorem 2.1. Once we’ve shown (7.5) (by the same
argument), we can use an inequality similar to (7.12), see (7.20) below, to get
(7.15). Indeed, we will have three P#1.2:9— martingales similar to (7.13),

_/Oté_171(§s)ds, > Et(—Z)—/ ( PORS )

0<z<R 0<z<R

t
Dy — /0 F(€) ds, (7.16)
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where CA’_M is almost the same as C'_; ; from (5.2), except for an extra term due to
left jumps of the tagged particle,

Caa=Coiit Y, (@)1 -&)E), (7.17)

z2<z'<—1

and f(&) =), q(2)z(1 —&.). We can write C_,; as a difference

Coin= Y ply—2)&(1-&)— D> pla—y&(1-E&), (7.18)

<0<y <0<y

and compute L (ZO <2<R 572) by different jumps due to the tagged particle and red
particle,

(3 e)-Sumo-a( ¥ e ¥ o)

0<z<R k<0 0<z<R 0<z<R

+ Z (1 _g—z) Z p(k)g—z—k

0<z<R k#t—z
Z £ Zp Y1 =& qn) |- (7.19)
0<z<R k#z

By comparing the positive terms of (7.18) and the last negative term in (7.19), we
can bound the positive terms of C'_; ; by the negative terms of L (ZO<Z<R E_z) in
absolute value. Therefore, CA'_M + L (Zo <2<R 5_2) is bounded above by the sum of
the positive terms in (7.17) and (7.19),

Coia +L< > §z>

0<z<R

< Y (q(Z)(l—€z)£zf)+Z(J(Z)(1—£z)( > £k+z>

z<2/<~1 2<0 0<k<R

+ Z (1 —f,z) Z p(k)f,sz

0<z<R kt—z

Since 37, .« 1§ < R-2,and } o, pé-kt: < R—1foral —-R<z < -1, we
can get an upper bound for the above inequality

@1,1+L< 3 sz>< S o-e ><<2R 3) +Zp )

0<z<R 0<z<R
Cs

_f, (7.20)
min_ ge.<oq(z)

<G Y (1-¢.)<-

0<z<R

where C5 = (2R — 3) - max; q(z) + Y_, p(k). (7.20) is an analogue of (7.12), and we
can use a similar argument as (7.14) to get (7.15) for some ¢ < 0.

2. To generalize Theorem 2.3, p(.) are under additional assumption that p(—k) = p(k)
for 2 < k < R, and p(1) > p(—1). Then there exists jump rates ¢(.) with a negative
drift }° ¢(z) < 0 and an ergodic measure v,, such that the speed of the tagged
particle is positive under P¥<9.
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The proof is also similar to the proof of Theorem 2.3 and we outline it below in a
different order. Due to the assumptions on the jump rates p(.), we can use Theorem
5.5 to get a positive lower bound for

lim inf %E‘“‘”O [Ny =Cyp > 0.

t—o0

Then we will choose R' = R—1, and construct jump rates ¢(.) supported on [—R’, R].
We can observe the following facts:

(a) When ZZ q(z) is small enough, we can use (4.25) in the first point of Remark
4.5 to get a positive lower bound for

1
im i H1,0,9 — ,
11tm1nf tE [Nt] Ci1—Cg g q(z) > 0.

By using a P#1.0-9-martingale N; — jg (:‘_171(59) ds, we can get a lower bound
for

L1t
lim inf 2/0 Er01[C_y 1(&)] ds = Oy — 20 szq(z) >0, (7.21)

where C_; ; is the current through bond (—1,1) given by formula (5.2), and
C_1, differs from C'_; ; by a term of size at most Cr' >, q(%).

(b) As p(k) = p(—k) for k > 2, the current C_, ; through bond (—1,1) is a linear
combination of (1 — ;) with “odd coefficients” (b;)o<|ij<r—1,

R—-1 R—-1
Coyp=> bi(l—n)— Y bi(l—n), (7.22)
i=1 i=1

where by “odd” we mean b_; = —b;, which is differnt from (5.14).
(c) When ¢(.) is the sum of a multiple of (%)_ and an error term (e(z)), for
1<z <R
q(z) =c- % +e(2) (7.23)
for some positive ¢ > 0, by (7.22), the function f =) zq(z) (1 —n.) is cC_1

up to an error of size at most

f = cCora] <D |ze(2)], (7.24)

and the drift for jump rates ¢(.) is

Zz -q(z) = Zz -e(z) (7.25)

Therefore, by (7.21),(7.24),(7.25), we can choose positive ¢, (e(z)). with ), z-e(z) <
0 so that ¢(.) of the form (7.23) has a negative drift w =) z-q(z) = >, z - e(2),
and there is an invariant measure v for the environment process &;, such that

(v, f) = liminf l/0 "o [f(&)] ds > ¢ (C’l - 2Cp Zq(z)) - Z |ze(z)| > 0.

n—roo n
(7.26)
The invariant measure v can be obtained as the weak limit of the mean 1, of the
empirical measure,see (3.2), along some sequence (t¢,). We can also obtain an
ergodic measure v, which also satisfies (7.26). Then, by the step 2 of the proof of
Theorem 2.3, we get that under P”<'9, the tagged particle has a positive speed.

z
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8 Ballistic behavior of a fast tagged particle in AEP

In this section, we will prove Theorem 2.2. In this case, both the green tagged
particle and red particles have non-nearest-neighbor jump rates and the means of jump
rates are positive. This is a scenario different from Theorem 2.3. In particular, the jump
rate 3 =) q(z) of the tagged particle can be larger than the jump rate A = ), p(z) of
red particles.

