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Abstract

The paper deals with a random connection model, a random graph whose vertices are
given by a homogeneous Poisson point process on Rd, and edges are independently
drawn with probability depending on the locations of the two end points. We establish
central limit theorems (CLT) for general functionals on this graph under minimal
assumptions that are a combination of the weak stabilization for the add-one cost and
a (2 + δ)-moment condition. As a consequence, CLTs for isomorphic subgraph counts,
isomorphic component counts, the number of connected components are then derived.
In addition, CLTs for Betti numbers and the size of the largest component are also
proved for the first time.
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1 Introduction

Given a configuration P of a homogeneous Poisson point process on the d-dimensional
Euclidean space Rd with density λ > 0, and a measurable symmetric connection func-
tion ϕ : Rd → [0, 1], connect any two distinct points x, y ∈ P with probability ϕ(x − y)

independently of the other pairs. The resulting random graph Gϕ(P) is called a ran-
dom connection model (RCM) with parameters (λ, ϕ). For a special choice of ϕ that
ϕ(x) = I(|x| ≤ r), where I is the indicator function and |x| is the Euclidean norm of x,
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Random connection models: central limit theorems

(a) Random connection model (b) Random geometric graph

Figure 1: Illustration of (a) a random connection model with λ = 1 and ϕ(x) = e−|x|
2

restricted on the rectangle [−5, 5]2, and (b) a random geometric graph on the same set
of vertices with r = 1.

Gϕ(P) becomes a random geometric graph G(P, r), where two vertices are connected, if
their distance is less than or equal to the threshold r > 0. Figure 1 illustrates a RCM and
a random geometric graph built on the same set of vertices. RCMs, including general
models where a point process is taken in an abstract space, have been known as a very
useful model with many applications in physics, epidemiology and telecommunications,
see e.g. [5]. Therefore, they have gained a great interest from many scientists in different
branches of science [15, 20, 27]. In particular, for the mathematical side, problems such
as connectivity, diameter, degree counts and the number of connected components have
been studied [4, 6, 11, 17].

In this paper, we focus on studying the asymptotic behavior of general functionals
on the RCM for fixed parameters (λ, ϕ). Assume that f is a functional defined on
finite graphs. For a bounded window W ⊂ Rd, let Gϕ(P)|W be the restriction of the
random graph Gϕ(P) on the set of vertices lying in W . Our aim is to establish a central
limit theorem (CLT) for f(Gϕ(P)|W ) as the window W tends to Rd under the so-called
weak stabilization condition and a moment condition. The notion of weak stabilization
was introduced in [24] to study a CLT for a general functional h(P|W ) with P|W the
restriction of the homogeneous Poisson point process P to a bounded window W . Here
the functional h is a measurable real-valued map defined on finite sets of points X ⊂ Rd.
Assume that h is translation invariant, that is,

h(X ) = h({y + x}x∈X ), for all X ⊂ Rd, y ∈ Rd.

When windows W ’s of interest are restricted to be cubes (sets of the form W =
∏d
i [xi, xi+

l), xi ∈ R, l > 0), the weak stabilization is defined as follows. The functional h is weakly
stabilizing if for any sequence of cubes {Wn}n tending to Rd,

Doh(Wn) := h({o} ∪ P|Wn)− h(P|Wn)→ ∆ in probability as n→∞,

for some random variable ∆. The functional D0h(Wn) is called the add-one cost of h
at the origin o. Then a CLT for h(P|W ) holds as cubes W ’s tend to Rd provided that h
is weakly stabilizing plus a moment condition [24, 29]. Back to RCMs, we modify the
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Random connection models: central limit theorems

concept of weak stabilization and obtain an analogous result: a CLT for f(Gϕ(P)|W ) holds
under assumptions that the functional f is weakly stabilizing and satisfies a moment
condition.

Let us introduce the result in more details. Let G(P∪{o}) be a random graph obtained
from G(P) = Gϕ(P) by adding the origin {o} and edges {o, x}, x ∈ P independently with
probability ϕ(x). We define the add-one cost of f as

Dof(W ) := f(G(P ∪ {o})|W )− f(G(P)|W ),

where W is a bounded subset of Rd. This is the cost paid by adding a point at the origin.
Then the functional f is said to be weakly stabilizing if there is a random variable ∆,
called the limit add-one cost, such that for any sequence of cubes {Wn}n tending to Rd,

Dof(Wn)→ ∆ in probability as n→∞.

Our CLT is stated as follows.

Theorem 1.1. Assume that the functional f is weakly stabilizing and satisfies the
following moment condition

sup
o∈W :cube

E[|Dof(W )|p] <∞,

for some p > 2. Then as the sequence of cubes W ’s tends to Rd,

f(G(P)|W )− E[f(G(P)|W )]√
|W |

d→ N (0, σ2),
Var[f(G(P)|W )]

|W |
→ σ2.

Here ‘
d→’ denotes the convergence in distribution, |W | is the volume of the cube W and

N (0, σ2) denotes the normal distribution with mean zero and variance σ2. Moreover,
the limiting variance σ2 is positive, if the limit add-one cost is non-trivial, that is,
P(∆ 6= 0) > 0.

An extended version of Theorem 1.1 is stated as Theorem 2.15. It is worth mentioning
that this is a result in the thermodynamic regime where the connection function ϕ is
fixed (and will be assumed to satisfy the condition

∫
Rd
ϕ(x)dx ∈ (0,∞) in all examples

in this paper). The terminology is based on the study of random geometric graphs
G(P|W , r = r(W )) [23] in which three main regimes are divided according to the limit
of the radius r(W ): sparse regime (r(W ) → 0), critical or thermodynamic regime
(r(W )→ const) and dense regime (r(W )→∞).

To prove Theorem 1.1, we use the idea of generating the random connection model
(λ, ϕ) from the so-called edge marked Poisson point process from [17]. In fact, we
establish general CLTs (Theorem 2.4) for weakly stabilizing functionals on edge marked
Poisson point processes from which the above theorem is just a particular case. Note that
a direct generalization of CLTs for weakly stabilizing functionals in [24, 29] to marked
Poisson point processes leads to different CLTs (cf. Theorem 3.1 in [25]) that might be
difficult to apply to RCMs. See Remark 2.5 for more details.

Examples of weakly stabilizing functionals include isomorphic subgraph counts,
(isomorphic) component counts, Betti numbers of the clique complex of a graph, and
the size of the largest component. Thus, CLTs for those quantities are obtained from
the above general result. We would like to emphasize that in our results the connection
function ϕ may have unbounded support. This allows unbounded connections which
result in some non-trivial difficulties in establishing the weak stablization and a moment
condition, especially in the cases of Betti numbers and the size of the largest component.
We also remark here that upper bounds for the normal approximation in the Wasserstein
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Random connection models: central limit theorems

and the Kolmogorov distance of functionals on edge marked Poisson processes and their
applications to RCMs were established in [17], which extends those of functionals on
Poisson point processes in [16]. The work [16] is related to the strong stabilization
condition which is defined in [24, 29] when dealing with binomial point processes or
non-homogeneous Poisson point processes. As indicated in the terminologies, the strong
stabilization implies the weak one. However, it is hard to relate the weak stabilization
condition and the range of applications of general results in [16, 17].

CLTs with rate of convergence for isomorphic component counts were established
in [17]. By approximation, a CLT (without rate) for the total number of connected
components was then derived. CLTs for Betti numbers in this paper are generalizations
of that result, because the zeroth Betti number is nothing but the number of connected
components. Moreover, in Section 4, we establish the CLT for the size of the largest
cluster of the random graph provided that λ is large enough and ϕ satisfies two conditions
(C1) and (C2). Roughly speaking, the condition (C1) requires that ϕ is a radial function
with limx→0 ϕ(x) = 1, while (C2) is a moment condition on ϕ. As far as we are concerned,
our results for Betti numbers and the size of the largest component of random connection
models have not been known before. It should be an interesting problem to obtain upper
bounds for the normal approximation of those functionals, by using the approach in [17],
or by using some new approach.

The paper is organized as follows. In Section 2, we establish a general result for
weakly stabilizing functionals on marked Poisson point processes, and then the CLT for
random connection models with general functionals is derived. Thenceforth, we apply
these results to establish CLTs for isomorphic subgraph counts and Betti numbers in
Section 3, and for the size of the largest component in Section 4.

2 General results

2.1 CLT for weakly stabilizing functionals on edge marked Poisson point pro-
cesses

In this sub-section, we consider a random graph with marks built on a special marked
Poisson point process under which the random connection model (λ, ϕ) can be generated.
Let η̂ be a Poisson point process on S := Rd× [0, 1]× [0, 1]N×N with the intensity measure
λ`d⊗`⊗Q, where λ > 0 is a constant, `d is the Lebesgue measure onRd, ` is the Lebesgue
measure on [0, 1] and Q = `⊗N×N is the product measure of ` on M := [0, 1]N×N. To a
point (x, t,M) = (x, t, (ui,j)) ∈ S, the first component points out the location in Rd, the
second one is regarded as its birth time and the third one is a double sequence of marks.

Let {Bk}k∈N be an enumeration of all unit cubes from the lattice Zd. To be more
precise, each Bk is of the form

∏d
i=1[ni, ni + 1), ni ∈ Z. For a locally finite set η ⊂ S (the

number of points of η in any compact set is finite) whose birth times are all different,
the edge marking mapping T associated with {Bk} is constructed as follows [17]. We
first order the points of η in each cube Bk according to their birth times. Then for two
points s1 = (x, t, (ui,j)) and s2 = (y, s, (vi,j)) in η with t < s and s1 the mth oldest point in
Bn, the edge {x, y} is marked with vm,n. The resulting image T (η) consisting of points
of the form ({x, y}, u) is viewed as an edge marked graph with edges {x, y} marked
with u. Formally, T is a measurable map from N(S) to N((Rd)[2] × [0, 1]), where N(X)

denotes the space of locally finite subsets of a topological space X and (Rd)[2] denotes
the space of undirected edges. We call T (η̂) an edge marked Poisson process. Given
a connection function ϕ, which is a measurable symmetric function ϕ : Rd → [0, 1], a
random connection model with parameters (λ, ϕ) can be generated from η̂ by

η̂ 7→ T (η̂) 7→
{
{x, y} : ({x, y}, u) ∈ T (η̂), u < ϕ(x− y)

}
. (2.1)
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We will study more about RCMs in the next section.
For η ∈ N(S), and W ⊂ Rd, denote by η|W the restriction of η on {(x, t,M) : x ∈

W} and T (η)|W the induced subgraph of T (η) with vertices in W . Note that by the
construction T (η̂)|W = T (η̂|W ), if W is a union of sets from the collection {Bk}. For
general W , two graphs T (η̂)|W and T (η̂|W ) have the same set of vertices, but edges may
be different. However, they have the same distribution. This is because conditional on
the configuration of points in W , each edge is independently marked with a random
variable uniformly distributed on [0, 1].

Let f be a (measurable) functional defined on finite subsets of (Rd)[2] × [0, 1]. Then
the subtract-one cost of f , the functional on finite subsets of S, is defined as

∆(x,t,M)f(η) = f(T (η ∪ {(x, t,M)}))− f(T (η ∪ {(x, t,M)}) \ {x}), η ⊂ S. (2.2)

Here for (x, t,M) ∈ η, the graph T (η) \ {x} is obtained from T (η) by removing the vertex
x and all corresponding edge marks.

Set Ω̂ = Ω×M and P̂ = P⊗Q, where (Ω,F ,P) is the underlying probability space
for the point process η̂. We will use Ê to denote the expectation with respect to P̂.

Definition 2.1. (i) The functional f is said to be translation invariant if for any z ∈ Rd,
and any finite set {({xi, yi}, ui)}i∈I ⊂ (Rd)[2] × [0, 1],

f({({xi, yi}, ui)}i∈I) = f({({z + xi, z + yi}, ui)}i∈I).

(ii) The functional f is said to be weakly stabilizing if it is translation invariant and
there is a random variable ∆1 = ∆1(ω,M) (defined on Ω̂) such that for any sequence
of cubes {Wn}n tending to Rd,

∆(o,1,M)f(η̂|Wn)
P̂→ ∆1.

Here ‘
P̂→’ denotes the convergence in probability with respect to P̂ and o =

(0, . . . , 0) ∈ Rd denotes the origin.

Remark 2.2. Note that T (η̂|W ∪ {o, 1,M}) is obtained from T (η̂|W ) by adding the vertex
o and new edges connected to it. Thus,

∆(o,1,M)f(η̂|W ) = f(T (η̂|W ∪ {o, 1,M}))− f(T (η̂|W ))

is an add-one cost.

From now on, assume that the functional f is translation invariant.

Definition 2.3. The functional f is said to satisfy a moment condition if for some p > 2,

sup
o∈W :cube

Ê[|∆(o,1,M)f(η̂|W )|p] <∞. (2.3)

Our main result in this paper is the following central limit theorem.

Theorem 2.4. Assume that the functional f is weakly stabilizing and satisfies the
moment condition (2.3). Then for any sequence of cubes W ’s tending to Rd,

f(T (η̂|W ))− E[f(T (η̂|W ))]√
|W |

d→ N (0, σ2),

for a constant σ2 ≥ 0 given in (2.4) below. Here recall that |W | denotes the volume, or
the Lebesgue measure `d(W ) of W . Moreover, the limiting variance σ2 is positive, if the
limit add-one cost ∆1 is non-trivial, that is, P̂(∆1 6= 0) > 0.
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Remark 2.5. (i) For marked Poisson point processes, central limit theorems have
been established for functionals h of the form

h(η) =
∑
i∈I

ξ((xi, ti,Mi), η)),

defined on finite subset η = {(xi, ti,Mi)}i∈I of S, provided that the functional
ξ is stabilizing plus some moment conditions [1, 26]. (Notice that the notion
of stabilization in [1, 26] is slightly different from ours). Isomorphic subgraph
counts are typical examples of such functionals in which ξ((xi, ti,Mi), η)) is the
number of isomorphic subgraphs containing the point xi, divided by a constant. For
RCMs studied in the next section, we will show that subgraph counts are weakly
stabilizing (in the sense of Definition 2.1). However, when the connection function
satisfies ϕ ∈ (0, 1), one may immediately see that in the simplest case where the
number of edges is considered, the corresponding functional ξ is not stabilizing (in
the sense of [1, §2.3.1] or [26, Definition 2.1]). And thus, those general results are
not applicable to the RCM (2.1) constructed from a marked Poisson point process.

