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Random walks on finite nilpotent groups driven by
long-jump measures*
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Abstract

We consider a variant of simple random walk on a finite group. At each step, we
choose an element, s, from a set of generators (“directions”) uniformly, and an integer,
j, from a power law distribution (“speed”) associated with the chosen direction, and
move from the current position, g, to gsj . We show that if the finite group is nilpotent,
the time it takes this walk to reach its uniform equilibrium is of the same order of
magnitude as the diameter of a suitable pseudo-metric on the group, which is attached
to the generators and speeds. Additionally, we give sharp bounds on the `2-distance
between the distribution of the position of the walker and the stationary distribution,
and compute the relevant diameter for some examples.
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1 Introduction

A probability measure µ on a finite group G with identity e induces a Markov kernel

K(x, y) = K(e, x−1y) = µ(x−1y), x, y ∈ G.

The associated iterated kernel Kn is then given by

Kn(x, y) = µ(n)(x−1y),

where µ(n) is the iterated convolution of µ with itself n times. In this paper, we consider
only probability measures µ that are symmetric, i.e. µ(g) = µ(g−1), irreducible and
aperiodic. Consequently, Kn(x, y) converges to π(y) as n goes to infinity, where π is the
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Long-jump random walks on finite groups

uniform distribution on G. A random walk on G driven by µ is a sequence of G-valued
random variables {Xn}n≥0 of the form

Xn = ξ0ξ1 · · · ξn,

where ξ0 is the initial, possibly random, position and (ξi)i≥1 is an i.i.d. sequence of
random variables with common distribution µ. When ξ0 is e, the distribution Xn is
Kn(e, ·). The mixing time of such a random walk is

tmix = min{n : ||Kn(e, ·)− π||TV ≤ 1/4}.

In a simple random walk with respect to a set S ⊆ G, at each time step, the walker
chooses s uniformly from S, and steps from her current location, g, to gs. In this
paper, we consider a variant of this walk, where the walker may “jump” further away
in the direction of s, not just take a single step. Specifically, in a finite group G, let
S = (s1, · · · , sk) be a k-tuple of elements that generate G. For each i, let µi be a
symmetric distribution supported on the cyclic subgroup 〈si〉 and set

µ(g) =
1

k

k∑
i=1

µi(g). (1.1)

One natural choice is to set µi to be the uniform measure on 〈si〉, for each i. In this
case, the probability given to si by µi varies drastically depending on the order of si. In
this paper, we consider a model that is more regular, which we call long-jump random
walk, and is inspired by classical stable processes, see [5, Ch. 6], and approximation
algorithms of convex bodies [7]. Before defining the µi’s that we will use for the rest
of the paper, we describe a more intuitive wrap-around model that is comparable. We
associate with each i in {1, · · · , k} a number αi ∈ (0, 2) and the probability distribution
qi(x) = cαi(1 + |x|)−(1+αi), x ∈ Z. After choosing i uniformly in {1, · · · , k}, j is chosen
from the probability distribution qi, and, in this time step, the walker jumps from the
current location g to gsji . Thus, for a fixed i, the smaller the αi the larger the probability
that a high power of si is chosen. We will actually work with the following variant.

Definition 1.1. Let G be a finite nilpotent group of nilpotency class `, S be a k-tuple of
elements that generate G and a = (α1, . . . , αk) ∈ (0, 2)k. A long-jump measure on G is

µS, a(g) =
1

k

k∑
i=1

∑
j∈Z/NiZ

1sji
(g)pi(j), (1.2)

where Ni is order of si in G and pi : Z/NiZ→ R is

pi(j) =
ci

(1 +
j)1+αi

, where 0 ≤ j < Ni, (1.3)

j = min(j,Ni − j), c−1
i =

∑
j∈Z/NiZ

1

(1 +
j)1+αi

.

In addition we will use

µS, a(g) =
1

k

k∑
i=1

µi(g), where µi(g) =
∑

j∈Z/NiZ

1sji
(g)pi(j). (1.4)

An (S, a)-long-jump random walk on G is a random walk driven by a long-jump measure
µS, a.

EJP 27 (2022), paper 26.
Page 2/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP745
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-jump random walks on finite groups

The relationship between this definition and wrap-around model is discussed in
Appendix A.