We briefly discuss the steps of the proof. We will modify the auxiliary process
introduced in section 4. Instead of labeling red particles and considering their positions
relative to the tagged particle, we will also label the tagged particle, and keep track
of its label (see (8.1)). With this modified auxiliary process, we can couple the ordered
particles (including the tagged particle) in the AEP with the ordered particles in the
usual AEP. By investigating the change in labels of tagged particles in both processes,
we can compare their positions. We obtain a lower bound for the driven tagged particle
in AEP by estimates from the usual AEP.

8.1 Assumptions and labels of the tagged particle
Let’s recall assumptions A”1,A”2, and A”3 on jump rates p(.), q(.)-

A”1 (Supports) p(.) has a support on —2, —1,1; ¢(.) has a support on —1,1,2,
A2 (Radially decreasing) p(—1) > p(—2), ¢(1) > ¢(2) >0,
A’3 (Dominance and Positive) ¢(1) > p(1),¢(—1) < p(-1), w=>", z-p(z) > 0.

These conditions imply that the tagged particle moves “faster” than a red particle,
and that red particles starting from the left of the tagged particle always remain to
the left of the tagged particle. We will explain their roles in Remark 8.2. Consider
an AEP with a driven tagged particle, we label particles in an ascending order and
also keep track of the label I; of tagged particle. We get a modified auxiliary process
(X, 1) = (Xo,p, ¢, It) = ((X;(t));ez ,1¢). Its generator L, is given by its action on a
local function F,

LpoF(X,1) = Y. p()La, (X) [FTX (X D) - FX D)
1#I,2€7

+Z i, (X [(TIZXIIZ(X))fF(X’,I)] (8.1)

where T . X is defined by (4.4),(4.6), and I, . (X, I) is defined as

I—-1, if X, < X< X, +z2

i (XI)— I+1, fX;+2<Xr <X, (8.2)
bR L.(X), ifi=1I '
I else.

9

For an AEP with a usual tagged particle,i.e., p( ) = ¢(.), we get a second auxiliary
process (Yt,zt) = (Yo,p,p, i;) with a generator Lpp For convenience, we let initial
configuration be the same for both processes, and label the tagged particles with 0, ie.

Ip=145=0 (8.3)

The first lemma says that we can couple two modified auxiliary processes ()ft, I;) and
(Y:, i) in the sense similar to Definition 4.1., for all ¢ > 0,

X;(t) > Y;(t), for all i in Z. (8.4)
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Lemma 8.1. Suppose p( ),q(.) satisfy A”1, A”2 and A”3. For two modified auxiliary
processes (X;, 1;) and (Y;,i;) with generators L, , and L, ,, there is a joint 2, such that
if (8.4) holds fort = 0, we have (8.4) holds for allt > 0, and the marginal condition holds

OF, ()?,I,?,i) = Ly H: ()?I) ,

OF, ()Z',J,?,i) = L, Hs (17@) ,
for any local functions F ()?,I,?,i) = H; ()?,I) and Fy ()Z',I,}?,i) = H, (}7,@)
Proof. This is proved in Corollary A.5. In this case, we have R = 2. O

Remark 8.2. A special case is when both processes have exactly one tagged particle
and no red particles. This is a degenerate case because the tagged particles follow
continuous time random walks with jump rates p(.),q(.), and I; = i, = 0 for all ¢ > 0.
Assumptions A”2, and A”3 guarantee that we can couple these two random walks with
Xo(t) > Yy(t), for any ¢ > 0 (without Lemma 8.1). These two assumptions also allow us
to generalize the coupling of random walks to other cases described by Lemma 8.1, so
that (8.4) holds for all ¢ > 0. However, (8.4) is only useful if we know the labels I, i; of
the tagged particles or their differences I; — i;. The assumption A’1 does not affect the
couplings of two modified auxiliary processes; instead, this assumption implies that I; is
increasing in time ¢. Together with a law of large number for ¢;, we can get the Lemma
8.3 below which implies the signs of the I; — i; asymptotically.

The second lemma gives estimates of I; and +; with respect to the Bernoulli initial
measure .

Lemma 8.3. Suppose p(.), q(.) satisfy A”1, A2 and A”3. Let I, = iy = 0, and X, corre-
spond to the initial Bernoulli product measure ji,. The labels I;, i; of the tagged particles
in the modified processes (X, I;) = (Xo,p,q,1;) and (Y3, i) = (Xo,p, p, i¢) satisfy,

hmmf— >0, P#»? —q.s.
t—o0

and

1
lim — =0, P*P —q.s.
t—oo

Proof. Notice that i; is identical to the integrated current —N; through bond (—1,1) in
the environment process &;. For a general jump rate §(.) supported on [—2, 2], we can
obtain the current (:Ll,l by considering the jumps of the red and the tagged particles,
and modifying (5.2). Notice that a jump of the tagged particle to the site —2 (relative to
the tagged particle) increases the integrated currents IV; by one if there is a particle at
the site —1 (relative to the tagged particle), and that a jump to the site 2 decreases N,
by one if there is a particle at the site 1. Therefore, CALM is

é—l,l = —p(=2)&(1—=&1) +p(2)6-1(1 = &) +G(—2)6-1(1 —&2) + —4(2)&1(1 - &2), (8.5)

which is the compensator of the integrated current N;. Similar to (3.7) and (3.8),
Ny — fot C_11(&) ds is a P#9- martingale, and we can obtain

[ [N, LN
Ered | 2| = e | ] 7/ | [—Cq 1(53)} ds
t t t Jo ’
When we take §(.) = p(.), the Bernoulli measure p,, is ergodic for &, and by (8.5), the
expectation in the last integral is 0. Therefore, we have that
it

lim — = E#»P {Ztt] =0, P#? — q.s.

t—oo
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For I, since ¢q(—k) = 0 for all k¥ > 2, the tagged particle cannot jump from the right
side of a red particle to its left side, and I; does not decrease due to jumps of the tagged
particle. Also, that p(k) = 0 for all £ > 2 implies that no red particle can jump from the
left side of the tagged particle to its right side, which also means, I; does not decrease
due to jumps of the red particles. Therefore, we have that I; is increasing in time ¢,

O

8.2 Proof of Theorem 2.2

Now we can prove Theorem 2.2.