(ii) A CLT for weakly stabilizing functionals (in the case without marks) was first
established in [24] under a fourth moment condition (a similar condition as the
moment condition (2.3) with p = 4). It was slightly improved to the case p > 2 in
[29]. We extend the approach in [29] to prove Theorem 2.4. It is worth noting
that a direct generalization of CLTs from the above two papers to a marked case
would lead to a CLT for a functional h defined on finite subset η = {(xi, ti,Mi)}i∈I
of S with the stabilization concept being defined by using the add-one cost (cf. [25,
Theorem 3.1])

D(x,t,M)h(η) = h(η ∪ {(x, t,M)})− h(η).

To apply to the RCM (2.1), we would consider a functional of the form h = f ◦ T ,
and thus the add-one cost is given by

D(x,t,M)h(η) = f(T (η ∪ {(x, t,M)}))− f(T (η)).

From the construction of T , it is clear that T (η) is not a subgraph of T (η ∪
{(x, t,M)}), in general, which causes a difficulty in this direction. The idea here is
to modify the add-one cost to the subtract-one cost defined in the equation (2.2), the
difference of f on T (η ∪{(x, t,M)}) and its subgraph T (η ∪{(x, t,M)}) \ {x}, which
is originated from [17] to define the weak stabilization. The main contribution of
this paper is to introduce a suitable concept of weak stabilization and to establish
the limiting variance formula stated in Lemma 2.8.

Remark 2.6 (A quenched CLT). We state here a quenched version of Theorem 2.4. For
simplicity, assume that the underlying probability space is written as the product

(Ω,F ,P) = (Ω1,F1,P1)× (Ω2,F2,P2)

for which the first component of η̂ is defined on Ω1, and the second and the third ones
are defined on Ω2, that is,

η̂(ω) = {(x(ω1), t(ω2),M(ω2))}.

Assume that the functional f satisfies the conditions in Theorem 2.4. Let

Zn(ω1, ω2) =
f(T (η̂|Wn

))− E2[f(T (η̂|Wn
))]√

n
,

where E2 denotes the expectation with respect to P2. Then there exists 0 ≤ σ2
q ≤ σ2 (the

variance in Theorem 2.4), such that with high probability (in ω1) the random variables
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(Zn(ω1, ·))n≥1 converge weakly to N (0, σ2
q ). The detailed statement (see (A.1)) and its

proof are given in the Appendix A.

We need some preparations before proving the main result. A cube is called a lattice
cube if it is of the form

∏d
i=1[ni, ni +m), with ni ∈ Z and m ∈ N. Clearly, a lattice cube

is a union of cubes from the collection {Bk}.
Lemma 2.7. Assume that the functional f is weakly stabilizing. Then there is a random
variable ∆t (defined on Ω̂) such that for any sequence of cubes {Wn} tending to Rd,

∆(o,t,M)f(η̂|Wn)
P̂→ ∆t.

Proof. The proof is based on the following two observations

(i) under P̂, the two graphs T (η̂|W ∪ {(o, t,M)}) and T (η̂|W ∪ {(o, 1,M)}) have the
same distribution;

(ii) for any lattice cube V with o ∈ V ⊂W ,

∆(o,t,M)f(η̂|W )−∆(o,t,M)f(η̂|V )
d
= ∆(o,1,M)f(η̂|W )−∆(o,1,M)f(η̂|V ).

Here ‘
d
=’ denotes the equality in distribution. Then similar arguments as those will be

used in the proof of Proposition 2.14 work to show the weak stabilization of ∆(o,t,M)f for
any t ∈ [0, 1]. Let us omit the details to continue the main stream.

For η ∈ N(Rd × [0, 1] ×M) and t ∈ [0, 1], we write ηt for the restriction of η to
Rd × [0, t) ×M, and E[·|η̂t] denotes the conditional expectation with respect to the
sigma-field generated by η̂t.

Lemma 2.8. Assume that the functional f is weakly stabilizing and satisfies the moment
condition (2.3). Then for any sequence of cubes W ’s tending to Rd,

Var[f(T (η̂|W ))]

|W |
→ λ

∫ 1

0

Ê[E[∆t|η̂t]2]dt =: σ2. (2.4)

The limiting variance σ2 is positive, if P̂(∆1 6= 0) > 0.

Remark 2.9. In the case without marks as in [24, 29], the limit ∆ = ∆1 does not depend
on t and M , and thus the limiting variance is written as

σ2 = λ

∫ 1

0

E[E[∆|η̂t]2]dt.

The above lemma shows that σ2 > 0, if P(∆ 6= 0) > 0. Note that under the assumption of
strong stabilization, Theorem 2.1 in [24] states that the limiting variance σ2 is positive,
if ∆ is nondegenerate, that is, ∆ is not a constant.

The proof of the above lemma relies on the following variance formula.

Lemma 2.10 ([17, Theorem 5.1]). Let f : N((Rd)[2] × [0, 1]) → R be measurable with
E[f(T (η̂|W ))2] <∞, where W ⊂ Rd. Then

Var[f(T (η̂|W ))] = λ

∫
W

∫ 1

0

Ê[E[∆(x,t,M)f(η̂|W )|η̂t]2]dtdx.

Proof of Lemma 2.8. Assume that the functional f is weakly stabilizing and satisfies the
moment condition (2.3). By Lemma 2.7, for any sequence of cubes {Wn}n≥1 tending to
Rd and 0 ≤ t ≤ 1,

∆(o,t,M)f(η̂|Wn
)
P̂→ ∆t.
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Moreover, by the moment condition for any 1 ≤ q < p, the sequence {|∆(o,t,M)f

(η̂|Wn
)|q}n≥1 is uniformly integrable. Therefore,

∆(o,t,M)f(η̂|Wn
)→ ∆t in Lq(Ω̂). (2.5)

In particular, with q = 2 we have

Ê[|∆(o,t,M)f(η̂|Wn
)−∆t|2]→ 0,

and it then follows that ∫ 1

0

Ê
[
|∆(o,t,M)f(η̂|Wn)−∆t|2

]
dt→ 0.

Then, by using Jensen’s inequality for conditional expectation, we obtain that∫ 1

0

Ê
[
|E[∆(o,t,M)f(η̂|Wn

)|η̂t]− E[∆t|η̂t]|2
]
dt→ 0.

Consequently,

h(Wn) :=

∫ 1

0

Ê
[
E[∆(o,t,M)f(η̂|Wn

)|η̂t]2
]
dt→

∫ 1

0

Ê
[
E[∆t|η̂t]2

]
dt =: a2.

The convergence holds for any sequence of cubes {Wn} tending to Rd. Thus, it is
straightforward to show that for any ε > 0, there is a radius r > 0 such that

|h(V )− a2| < ε, if Br(o) ⊂ V . (2.6)

Here Br(o) = {x ∈ Rd : |x| ≤ r} denotes the closed ball centered at o of radius r.
It now follows from the variance formula and the translation invariance that

Var[f(T (η̂|W ))] = λ

∫
W

∫ 1

0

Ê[E[∆(x,t,M)f(η̂|W )|η̂t]2]dtdx

= λ

∫
W

h(W − x)dx.

For given ε > 0, take r such that the condition (2.6) holds. Then divide the above integral
into two parts according to Br(o) ⊂W − x or not. For the part with Br(o) ⊂W − x, the
integrand h(W − x) is different from a2 by at most ε, while the integral over the other
part divided by |W | clearly vanishes as W tends to Rd. Consequently,

Var[f(T (η̂|W ))]

|W |
=

λ

|W |

∫
W

h(W − x)dx→ λa2 = σ2 as W → Rd,

which proves the desired convergence (2.4).
Next, we show the positivity of σ2 under the condition that P̂(∆1 6= 0) > 0. Our aim is

to show the continuity of Ê[E[∆t|η̂t]2] at t = 1, that is,

Ê[E[∆t|η̂t]2]→ Ê[∆2
1] as t→ 1. (2.7)

This clearly implies the positivity of σ2, because E[∆2
1] > 0. We will show the continuity

through several steps.
Step 1. Recall that as W tends to Rd,

Ê[|∆(o,t,M)f(η̂|W )−∆t|2]→ 0,
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and moreover the expectation does not depend on t, if W is a lattice cube.
Step 2. For any finite cube W ,

∆(o,t,M)f(η̂|W )→ ∆(o,1,M)f(η̂|W ) in probability as t→ 1.

This is because the two functionals coincide on the event that there is no point in
W × [t, 1]×M whose probability tends to 1 as t→ 1. Then the convergence in L2 holds
as a consequence of the moment condition.

Step 3. The results in Step 1 and Step 2, together with the triangular inequality,
imply that as t→ 1,

∆t → ∆1 in L2.

Then using Jensen’s inequality for conditional expectation, we obtain that

Ê[E[∆t −∆1|η̂t]2]→ 0 as t→ 1,

and thus,
Ê[E[∆t|η̂t]2]− Ê[E[∆1|η̂t]2]→ 0 as t→ 1.

Step 4. We claim that for any finite cube W ,

E[∆(o,1,M)f(η̂|W )|η̂t]→ ∆(o,1,M)f(η̂|W ) in probability, and then in L2 as t→ 1.

It suffices to show that for each M , the above convergence holds in probability with
respect to P. Let M be fixed. First we write the conditional expectation as

E[∆(o,1,M)f(η̂|W )|η̂t] = Eη̂
t

[∆(o,1,M)f(η̂t|W + η̂t|W )],

where Eη̂
t

denotes the expectation with respect to a Poisson point process η̂t on Rd ×
[t, 1]×M independent of η̂t. Then by expressing the conditional expectation further as

∆(o,1,M)f(η̂t|W )P(At) + Eη̂
t

[∆(o,1,M)f(η̂t|W + η̂t|W )1Act ],

where At is the event that η̂t has no point in W × [t, 1]×M, we see that

E[∆(o,1,M)f(η̂|W )|η̂t]−∆(o,1,M)f(η̂t|W )

= ∆(o,1,M)f(η̂t|W )(P(At)− 1) + Eη̂
t

[∆(o,1,M)f(η̂t|W + η̂t|W )1Act ]

→ 0 in probability as t→ 1.

Here Hölder’s inequality has been used to show the second term in the second last
equation converges to zero. In addition, ∆(o,1,M)f(η̂t|W )→ ∆(o,1,M)f(η̂|W ) in probability
(by the same reason as in Step 2). These imply the desired convergence.

Step 5. Taking the limit as W → Rd in Step 4, we obtain

E[∆1|η̂t]→ ∆1 in L2 as t→ 1,

which, together with Step 3, yields the continuity (2.7). The proof of Lemma 2.8 is
complete.

We also need the following Poincaré inequality which is a direct consequence of the
variance formula by using Jensen’s inequality.

Lemma 2.11 ([17]). Let f be a functional defined on finite subsets of (Rd)[2] × [0, 1].
Assume that

E[f(T (η̂|W ))2] <∞.

Then the following Poincaré inequality holds

Var[f(T (η̂|W ))] ≤ λ
∫
W

Ê[∆(x,1,M)f(η̂|W )2]dx.
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Proof of Theorem 2.4. We sketch some key steps in the argument because it is similar
to the proof of Theorem 3.1 in [29]. Let us consider the sequence of cubes Wn :=

[−n1/d/2, n1/d/2)d, where n > 0. Because of the translation invariance, it suffices to
show that as n→∞,

f(T (η̂|Wn
))− E[f(T (η̂|Wn

))]√
n

d→ N (0, σ2),
Var[f(T (η̂|Wn

))]

n
→ σ2, (2.8)

for some σ2 ≥ 0. For L > 0 with L1/d an integer number and for each n, divide the cube
Wn according to the lattice L1/dZd and let {Ci}`ni=1 be the lattice cubes entirely contained
in Wn. Then it follows from the construction of the graph T that

Xn,L :=
1√
n

`n∑
i=1

(
f(T (η̂|Ci))− E[f(T (η̂|Ci))]

)
=

1√
n

`n∑
i=1

(
f(T (η̂|Wn

)|Ci)− E[f(T (η̂|Wn
)|Ci)]

)
.

The first expression shows that Xn,L is a sum of i.i.d. (independent identically dis-
tributed) random variables. Thus, for fixed L, a central limit theorem for {Xn,L} holds,
that is,

Xn,L
d→ N (0, σ2

L), Var[Xn,L]→ σ2
L = L−1 Var[f(T (η̂|Ci))]. (2.9)

The second expression helps us to make use of the Poincaré inequality

Var

[
f(T (η̂|Wn

))− E[f(T (η̂|Wn
))]√

n
−Xn,L

]
≤ λ

n

∫
Wn

Ê

[∣∣∣∣∆(x,1,M)f(η̂|Wn
)−

`n∑
i=1

∆(x,1,M)f(η̂|Ci)I(x ∈ Ci)
∣∣∣∣2]dx

=
λ

n

∫
Wn\∪iCi

Ê[|∆(x,1,M)f(η̂|Wn
)|2]dx

+
λ

n

`n∑
i=1

∫
Ci

Ê[|∆(x,1,M)f(η̂|Wn
)−∆(x,1,M)f(η̂|Ci)|2]dx.

Here I denotes the indicator function. Then using the weak stabilization together
with the moment condition, we can argue in exactly the same way as in the proof of
Theorem 3.1 in [29] to show that

lim
L→∞

lim sup
n→∞

Var

[
f(T (η̂|Wn

))− E[f(T (η̂|Wn
))]√

n
−Xn,L

]
= 0. (2.10)

The two equations (2.9) and (2.10) imply our desired CLT (2.8) (see [29, Lemma 2.2]).
The proof is complete.