Fix a C0 > 0. When G is a finite nilpotent group of class ` < C0 and generated by a
symmetric set S of size less than C0, it is shown in [3] that the mixing time of the simple
random walk associated with the set S is of the same order as the square of the diameter
of G with respect to S. In this paper, we answer the following question:

Given the modification of long-jumps, what is the mixing time?

This a challenging question even in the case when G = Z/NZ as illustrated by the
following example.

Example 1.2. For any positive integer t, consider the cyclic group Z/NZ with N = t5.
Let S be the generating 2-tuple (1, s), where s = t4. The simple random walk driven
by the uniform measure on {±1,±s} mixes in order D2 where D is the diameter of the
Cayley graph (Z/NZ, {±1,±s}). The diameter D is of order N4/5 and the mixing time of
the simple random walk is of order N8/5.

Now, consider the random walk driven by µS, a where a = (α, 1) and α ∈ (0, 2).
Intuitively, as α decreases, since the variance of the length of the steps increases, one
expects that the mixing time decreases. Indeed, following from the results of this paper,
the mixing time is of order 

Nα for 0 < α ≤ 1/5,

N1/5 for 1/5 ≤ α ≤ 1/4,

N4α/5 for 1/4 ≤ α < 2.

(1.5)

Let us summarize what is behind this mixing time estimate. For a general finite
nilpotent group, G, and a probability measure µS, a, we introduce a quasinorm || · ||S, a
and show that the associated random walk mixes in time of order DS, a, the diameter
of G with respect to || · ||S, a. Even when G = Z/NZ, as in Example 1.2, computing the
diameter DS, a is a non-trivial task, see Appendix C. The estimate (1.5) is obtained using
this method.

We now explain how to associate with (S, a) a quasi-norm on G. Referring to
the notation in Definition 1.1, from S = (s1, s2, . . . , sk), create a formal alphabet S =

{s±1
1 , s±1

2 , . . . , s±1
k }. LetW be the set of finite words generated by S and degsi

(w) be the
number of times either s+1

i or s−1
i appears in the word w. There is natural projection

map ρ from W → G, mapping s±1
i to s±1

i , i = 1, . . . , k. For example, w1 = s+1
1 and

w2 = s+1
1 s−1

1 s−1
1 both map to s1 under ρ. However, their degrees with respect to s1

differs:
degs1(w1) = 1 degs1(w2) = 3.

For a ∈ (0, 2)k, define the cost of g to be

||g||S, a = min
w∈W:g=ρ(w)

{
max
i

{
(degsi(w))αi

}}
. (1.6)

The function || · ||S, a : G → R+ is a quasi-norm on G: it only satisfies the triangle
inequality up to a multiplicative constant of 2 because we assume αi ∈ (0, 2). We define
DS, a to be the diameter of the quasi-norm || · ||S, a, that is, the largest ||g||S, a can be
when g varies over G.

We are ready to state the main results of the article, which relate the spectral gap and
mixing time of (S, a)-long jump random walks to DS, a. Because the long-jump random
walk is symmetric, its spectrum has the form

−1 ≤ βmin ≤ · · · ≤ β1 < β0 = 1.
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Long-jump random walks on finite groups

The eigenvalue βmin is bounded away from −1 by a constant, see (2.2) below. Concerning
β1 and mixing time, we prove the following theorems.

Theorem 1.3. Fix C0 > 0 and 0 < ε < 1. There exist c1, c2 > 0 (depending on C0 and ε)
such that for any `, k < C0, a ∈ (ε, 2− ε)k, and any finite nilpotent group G of nilpotency
class ` generated by a k-tuple S, the (S, a)-long jump random walk satisfies

c1/DS, a ≤ 1− β1 ≤ c2/DS, a.

Theorem 1.4. Fix C0 > 0 and 0 < ε < 1. There exist c1, c2 > 0 (depending on C0 and ε)
such that for any `, k < C0, a ∈ (ε, 2− ε)k, and any finite nilpotent group G of nilpotency
class ` generated by a k-tuple S, the (S, a)-long jump random walk satisfies

e−c1n/DS, a ≤ ||Kn(e, ·)− π||T.V. ≤ e−c2n/DS, a

for all n > 0. In particular, tmix is of the same order as DS, a.