Proof. (Theorem 2.2) By Lemma 8.1, there is a joint distribution P, and we have Xt >
Y:, P — a.s. In particular, X;, > Y;,, P —a.s.

On the other hand, by Lemma 8.3, under the joint distribution P, which has marginal
distributions P#»°¢ and P#»?,

I — iy

lim inf >0, P—a.s. (8.7)
t—o00

Therefore, for any fixed 6 > 0, I; > [i; — 0 - t] for large ¢, so Y7, > Y|;,_5.). Consider

Yi, — Y|4,—s.¢)- Since the Bernoulli product measure p, is an ergodic measure for the

environment process, Y;, — Y|;,_s.1 is dominated by the sum of [0 - t] independent

geometric random variables with parameter p. For each fixed k¥ > 0, we can get a

sequence (t, x)n = (gr)n With

Yio =Y,  —st,
ok L ! < é, P —a.s.

lim sup
n— oo tn,k

Then, we can use a standard interpolation argument to replace “t,, 1 co” by “t 1 c0”.
With the law of large numbers for the displacement of a tagged particle in the usual
AEP , i.e., when ¢(.) = p(.), lim;, % =w- (1 — p). We also have

Y, Yi,—s. )
liminf =2 > liminf —“ =% > 4. (1—p)——, P—as.
t—o00 t—o0 P
where w =) z-p(z) > 0. This is sufficient to get Theorem 2.2 since X, > Y7,. O

We can also extend Theorem 2.2 to the case with more general jump rates p(.), q(.).

Remark 8.4. To generalize Theorem 2.2, p(.) satisfies assumptions A'1, A'3 and an
additional assumption that for all £ > 2,

p(k) =0,q(—k) = 0. (8.8)

It is immediate that under (8.8), red particles starting from the left of the tagged particle
always remain to the left of the tagged particle. The proof will be almost the same:
we can replace Lemma 8.1 by Corollary A.5 to obtain a coupling because p(.) satisfies
assumptions A'l, A’3, and under the assumption (8.8), (A.23) is immediate. Therefore,
(8.7) also holds. Because the Bernoulli measure p, is ergodic for the environment
process, under which the term CA’,M has a zero expectation, we get that

lim = = 0.

On the other hand, (8.8) on jump rates p(.), ¢(.) ensures that (8.6) holds, so we get

L
liminf 2" > 0.
t—o0

The rest of the proof follows the same arguments after (8.7).
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A Appendix

The generator for the coupled process in Theorem 4.2 is long and consists of several
parts. The first lemma allows us to consider different parts separately, and then combine
them to get the joint generator. The second lemma provides us some convenient
inequalities. The last lemma, Lemma A.3, provides us most parts of the generator, and it
is the building block for the construction of the coupling.

Firstly, we observe that these are jump processes. Because the generators are sums
of terms corresponding to different jumps for the same type of G = L,L;, or Ly, we
can combine two pairs of coupled processes, in the sense of adding their generators, to
obtain a new pair of coupled processes. The main requirement is that couplings exist for
any ordered deterministic initial configurations.

Lemma A.1. Let 1, ()5 be two joint generators for two pairs of auxiliary processes.
Suppose that these two pairs of auxiliary processes are coupled via €)1, {2 (see Definition
4.1) for any (deterministic) Wo > )fo. That is,

Wt = Xt,ﬁ = Zt7

where
Wt = (WO»Gaplvql)aXt = (XOaGlap%(IQ)

and
S/t = (WO7Gap/17Qi)aZt = (X07G/7p/27q/2)'

Then, the combined auxiliary processes (7,5 and ‘7} starting from WO > XO,
Uy = (Wo, G,pr + 0, a1+ 41), Vi = (Xo, G, p2 + P g2 + ),
are also coupled via the joint generator Q2 = Qq + Q5. That is,
U, =V,
We can use either p(.) or p(.,.) in this context, and generators G, G' can be the same.

Proof. By assumption, the condition for the marginals is immediate from the forms of
the generators (4.8) (4.11) and (4.10). We need to check the first condition.

By arguments in the proof of Theorem 2.5.2 [11], to show Ut > ‘715 we need to show
the closed set Fy = {(U,V) : U > V} is an absorbing set, which can be checked via
showing:

Qlg, > 0. (A.1)

Indeed, by martingale 1F0([7t, XZ) — fot Qllpo(ljs, \73) ds, we get from (A.1), forany ¢ > 0
P(ﬁt Z ‘7;) =E |:]1Fo((7t7‘7t):| 2 E |:]1F0([707‘70):| =1

Usual interpolation arguments allow us to get P(Figure?)(jt > ‘7}7 forallt) = 1.
Lastly, by the assumption that two pairs of auxiliary processes are coupled via {21, {25
for any Wy > X, we get that (without any computation)

Ql]]-Fo (Wo, Xo) Z 0, and QQ:HFO (Wo, Xo) Z 0,
which is sufficient for (A.1). Indeed, if W, * Xo,
15, (Wo, Xo) =0,
and Q1 g, (WO, )?0) is a sum of differences, which have the same sign as

L, (W', X') = 1 g, (Wo, Xo) > 0. O
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Secondly, we observe four monotone functions on the configuration space by compar-
ing the configurations before and after the tagged particle jump with shifts of labels or
not. See Fig. 2,3 for examples.

Lemma A.2. Let z>0. If a jump of the tagged particles by z or —z is possible, we have

O, X>X, 5,00,X>X (A.2)

0,.X<X, S.,00_,X<X (A.3)

As a consequence, there are two generators QO r and Qg 1, such that for any Xo > YO,
we can couple X, = (XO,LR,O q) = Y, = (YO,LR,O 0) via Qo r, and couple W, =
(Xo,L,0,0) = Z; = (Yo, Lr,0,q) via Q1.