Corollary 2.12. Assume that functionals {fi}mi=1 are weakly stabilizing and satisfy the
moment condition. Then as the sequence of cubes {Wn} tends to Rd,(

fi(T (η̂|Wn))− E[fi(T (η̂|Wn))]√
|Wn|

)m
i=1

d→ N (0,Σ),

where Σ = (σij)
m
i,j=1 is a nonnegative definite matrix,

σij = lim
n→∞

Cov[fi(T (η̂|Wn
)), fj(T (η̂|Wn

))]

|Wn|
= λ

∫ 1

0

Ê
[
E[∆

(i)
t |η̂t]E[∆

(j)
t |η̂t]

]
dt, (2.11)
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with {∆(i)}mi=1 the limits of the subtract-one cost of functionals {fi}mi=1, precisely for any
i = 1, . . . ,m and t ∈ [0, 1],

∆(o,t,M)fi(η̂|Wn
)
P̂→ ∆

(i)
t .

Here N (0,Σ) denotes the multidimensional Gaussian distribution with mean zero and
covariance matrix Σ.

Proof. Observe that the desired multidimensional CLT follows, if we can show that for
any a = (a1, . . . , am) ∈ Rm, the following hold for f =

∑m
i=1 aifi,

f(T (η̂|W ))− E[f(T (η̂|W ))]√
|W |

d→ N (0, σ2
f ),

Var[f(T (η̂|W ))]

|W |
→ σ2

f = atΣa.

The functional f is clearly weakly stabilizing and satisfies the moment condition, and
hence a CLT for f follows from Theorem 2.4. To see the convergence of the covariance
and the formula σ2

f = atΣa, it remains to show the convergence (2.11). However, it is an
easy consequence of the convergence of variances when applying Theorem 2.4 to the
functionals (fi ± fj) by noting that Cov[X,Y ] = 1

4 (Var[X + Y ]−Var[X − Y ]). The proof
is complete.

In the following lemma, we give a criterion to check the weak stabilization that will
be used in Proposition 2.14.

Lemma 2.13. Assume that for any increasing sequence of cubesW = {Wn}∞n=1 tending
to Rd, the sequence {∆(o,1,M)f(η̂|Wn)} converges in probability to a limit ∆(W). Then the
functional f is weakly stabilizing.

Proof. We first show that the limit ∆(W) is unique. Let V = {Vn} andW = {Wn} be two
increasing sequences of cubes tending to Rd. Then by the assumption,

∆(o,1,M)f(η̂|Wn
)
P̂→ ∆(W), ∆(o,1,M)f(η̂|Vn)

P̂→ ∆(V).

We form a new sequence from subsequences of V andW in a way that

V1 ⊂Wi1 ⊂ Vj1 ⊂Wi2 ⊂ · · · ↗ Rd.

Along this sequence, the limit of the add-one cost exists, implying that ∆(W) = ∆(V)

(P̂-almost surely). Thus, there is a random variable ∆ such that for any increasing
sequence {Wn} tending to Rd,

∆(o,1,M)f(η̂|Wn
)
P̂→ ∆.

Now let {Wn} be an arbitrary sequence of cubes tending to Rd. Assume for contra-
diction that {∆(o,1,M)f(η̂|Wn

)} does not converge in probability to ∆. Then there are
ε > 0, δ > 0, and a subsequence {Wnk} such that

P̂(|∆(o,1,M)f(η̂|Wnk
)−∆| ≥ ε) > δ.

Since the sequence {Wnk} tends to Rd, we can always extract a further increasing
subsequence along which the sequence of the add-one cost converges to ∆, making a
contradiction. The proof is complete.

We conclude this sub-section by discussing equivalent conditions for the weak stabi-
lization. The conditions will be used in the next sub-section when studying the random
connection model.
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Consider the add one-cost functional in a slightly different way

∆̃(o,1,M)f(W ) = f(T (η̂ ∪ {(o, 1,M)})|W )− f(T (η̂)|W ).

Here we first construct the infinite graph T (η̂ ∪ {(o, 1,M)}) and then take the restriction.
Its advantage is the increasing property of a sequence of graphs. The two add-one cost
functionals coincide, if W is a union of cubes from the collection {Bk}.
Proposition 2.14. The following are equivalent

(i) the functional f is weakly stabilizing;

(ii) for any sequence of cubes {Wn} tending to Rd,

∆̃(o,1,M)f(Wn)
P̂→ ∆1;

(iii) the sequence {∆̃(o,1,M)f(Wn)} converges in probability to a limit for any sequence
of increasing cubes {Wn} tending to Rd.

Proof. The equivalence of (ii) and (iii) is quite similar to Lemma 2.13, and hence its proof
is omitted. We now prove the equivalence of (i) and (ii).

Let V ⊂ W be a lattice cube. Note that the two graphs T (η̂|W ∪ {(o, 1,M)}) and
T (η̂ ∪ {(o, 1,M)})|W have the same distribution. In addition, since V is a lattice cube,
∆(o,1,M)f(η̂|W ) −∆(o,1,M)f(η̂|V ) can be written as a function of T (η̂ ∪ {(o, 1,M)})|W by

restriction. In the same manner, ∆̃(o,1,M)f(W )− ∆̃(o,1,M)f(V ) can be written as the same
function of T (η̂ ∪ {(o, 1,M)})|W . Consequently,

∆(o,1,M)f(η̂|W )−∆(o,1,M)f(η̂|V )
d
= ∆̃(o,1,M)f(W )− ∆̃(o,1,M)f(V ). (2.12)

Let us show that (i) implies (ii). Assume that (i) holds. Let {Wn} be any sequence of
cubes tending to Rd. We take a sequence of lattice cubes {Vn} tending to Rd such that
Vn ⊂ Wn, for each n. We assume without loss of generality that o ∈ Vn, for any n. The
condition (i) implies that

∆(o,1,M)f(η̂|Wn)
P̂→ ∆1, ∆(o,1,M)f(η̂|Vn)

P̂→ ∆1.

It then follows that

∆(o,1,M)f(η̂|Wn)−∆(o,1,M)f(η̂|Vn)
P̂→ 0,

and hence

∆̃(o,1,M)f(Wn)− ∆̃(o,1,M)f(Vn)
P̂→ 0, (2.13)

by the identity in distribution (2.12). In addition, since Vn is a lattice cube,

∆̃(o,1,M)f(Vn) = ∆(o,1,M)f(η̂|Vn)
P̂→ ∆1. (2.14)

Adding the two equations (2.13) and (2.14), we get the desired convergence in the
statement of (ii). The converse can be proved similarly. The proof is complete.

2.2 CLT for random connection models

Let P be a homogeneous Poisson point process on Rd with density λ > 0. Let
ϕ : Rd → [0, 1] be a measurable, symmetric function, that is, ϕ(x) = ϕ(−x). Given a
configuration P which is a locally finite subset in Rd (almost surely), connect any two
points x, y ∈ P independently with probability ϕ(x − y). (In general, we can consider
a connectivity function ϕ : Rd × Rd → [0, 1] with ϕ(x, y) = ϕ(y, x) the probability of
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connecting two points x and y. The model here is the case where the translation
invariance is assumed.) The resulting graph, denoted by G(P), is called a random
connection model with parameters (λ, ϕ). If we take ϕ as

ϕ(x) =

{
1, |x| ≤ r,
0, otherwise,

for some r > 0, then the RCM G(P) reduces to a random geometric graph.
The graph G(P) can be generated by using the random graph with marks in the

previous section as follows [17]. Let η̂ be a Poisson point process on Rd× [0, 1]× [0, 1]N×N

with the intensity measure λ`d ⊗ `⊗Q. We regard P as the projection of η̂ to Rd. Then
define the graph G(P) as the one with the vertex set P, and edges {x, y}, if u < ϕ(x− y),
for (x, y, u) ∈ T (η̂). In other words, G(P) = ι(T (η̂)) is the image of T (η̂) under some
mapping ι defined on N((Rd)[2] × [0, 1]).

For a bounded subset W ⊂ Rd, let G(P)|W be the induced subgraph obtained from
G(P) by restricting the graph on the vertex set in P|W . Note that G(P)|W has the same
distribution with the graph G(P|W ) generated by connecting a pair x, y ∈ P|W with
probability ϕ(x− y) independent of the others. Let f be a functional defined on finite
graphs. Then

f(G(P)|W ) = f(ι(T (η̂)|W )).

Clearly, the functional f ◦ ι is translation invariant.
The functional f is said to be weakly stabilizing on G(P) if f ◦ ι is weakly stabilizing

as in Definition 2.1. In this model, this concept is equivalent to the following. Let
G(P ∪ {o}) be a random graph obtained from G(P) by adding the vertex {o} and new
edges (o, x), x ∈ P independently with probability ϕ(x). For a bounded subset W ⊂ Rd,
let

Dof(W ) = f(G(P ∪ {o})|W )− f(G(P)|W )

be the add-one cost of f . Then using equivalent conditions in Proposition 2.14, the func-
tional f is weakly stabilizing on G(P), if and only if one of the following two conditions
holds

(i) there is a random variable ∆ such that

Dof(Wn)
P→ ∆,

for any sequence of cubes {Wn}∞n=1 tending to Rd;

(ii) for any increasing sequence of cubes {Wn}, the sequence {Dof(Wn)} converges in
probability to a limit.

The following result follows directly from Theorem 2.4 and Corollary 2.12.

Theorem 2.15. (i) Assume that a functional f is weakly stabilizing on G(P). Assume
further that for some p > 2,

sup
o∈W :cube

E[|Dof(W )|p] <∞. (2.15)

Then as the sequence of cubes W ’s tends to Rd,

f(G(P|W ))− E[f(G(P|W ))]√
|W |

d→ N (0, σ2),
Var[f(G(P|W ))]

|W |
→ σ2.

The limiting variance is positive (σ2 > 0), if P(∆ 6= 0) > 0.
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(ii) Assume that functionals {fi}mi=1 are weakly stabilizing on G(P) and satisfy the
above moment condition. Then as the sequence of cubes W ’s tends to Rd,(

fi(G(P|W ))− E[fi(G(P|W ))]√
|W |

)m
i=1

d→ N (0,Σ),

where Σ = (σij)
m
i,j=1 is a nonnegative definite matrix,

σij = lim
W→Rd

Cov[fi(G(P|W )), fj(G(P|W ))]

|W |
.

3 Isomorphic subgraph counts and Betti numbers

3.1 Isomorphic subgraph counts

Consider the random connection model (λ, ϕ) with the assumption that

0 < mϕ =

∫
Rd
ϕ(x)dx <∞.

Let A be a connected graph on (k + 1) vertices. For given (k + 1) distinct points
{x1, x2, . . . , xk+1} in Rd, denote by Γ(x1, x2, . . . , xk+1) the random graph generated by
independently drawing an edge between any two vertices xi, xj with probability ϕ(xi−xj).
Let

ψA(x1, x2, . . . , xk+1) =

{
P(Γ(x1, x2, . . . , xk+1) ' A), if {xi} are distinct,

0, otherwise,

where ‘'’ denotes the isomorphism of graphs. Then it is clear that ψ is translation
invariant, that is,

ψA(z + x1, z + x2, . . . , z + xk+1) = ψA(x1, x2, . . . , xk+1), for any z ∈ Rd.

Lemma 3.1. Let A be a connected graph on (k+ 1) vertices. Then the expected number
of induced subgraphs containing the origin o in G(P ∪ {o}) isomorphic to A is given by

hA :=
λk

k!

∫
· · ·
∫

(Rd)k
P(Γ(o, x1, . . . , xk) ' A)dx1 · · · dxk

=
λk

k!

∫
· · ·
∫

(Rd)k
ψA(o, x1, . . . , xk)dx1 · · · dxk <∞. (3.1)

Proof. We first show that the integral in (3.1) is finite. Although this result was already
proved in Theorem 7.1 in [17], we give here a slightly different proof. We claim that
for a connected graph A, there are at least two vertices such that after removing each
of them together with all edges connected to it, the remaining graph is still connected.
Indeed, let B be a spanning tree of A, that is, a connected subgraph of A with exactly
k edges. Then the sum of degrees of all vertices in B is 2k, implying that at least two
vertices have degree one. Note that by removing a vertex of degree one from the tree,
the remaining is still a tree, which proves our claim.

Now let A = (V,E) be a connected graph on V = [k+1] := {1, 2, . . . , k+1}. The graph
Γ(o, x1, . . . , xk) is isomorphic to A, if there is a permutation π ∈ Sk+1 such that {i, j} is
an edge on A, if and only if {xπi , xπj} is an edge on Γ(xk+1 = o, x1, . . . , xk). Therefore∫

· · ·
∫

(Rd)k
P(Γ(o, x1, . . . , xk) ' A)dx1 · · · dxk

≤
∑

π∈Sk+1

∫
· · ·
∫

(Rd)k

∏
{i,j}∈E

ϕ(xπi − xπj )dx1 · · · dxk.
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Then it suffices to show that∫
· · ·
∫

(Rd)k

∏
{i,j}∈E

ϕ(xi − xj)dx1 · · · dxk <∞.

Let m 6= k + 1 be a vertex such that the induced subgraph A′ = (V ′, E′), where V ′ =

V \ {m}, is still connected. Let n be a vertex connected to m. Then∫
· · ·
∫

(Rd)k

∏
{i,j}∈E

ϕ(xi − xj)dx1 · · · dxk

≤
∫
· · ·
∫

(Rd)k−1

( ∏
{i,j}∈E′

ϕ(xi − xj)
)(∫

Rd
ϕ(xn − xm)dxm

) ∏
l 6=m

dxl

= mϕ ×
∫
· · ·
∫

(Rd)k−1

∏
{i,j}∈E′

ϕ(xi − xj)
∏
l 6=m

dxl.

Since A′ is again a connected graph, we continue this way to see that the above integral
is bounded by (mϕ)k <∞.

Next by the multivariate Mecke equation (Theorem 4.4 in [18]), the expected number
of induced subgraphs containing the origin o in G(P ∪ {o}) isomorphic to A can be
written as

E

[ ∑
{x1,x2,...,xk}⊂P

ψA(o, x1, x2, . . . , xk)

]

=
λk

k!

∫
· · ·
∫

(Rd)k
ψA(o, x1, . . . , xk)dx1 · · · dxk,

which completes the proof.

The graph A is said to be feasible if hA > 0. Equivalently, the graph A is feasible,
if the probability P(Γ(o, x1, . . . , xk) ' A) is positive on some set in (Rd)k with positive
Lebesgue measure. In particular, in case ϕ ∈ (0, 1), any connected graph is feasible. Let

ξ
(A)
n be the number of induced subgraphs in G(Pn) isomorphic to A, where Pn = P|Wn

with Wn = [−n
1/d

2 , n
1/d

2 )d. By direct calculation using the Mecke formula, we can show
the following asymptotic behaviors, natural extensions of those for random geometric
graphs in [23, Chapter 3].