Although the result stated here is with respect to the total variation norm, throughout
the paper we will work with `2, which will give more quantitative information; see
Theorem 4.1.

The main results above rely on volume growth properties of ||·||S, a, which we describe
now. For a given quasi-norm || · ||, define

B(x, r) = {y ∈ G : ||x−1y|| ≤ r} and V (x, r) =
∑

y∈B(x,r)

π(y),

where π is the uniform measure on G.

Definition 1.5. A finite group G equipped with a quasi-norm || · || is doubling if there
exists A > 1 so that

V (2r) ≤ AV (r), for all r ≥ 0.

We will call A a doubling constant for the pair G and || · ||.
Theorem 1.6. Fix C0 > 0 and 0 < ε < 1. There exists A > 0 (depending on C0 and ε)
such that for any `, k < C0, a ∈ (ε, 2)k, and any finite nilpotent group G of nilpotency
class ` generated by a k-tuple S, the group G equipped with || · ||S, a is doubling with
constant at most A.

Organization This paper is an extension of work done in [12, 1]; these papers are
concerned with infinite groups, whereas this paper studies finite groups. Many of the
techniques used in here take inspiration from proofs from those two papers; we will give
specific citations as we use them. In Section 2, we start by proving Theorem 1.3. We
prove the upper bound by using a pseudo-Poincaré inequality, where we rely heavily on
results developed in [12]. For the lower bound, we use the Courant-Fischer characteriza-
tion of β1 with a test function and bounds that are similar to those in [1]. In Section 3,
we prove the doubling property, i.e., Theorem 1.6 using growth results from [12] for free
nilpotent groups and a lemma of [6] to transport the result to finite nilpotent groups.
In Section 4, we give precise mixing `2-estimates, which gives a proof of Theorem 1.4
as a corollary. For these results, we use now standard techniques of Nash inequalities
developed in [3, 4]. The `2-mixing upper bound for time less than DS, a uses intermediate
Nash inequalities. The matching lower bound uses the spectral lower bound on balls
from Section 2 and relate it to µ(n)

S, a by using an argument inspired by proofs from [2, 14].
In Section 5, we discuss some of the challenges in computing DS, a in general by

providing some illustrative examples. Up until this point in the paper, we have assumed
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Long-jump random walks on finite groups

that a ∈ (0, 2)k. In Section 6, we explain how to generalize the main results when
a ∈ (0,∞)k by changing the definition of || · ||S, a

In Appendix A, we discuss the relationship between the intuitive model presented
in paragraph 2 of the introduction and the model that we presented in Definition 1.1
with which we work throughout the paper. In Appendix B, we outline properties of the
Dirichlet form and present explicit computations for the more laborious bounds used in
Section 2. In Appendix C, we present an algorithm for computing DS, a when G = Z/NZ,
S = (1, s) and a = (α1, α2), and a proof of its correctness. We use this algorithm for
many of the examples in Section 5.

Notation We conclude the introduction with some notation that we will use in the
paper.

When G is the cyclic group Z/NZ, and g ∈ Z/NZ is represented as a number in
[0, N − 1], it will be convenient to define

g = min(|g|, |N − g|).
All Markov kernels K : G × G → R considered in this paper are symmetric and

irreducible, and their stationary distributions π are uniform on G. Note that for ran-
dom walks on groups driven by µ, K(x, y) = K(e, x−1y) = µ(x−1y). Define Kf(x) =∑
y∈GK(x, y)f(y). The corresponding continuous-time Markov chain has kernel Ht =

e−t(I−K) = e−t
∑∞
n=0

tn

n!K
n. Let kne (x) = Kn(e, x)/π(x) and het (x) = Ht(e, x)/π(x) be the

densities with respect to π of the discrete- and continuous-time kernels.
The space `p(π) is the set of functions from G to R under the norm

||f ||p =

(∑
x∈G
|f(x)|pπ(x)

)1/p

if p ≥ 1 and ||f ||∞ = supx∈G |f(x)|. Given p, q ∈ [1,∞] and K : `p(π)→ `q(π), define

||K||p→q = sup
f∈`p(π)

{
||Kf ||q
||f ||p

}
.