Proof. We will prove equat1ons (A.2) and define Qo R, Via which we can couple two
auxiliary processes X, = (XO,LR,O q) = Y, = (YO,LR,O 0) for any initial X, > Y,. The
other case is similar.

By (4.2) and (4.9), we check coordinates,

(O_.X)i=X;+2>X,
(Sz © @z)z)i = Xi-l—z -z2>X; (A.4)

Then it is immediate to see that the generator )y r defined below works, since under
this generator, X; is increasing in ¢ while Y; is constant in ¢,

Qo.rF(X,¥) =LpF(.,Y) [)Z']

=3 a5, (X) [F(0,%,7) - F(X, )]

y<0

+3 a5, (X) [F(S,00,X.Y) - F(X,7)]. (A.5)

O

Thirdly, we see that given X > Y, whenever the i-th particle in Y jumps by z > 0, we
can move the i-th particle in X by 2’ > 0, such that ordering is preserved after relabeling,
Ti,Z/X > TZZ? This is the primary step for constructing couplings in Theorem A.4,and
we will prove this in the next lemma. Once we can couple positive jumps of the i-th
particle in the slower process by positive jumps of its corresponding particle in the
faster process, we only need to assign jump rates according to different pairs z, 2’. The
assignment is possible by Assumptions A’'1,A’3.. See (A.17),(A.18) in Theorem A.4 for
assignment in detail.

}7 and i is fixed. For every z in (0, R], ifY € A; . , then there is

Lemma A.3. Assume X >
X,Y,i,and z, such that max{Y;+z, X;} > X;+2' > min{Y; + 2z, X;}

a z' > 0 depending on
and

X =T, . X>T,.Y =Y". (A.6)
The choice of 2’ can be made so that every nonzero 2’ corresponds to a unique z in (0, R]
satisfyingY € A; ..

Proof. We first describe how to find 2/, and then we show (A.6) by considering a simple
case and the general case. Without losing generality, we assume that : = 0 in figures
below. Suppose there are exactly k£ holes in Y between Y;and Y; + R: Hy,...,H;. We
label them in a descending order:

Yi<Hpy=Yi+zu<Hy 1 =Y, +zna.<---<H =Y+ <Y, +R (A.7)
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Stepl. Define z;,l =1,2,..., k inductively by,

B {max{z/ >0:X;4+2 <VYit+2z,X €A} ,if exists

2] (A.8)
0 ,otherwise
o max{z; >2'>0: X, +2' <Y, + zl+17X € A;»} ,if exists (A.9)
H 0 ,otherwise. ’

That is, for [ > 1, if 2 > 0, H] = X; + 2] is the right-most hole in X which is to the left
of both H]_, in X and H; in Y. (H] might equal H;, but H] < H|_,.) See Figure 6 for an
example. In this example, i =0, R=38, 21 =7, 25=3,2, =1, 2, = 0.

—-& ® ® S S @ ® V%
Yo v Hy Yo, Hs Hy Ys5 Yia Hy
° o o o o o be
Xo HY X1 H); Xo X3  Hj

Figure 6: Target Sites 2’ for X

Step2. We consider a simple case first. We assume that X; = Y; and the numbers of
particles on the fixed interval [X;, X; + R] in both X, Y are identical. In view of (4.3),
and let

Li=1Ip (?) —max{s:Y, <Y;+ R} and I,:=Ip (X’) = max{s: X, < X; + R},

we have
L —i+1=1,—i+1. (A.10)

Then, it is immediate to see that the numbers of holes on [X;, X; + R] in both X and Y
are the same as k = R — I; + i. Following (A.7), (A.8), (A.9), we actually label all the
holes in X in the descending order,

and pair holes in X ) Y with
H/ < H,, forl=1,... k. (A.11)

We emphasize that, when the numbers of particles on [X;, X; + R] in X, Y are the
same, because X > 57, (A.11) is equivalent to “holes are paired via a vertical line or a
southwest line”, and (A.11) is also equivalent to X; <Y for all X;,Y; on [X;, X; + R].
See Figure 7. In this example, R =8,i =0,1; = I, = 5.

After a jump, there is a relabeling of holes according to the previous rule. Hence (A.11)
is preserved. Indeed, after the jumps to Y; + z and X; + 2/, we delete a line connecting
Y; + z and X; + 2/, and add a vertical line connecting the initial positions of X; and Y,
see Figure 7. Since only particles on [X;, X; + R] are affected by the jumps, and the
number of particles on [X;, X; + R] are the same for Tmf}, Tq;,zx)z , we can conclude that
Tm}_} < Tiﬁz/)_(‘ from the “new” (A.11).

Step3. For the general case, we can assume that X; <Y; + R. Otherwise, if Y; + R < X,
we can easily find that 2/ =0and 7; .Y < X =T, o X.
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- o - o o o o <y
Yo Y1 _Hy Yy Y3 Yi---Y5 T Hy  H
Y S oo S oo e %

e—c— o o e e o oV -7,
Hs Yy M Y] Yy Y] Y/ _-¥iH
>——o—e—o >——eo—o— X' =1, X

H, H, X, X X, H X, X, X!

Figure 7: Configurations before and after Jumps zs, 2

This situation is similar to the simple case. We first compare the number of particles in
Y on the interval [Y;,Y; + R] with the number of particles X on the interval [X;,Y; + R].
The right end point is always Y; + R. Let

I ;==L p(Y), and I,:=max{s: X, <Y;+ R}.
We get from Y < X that

Iy =max{s: X; <Y;+ R} <max{s:Y; <Y, + R} = 1. (A.12)

Since X; + 2’ <Y; + 2z <Y, + R, we see that only particles in Y on [Y;,Y; + R] and
particles in X on [X;,Y; + R] are affected by the jumps z and z’. Therefore, we only
need to show that for every pair z, 2/,

X, = (T12X); > Y] = (T;.Y);,forall i < j < I. (A.13)
Forall I, < j < I, (A.13) is immediate since
X§:Xj >Y;+R2Yj’.