Lemma 3.2. (i) Let A be a feasible connected graph on (k + 1) vertices. Then as
n→∞,

E[ξ
(A)
n ]

n
→ λ

k + 1
hA =

λk+1

(k + 1)!

∫
· · ·
∫

(Rd)k
P(Γ(o, x[k]) ' A)dx[k].

Here x[k] denotes the set {x1, . . . , xk} and dx[k] stands for dx1 · · · dxk.
(ii) Let A and B be two feasible connected graphs on (k+1) vertices and (l+1) vertices

with k ≤ l, respectively. Then

lim
n→∞

Cov[ξ
(A)
n , ξ

(B)
n ]

n
(=: σA,B)

=

k+1∑
m=1

λk+l+2−m

m!(k + 1−m)!(l + 1−m)!

×
∫
· · ·
∫

(Rd)k+l+1−m
P(Γ(o, x[k]) ' A,Γ(o, x[m−1], y[l+1−m]) ' B)

× dx[k]dy[l+1−m],
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where the two graphs Γ(o, x[k]) and Γ(o, x[m−1], y[l+1−m]) are coupling as induced
subgraphs of Γ(o, x[k], y[l+1−m]).

Proof. (i) By the multivariate Mecke equation, we see that

E[ξ(A)
n ] = E

[ ∑
x[k+1]⊂Pn

ψA(x1, x2, . . . , xk+1)

]

=
λk+1

(k + 1)!

∫
· · ·
∫

(Wn)k+1

ψA(x1, x2, . . . , xk+1)dx1dx2 · · · dxk+1

=
λk+1

(k + 1)!

∫
Wn

dxk+1

∫
· · ·
∫

(Wn−xk+1)k
ψA(o, x1, x2, . . . , xk)dx1dx2 · · · dxk.

Since the integral in (3.1) is convergent, it follows that for any ε > 0, there is a radius
r > 0 such that if Br(o) ⊂W ,∣∣∣∣ ∫ · · · ∫

Wk

ψA(o, x1, x2, . . . , xk)dx1dx2 · · · dxk −
k!

λk
hA

∣∣∣∣ < ε.

Then by dividing the integral with respect to xk+1 into two parts according to Br(o) ⊂
Wn − xk+1 or not, we can deduce the desired result

lim
n→∞

E[ξ
(A)
n ]

n
=

λ

k + 1
hA.

(ii) Let us begin with the following expression for E[ξ
(A)
n ξ

(B)
n ]

E[ξ(A)
n ξ(B)

n ] =

k+1∑
m=0

E

[ ∑
x[k+1],y[l+1]⊂Pn,
|x[k+1]∩y[l+1]|=m

P(Γ(x[k+1]) ' A,Γ(y[l+1]) ' B)

]
.

To be more precise, the two random graphs Γ(x[k+1]) and Γ(y[l+1]) are coupling as
induced subgraphs of a random graph on the set x[k+1] ∪ y[l+1]. Note that the term with

m = 0 coincides with E[ξ
(A)
n ]E[ξ

(B)
n ] (by using the multivariate Mecke equation and the

fact that the two random graphs are independent). Thus, the covariance Cov[ξ
(A)
n , ξ

(B)
n ]

is given by

Cov[ξ(A)
n , ξ(B)

n ] =

k+1∑
m=1

E

[ ∑
x[k+1],y[k+1]⊂Pn.
|x[k+1]∩y[k+1]|=m

P(Γ(x[k+1]) ' A,Γ(y[k+1]) ' B)

]
.

For m ≥ 1, to choose the sets x[k+1] and y[l+1] with m points in common, we first select
m common points, and then select the remaining points of x’s and y’s. Again, using the
multivariate Mecke equation, the corresponding term can be expressed further as

λk+l+2−m

m!(k + 1−m)!(l + 1−m)!

×
∫
· · ·
∫

(Wn)k+l+2−m
P(Γ(x[k+1]) ' A,Γ(x[m], y[l+1−m]) ' B)dx[k+1]dy[l+1−m].

Then similar to the proof of (i), we can show that the above integral, divided by n (the
volume of Wn), converges to∫

· · ·
∫

(Rd)k+l+1−m
P(Γ(o, x[k]) ' A,Γ(o, x[m−1], y[l+1−m]) ' B)dx[k]dy[l+1−m],

where the integral is finite. The proof is complete.
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Remark 3.3. Lemma 3.2 implies the following weak law of large numbers

ξ
(A)
n

n
→ λ

k + 1
hA in probability as n→∞.

Theorem 3.4. Let {A1, . . . , Am} be feasible connected graphs. Then(
ξ

(Ai)
n − E[ξ

(Ai)
n ]√

n

)m
i=1

d→ N (0,Σ), Σ = (σAi,Aj )
m
i,j=1.

Here σAi,Ai > 0.

Proof. Let A be a feasible connected graph and let f be the functional counting the
number of induced subgraphs isomorphic to A. By Theorem 2.15, it suffices to show the
weak stabilization property and the moment condition for f .

By definition, Dof(W ) is the number of induced subgraphs in G(P∪{o})|W containing
the vertex o isomorphic to A,

Dof(W ) =
∑

x[k]⊂P|W

I(Γ(o, x[k]) ' A).

Here recall that I denotes the indicator function. Thus, the functional f is weakly
stabilizing. Indeed, by the monocity of Dof ,

Dof(Wn)→ ∆ :=
∑

x[k]⊂P
I(Γ(o, x[k]) ' A) a.s. (3.2)

Moreover, since A is feasible, Lemma 3.1 implies that the limit ∆ is finite (almost surely)
and non-trivial.

For the moment condition (2.15), observe that

sup
o∈W :cube

E[|Dof(W )|3] ≤ E[∆3]. (3.3)

Thus, our remaining task is to show that E[∆3] is finite. Similar to the proof of Lemma 3.2
(see also [8, Lemma 3.4]), we see that there exist constants {C(k, r, s, t) : 0 ≤ r, s, t ≤ k},
such that

E[∆3] (3.4)

=

k−1∑
r=0

k−1∑
s=0

min{k−r,k−s}∑
t=0

C(k, r, s, t)

∫
(Rd)`

pA(y[k], z[k−r], w[k−u])dy[k]dz[k−r]dw[k−u],

where ` = 3k − r − u, u = s + t and pA(y[k], z[k−r], w[k−u]) is the probability that the
following three events happen

Γ(o, y[k]) ' A, Γ(o, y[r], z[k−r]) ' A, Γ(o, y[s], z[t], w[k−u]) ' A.

In addition, each integral in the above expression is finite, which can be proved in the
same way as in Lemma 3.1. Therefore E[∆3] <∞. The proof is complete.

The following result on component counts was shown in [17] by a different approach
for which the rate of convergence in the CLT was also known. The multidimensional CLT
itself can be easily derived from Theorem 2.15 here.
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(a) A graph (b) An intermediate (c) The clique complex

Figure 2: The clique complex of a graph.

Theorem 3.5 ([17]). (i) Let A be a feasible graph on (k + 1) vertices. Let ζ(A)
n be the

number of components in G(Pn) isomorphic to A. Then as n→∞,

ζn
n
→ λk+1

(k + 1)!

∫
· · ·
∫

(Rd)k
P(Γ(x0 = o, x1, . . . , xk) ' A)

× exp

(∫
Rd

[
k∏
i=0

(1− ϕ(y − xi))− 1

]
dy

)
dx1 · · · dxk > 0,

in probability.

(ii) Let {A1, . . . , Am} be feasible connected graphs. Then(
ζ

(Ai)
n − E[ζ

(Ai)
n ]√

n

)m
i=1

d→ N (0,Σ),

with explicit formula for Σ.

3.2 Betti numbers

For a bounded subset W ⊂ Rd, denote by XW the clique complex of the graph G(P)|W ,
that is, the abstract simplicial complex formed by the cliques (or complete subgraphs) of
G(P)|W . (A simple example of the clique complex of a graph is given in Figure 2.) Let
βk(W ), or βk(XW ) be the kth Betti number of the simplicial complex XW . We are going
to establish a LLN and a CLT for βk(W ) as W → Rd.

Let us give a quick review on Betti numbers and some necessary properties needed
in the arguments. We refer the readers to the book [21] for more details.

Let K be an abstract simplicial complex, that is, a collection of nonempty subsets
of a finite set V closed under inclusion relation. An element σ ∈ K is called a simplex
and more precisely, a k-simplex, if |σ| = k + 1. For each k, denote by Kk the set of all
k-simplices in K, and let

Ck(K) =

{∑
αi〈σi〉 : αi ∈ F, σi ∈ Kk

}
be a vector space on some fixed field F, where 〈σ〉 denotes the oriented simplex. For
k ≥ 1, the boundary operator ∂k : Ck(K)→ Ck−1(K) is defined as a linear mapping with

∂k(〈v0, . . . , vk〉) =

k∑
i=0

(−1)i〈v0, . . . , v̂i, . . . , vk〉,
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on any oriented k-simplex 〈v0, . . . , vk〉. Here the symbol ˆ over vi indicates that the vertex
vi is removed from the sequence. (The operator ∂0 : C0(K)→ {0} is defined to be a trivial
one.) We can easily check that ∂k◦∂k+1 = 0, and thus Bk(K) := Im ∂k+1 ⊂ Zk(K) := ker ∂k.
The two are called the kth boundary group and the kth cycle group, respectively. The
quotient space

Hk(K) = Zk(K)/Bk(K)

is called the kth homology group of K, and its rank is the kth Betti number,

βk(K) = rankHk(K) = dimZk(K)− dimBk(K).

Note that the zeroth Betti number coincides with the number of connected components
in the undirected graph G = (V,E), where E = K1.

Let {K(i)}i∈I be a finite collection of disjoint simplicial complexes. Then the disjoint
union ti∈IK(i) is again a simplicial complex, and the following identity holds

βk

(⊔
i∈I
K(i)

)
=
∑
i∈I

βk(K(i)). (3.5)

This property follows directly from the definition. Another useful property is the following.
For two finite simplicial complexes K ⊂ K̃, and any k ≥ 0,

|βk(K)− βk(K̃)| ≤
k+1∑
j=k

(Sj(K̃)− Sj(K)), (3.6)

where Sj(K) (resp. Sj(K̃)) denotes the number of j-simplices in K (resp. K̃). The proof of
this inequality can be found in [28, 30].

The following LLN for Betti numbers is analogous to a LLN for Betti numbers in the
thermodynamic regime [7, 30].

Theorem 3.6. As the sequence of cubes {Wn} tends to Rd,

βk(Wn)

|Wn|
→ β̄k in probability,

where β̄k is a constant. The limit β̄k is positive, if ϕ ∈ (0, 1).

Proof. We will only show the convergence of the mean, because the convergence in
probability is a consequence of the CLT below. It suffices to consider the sequence of
cubes Wn = [−n1/d/2, n1/d/2)d as n → ∞. For L > 0, divide the cube Wn according to
the lattice L1/dZd and let {Ci}`ni=1 be the lattice cubes entirely contained in Wn. It is
clear that `n/n→ 1/L as n→∞. Let

K =

`n⊔
i=1

XCi

be the disjoint union of {XCi} which is a subcomplex of XWn . It follows from the
estimate (3.6) that

|βk(XWn
)− βk(K)| ≤

k+1∑
j=k

(Sj(XWn
)− Sj(K)) .

Then by taking the expectation, we obtain that∣∣∣∣∣E[βk(XWn)]

n
− 1

n

`n∑
i=1

E[βk(XCi)]

∣∣∣∣∣ ≤
k+1∑
j=k

(
E[Sj(XWn)]

n
− 1

n

`n∑
i=1

E[Sj(XCi)]

)
.
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Here we have used the fact that K is the disjoint union of {XCi}. In addition, note that
all XCi have the same distribution. Therefore∣∣∣∣E[βk(XWn)]

n
− `n
n
E[βk(XC1

)]

∣∣∣∣ ≤ k+1∑
j=k

(
E[Sj(XWn)]

n
− `n
n
E[Sj(XC1

)]

)
.

By letting n→∞, it follows that

lim sup
n→∞

E[βk(XWn
)]

n
≤ E[βk(XC1

)]

L
+

k+1∑
j=k

(
lim
n→∞

E[Sj(XWn
)]

n
− E[Sj(XC1

)]

L

)
,

lim inf
n→∞

E[βk(XWn
)]

n
≥ E[βk(XC1

)]

L
−
k+1∑
j=k

(
lim
n→∞

E[Sj(XWn
)]

n
− E[Sj(XC1

)]

L

)
,

and hence

lim sup
n→∞

E[βk(XWn
)]

n
− lim inf

n→∞

E[βk(XWn
)]

n

≤ 2

k+1∑
j=k

(
lim
n→∞

E[Sj(XWn
)]

n
− E[Sj(XC1

)]

L

)
.

Since Sj counts the number of complete subgraphs on (j + 1) vertices, Lemma 3.2(i)
ensures that the limit of E[Sj(XWn)]/n exists. This also implies that the right hand side
of the above equation goes to zero as L→∞. Therefore, the limit limn→∞E[βk(XWn)]/n

exists. We will show the positivity of β̄k at the end of this section. The proof is complete.

Next, we establish a CLT for Betti numbers. Related results are CLTs for Betti
numbers and persistent Betti numbers in [10, 30], respectively.

Theorem 3.7. As the sequence of cubes W ’s tends to Rd,

βk(W )− E[βk(W )]√
|W |

d→ N (0, σ2
k),

for a constant σ2
k ≥ 0. The limiting variance σ2

k is positive, if ϕ ∈ (0, 1).

This is again an application of Theorem 2.15. Thus, we need to show the following

(i) Betti numbers are weakly stabilizing;

(ii) the moment condition (2.15) holds;

(iii) and the limit add-one cost is non-trivial, if ϕ ∈ (0, 1).

The moment condition (2.15) follows immediately from that for subgraph counts, and
hence the proof is omitted. We now show the weak stabilization and the non-triviality.