The inner product on `2(π) we will use is 〈f, g〉π =
∑
x f(x)g(x)π(x). The Dirichlet form

associated with µ on `2(π) is

Eµ(f, g) = 〈(I −K)f, g〉 =
1

2

∑
x,y

(f(x)− f(xy))(g(x)− g(xy))µ(y)π(x).

The relation f � g, where f and g are positive functions, means that there exist constants
c1, c2 > 0 so that c1f ≤ g ≤ c2f .

2 Spectral gap estimates

The main tool we use to study the spectral gap is the Dirichlet form. It is related to
the spectral gap by

1− β1 = min
〈f,1〉=0
f 6=0

{
Eµ(f, f)

||f ||22

}
= min

f 6=0

{
Eµ(f, f)

Varπ(f)

}
, (2.1)

which is explained in [10, Section 2]. Moreover, the form is linear in µ, so bounds for Epi
can be aggregated to a bound for EµS, a . The details of these computations are included
in Appendix B.

Define α∗ = minα∈ a
α

2(1+α) . It follows from Lemma A.1 that

α∗ ≤ min
1≤i≤k

ci ≤ min
1≤i≤k

pi(e) ≤ µS, a(e).
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By a standard bound, see e.g. Theorem 6.6 of [11],

βmin ≥ 2µS, a(e)− 1 ≥ 2α∗ − 1. (2.2)

2.1 Spectral gap lower bound

A probability distribution on G, µ, satisfies the pseudo-Poincaré inequality if, for any
r > 0, there exists a(r) > 0 such that, for all f ∈ `2(π),

||f − fr||22 ≤ a(r) Eµ(f, f),

where

fr(x) =
1

V (x, r)

∑
y∈B(x,r)

f(y)π(y)V (x, r) =
∑

y∈B(x,r)

π(y). (2.3)

We need the following result regarding nilpotent groups.

Theorem 2.1. [12, Theorem 2.10] Let k and ` be positive integers and a ∈ (0, 2)k. There
exist C = C(`, k, a), p = p(`, k, a), and (i1, . . . , ip) ∈ {1, . . . , k}p so that for any finite
nilpotent group G of class ` and generating k-tuple S, any g ∈ G with ||g||S, a ≤ r can be
written as

g =

p∏
j=1

s
mj
ij

with |mj | ≤ Cr1/αij .

Proof. Let Ĝ = N(`, k) be the free nilpotent group of nilpotency class ` and generated
by S. Theorem 2.10 of [12] states that there exist an integer p = p(`, k, a), a constant
C = C(`, k, a), and (i1, . . . , ip) ∈ [k]p, such that for all ĝ ∈ Ĝ that can be expressed a word
ŵ where degsi ŵ ≤ r

1/αi , ĝ can be rewritten as

ĝ =

p∏
j=1

s
mj
ij

with |mj | ≤ Crαij . (2.4)

Define ρ and ρ̂ be the projections maps from W to G and Ĝ respectively, mapping
si → si. There exists a group homomorphism ϕ so that the following diagram commutes,
i.e., such that ϕ(si) = si for all i.

Ĝ = N(`, k)

S W G

ϕ

i

ρ̂

ρ

Let g ∈ G be an element satisfying the conditions in the theorem. Let w0 be a word that
realizes ||g||S, a in the sense of (1.6), and ĝ = ρ̂(w0). Since for all i, degsi w0 ≤ r1/αi , there
exist p(`, k, a), C(`, k, a) and (i1, . . . , ip) so that (2.4) is satisfied. After applying ϕ to both
sides, we get the desired result.