To get (A.13) for all ¢ < j < I3, we can add artificial particles and holes on [Y;,Y; + R +
I, — I] for X and Y as follows to get two new configurations X" and Y (restricted to
this interval) with the same number of particles.

(a) Replace all particles on [Y;, X;) in X with holes. Move the i-th particle in X from
Xl' to Y;

(b) Replace all holes on (Y; + R,Y; + R+ I; — 5] with particles for X.
(c) Replace all particles on (Y; + R,Y; + R+ I; — 5] with holes for Y.

See Figure 8 for an example. In this example, R =8, I; = 6,1, = 4.

The new configurations on [Y;,Y; + R+ I; — I] have the same numbers of holes, too. We
can pair holes in X” and Y in the descending order (uniquely). Holes on (Y;+R, X;+R)
in Y are the only additional holes added to Y, and they are added to match the number
of holes in X” and Y”. We don’t need to consider these additional holes and their
corresponding holes in X", and therefore, we can keep the labels of the original holes in
Y and label the additional holes as j-th holes, with non-positive indices 0 > j > I, —I1;+1.

We denote by H =Y + 2/ the j-th corresponding hole in X", including the ones with
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Figure 8: Add artificial particles and holes

non-positive indices. On one hand, we can use the same argument for the simple case
to get that, after jumps z and 2", (restricted on [V;,Y; + R+ I; — L1])

Tyon X7 > T; Y7 (A.14)

On the other hand, if z; > 0, H} is the right-most hole to the left of H; and H}_,. We
can see that the target sites for the particles at X; and X/ satisfy

X¢+z;:H;ZH§/:}Q+z;' (A.15)

from induction, (A.8) and (A.9). And if zé = 0, the target sites for the particles at X; and
X/ also satisfy (A.15),

Xi+z,=H)=X;>H/ =Y +2/.

On [Y;,Y; + R+ I; — 5], we can get Ti,zf)? by moving the i-th particle in X" to the site
H' = X; + 2’ and relabeling. We can also get T@Z//Xq 7 by moving the i-th particle in
X" to the site H"” = Y; + 2" and relabeling. Therefore, from (A.15), we get that for
1<j<I, H -Y;>2"and

(T, X); = (T —v. X"); = (T; 0 X7);, (A.16)

where the last inequality is due to monotonicity in z for Ti72)f” when the jump z is
possible. (Indeed, if jumps 2z’ > 2" are possible, with relabeling, we can get TZ-’Z/X” by
first move the i-th particle to X' + 2”, and then move the particle at X/ + 2" to X; + 2’.
With these two operation, we can derive that Tm/)? > Ti7z//)? ")

By comparing particles with indices from ¢ to /5, and using (A.14) and (A.16), we get
Xj = (T12X); > (10 X"); 2 (T,:Y"); = Y]
forall: <j < Is. O

One can see from the proof of Lemma A.3 that we have more than one way to assign
Z' to ensure (A.6). We take a convenient one, which helps us to obtain the coupling for
Theorem 4.2.

Let C be the class of jump rates p(.,.) with the following properties:

A*1 (Positive) p(x,y) > 0, if y > x; otherwise, p(z,y) =0,
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A*2 (Finite-range) there is an R > 0, such that p(z,y) =0, forall y — = > R,

A*3 (Radially Decreasing) for z,y # 0 and x < y, p(z,y) is increasing in x, and decreas-
ing in y,

A*4 (A Blockage at 0) p(z,y) =0ifx =0ory =0.

Notice that the value of p(0,y) can be any non-negative number as long as p(z,0) = 0
for all z and no particle is at the site 0 initially, since no particles can jump to the
site 0. Jump rates p(.,.) from the class C; correspond to jumps along the positive
direction. To get jumps towards both directions, we combine two jump rates to get
pe(x,y) = po(x,y) + p—(y,z) where both p,,p_ are from the class C.. We shall denote
the collection of p. as C.

The main result in the following theorem is the first part, which says we can couple
two AEPs with a blockage X, = ()?O,f;,p, 0) » Y, = (?O,Z,p+,0) when they have the
same jump rates p,; from the class C,. With (4.5), (4.6), (4.7), and Lemma A.1, we can
replace p; from C; by p. from C. Lastly, we can use Lemmas A.1, A.2 to replace zero
jump rates ¢(.) in either X, or Y, by a nonzero q(.).

Theorem A.4. Suppose jump rates p,(.,.), p—(.,.) are from the class C.

1. There is a joint generator 2., §uch that for any J?ONZ 570, we can couple the pair of
auxiliary processes X; = (Xo, L,p+,0) = Y; = (Yo, L, p4,0) via Q.

2. For combined jump rates p.(z,y) = p+(z,y) + p—(y,x), there is a joint generator
), such that for any X, > Y, we can couple the pair of auxiliary processes
Xt = (XOaL7pCaO) i }/t = (Y07L7p0?0) Vja Q

3. (Theorem 4.2) Let ¢(.) : Z\ {0} — R>o, and p.(z,y) = p+(z,y) + p—(y,z). There
are generators 2, and )y, such that for any X, > Yy, we can couple X; =
(XO7LR7pCaQ) >__ }/1‘ = (%aL7pCaO) via QR/ and Wt = (X07L7p070) i Zt = (Y07LL7pC7
q) via QL.