Lemma 3.8. Let {K(n)}∞n=1 be a sequence of increasing simplicial complexes. Assume
that K0 is a finite set of complexes which is disjoint from K(n) such that K̃(n) := K(n)tK0

is also a simplicial complex for all n. Then the following limit exists

lim
n→∞

(βk(K̃(n))− βk(K(n))).

Proof. From the definition of Betti numbers, we can write

βk(K̃(n))− βk(K(n)) =
{

dim Z̃
(n)
k − dimZ

(n)
k

}
+
{

dim Z̃
(n)
k+1 − dimZ

(n)
k+1

}
−
{

dim C̃
(n)
k+1 − dimC

(n)
k+1

}
.
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Here we use the superscript (n) and that with the symbol ˜ to indicate quantities of
K(n) and K̃(n), respectively. It follows from the assumption K̃(n) = K(n) tK0 that the
difference (dim C̃

(n)
k+1 − dimC

(n)
k+1) is a constant.

Let ∂k : C̃
(n+1)
k → C̃

(n+1)
k−1 denote the boundary operator for K̃(n+1). Since K(n), K̃(n)

and K(n+1) are sub-complexes of K̃(n+1), we get that

Z
(n)
k = ker ∂k ∩ C(n)

k , Z̃
(n)
k = ker ∂k ∩ C̃(n)

k , Z
(n+1)
k = ker ∂k ∩ C(n+1)

k .

As subspaces of C̃(n+1)
k , we can easily check the relation

C̃
(n)
k ∩ C(n+1)

k = C
(n)
k ,

from which we deduce that
Z̃

(n)
k ∩ Z(n+1)

k = Z
(n)
k .

It then follows that

dimZ
(n)
k = dim Z̃

(n)
k + dimZ

(n+1)
k − dim(Z̃

(n)
k + Z

(n+1)
k )

≥ dim Z̃
(n)
k + dimZ

(n+1)
k − dim Z̃

(n+1)
k .

This implies the increasing property of the sequence {dim Z̃
(n)
k − dimZ

(n)
k }n. Since the

roles of k and k + 1 are equal, we conclude that βk(K̃(n)) − βk(K(n)) is an increasing
sequence. In addition, it is bounded by taking into account of the inequality (3.6).
Therefore, the limit exists, which completes the proof.

Lemma 3.9. βk is weakly stabilizing.

Proof. Let Wn be a sequence of increasing cubes tending to Rd. Let ω ∈ Ω be such that
the set P is locally finite and that the graph G(P ∪ {o}) has a finite number of edges
connected to o. Note that the set of such ω has probability one. Then there is a number
N (depending on ω) such that for n ≥ N , Wn contains all vertices connected to o. Let
K(n) = XWn

and let K̃(n) be the clique complex of the graph G(P ∪ {o})|Wn
. Then for

n ≥ N , K0 = K̃(n) \ K(n) does not change. By definition of the add-one cost, it holds that

Doβk(Wn) = βk(K̃(n))− βk(K(n)),

from which the weak stabilization follows from the above lemma.

On the positivity of β̄k and σ2
k. Let Ok be the graph on [2k + 2] with all except

the following edges {{1, k + 1}, {2, k + 3}, . . . , {k, 2k + 2}}. The clique complex XOk is a
boundary of the (k + 1)-dimensional cross-polytope (Definition 3.3 in [13]). It was known
that [12] βk(XOk) = 1, and that βk(XA) = 0 for any graph A on less than 2k + 2 vertices.

Lemma 3.10. Assume that the graph Ok is feasible. Then β̄k > 0 and σ2
k > 0. In

particular, if ϕ ∈ (0, 1), then Ok is feasible and hence, both β̄k and σ2
k are positive.

Proof. Assume that Ok is feasible. Recall that ζ(Ok)
n denotes the number of components

in G(Pn) isomorphic to Ok. It follows from the property (3.5) that,

βk(Wn) ≥ ζ(Ok)
n ,

and then from Theorem 3.5 that

β̄k ≥ lim
n→∞

ζ
(Ok)
n

n
> 0.

EJP 27 (2022), paper 36.
Page 21/40

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP759
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random connection models: central limit theorems

Next, for the positivity of the limiting variance, we will show that ∆ is non-trivial. Let
Ω0 be the event that the component containing o in G(P ∪{o}) is isomorphic to Ok. Then
by using the multivariate Mecke equation, we can prove that

P(Ω0) =
λ2k+1

(2k + 1)!

∫
· · ·
∫

(Rd)2k+1

ψOk(o, x[2k+1])

× exp

(∫
Rd

[ 2k+1∏
i=0

(1− ϕ(y − xi))− 1

]
dy

)
dx[2k+1] > 0.

(See also Proposition 3.1 in [17].) On Ω0, when the cube W is large enough,

Doβk(W ) = βk(XΓ(o,x[2k+1]))− βk(XΓ(x[2k+1])) = βk(XOk) > 0.

Therefore, ∆(ω) > 0 on Ω0, that is, ∆ is non-trivial. The proof is complete.

4 Size of the largest component

In this section, we aim to prove the central limit theorem for the size of the largest
cluster of G(P|W ), or of G(P)|W as W → Rd under some conditions on the connection
function ϕ as follows. We suppose that there exists φ : R+ 7→ [0, 1], such that ϕ(x) = φ(|x|)
for all x ∈ Rd and

(C1) the function φ is continuous at 0 and φ(0) = 1,

(C2) there exist positive constants C0, ε0 such that for all r > 0,

φ(r) ≤ C0r
−(5d+ε0). (4.1)

For any cube W ⊂ Rd, we denote the largest connected component of G(P)|W (resp.
of G(P|W )), that is, the connected component with the largest number of vertices, by
C(W ) (resp. C(P|W )). When there is more than one component achieving the largest size,
then we choose C(W ) to be the component having the vertex with smallest coordinate
in the lexicographic order. We will need the following result on the uniqueness of the
infinite cluster in the graph G(P).

Lemma 4.1 ([22, Section 6.4]). Assume that
∫
Rd
ϕ(x)dx ∈ (0,∞). Then there is a critical

parameter λc ∈ (0,∞) such that when λ ∈ (0, λc), all the connected components of the
random connection model are finite a.s., whereas when λ > λc the random graph has a
unique infinite connected component.

Theorem 4.2. Assume that the conditions (C1)-(C2) hold. Then there exists λ? ∈ (λc,∞),
such that for any fixed λ > λ?, as the sequence of cubes W ’s tends to Rd,

|C(W )| − E[|C(W )|]√
|W |

d→ N (0, σ2),

where σ2 = σ2(λ) > 0.

Proof. Let us begin with an expression for the add-one cost. Let W be a cube containing
the origin o. Recall that C(W ) denotes the largest connected component in G(P)|W .
Note that G(P ∪ {o})|W is obtained from G(P)|W by adding one vertex o and edges from
o. To identify the largest component in G(P ∪ {o})|W which is denoted by C′(W ), there
are three cases to consider.

Case 1: the vertex o is connected to C(W ). Then it is clear that the largest component
in C′(W ) is the connected component containing C(W ). Thus, the add-one cost is written
as

∆(W ) := Dof(W ) = |C′(W )| − |C(W )| = 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )}.
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Here x
W↔ o means there is a path γ = (xi)

l
i=0 ⊂ P|W starting from x = x0, ending at

xl = o and xi ∼ xi+1 for all i = 0, . . . , l − 1. For simplicity, we write x↔ o in case x
Rd↔ o.

Case 2: the vertex o is not connected to C(W ) and the new component containing o
becomes the largest one. In this case,

∆(W ) = 1 + #{x ∈ P|W : x
W↔ o} − |C(W )|

= 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )} − |C(W )|.

Case 3: the vertex o is not connected to C(W ) and the new component containing o
has size smaller than C(W ). When it happens, then C′(W ) = C(W ), and hence ∆(W ) = 0.

To apply Theorem 2.15, we will show the weak stabilization and a moment condition
with p = 3,

sup
o∈W :cube

E[∆(W )3] <∞. (4.2)

Define

∆ := I(o ∼ C(Rd))
(

1 + #{x ∈ P : x↔ o, x 6∈ C(Rd)}
)
, (4.3)

where C(Rd) is the unique infinite cluster in G(P), and o ∼ C(Rd) is the event that o is
connected to C(Rd). For the weak stabilization, we will prove in Subsection 4.2.1 that as
a sequence of cubes W ’s tends to Rd,

∆(W )
P→ ∆. (4.4)

The idea is that, with high probability, C(W ) belongs to C(Rd), and Case 2 does not
happen. For the moment condition, by using an estimate that

0 ≤ ∆(W ) ≤ 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )},

showing the moment condition reduces to a problem of estimating the probability

P(x
W↔ o, x 6∈ C(W )).

We will show it in the next sub-section.
Finally, note that when λ > λc, we have P(∆ 6= 0) = P(o ∼ C(Rd)) > 0. Hence by

Theorem 2.15, the limiting variance σ2 > 0, which completes the proof of Theorem 4.2.

Remark 4.3. We guess that Theorem 4.2 holds for all λ > λc. To reduce the condition
that λ > λ? to λ > λc, it appears to us that we need some renormalization of Russo–
Seymour–Welsh type, as done in [23, Chapter 10] for the random geometric graph.
However, this task for general random connection models is more complicated and
highly nontrivial, so we leave it for future research. In fact, key tools in the proof of the
weak stabilization (4.4) and the moment condition (4.2) are the renormalization steps
to estimate the decay of the probability that there exists a long path not intersecting
the largest cluster; see Proposition 4.5 and Lemma 4.9. In this estimate, we need λ

to be large enough for an initial ingredient of the renormalization procedure, see in
particular Lemma 4.4 and the condition (4.42). A precise formula for λ? can be given as
λ? = max{λ0, λ1} with λ0 and λ1 as in Lemma 4.4 and Proposition 4.5. We do not try to
figure out an exact bound for λ?, since it costs many computations and the bound would
be far from the critical value λc.

In the next subsection, renormalization estimates and some preparations are proved.
The proofs of the weak stabilization and the moment condition are then given in Subsec-
tion 4.2.
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4.1 Renormalization and preliminaries

For each δ > 0, we tessellate the whole space Rd to cubes of size δ and denote the
collection of cubes by Γ. Let Gδ be the random graph obtained from G(P) by deleting
the edges between vertices in non-adjacent cubes (that is, keeping only edges between
vertices in the same cube or in adjacent cubes). For each cube B ∈ Γ, when B ∩ P 6= ∅,
we choose an arbitrary point in B ∩P 6= ∅ (in some deterministic way), say xB, to be the
representation of B. Let Per(δ) be the induced subgraph of Gδ restricted on the vertex
set V = {xB : B ∈ Γ, B ∩ P 6= ∅}. Then for each cube Λ, we define

Cper
δ (Λ) = the largest cluster of Per(δ)|Λ,

and
Cδ(Λ) = the connected component of Gδ|Λ containing Cper

δ (Λ).

For all t ≥ 2s > 0, define

βδ(t) = P(Cδ(Bo(t)) 6⊂ Cδ(Rd)), (4.5)

νδ(s, t) = sup
y:|y|∞≤t−s

P(Cδ(By(s)) 6⊂ Cδ(Bo(t))). (4.6)

Here |x|∞ = max1≤i≤d |xi| denotes the infinity norm of x = (x1, . . . , xd) ∈ Rd, and
Bx(t) = {y ∈ Rd : |y − x|∞ ≤ t} denotes the closed ball of radius t centered at x with
respect to the infinity norm. Notice that we have used Br(x) to denote the closed ball
of radius r centered at x with respect to the Euclidean norm. In this section, for the
simplicity of notation we denote the closed ball under the infinity norm by Bx(r).

We define a function

q(δ) = inf{φ(s) : 0 ≤ s ≤
√
d+ 3δ}, (4.7)

with φ the function in (C2).

Lemma 4.4. Assume that the conditions (C1) and (C2) hold. Then there exist positive
constants c0, δ0, λ0 satisfying q(δ0) ≥ 1/2 with q(·) as in (4.7) and the following assertions.

(i) Suppose that λ ≥ λ0. Then for all s, t sufficiently large,

(ia) if Bx(s) ⊂ By(t) then

P(Cδ0(Bx(s)) 6⊂ Cδ0(By(t)) ≤ exp(−c0s);

(ib) if t
2 ≥ s ≥

√
t then

νδ0(s, t) ≤ exp(−c0s);
(ic) we have

βδ0(t) + P(|Cδ0(Bo(t))| ≤ c0td) ≤ exp(−c0t).

(ii) For any Λ = [0, a]d,

P
(
Cδ0(Λ) 6= P|Λ

)
≤
(
a

δ0
+ 2

)2d (
(λδd0)2 + 2

)
exp(−λδd0/4).

We postpone the proof of Lemma 4.4 to Appendix B. In this proof, we will see that
we can take δ0 = arg min{g(δ) : δ ≤ 1, q(δ) ≥ 1/2} and λ0 = g(δ0) with g(·) defined as in
(B.2). Notice also that by (C2), q(δ)→ 1 as δ → 0, and so δ0 ∈ (0,∞).

We define for u ∈ Rd, and α, t > 0,

A(u, α, t) = {∃x, y ∈ P : |x− u|∞ ≤ 2t, x ∼ y, |x− y|∞ ≥ αt}. (4.8)
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Note that the probability of A(u, α, t) does not depend on the position of u, so we can
define

κ(α, t) = P(A(u, α, t)). (4.9)

It follows from the condition (C2) that

κ(α, t) ≤ O(1)×
∫

[−2t,2t]d

dx

∫
y:|y−x|∞≥αt

dy

|x− y|5d+ε0
≤ O(t−(3d+ε0)), (4.10)

with ε0 as in that condition. Here O is the big O notation with a constant that does not
depend on t.