Theorem 2.2. [12, Theorem 4.3] Let k, `, and a ∈ (0, 2)k be fixed. There exists a
constant a = a(k, `, a) such that for any long-jump random measure µS, a on a finite
nilpotent group G of class ` with |S| = k and f : G→ R,

||f − fr||22 ≤ ar EµS, a(f, f).
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Proof. Fix r > 0, y0 ∈ B(e, r) and w0 ∈ W so that w0 realizes ||y0||S, a. By Theorem 2.1,
there exists C0 = C0(`, k, a), p = p(`, k, a) and (i1, . . . , ip) ∈ [k]p so that y0 can be written

as y0 = sm1
i1
· · · smpip where |mj | ≤ C0r

1/αij . For each j, Theorem B.5 gives the existence of

a constant C1(αij ) > 0 so that, for all f : G→ R and m ∈ Z/NijZ where |m|αij ≤ C
αij
0 r,

1

|G|
∑
x∈G
|f(x)− f(xsm)|2 ≤ C1(αij )C

αij
0 r Eµij (f, f). (2.5)

By Theorem B.1 (2), for all f ∈ `2(π),

1

|G|
∑
x∈G
|f(x)− f(xy0)|2 =

1

|G|
∑
x∈G
|f(x)− f(xsm1

i1
· · · smpip )|2

≤ p

|G|

p∑
j=1

∑
x∈G
|f(x)− f(xs

mj
ij

)|2 (telescoping sum and C-S)

≤ C1(αij )p

p∑
j=1

C
αij
0 r Eµij (f, f) (by (2.5))

≤ p2k max
1≤i≤k

{C1(αi)C
αi
0 } r EµS, a(f, f) (since Eµi ≤ k EµS, a).

Let a = kp2 maxi{C1(αi)C
αi
0 }. The theorem now follows immediately from Proposition B.1

(1).

Proof of lower bound of Theorem 1.3. Let r = DS, a. In this case,

fr = Eπ[f ]||f − fr||22 = Varπ(f).

Using the setting of Theorem 2.2, we have that for all f ∈ `2(π), Varπ(f) ≤ aDS, a EµS, a
(f, f). From the spectral gap characterization (2.1), we obtain 1− β1 ≥ 1/aDS, a.

2.2 Spectral gap upper bound

In this section, we will prove the upper bound of Theorem 1.3 as a consequence of
the following result, which is similar to [1, Lemma 4.2].

Theorem 2.3. Let µS, a be a long-jump measure on a finite group G that is doubling with
constant A with respect to || · ||S, a. There exists ζ ∈ `2(π) and a(A, a) > 0 such that

EµS, a(ζ, ζ)

||ζ||22
≤ a(A, a)

DS, a
.

Proof of the upper bound of Theorem 1.3. Let G be a finite nilpotent group with nilpo-
tency class `, S be a list of k generating elements, and a ∈ (0, 2)k. This gives a long-jump
measure µS, a and cost function || · ||S, a. By Theorem 1.6, G is doubling with respect to
|| · ||S, a, with doubling constant A(`, k, a). From Theorem 2.3, there exists a constant
a(`, k, a) > 0 and function ζ so that

EµS, a(ζ, ζ)

||ζ||22
≤ a(`, k, a)

DS, a
.

From the spectral gap characterization (2.1), 1− β1 ≤ a(`, k, a)/DS, a.

We are left with the task of proving Theorem 2.3.
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Lemma 2.4. Let o ∈ G where ||o||S, a = DS, a. In addition, define

Ω+ =

{
x ∈ G : ||x||S, a ≤

1

12
DS, a

}
Ω− =

{
x ∈ G : ||o−1x||S, a ≤

1

12
DS, a

}
.

If g ∈ Ω+ and gh ∈ Ω−, then ||h||S, a ≥ 1
8DS, a. Thus Ω+ and Ω− are disjoint.

Proof. We know that

||o||S, a ≤ 2(||o−1g||S, a + ||g||S, a)||o−1g||S, a ≤ 2(||o−1gh||S, a + ||h||S, a).

It follows that

DS, a = ||o||S, a ≤ 2

(
2

(
1

12
DS, a + ||h||S, a

)
+

1

12
DS, a

)
=

1

2
DS, a + 4||h||S, a.

Thus, ||h||S, a ≥ DS, a/8.

We now define the test function for Theorem 2.3. For R = DS, a/16, let ζ : G→ R be

ζ(g) = ζ+(g)− ζ−(g),

where α? = min(a),

ζ+(g) = (R1/α? − ||g||1/α?S, a )+ζ−(g) = (R1/α? − ||o−1g||1/α?S, a )+. (2.6)

Because R = DS, a/16, by Lemma 2.4, the supports of ζ+ and ζ− are disjoint and

||ζ||22 = ||ζ+||2 + ||ζ−||2 = 2||ζ+||2 = 2||ζ+||2.