Proof. 1. By Lemma A.3, for any X > Y and 0 < 2 < R, we can find a 2/ =
C(X,Y,i,R,z) >0, such that
Tli,z’)z > T%,z)_}-
(One choice for C' ()? , }7, i, R, 2) is the function constructed inductively in the proof

of Lemma A.3.) Therefore, we can assign the jump rates for the i-th particles by
following functions:

{]1,47.,,2(?) p(Yi,Yi+2) ,ifs=C(X,Y,i,R,2), and X > Y,

0 , else
(A.17)
X, Y ]IA“(X (p Xi, Xi+ ) = z pi-s,Z(X:v}_}> ,ifs>0
Di s,()(X,Y) = ’ ) ( ) Eo< <R Vi, )
(A.18)

In particular, by (A.17), at most one term in the sum of (A.18) is positive with value
p(Y:,Y; + 2) for some z < R. By Lemma A.3, we get X; > Y;, X; + s <Y; + z, which
implies p; 5,0 > 0 by Assumption A*3.
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—

Then we define the generator €2, by its action on a local function F' by: if X>Y,

LFRXY)= Y p(XY) [F(:ri,sx:rm?)—F(Xjﬂ (A.19)
1,0<2<R,0<s<R
+ Y poXY) [F(Ti,s)?,?)—F()?,Y)}, (A.20)
1,0<s<R
if X * Y,

QFE V)= 3 L (% Yi+2) [FX 1Y) - F(EY)| @2
1,0<z<R

+ Y L (XXX +s) [FTLEY) - FEY)] a22)
1,0<s<R

(A 19) corresponds to the case in Lemma A.3 when both of the i-th particles in
X and Y jump, while (A.20) corresponds to the case where only the i-th partlcle
in X jumps; (A.21),(A.22) correspond to the case where particles in X Y jump
independently. The rest is to check {2 satisfies Definition 4.1. This is standard:

The initial configuration can always be chosen with W > V almost surely and
W 4 X’O, Vv 4 570. (See Theorem B9[15])

To show Wt > ‘_/; almost surely, use the same arguments in the proof of Lemma
A.1. We want to show the closed set Fy, = {(X,Y) : X > Y} is an absorbing set by
checking Q1 15,(X,Y) >0:

(a) for )Z by Lemma A.3 and p; s z()Z', }7) >0
U1 V)= > piee(XV) [15 (1, X, 1.F) - 15,(X, 7))
1€7Z,0<2<R,
0<s<R
Y P X V) [1(TXF) - 15,(X,7)] = 0.
i€Z,0<s<R

(b) for X ;é 37, it’s obvious that Q4 15, ()i 57') > 0 since each term is nonnegative.
We only need to show the sum is finite. Notice that only finitely many terms in
(A.22) are positive. Since T; ; changes finitely many X;, if one term TLS)_(' > Y
holds while X * Y, TZ-/’S/X' > Y holds for finitely many pairs ¢/, s’. Similarly,
only finitely many terms in (A.21) are positive. Therefore, (2, 1 FD(X' , }7) > 0.

To show the marginal conditions, we will check for Fy(X,Y) = Hy(Y), and the other
follows directly from T;, OX X (A.17) and (A.18). On F§ = {(X,Y X ;f
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clearly Q+H2(X, 17) = ng(Y). We only need for every X >Y,

GRETY) = Y (X)) [H(.Y) - ()]
i€7,0<z<R,0<s<R

+ ) pieaX,Y) {Hz(?) - Hz(?)}
1€Z,0<s<R

= Y pes(XY) [ Ha(TY) - Ha(Y)]
1€Z,0<z<R,0<s<R

= Z Z 1{5:0(2,?,¢,R,z)}

1€2,0<z<R \0<s<R

Aa (Vp(YLYi +2) [Ha(T.Y) = Ho(T)

= Y L (Y Yit ) [Ba(T.Y) — (V)| = LH(Y).
i€Z,0<2<R

The fourth equality is due to Lemma A.3, which implies that there is exactly one s
in [0, R] such that s = C(X,Y,i, R, 2).

2. The second part is an application of Lemma A.1, the change of variable argument
in (4.5), (4.6), (4.7),and the first part.
Let X_, = (R(Xy), L,j_,0), where j_(z,y) = p_(y,z). Then, R(X_,) = (Xo, L,p_,
0). As R(.) is a map reversing ordering,

X >Y & R(X) < R(Y).

By the first part of Theorem A.4, we can couple X_,=(R(Xo),L,p_,0) = (R(Yy), L,
p_,0) = Y. .+ for any Xo > Yo via a generator Therefore there is a generator (2_,
via which we can couple R(X_ ;) = (Xo, L, p_,0) = R(Y_ 1) = (Yo, L,p_,0) for any
Xo > Y. Then by Lemma A.1, we get the joint generator Q QL +0_.

3. This is a consequence of the second part, Lemma A.1 and Lemma A.2. Take
Qrp = Qo,r + €, and O = Qg 1 + Q. We will show the first case, and the other is
similar:

By the second part of Theorem A.4, we have a generator (2, via which we can
couple auxiliary processes

Xt = ()ZOaiﬁpCaO) t (}707E7p070> = )_/:t?

for any )?0 > }70. By Lemma A.2, we can also find a generator )y r to couple
auxiliary processes

W, = (Xo, Lg,0,q) = (Yo, L,0,0) = Z,

for any X, > Y,. Notice that X, is also ()?0, Lg. pe, 0). By Lemma A.1, we can use
generator 0 = Qy r + 2 to couple

ﬁt = (XO7I~/R7P<:,Q) i ()707-Z/R7p630) = ‘715
for any )ZO > 170. O
In the proof of the first part of Theorem A.4, we see p; , . and p; ;o defined by (A.17)

and (A.18) are important in constructing the joint generator (2, defined by (A.20)-(A.22).
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They require Lemma A.2 and assumption A*3. The Lemma A.2 depends on the finite
range R and X > Y, while the latter is an assumption on the jump rates. We can easily
modify p; s ., pis,0 and 14 to couple two modified auxiliary processes defined in section
8.