From now on, we fix δ = δ0 with δ0 as in Lemma 4.4 and omit δ in the notation of ν
and β. Define for J ⊂ [d], with [d] = {1, . . . , d}, x ∈ Rd, t > s > 0,

AθJ (x, s, t) =
{
∃ γ = (xi)

l
i=0 ⊂ P : xi ∼ xi+1, xi ∈ BJx (t) \ Cδ(BJx (t)),

(i = 0, . . . , l − 1), x0 ∈ BJx (s), xl ∈ BJx (2t) \BJx (t)
}
, (4.11)

where
BJx (r) = x+

∏
j∈J

[−r, r]×
∏

j∈[d]\J

[0, 2r]. (4.12)

Here we also omit δ in the notation. We refer to Figure 3 for an illustration of the sets
BJ and events AθJ . Notice that by the translation invariance and the rotation invariance,
P(AθJ (x, s, t))=P(AθJ′ (o, s, t)) for all x ∈ Rd, and all J, J ′ with |J | = |J ′|. Thus, we can
denote

θj(
1
16 , t) = P(AθJ (x, t16 , t)),

for any J with |J | = j ≤ d and x ∈ Rd. Define also

θ( 1
16 , t) = max

0≤j≤d
θj(

1
16 , t).

Proposition 4.5. Suppose that the conditions (C1) and (C2) hold. Then there exists a
positive constant C1 = C1(ε0, C0, d), such that when λ ≥ λ1 := C1/δ

d+1, we have

θ( 1
16 , t) ≤ C1t

−(3d+ε0),

with ε0, C0 as in (C2).

The proof of Proposition 4.5 is given in Sub-section 4.3.

Remark 4.6. It would be more natural if we can replace Cδ(BJx (t)) by the largest cluster
C(BJx (t)) in the definition of AθJ (x, s, t) in (4.11). However, the proof of Proposition 4.5
requires some prior estimates as in Lemma 4.4, which are currently not available. More
precisely, Proposition 4.5 still holds if we substitute the family of connected components
{Cδ(Bx(t))}t≥1 by any other family {C′(Bx(t))}t≥1 satisfying

β′(t) = P(C′(Bo(t)) 6⊂ C′(Rd)) ≤ exp(−c(log t)2),

ν′(s, t) = sup
y:|y|∞≤t−s

P(C′(By(s)) 6⊂ C′(Bo(t))) ≤ exp(−c(log s)2),

with c a positive constant, for all t, s large real numbers such that t
2 ≥ s ≥

√
t, and

satisfying the inequality (4.42) (which is a consequence of Lemma 4.4 (ii) when con-
sidering {Cδ(Bo(t))}t≥1). We could not prove directly these properties for the family of
largest clusters {C(Bx(t))}t≥1. Instead, we show in Lemma 4.4 that the properties hold
for {Cδ(Bx(t))}t≥1 by using the comparison with percolation.
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Figure 3: Illustration of events AθJ

Corollary 4.7. Suppose that the conditions (C1) and (C2) hold and λ > λ1 with λ1 as in
Proposition 4.5. Then there exist C, ε1 > 0, such that

P
(
∃ C a connected component of G(P)|Bo(t) : C ∩ Cδ(Bo(t)) = ∅, |C| ≥ td(1−ε1)

)
≤ Ct−(3d+ε1), (4.13)

and

P
(
Cδ(Bo(t)) = C(Bo(t)) ⊂ C(Rd)

)
≥ 1− Ct−(3d+ε1). (4.14)

Proof of Corollary 4.7. Let ε be a small positive constant. We first observe that

P
(
∃x ∈ P ∩Bo(t) : |Bx(t1−2ε) ∩ P| ≥ td(1−ε)

)
≤ E

( ∑
x∈P∩Bo(t)

I
(
|Bx(t1−2ε) ∩ P| ≥ td(1−ε)))

= λd
∫
Bo(t)

P(|Bx(t1−2ε) ∩ P| ≥ td(1−ε))dx

= (2tλ)dP
(

Poi
(
(2λt1−2ε)d

)
≥ td(1−ε)

)
≤ exp

(
− ctd(1−2ε)

)
, (4.15)
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for some c > 0. Moreover, for any connected set C, if d∞(C) = maxx,y∈C |x− y|∞ ≤ t1−2ε

then C ⊂ Bz(t1−2ε) for any z ∈ C. Thus

P
(
∃ C a connected component of G(P)|Bo(t) : |C| ≥ td(1−ε1), d∞(C) ≤ t1−2ε

)
≤ exp(−ctd(1−2ε)). (4.16)

Now suppose that C ⊂ Bo(t) is a connected set satisfying d∞(C) > t1−2ε and C ∩
Cδ(Bo(t)) = ∅. Then there exists γ = (xi)

l
i=0 ⊂ Bo(t) \ Cδ(Bo(t)) such that xi ∼ xi+1

for all i = 0, . . . , l − 1 and |x0 − xl|∞ > t1−2ε.
We divide the cube Bo(t) into cubes of side length t1−2ε/16, and call the center of these

cubes by (yi)
L
i=1 with L � t2dε. Then there exists an index i0 such that x0 ∈ Byi0 (t1−2ε/16)

and thus if Cδ(Byi(t1−2ε)) ⊂ Cδ(Bo(t)) for all i = 1, . . . , L, then γ = (xi)
l
i=0 is a realization

of Aθ[d](yi0 , t
1−2ε

16 , t1−2ε). In the other words,

{∃ C a connected component of G(P)|Bo(t) : C ∩ Cδ(Bo(t)) = ∅, d∞(C) > t1−2ε} ∩ E1 ⊂ E2,

where

E1 = ∩Li=1{Cδ(Byi(t1−2ε)) ⊂ Cδ(Bo(t))}, E2 = ∪Li=1Aθ[d](yi, t
1−2ε

16 , t1−2ε).

Thus

P
(
∃ C a connected component of G(P)|Bo(t) : C ∩ Cδ(Bo(t)) = ∅, d∞(C) > t1−2ε

)
≤ P(E2) + P(Ec1) ≤ L

(
ν(t1−2ε, t) + θd(

1
16 , t

1−2ε)
)

≤ Ct−(3d+ε0)(1−2ε)+2dε ≤ Ct−(3d+ε0/2),

for ε small enough, by using Lemma 4.4 and Proposition 4.5. Combining this estimate
with (4.16) we obtain (4.13).

We turn to prove (4.14). By (4.13), with probability 1−O(t−3d+ε1), all the connected
components in Bo(t) that are not intersected with Cδ(B0(t)) have size smaller than
td(1−ε1). In addition, by Lemma 4.4(ic), |Cδ(Bo(t))| ≥ ctd and Cδ(Bo(t)) ⊂ Cδ(Rd) with
probability 1− exp(−ct), for some c > 0. Suppose that the two above events occur. Then
Cδ(B0(t)) is the largest component in Bo(t) and thus Cδ(B0(t)) = C(B0(t)). Hence,

P
(
Cδ(B0(t)) = C(Bo(t)) ⊂ Cδ(Rd)

)
= 1−O(t−3d+ε1). (4.17)

Using Lemma 4.4 (ic) again,

P(|Cδ(Rd)| =∞) ≥ lim inf
t→∞

P(Cδ(Bo(t)) ⊂ Cδ(Rd), |Cδ(Bo(t))| ≥ ctd) = 1.

Therefore, Cδ(Rd) is an infinite component of G(P). Moreover, by Lemma 4.1 C(Rd) is
the unique infinite component of G(P). Therefore, Cδ(Rd) ⊂ C(Rd). This together with
(4.17) yields (4.14).

4.2 Weak stabilization and moment condition

4.2.1 Proof of the weak stabilization (4.4)

Let {Wn} be an increasing sequence of cubes tending to Rd. Let A be the event that the
vertex o is connected to the infinite cluster C(Rd). Recall the expression of ∆n = ∆(Wn)

in three different cases in the proof of Theorem 4.2. Recall also the definition of the limit
add-one cost

∆ = I(A)
(

1 + #{x ∈ P : x↔ o, x 6∈ C(Rd)}
)
.
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Define
∆′n = I(A)

(
1 + #{x ∈ P|Wn

: x
Wn↔ o, x 6∈ C(Rd)}

)
.

It is clear that with probability one, ∆′n → ∆, and thus, ∆′n
P→ ∆ as n→∞. Therefore,

for the weak stabilization, it suffices to show that

∆n −∆′n
P→ 0 as n→∞. (4.18)

Denote by An the event that

An = {C(Wn) ⊂ C(Rd)}.

On the event A, denote by x1, . . . , xk the points in the infinite cluster C(Rd) directly
connected to o. Let Bn be the event that

Bn = {ω ∈ A : xi ∈ C(Wn), i = 1, . . . , k} ⊂ An.

Then we claim that
P(Bn)→ P(A) as n→∞. (4.19)

Indeed, for m > n, note that

A ∩An ∩ {C(Wn) ⊂ C(Wm)} ∩ {xi
Wm↔ C(Wn), i = 1, . . . , k} ⊂ Bm,

which implies

P(Bm) ≥ P(A)− P(Acn)− P(C(Wn) 6⊂ C(Wm))

− P
(
A ∩An ∩

{
∃1 ≤ i ≤ k : xi

Wm

6↔ C(Wn)
})
. (4.20)

If A ∩An occurs then both {x1, . . . , xk} and C(Wn) are subsets of C(Rd) and thus the two

sets are connected, i.e. {x1, . . . , xk}
C(Rd)↔ C(Wn). Moreover, Wm tends to Rd as m→∞,

and so for any fixed n,

lim sup
m→∞

P
(
A ∩An ∩

{
∃1 ≤ i ≤ k : xi

Wm

6↔ C(Wn)
})

= 0. (4.21)

Furthermore, using the equation (4.14) and Lemma 4.4(ia),

P(C(Wn) 6⊂ C(Wm))

≤ P(C(Wn) 6= Cδ(Wn)) + P(C(Wm) 6= Cδ(Wm)) + P(Cδ(Wn) 6⊂ Cδ(Wm))

= O(s−(3d+ε1)
n ), (4.22)

where sn is the side length of Wn and ε1 is as in (4.14). By (4.14) again,

P(Acn) = O(s−(3d+ε1)
n ). (4.23)

Combining (4.20)–(4.23) yields that for any fixed n,

P(A) ≥ lim sup
m→∞

P(Bm) ≥ lim inf
m→∞

P(Bm) ≥ P(A)−O(s−(3d+ε1)
n ).

Now letting n tends to infinity, we get the claim (4.19).
It follows from the definition of the event Bn that on Bn,

∆n = 1 + #{x ∈ P|Wn
: x

Wn↔ o, x 6∈ C(Wn)}
= 1 + #{x ∈ PWn

: x↔ o, x 6∈ C(Rd)} = ∆′n.
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Now let us write

∆n −∆′n = ∆nI(Bn)−∆′n + ∆n(I(A)− I(Bn)) + ∆nI(A
c)

= ∆′n(I(Bn)− I(A)) + ∆n(I(A)− I(Bn)) + ∆nI(A
c).

The first and the second terms converge in probability to zero by the claim (4.19). It
remains to show that the third term converges to zero in probability. But it is an easy
consequence of the fact that on the event Ac, the finite component containing the vertex
o is of course smaller than the largest component when n is large enough. And thus,
when n is large enough, ∆n = 0 (Case 3 in the expression of ∆n). The proof of the weak
stabilization is complete.

4.2.2 Proof of the moment estimate (4.2)

Let W 3 o be a cube. Recall the following upper bound for the add-one cost

0 ≤ ∆(W ) ≤ 1 + #{x ∈ P|W : x
W↔ o, x 6∈ C(W )}

= 1 +
∑

x∈P|W

I(x
W↔ o, x 6∈ C(W )).

Thus

∆(W )3 ≤ 4 + 4

( ∑
x∈P|W

I(x
W↔ o, x 6∈ C(W ))

)3

= 4 + 24
∑

{x,y,z}⊂P|W

I(x
W↔ o, y

W↔ o, z
W↔ o, x, y, z 6∈ C(W )) (4.24)

+ 24
∑

{x,y}⊂P|W

I(x
W↔ o, y

W↔ o, x, y 6∈ C(W )) + 4
∑

x∈P|W

I(x
W↔ o, x 6∈ C(W )).

Here the first and the second sums are taken over subsets of three elements, and two
elements of P|W , respectively.

For x ∈ Rd and a finite subset X ⊂ Rd with o 6∈ X , let G(X ) be a random graph
generated by connecting any two points (y, z) of X with probability ϕ(y − z), and G(X ∪
{x}), when x 6∈ X , be the random graph obtained from G(X ) by adding the vertex x and
new edges connected to x (independently with probability ϕ(x − y), y ∈ X ). Similarly,
let G(X ∪ {x, o}) be the random graph obtained from G(X ∪ {x}) by adding the vertex o
and new edges from o. Denote by C(G) the largest connected component of a graph G.
Define ξ(x;X ) to be the probability that x and o are in the random graph G(X ∪ {x, o})
and x does not belong to the largest component of G(X ∪ {x}),

ξ(x;X ) = P2(x↔ o, x 6∈ C(G(X ∪ {x}))).

Here we may consider P = P1 ⊗ P2, where P1 and P2 are the probability measures for
the Poisson process and for connecting edges, respectively. With those notations, by the
Mecke formula, the expectation of the last sum in the estimate (4.24) can be written as

E

[ ∑
x∈P|W

I(x
W↔ o, x 6∈ C(W ))

]
= E1

[ ∑
x∈P|W

ξ(x;P|W )

]

= λ

∫
W

E1[ξ(x;P|W )]dx. (4.25)

Note that E1[ξ(x;P|W )] is nothing but the probability of the event that x is connected
to o in G(P|W ∪{x, o}) and x does not belong to the largest component of C(G(P|W ∪{x})).
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The latter condition implies that C(G(P|W ∪{x})) = C(G(P|W )) = C(W ), because G(P|W )

is a subgraph of G(P|W ∪ {x}). Therefore, we deduce that

E1[ξ(x;P|W )] ≤ P(Ax), (4.26)

where

Ax = {∃(xi)li=0 ∈ P|W ∪ {x, o} \ C(W ) : xi ∼ xi+1, i = 0, . . . , l − 1, (x0 = o, xl = x)}.

Lemma 4.8. Assume that λ > λ1 with λ1 as in Proposition 4.5. Then there exist positive
constants C2, ε2, such that

P(Ax) ≤ C2|x|−(3d+ε2)
∞ . (4.27)

We postpone the proof of Lemma 4.8 for a moment and finish the proof of (4.2) first.

Proof of the moment condition (4.2). The expectation of the third sum in (4.24) is uni-
formly bounded by combining equations (4.25)–(4.27). Let us now show the uniform
boundedness of the expectation of the first sum.