Let A be the doubling constant of G with respect to || · ||S, a and B(e,R) is a ball with

respect to the quasi-metric || · ||S, a. Because R1/α? − ||g||1/α?S, a ≥ (1− 2−1/α?)R2/α? when
g ∈ B(e,R/2), it follows that

||ζ+||22 =
1

|G|
∑
g∈G

(R1/α? − ||g||1/α?S, a )2
+ ≥

1

|G|
∑

g∈B(e,R/2)

(
1− 1

21/α?

)2

R2/α?

=
1

|G|

(
1− 1

21/α?

)2

R2/α?#B(e,R/2) ≥ 1

|G|

(
1− 1

21/α?

)2
1

A
R2/α?#B(e,R).

Thus,

||ζ||22 ≥ C0R
2/α?

#B(e,R)

|G|
, where C0 =

2

A
(1− 2−1/α?)2. (2.7)

Now Theorem 2.3 follows from (2.7) and the following lemma.

Lemma 2.5. Let ζ be defined as above. Then there exists C(k, `, a) > 0 such that

EµS, a(ζ, ζ) ≤ C(k, `, a)#B(e,R)

|G|
R−1+2/α? .

Because EµS, a(ζ, ζ) = 2 EµS, a(ζ+, ζ+) − 2 EµS, a(ζ+, ζ−), Lemma 2.5 reduces to the
following statement.

Lemma 2.6. Let ζ be defined as above. Then there exists C(k, `, a) > 0 such that

EµS, a(ζ+, ζ+) ≤ C(k, `, a)#B(e,R)

|G|
R−1+2/α? (2.8)

and

− EµS, a(ζ+, ζ−) ≤ C(k, `, a)#B(e,R)

|G|
R−1+2/α? . (2.9)
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Proof of (2.8). For this bound, we will use the notation from Definition 1.1 to describe
µS, a. Fix i0 ∈ [1, k], and let s0 = S(i0), α0 = a(i0), µ0 = µi0 and p0 = pi0 . We will first
prove the inequality from the theorem for each i0 and then take the average of both
sides for the final result.

Keeping this notation in mind, we begin by giving an upper bound for

Eµ0
(ζ+, ζ+) =

1

2|G|
∑
g,h∈G

|ζ+(gh)− ζ+(g)|2µ0(h).

Let Ω = {(g, h) ∈ G× 〈s0〉 : ζ+(gh) + ζ+(g) > 0}. So we can restrict the sum above to just
Ω. For a fixed h, we have that

#{g ∈ G : (g, h) ∈ Ω} ≤ 2#B(e,R).

Note that µ0(h) is only non-zero when h ∈ 〈s0〉, so we can write h = st0. Thus, we
can further break the sum into two parts: (1) when |t| > ρ and (2) when |t| ≤ ρ, where
ρ = (12R)1/α0 . For the first sum, by Lemma 2.4, we have∑

(g,h):Ω:|t|≥ρ

|ζ+(gh)− ζ+(g)|2µ0(h) ≤ 2(R1/α?)2#B(e,R)
∑
|t|≥ρ

p0(t)

≤ 4R2/α?#B(e,R)

α0ρα0
.

For sum (2), fix g ∈ G and h ∈ 〈s0〉, and choose the smallest t in absolute value so
that st0 = h. It will be convenient, for all g ∈ G, to set wg to be a word that realizes the
cost of g, and set x = degs0 wg, the number of times either s0 or s−10 appears in wg. To
start, we would like to bound the term |ζ+(gh)− ζ+(g)|. Note that we can assume that
||gh||S, a ≥ ||g||S, a; otherwise we can set g0 = gh and g0h

−1 = g, and the bound would
proceed the same since we do not make assumptions about g and ||h||S, a = ||h−1||S, a.
This implies that

|ζ+(gh)− ζ+(g)| = (R1/α? − ||g||1/α?S, a )+ − (R1/α? − ||gh||1/α?S, a )+.