Corollary A.5. Let p(.) satisfy assumption A’1, A’3, and ¢(.) be of range R with an extra

condition
q(k) > p(k), ifk >0
{()< ()’1 -9 (A.23)

q(k) < p(k), ifk <0,

Then we can find a joint generator Q to couple modified auxiliary processes ()Z't, L) =
(Xo,p,q, 1) and (Y,i) = (Yo, p, p, i¢) for any initial condition X, > Y;, in the sense

Xt > ?t, forallt > 0,

for any local functions I ()?,I,?,i) = H; ()?,I) and Fy ()?,I,?,i) = H, (Y,z)

Proof. We will give the joint generator Q= Q+ +Q_ by writing out S~2+ and Q_, which

will have the same form in terms of p; , .. The rest is to check conditions, which follows

almost the same arguments as those in the first part of Theorem A.4, and we will omit it.
We first define the modified Q+ by modifying p; s ., pj s,0 from (A.17) and (A.18):
ForR>z>0,R>s5>0,

S 1a. (V) if s =C(X,Y,j,R dX>Y
Bioe (X171 = 4;:(Y)-p(2) i s = C(X,Y,j R, 2), and X = (A.24)
0 , else
L 1a, . (X) (p(s) = Sgencpbios (X, 1Y, ) Cif AT
Dj,s,0 (X,I,Y,i> = "‘(ﬁ) (5) = 2.0 sREDS L (A.25)
14,..(X) (as) = Sococnpros (LLV,0)) L ifj=1T

where C’(}Z’ , }7, J, R, z) is the function constructed in Lemma A.3. If we replace ¢ by p,
(A.25) is the same as (A.18). Therefore, it is nonnegative by condition (A.23). Then the
generator {2, acts on F'is given by: if X > Y,

O F (X,I,?,z') = > B (X,I,?,z‘) [F (Tj,SJZ, s (X'J) TV 0 (?z))
e

and if X #Y,

G F (XY= Y 1a.() ) |
J€Z,0<2<R

S
—~
lal
~
!
n
=i
~
=
~.
SN—
|
&S
VN
lal
~
=i
—

+ Y 1a.(X) pls) [F (T)Z' Ajﬁ()?,l),?,i) ~F ()_('I?z)}

j#I,0<s<R
+ 3 14, (X)-als) [F (T)Z' I1.,(X), Y, 2) ~F ()Z' 1Y, z)} ,
0<s<R
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where 1, ()? I) is defined by (8.2), which is the same as I .(X) when j = I. On the

other hand, we can also define ()_ in a similar way:
ForR>-s>0,R>—-z>0,

La,.(Y)-q(s) ,ifj =i,z = —C(R(Y), R(X), =i, R, —s),andX > Y

ﬁj,s,z <X7 I7 }7’ Z) = 1Aj,z(}7) ' p(S) alf] 7& iv = _C(R(?)v R(X)a _ja Rv _5)7 and)? 2 ?
0 ,else

(A.26)

Bios (X 1Y,0) =14, (%) | p(2) - X B (X.1.7,0) |, (4.27)

where R(X') is defined via (4.5). Also, by replacing ¢ by p in (A.26) and using condition
(A.23), we see both (A.26) and (A.27) are nonnegative. The generator {)_ acts on F' is
given by: if X > Y,

OF(RLT0) = Y e (R070) | (580 (£.0) 3.7 (70))
J,0<—s<R,
0<—2z<R

and if X # Y,

O F (X,I,}?,i) :jEZ7§ZSR1Aj,Z(?) - p(2) [F (X,I, T,.V,1;. (}h)) _F (XI?Z)]
+ Y 1 () p(e) [F (DX (X D).V )
GJAI0<—s<R

+ Y L4 (X) - als) {F (TI,S)?,II,S()?),YJ) - F ()?I?z)} .
0<—s<R

We can see both Q. and Q_ have the same form in terms of Dj,s,-- Then, we obtain Q by
Q=0, +0Q_. O

References

[1] Arratia, R.: The motion of a tagged particle in the simple symmetric exclusion system on Z.
Ann. Probab. 11, (1983), 362-373. MR0690134

[2] Bahadoran, C.: Blockage hydrodynamics of one-dimensional driven conservative systems.
Ann. Probab. 32, (2004), 805-854. MR2039944

[3] Basu, R., Sidoravicius, V., Sly, A.: Last Passage Percolation with a Defect Line and the Solution
of the Slow Bond Problem. arXiv:1408.3464

[4] Bramson, M., Mountford, T.: Stationary blocking measures for one-dimensional nonzero
mean exclusion processes. Ann. Probab. 30, (2002), 1082-1130. MR1920102

[5] Ferrari, P, Fontes, L.: Poissonian Approximation for the Tagged Particle in Asymmetric
Simple Exclusion. J. Appl. Probab. 33, (1996), 411-419. MR1385350

[6] Ferrari, P., Lebowitz, J., Speer, E.: Blocking Measures for Asymmetric Exclusion Processes
via Coupling. Bernoulli. 7, (2001), 935-950. MR1873836

[7] Goncalves, P.: Central limit theorem for a tagged particle in asymmetric simple exclusion.
Stochastic Process. Appl. 118, (2008), 474-502. MR2389054

[8] Huveneers, F., Simenhaus, F.: Random walk driven by the simple exclusion process. Electron.
J. Probab. 20, (2015), no. 105. MR3407222

EJP 27 (2022), paper 40. https://www.imstat.org/ejp
Page 45/46


https://mathscinet.ams.org/mathscinet-getitem?mr=0690134
https://mathscinet.ams.org/mathscinet-getitem?mr=2039944
https://arXiv.org/abs/1408.3464
https://mathscinet.ams.org/mathscinet-getitem?mr=1920102
https://mathscinet.ams.org/mathscinet-getitem?mr=1385350
https://mathscinet.ams.org/mathscinet-getitem?mr=1873836
https://mathscinet.ams.org/mathscinet-getitem?mr=2389054
https://mathscinet.ams.org/mathscinet-getitem?mr=3407222
https://doi.org/10.1214/22-EJP760
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