For x, y, z ∈W , and a finite set X ⊂W , we build random graphs in the same way as
above in the order that

G(X )→ G(X ∪ {x})→ G(X ∪ {x, y})→ G(X ∪ {x, y, z})→ G(X ∪ {x, y, z, o}).

Define

ξ3(x, y, z;X ) = P2(x↔ o, y ↔ o, z ↔ o, and x, y, z 6∈ C(G(X ∪ {x, y, z}))).

Then by the multivariate Mecke equation (Theorem 4.4 in [18]), the expectation of the
first sum is written as

E

[ ∑
{x,y,z}⊂P|W

I(x
W↔ o, y

W↔ o, z
W↔ o, x, y, z 6∈ C(W ))

]

=
λ3

6

∫
(W )3

E1[ξ3(x, y, z;P|W )] dxdydz.

Note that E1[ξ3(x, y, z;P|W )] is the probability of the event Ax,y,z that x, y and z are
connected to o in the random graph G(P|W ∪ {x, y, z, o}) and x, y and z do not belong to
the largest component of G(P|W ∪ {x, y, z}). The latter condition implies that

C(G(P|W ∪ {x, y, z})) = C(G(P|W ∪ {x, y})) = C(G(P|W ∪ {x})) = C(W ).

Note that Ax,y,z is not included in Ax ∩ Ay ∩ Az. However, it holds that

Ax,y,z ⊂ A′x ∩ A′y ∩ A′z,

where A′x,A′y and A′z are events obtained by replacing the condition

∃(xi)li=0 ∈ P|W ∪ {x, o}

in the definition of Ax,Ay and Az, respectively, to the condition that

∃(xi)li=0 ∈ P|W ∪ {x, y, z, o}.

We can show that the probabilities of A′x,A′y and A′z also satisfy analogous estimates as
those for Ax,Ay and Az in Lemma 4.8, that is, there exist positive constants C3, ε3, such
that

P(A′u) ≤ C3|u|−(3d+ε3)
∞ , u ∈ {x, y, z}. (4.28)
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Together with the following inequality

P(A′x ∩ A′y ∩ A′z) ≤ min{P(A′x),P(A′y),P(A′z)} ≤ P(A′x)1/3P(A′y)1/3P(A′y)1/3,

we deduce that

E1[ξ3(x, y, z;P|W )] = P(Ax,y,z) ≤ max{1, C|x|−d+ε|y|−d+ε|z|−d+ε} =: M(x, y, z),

for some constants C and ε. Note that the function M is integrable over (Rd)3. Therefore,∫
(W )3

E1[ξ3(x, y, z;P|W )] dxdydz ≤
∫

(W )3
M(x, y, z) dxdydz

≤
∫

(Rd)3
M(x, y, z) dxdydz <∞,

implying the uniform boundedness of the expectation of the first sum follows. Similar
argument yields the uniform boundedness of the expectation of the second sum in the
estimate (4.24). The moment condition (4.2) is proved.

Proof of Lemma 4.8. Let W be a cube containing the vertex o. Let u = (u1, . . . , ud) be
the point such that W has the expression W =

∏d
j=1[uj , uj + h] with h the size of W .

Since o ∈W , we have uj ≤ 0 for all j = 1, . . . , d. Without loss the generality, we assume

that o is in the lowest corner of W , that is, o ∈
∏d
j=1[uj , uj + h

2 ].

For each J ⊂ [d], we denote by uJ the vertex such that uJj = 0 for j ∈ J and uJj = uj
for j ∈ [d] \ J . We claim that there exist positive constants c and {cJ , J ⊂ [d]}, such that
for all 0 < t ≤ h, one has BJuJ (ct) ⊂W for all J ⊂ [d], where

BJx (r) = x+
∏
j∈J

[−r, r]×
∏

j∈[d]\J

[0, 2r],

and {
∃ (xi)

l
i=0 ⊂W : x0 = o, |xl|∞ ≥ t, xi ∼ xi−1 ∀ i = 1, . . . , l

}
∩ A(u, c, t)c

⊂
⋃
J⊂[d]

A′J(uJ , cJ t), (4.29)

where A(u, c, t) is defined as in (4.8) (including two more points {x, o}) and

A′J(x, s) =
{
∃ γ = (yi)

l
i=0 ⊂ P : yi ∈ BJx (s), yi ∼ yi+1 ∀ i = 0, . . . , l − 1,

y0 ∈ BJx ( s16 ), yl ∈ BJx (2s) \BJx (s)
}
,

with BJx (s) defined as in (4.12).
Assuming this claim, we return to estimate P(Ax). By Lemma 4.4(ia), Corollary 4.7

and the estimate (4.10),

P(Ec) ≤ C|x|−(3d+ε), (4.30)

for some C, ε > 0, where

E :=
{
Cδ(BJuJ (cJ |x|∞)) ⊂ Cδ(W ) ⊂ C(W )∀ J ⊂ [d]

}
∩ A(u, c, |x|∞)c.

Suppose that Ax ∩ E happens. Then there exists γ = (xi)
l
i=0 ⊂ W \ Cδ(W ) such that

x0 = o, xl = x, xi ∼ xi−1 for i = 1, . . . , l. Hence, using (4.29) we obtain that on E , there
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exists J ⊂ [d], such that the event AθJ (uJ , cJ |x|∞16 , cJ |x|∞) happens. Therefore, using
Proposition 4.5 we have

P(Ax ∩ E) ≤ 2d max
0≤j≤d

θj(
1
16 , c|x|∞) ≤ C|x|−(3d+ε)

∞ ,

for some C, ε > 0. Combining this with (4.30), we obtain the desired estimate (4.27).
Now we show the relation (4.29) for d = 2, the proof for d ≥ 3 is similar and hence is

omitted. Here, we have o ∈ u + [0, h2 ]2 and 0 < t ≤ h. We take c = 2−9. There are four
cases corresponding to the relative position of o and u as follows.

First, if o − u ∈ [0, t24 ]2, we consider J = ∅ and c∅ = 2−1, u∅ = u. Define m =

inf{i : xi /∈ B∅
u∅(c∅t)} (recall that B∅

u∅(s) = u∅ + [0, 2s]2). We have xm ∈ B∅
u∅(2c∅t), as

xm−1 ∈ B∅
u∅(c∅t) and |xm − xm−1|∞ ≤ ct by A(u, c, t)c. Then since

o ∈ B∅
u∅( c∅t24 ) ⊂ B∅

u∅(c∅t) ⊂W ∩ [−t, t]2,

the path (xi)
m
i=0 is a realization of A′∅(u∅, c∅t).

Second, if o− u ∈ [ t24 ,
h
2 ]× [0, t28 ], then consider J = {1}, u{1} = (0, u2), c{1} = 2−4 and

observe that
o ∈ B{1}

u{1}
(
c{1}t

24 ) ⊂ B{1}
u{1}

(c{1}t) ⊂W ∩ [−t, t]2.

Then by the same argument as in the first case, we have A′{1}(u
{1}, c{1}t) happens.

Third, if o − u ∈ [0, t28 ] × [ t24 ,
h
2 ], using the same argument as above, we have

A′{2}(u
{2}, c{2}t) occurs with c{2} = 2−4.

Finally, if the above three cases do not hold, then u1, u2 ≤ − t
28 and hence

o ∈ B[2]

u[2](
c[2]t

24 ) ⊂ B[2]

u[2](c[2]t) ⊂W ∩ [−t, t]2,

with u[2] = o, c[2] = 2−8. We then can conclude that A′[2](u
[2], c[2]t) happens. The proof of

(4.29) is completed.

4.3 Proof of Proposition 4.5

For any t ≥ 2s > 0, α ∈ (0, 1/4), and x ∈ Rd, recall β(t) and ν(s, t) and κ(α, t) from
Sub-section 4.1.

The key to the proof of Proposition 4.5 is the following recursive relation of θ(·, t),
which is inspired by the ideas in the study of Boolean percolation in [3, Lemma 4.2] and
[14, Proposition 3.1].

Lemma 4.9 (Renormalization estimate). There exists a positive constant K = K(d) ≥ 1,
such that

θ( 1
16 , t) ≤ κ( 1

210 , t) +Kν( t
27 , t) +K

(
θ( 1

16 ,
t

23 ) + θ( 1
16 ,

t
27 )
)2
.

Proof. We have to prove that for all 0 ≤ j ≤ d,

θj(
1
16 , t) ≤ κ( 1

210 , t) +Kν( t
27 , t) +K

(
θ( 1

16 ,
t

23 ) + θ( 1
16 ,

t
27 )
)2
. (4.31)

For simplicity, we prove here the case j = 0 and d = 2 because the proof of general cases
is essential the same.

We recall
θ0( 1

16 , t) = P(Aθ∅(o, t16 , t)), (4.32)

where AθJ (x, s, t) and BJx (r) are defined as in (4.11) and (4.12).
We call A = (2t, 0), B = (2t, 2t), C = (0, 2t) and A1 = ( t2 , 0), B1 = ( t2 ,

t
2 ), C1 = (0, t2 )

and A2 = ( 3t
2 , 0), B2 = (3t

2 ,
3t
2 ), C2 = (0, 3t

2 ). Then we cover the segments A1B1 ∪ B1C1

by squares S1,a, S1,c, S1,1, . . . , S1,K1
, where S1,a, S1,c has the length size t/26 and are
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Figure 4: Illustration of the cover of A1B1 ∪B1C1

adjacent to OA,OC respectively, and S1,1, . . . , S1,K1
have the length size t/210. Similarly,

we cover the segments A2B2 ∪B2C2 by squares S2,a, S2,c, S2,1, . . . , S2,K2
. See Figure 4

for an illustration of the cover. Notice that for i = 1, 2,

Si,a = B
{1}
Ai

( t
27 ), Si,c = B

{2}
Ci

( t
27 ), S′i,a, S

′
i,c ⊂ S, (4.33)

where
S = [0, 2t]2, S′i,a := B

{1}
Ai

( t
23 ), S′i,c := B

{1}
Ci

( t
23 ). (4.34)

Similarly, if we call yi,j with i = 1, 2 and 1 ≤ j ≤ Ki, the center of the squares Si,j , then

Si,j := Byi,j (
t

211 ), S′i,j := Byi,j (
t

27 ) ⊂ S. (4.35)

Define

Aν(t) = {Cδ(S′i,a), Cδ(S′i,c), Cδ(S′i,j) ⊂ Cδ(S), ∀ i = 1, 2; 1 ≤ j ≤ Ki}.

We then claim that

Aθ∅(o, t16 , t) ∩ A(o, 2−10, t)c ∩ Aν(t) ⊂ B1(t) ∩ B2(t), (4.36)

where A(o, 2−10, t) is defined as (4.8), and for i = 1, 2,

Bi(t) = Aθ{2}(Ai, t27 ,
t

23 ) ∪ Aθ{1}(Ci, t27 ,
t

23 )

Ki⋃
j=1

Aθ[2](yi,j , t
211 ,

t
27 ). (4.37)

Assuming this claim for a moment, we prove the lemma. Notice that B1(t) depends only
on the configuration of the graph inside [0, 3t

4 ]2, whereas B2(t) is measurable to the the
configuration of the graph in [0, 7t

4 ]2 \ [0, 5t
4 ]2. Hence, the two events are independent,

and thus (4.36) gives that

θ0( 1
16 , t) = P(Aθ[2](o, t16 , t)) ≤ P(A(o, 2−10, t)) + P(Acν(t)) + P(B1(t))P(B2(t))

≤ κ( 1
210 , t) + (K1 +K2 + 4)ν( t

27 , t) + P(B1(t))P(B2(t)).
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Moreover, by the union bound, for i = 1, 2,

P(Bi(t)) ≤ (2θ1( 1
16 ,

t
23 ) +Kiθ2( 1

16 ,
t

27 )). (4.38)

Combining the last two estimates, we obtain (4.31) with K = (K1 + 2)(K2 + 2).
Now it remains to show (4.36). Suppose that Aθ∅(o, 1

16 , t) ∩ A(t) ∩ Aν(t) happens.
Then there exists a path γ = (xi)

l
i=0 such that x0 ∈ [0, t23 ]2 and xi ∈ [0, 2t]2 \ Cδ([0, 2t]2)

for i = 0, . . . , l − 1 and xl /∈ [0, 2t]2 with positive coordinates.
Since S1,a, S1,c, S1,j , j = 1, . . . ,K1 is a cover of A1B1 ∪ B1C1 and by the assumption

on A(o, 2−10, t)c, |xi − xi+1|∞ ≤ 2−10t for all i = 0, . . . , l − 1, there must be some vertices
of the path γ lying in these cubes. So we can define

l1 = min

{
i ∈ [1, l − 1] : xi ∈ S1,a ∪ S1,c ∪

K1⋃
j=1

S1,j

}
.

Suppose that xl1 ∈ S1,a. Define also

l′1 = min{i ≥ l1 : xi /∈ S′1,a}.

Then by the definition,

xl1 ∈ S1,a = B
{1}
A1

( t
27 ), xi ∈ S′1,a = B

{1}
A1

( t
23 ) ∀i = l1 + 1, . . . , l′1 − 1,

and since A(o, 2−10, t)c holds,

xl′1 ∈ B
{1}
A1

( t
23 + t

210 ) \B{1}A1
( t

23 ) ⊂ B{1}A1
( t

22 ) \B{1}A1
( t

23 ).

Moreover, we notice that by Aν(t),

xi /∈ Cδ(S′1,a) ∀i = l1, . . . , l
′
1 − 1.

Hence, (xi)
l′1
i=l1

is a realization for the event Aθ{2}(A1,
t

27 ,
t

23 ). The cases that xl1 ∈ S1,c

and xl1 ∈ S1,j for some j = 1, . . . ,K1 can be treated similarly, leading to the realizations
of events Aθ{1}(C1,

t
27 ,

t
23 ) and Aθ[2](y1,j ,

t
211 ,

t
27 ), respectively. In summary, the event B1

happens.
By the same argument, we can also prove that the event B2 happens and the proof of

(4.36) completes.

Lemma 4.10. Let (at)t≥0, (bt)t≥0 ⊂ R+, 0 < ε1 < ε2 < 1, and K ≥ 1, t0 ≥ ε2
1−ε2 satisfy for

all t ≥ t0

(i) at ≤ bt +K(aε1t + aε2t)
2,

(ii) 4K(bε1t + bε2t)
2 ≤ bt,

(iii) at ≤ 2bt, for all t0 ≤ t ≤ t0/ε1.

Then, at ≤ 2bt for all t ≥ t0.

Proof. By assumption (iii), we need to show at ≤ 2bt for all t ≥ t0/ε1. We prove by
induction in k that this claim holds for [t0/ε1 + k, t0/ε1 + k + 1]. Let t be in this interval.
Then

at ≤ bt +K(aε1t + aε2t)
2 ≤ bt +K(2bε1t + 2bε2t)

2 ≤ 2bt. (4.39)

Here, we used (i) and (ii) for the first and third inequalities respectively and for the second
one, we used the induction hypothesis with noting that for t ∈ [t0/ε1 + k, t0/ε1 + k + 1],
one has t0 < ε1t < ε2t < t0/ε1 + k.
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Proof of Proposition 4.5. Let K = K(d) be as in Lemma 4.9. Define

at = θ( 1
16 , t), b′t = κ( 1

210 , t) +Kν( t
27 , t), ε1 = 2−7, ε2 = 2−3.

Then by Lemma 4.9, for all t ≥ 0,

at ≤ b′t +K(aε1t + aε2t)
2.

Moreover, by (4.10) and Lemma 4.4 (ib),

b′t ≤ Ct−(3d+ε0),

for some C = C(C0, d) > 0 with ε0, C0 as in (C2). Hence,

at ≤ bt +K(aε1t + aε2t)
2, (4.40)

with bt = Ct−(3d+ε0). There exists t0 = t0(ε0, ε1, ε2,K,C) ≥ ε2/(1 − ε2), such that for all
t ≥ t0,

4K(bε1t + bε2t)
2 ≤ bt. (4.41)

By Lemma 4.4(ii),

at = θ( 1
16 , t) ≤ P

(
Cδ([−t, t]d) 6= P|[−t,t]d

)
≤

(
2t

δ
+ 2

)2d (
(λδd)2 + 2

)
exp(−λδd/4) =: a′t.

Thus there exists C ′ = C ′(t0, C, ε1) ∈ (0,∞), such that for all λ ≥ (C ′/δd+1)

at ≤ a′t ≤ 2bt, ∀ t0 ≤ t ≤ t0/ε1. (4.42)

It follows from (4.40), (4.41), (4.42) and Lemma 4.10 that for all t ≥ t0,

at ≤ 2bt ≤ 2Ct−(3d+ε0).

On the other hand, for all 0 ≤ t ≤ t0,

at ≤ 1 ≤ t3d+ε0
0 t−(3d+ε0).

Combining the last two estimates and taking C1 = max{C ′, 2C, t3d+ε0
0 }, we get the desired

result.

A Quenched CLT

Let us first recall the setting of the quenched CLT. The underlying probability space
is written as the product

(Ω,F ,P) = (Ω1,F1,P1)× (Ω2,F2,P2)

for which the first component of η̂ is defined on Ω1, and the second and the third ones
are defined on Ω2, that is,

η̂(ω) = {(x(ω1), t(ω2),M(ω2))}.

We will use Ei and Vari, (i = 1, 2) to denote the expectation and the variance with respect
to Pi. Let W2 be the second Wasserstein distance in the space of probability measures
on R having finite second moment

W2(µ, ν)2 = inf
γ∈Γ(µ,ν)

∫∫
R×R

|x− y|2dγ(x, y),
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where Γ(µ, ν) is the collection of all measures on R2 having µ and ν as marginal distribu-
tions. It is known that the convergence of probability measures under W2 is equivalent to
the convergence in distribution plus the convergence of the second moment. Moreover,
for two mean-zero random variables X and Y defined on the same probability space, it
follows directly from the definition of the distance that

W2(X,Y )2 ≤ E[(X − Y )2] = Var[X − Y ].

Assume that the functional f satisfies the conditions in Theorem 2.4. Let

Zn(ω1, ω2) =
f(T (η̂|Wn))− E2[f(T (η̂|Wn))]√

n
,

where Wn := [−n1/d/2, n1/d/2)d. Then for each fixed ω1 ∈ Ω1, Zn is a random variable on
Ω2 of mean zero. We assume in addition that the (2 + δ)th moment of Zn is finite for any
n > 0, that is, for some δ > 0,

E[|Zn|2+δ] <∞, for all n.

Then there exists σ2
q ≥ 0 such that for any ε > 0,

P1

(
ω1 : W2(Zn(ω1, ·),N (0, σ2

q )) ≥ ε
)
→ 0 as n→∞. (A.1)

In particular, w.h.p. (Zn(ω1, ·))n≥1 converges weakly to N (0, σ2
q ).

Let us prove the above statement. We will use the notations in the proof of Theo-
rem 2.4. Define Yn,L = Yn,L(ω1, ω2) as

Yn,L :=
1√
n

`n∑
i=1

(
f(T (η̂|Ci))− E2[f(T (η̂|Ci))]

)
=:

1√
n

`n∑
i=1

fi.

Then for fixed ω1, under P2, Yn,L is a sum of independent random variables with

Var2[Yn,L] =
1

n

`n∑
i=1

Var2[fi].

Note that the sequence {Var2[fi]}`ni=1 is i.i.d. under P1. Then the strong law of large
numbers implies that for almost surely ω1 ∈ Ω1, as n→∞,

Var2[Yn,L] =
`n
n

1

`n

`n∑
i=1

Var2[fi]→
σ′ 2L
L
, σ′ 2L := E1[Var2[fi]].

Similarly, by the finiteness of the (2 + δ)th moment, we obtain that for almost surely
ω1 ∈ Ω1, as n→∞,

1

n

`n∑
i=1

E2[|fi|2+δ]→ 1

L
E1[E2[|fi|2+δ]] = E[|fi|2+δ] <∞.

Then for almost surely ω1 ∈ Ω1 (those ω1 such that the above two equations hold), by
using Lyapunov’s central limit theorem (see [2, Theorem 27.3]), we obtain that

W2(Yn,L(ω1, ·),N (0, σ′ 2L /L))→ 0 as n→∞. (A.2)

Note that σ′ 2L may be zero.
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Observe that for any random variable X defined on Ω with finite second moment,

E1[Var2[X − E2[X]]] = E1[E2[X2]− E2[X]2] ≤ E[X2]− E[X]2 = Var[X]. (A.3)

This implies that σ′ 2L ≤ σ2
L, and thus the sequence {σ′ 2L /L} is bounded. Let σ2

q be a limit
of {σ′ 2L /L}, that is, for some subsequence {Lk} tending to infinity,

σ2
q = lim

k→∞

σ′ 2Lk
Lk

.

We are going to show that for this σ2
q , the quenched central limit theorem (A.1) holds.

(And thus σ2
q is unique as a consequence.) It follows from the observation (A.3) and the

estimate (2.10) that
lim
L→∞

lim sup
n→∞

E1 [Var2 [Zn − Yn,L]] = 0. (A.4)

This is a key estimate to show our result.
Next, by the triangle inequality, we see that

W2(Zn(ω1, ·),N (0, σ2
q )) ≤W2(Zn, Yn,L) +W2(Yn,L,N (0, σ′ 2L /L))

+W2(N (0, σ′ 2L /L),N (0, σ2
q )).

Here for simplicity, we have removed (ω1, ·) in formulae. Let ε > 0 be given. By the
definition of σ2

q , when k is large enough, for L = Lk,

W2(N (0, σ′ 2L /L),N (0, σ2
q )) <

ε

3
.

For those L, the above triangle inequality implies that

P1(W2(Zn,N (0, σ2
q )) ≥ ε)

≤ P1

(
W2(Zn, Yn,L) ≥ ε

3

)
+ P1

(
W2(Yn,L,N (0, σ′ 2L /L)) ≥ ε

3

)
.

Since as n→∞, the second term goes to zero by the almost sure convergence (A.2), it
follows that

lim sup
n→∞

P1(W2(Zn,N (0, σ2
q )) ≥ ε) ≤ lim sup

n→∞
P1

(
W2(Zn, Yn,L) ≥ ε

3

)
≤ lim sup

n→∞
P1

(
Var2[Zn − Yn,L] ≥ ε2

9

)
≤ lim sup

n→∞

9

ε2
E1[Var2[Zn − Yn,L]].

Here we have used the inequality W2(X,Y ) ≤ Var[X−Y ] for mean zero random variables
X and Y defined on the same probability in the second line and Markov’s inequality in
the last line. The desired result immediately follows from the estimate (A.4).

B Proof of Lemma 4.4

Proof. For the convenience, let us recall the construction of the connected component
Cδ(Λ). For each δ > 0, we tessellate the whole space Rd to cubes of size δ and call Γ the
collection of cubes. Let Gδ be the random graph obtained from G(P) by deleting the
edges between vertices in non-adjacent cubes. For each cube B ∈ Γ, when B ∩ P 6= ∅,
we take arbitrarily a point in B ∩P 6= ∅, say xB, to be the representation of B. Let Per(δ)

be the induced subgraph of Gδ restricted on the vertex set V = {xB : B ∈ Γ, B ∩P 6= ∅}.
Then for each cube Λ, we define

Cper
δ (Λ) = the largest cluster of Per(δ)|Λ,
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and
Cδ(Λ) = the connected component of Gδ|Λ containing Cper

δ (Λ).

If we consider each cube B ∈ Γ as a point in Zd and then we obtain a percolation.
More precisely, each cube B ∈ Γ is called open if B ∩ P 6= ∅ and thus

p = p(δ) := P(a cube is open) = 1− exp(−λδd). (B.1)

For any two adjacent open cubes B1 and B2, we draw an edge between them if there is
an edge between their representations. In fact, the probability that the two open cubes
are connected is

ϕ(xB1
− xB2

) ≥ q = q(δ) := inf
x1∈B1,x2∈B2

ϕ(x1 − x2) = inf
0≤s≤

√
d+3δ

φ(s).

Then, Per(δ) can be viewed as a bond percolation on Zd with the following rule. An edge
e = {a, b} is called open if both a and b are open and the edge between a and b is drawn.
So Per(δ) is indeed a locally-dependent percolation (since the statuses of e = {a, b} and
f = {c, d} are independent if {a, b} ∩ {c, d} = ∅) with parameters

pe = P(e is open) ≥ p2q,

for all the edges e. By [19], there exists p′ ∈ (0, 1), such that whence pe ≥ p′ for all edges
e, Per(δ) stochastically dominates the supercritical standard bond percolation on Zd.
Observe that by (B.1),

p2q ≥ p′ ⇔ λ ≥ g(δ) := − 1

δd
log

(
1− p′

q(δ)

)
. (B.2)

Hence, we choose

δ0 = arg min{g(δ) : δ ≤ 1, q(δ) ≥ 1/2}, λ0 = g(δ0).

Note that since p′ ∈ (0, 1) and q → 1 as δ → 0, we have δ0 > 0 and λ0 ∈ (0,∞). Then for
all λ ≥ λ0 and δ = δ0,

pe ≥ p2q ≥ p′, (B.3)

for all edges e, and thus Per(δ) stochastically dominates the supercritical bond percola-
tion. Thus for all t > 0

βδ(t) = P(Cδ(Bo(t)) 6⊂ Cδ(Rd)) = P(Cδ(Bo(t)) ∩ Cδ(Rd) = ∅)

≤ P(Cper
δ (Bo(t)) ∩ Cper

δ (Rd) = ∅) ≤ exp(−ct),

for some universal constant c > 0. Here for the first inequality, we used the fact that
Per(δ) is a subgraph of Gδ and for the last inequality we used stochastic domination
obtained above and standard estimates in Bernoulli percolation on Zd, see e.g. [9]. By
the same arguments, we can also prove the other estimates in (i).

We turn to prove (ii). Fix δ = δ0. Observe that Cδ(Λ) = P|Λ when for any pair
of adjacent small cubes, there exists an edge connecting them and all the subgraphs
constrained in cubes are connected. Hence,

P
(
Cδ(Λ) 6= P|Λ

)
≤ P(∃B ∈ Γ|Λ : G(P|B) is not connected) (B.4)

+ P(∃B,B′ ∈ Γ|Λ : B,B′ are adjacent and there is no edge between them),

where Γ|Λ is the set of cubes that intersect with Λ.
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Given two adjacent cubes B and B′, let X and X ′ denote the number of vertices
of P in B and B′ respectively. Then X and X ′ are i.i.d. random variables with the
Poisson distribution of mean λδd. Notice that each pair {x, y ∈ P|B}, or each pair
{z ∈ P|B , z′ ∈ P|′B} is connected with probability larger than q ∈ (0, 1]. Therefore,

P(G(P|B) is not connected | X) ≤ P(∃x, y ∈ P|B : d(x, y) > 2 | X)

≤ P(∃x, y ∈ P|B : ∀z ∈ P|B , x 6∼ z or y 6∼ z | X)

≤ X(X − 1)(1− q2)(X−2),

where d is the graph distance in G(P|B). Moreover,

P(there is no edge between B,B′ | X,X ′) ≤ (1− q)XX
′
.

Combining the above inequalities with (B.4), we obtain

P
(
Cδ(Λ) 6= P|Λ

)
≤ |Γ|Λ|E

[
X(X − 1)(1− q2)(X−2)

]
+ |Γ|Λ|2E

[
(1− q)XX

′
]
.

For Λ = [0, a]d, we have |Γ|Λ| ≤ (aδ + 2)d. Notice also that if Y, Y ′ ∼ Poi(µ) and c ∈ (0, 1)

then

E[Y (Y − 1)cY−2] = µ2 exp((c− 1)µ)

E[cY Y
′
] ≤ E[aY ] + P[Y ′ = 0] ≤ 2 exp((c− 1)µ).

Therefore,

P
(
Cδ(Λ) 6= P|Λ

)
≤

(a
δ

+ 2
)d

(λδd)2 exp(−q2λδd) + 2
(a
δ

+ 2
)2d

exp(−qλδd),

≤
(a
δ

+ 2
)2d (

(λδd)2 + 2
)

exp(−λδd/4),

sine X,X ′ ∼ Poi(λδd) and q = q(δ0) ≥ 1/2.
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