A driven tagged particle in AEP

[9] Jara, M.D., Landim C.: Nonequilibrium central limit theorem for a tagged particle in symmet-

ric simple exclusion. Ann. I. H. Poincaré B 42, (2006), 567-577. MR2259975

[10] Kipnis, C.: Central limit theorems for infinite series of queues and applications to simple
exclusion. Ann. Probab. 14, (1986), 397-408. MR0832016

[11] Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Grundlehren der mathe-
matischen Wissenschaften, Berlin-Heidelberg-New York: Springer-Verlag, 1999. MR1707314

[12] Kipnis, C., Varadhan S.R.S.: Central limit theorem for additive functionals of reversible
Markov processes and applications to simple exclusion. Commun. Math. Phys. 106, (1986),
1-19. MR0834478

[13] Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes. Grundlehren der
mathematischen Wissenschaften, Berlin-Heidelberg-New York: Springer-Verlag, 2012.
MR2952852

[14] Komorowski, T., Olla, S.: On Mobility and Einstein Relation for Tracers in Time-Mixing
Random Environments, J. Stat. Phys. 118, (2005), 407-435. MR2123642

[15] Liggett, T.M.: Stochastic interacting systems: contact, voter and exclusion processes.
Grundlehren der mathematischen Wissenschaften, Berlin-Heidelberg-New York: Springer-
Verlag, 1999. MR1717346

[16] Liggett, TM.: Ergodic theorems for the asymmetric simple exclusion process I. Trans. Amer.
Math. Soc. 213, (1975), 237-261. MR0410986

[17] Liggett, T.M.: Ergodic theorems for the asymmetric simple exclusion process II. Ann. Probab.
5, (1977), 795-801. MR0445644

[18] Liggett, T.M.: Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften,
NewYork: Springer-Verlag, 2005. MR0776231

[19] Loulakis, M.: Einstein Relation for a Tagged Particle in Simple Exclusion Processes. Comm.
Math. Phys. 229, (2002), 347-367. MR1923179

[20] Landim, C., Olla, S., Volchan, S.B.: Driven tracer particle in one dimensional symmetric
simple exclusion. Comm. Math. Phys. 192, (1998), 287-307. MR1617558

[21] Saada, E.: A Iimit theorem for the position of a tagged particle in a simple exclusion process.
Ann. Probab. 15, (1987), 375-381. MR0877609

[22] Seppalainen, T.: Existence of hydrodynamics for the totally asymmetric simple K-exclusion
process. Ann. Probab. 27, (1999), 361-415. MR1681094

[23] Sethuraman, S., Varadhan, S.R.S.: Large deviations for the current and tagged particle
in 1D nearest-neighbor symmetric simple exclusion. Ann. Probab. 41, (2013), 1461-1512.
MR3098682

[24] Sethuraman, S., Varadhan, S.R.S., Yau, H.-T: Diffusive limit of a tagged particle in asymmetric
exclusion process. Comm. Pure Appl. Math. 53, (2000), 972-1006. MR1755948

[25] Spohn, H.: Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991

[26] Varadhan, S.R.S.: Self diffusion of a tagged particle in equilibrium for asymmetric mean zero
random walks with simple exclusion. Ann. I. H. Poincaré B. 31, (1995) 273-285. MR1340041

Acknowledgments. The author thanks Thomas Mountford for many helpful discussions.

EJP 27 (2022), paper 40. https://www.imstat.org/ejp
Page 46/46


https://mathscinet.ams.org/mathscinet-getitem?mr=2259975
https://mathscinet.ams.org/mathscinet-getitem?mr=0832016
https://mathscinet.ams.org/mathscinet-getitem?mr=1707314
https://mathscinet.ams.org/mathscinet-getitem?mr=0834478
https://mathscinet.ams.org/mathscinet-getitem?mr=2952852
https://mathscinet.ams.org/mathscinet-getitem?mr=2123642
https://mathscinet.ams.org/mathscinet-getitem?mr=1717346
https://mathscinet.ams.org/mathscinet-getitem?mr=0410986
https://mathscinet.ams.org/mathscinet-getitem?mr=0445644
https://mathscinet.ams.org/mathscinet-getitem?mr=0776231
https://mathscinet.ams.org/mathscinet-getitem?mr=1923179
https://mathscinet.ams.org/mathscinet-getitem?mr=1617558
https://mathscinet.ams.org/mathscinet-getitem?mr=0877609
https://mathscinet.ams.org/mathscinet-getitem?mr=1681094
https://mathscinet.ams.org/mathscinet-getitem?mr=3098682
https://mathscinet.ams.org/mathscinet-getitem?mr=1755948
https://mathscinet.ams.org/mathscinet-getitem?mr=1340041
https://doi.org/10.1214/22-EJP760
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Notation and results
	Invariant measure and the lower bound for the displacement of a tagged particle
	An error estimate and couplings of particles on Z
	Auxiliary processes
	Shifts of labels
	Couplings of auxiliary processes and error estimates

	Current in AEP with a blockage
	Currents and densities in equilibrium
	Proof of positive currents in AEP with a blockage

	AEP on half-line with creation and annihilation
	Comparison between AEP on half-line with creation and AEP with a blockage
	Couplings in the AEP with creation and annihilation
	Liggett's results and their consequences 

	Proofs of Theorem 2.1 and Theorem 2.3
	Ballistic behavior of a fast tagged particle in AEP 
	Assumptions and labels of the tagged particle
	Proof of Theorem 2.2

	Appendix
	References