We will now show that this expression is less than or equal to ||gh||1/α?S, a − ||g||
1/α?
S, a . Since

we assume that ||gh||S, a ≥ ||g||S, a, if the first term is zero, then so is the second term.
Therefore, three cases remain: (1) if both term are zero, then the inequality holds
trivially, (2) if both terms are non-zero, then the two lines are equal, and (3) if the second
term is zero, but the first is not, then, ||gh||S, a ≥ R, and

|ζ+(gh)− ζ+(g)| = R1/α? − ||g||1/α?S, a ≤ ||gh||
1/α?
S, a − ||g||

1/α?
S, a .

We are ready to evaluate

|ζ+(gh)− ζ+(g)| ≤ max
1≤i≤k

{(degsi wg)
αi/α? , (x+ |t|)α0/α?} − max

1≤i≤k
{(degsi wg)

αi/α? , xα0/α?}

≤ (x+ |t|)α0/α? − xα0/α? .

By the fundamental theorem of calculus and x ≤ (12R)1/α0 , we have

|ζ+(gh)− ζ+(g)| ≤
∫ x+|t|

x

α0

α?
s
α0
α?
−1 ds ≤ α0

α?

(
(12R)

1/α0 + ρ
)α0
α?
−1

|t|

≤ α0

α?
(21/α012R)

1
α?
− 1
α0 |t|.
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Summing over h = st, where |t| ≤ ρ,

1

2

∑
|t|≤ρ

|ζ+(gst)− ζ+(g)|2µ0(t) ≤ α2
0

α2
?

(
21/α012R

)2/α?−2/α0

#B(e,R)
∑
|t|≤ρ

|t|2µ0(t)

≤ C1R
2/α?−2/α0#B(e,R)ρ2−α0 (by Lemma A.2),

where C1 = C1(α0) = C0(α0)α2
0122/α?−2/α0 32−α0

2−α0
and C0(α0) is the constant that appears

in Lemma A.2. Putting the two parts together, we have

|G| Eµ0(ζ+, ζ+) ≤ #B(e,R)R2/α?

(
4

α0
ρ−α0 + C1R

−2/α0ρ2−α0

)
≤ #B(e,R)R2/α?

(
4

α012α0
R−1 + C1122−α0R−2/α0R2/α0−1

)
≤ C2#B(e,R)R−1+2/α? ,

where C2 = C2(α0) = 4
α012α0

+ C1(α0)122−α0 .

Proof of (2.9). We use the notation s0, α0, µ0, and p0 as above, and give a lower bound
for

Eµ0(ζ+, ζ−) =
1

2|G|
∑
g,h∈G

(ζ+(gh)− ζ+(g))(ζ−(gh)− ζ−(g))µ0(h).

Let Ω+ be the support of ζ+ and Ω− be the support of ζ−. As we chose R = DS, a/12,
Lemma 2.4 implies that Ω+ and Ω− are disjoint. We see that the only non-zero summands
are those where g ∈ Ω+ and gh ∈ Ω0 or vice versa, in which case ||h||S, a > R. By
symmetry, we have

−Eµ0
(ζ+, ζ−) =

1

|G|
∑
g∈Ω+

gh∈Ω−

ζ+(g)ζ−(gh)µ0(h)

Because |ζ+|, |ζ+| ≤ R1/α? and ζ+ has support in B(e,R),

−|G| Eµ0
(ζ+, ζ−) ≤ R2/α?

∑
g∈Ω+

gh∈Ω−

µ0(h) ≤ R2/α?#B(e,R)
∑

||h||S, a>R

µ0(h)

≤ R2/α?#B(e,R)
∑
|t|α0>R

p0(t) ≤ C3(α0)#B(e,R)R−1+2/α? ,

where C3(α0) is as in Lemma A.2. Averaging over all components µi of µS, a, we get that
the inequality also holds for µS, a.

3 Volume estimates

For proving the doubling statement of Theorem 1.6, there are two main ingredients:
(1) [12, Example 1.5] that shows doubling with respect to || · ||S, a for free nilpotent
groups and (2) the finite version of [6, Lemma 1.1] stated below, which allows us to
translate doubling from the free nilpotent group to the finite nilpotent group.

Lemma 3.1 ([6, Lemma 1.1]). Let G be a finitely-generated countable group acting on
a set X, which we will write on the right. Let A and B be finite subsets of G, and Y a
subset of X. Then,

#A#(Y B) ≤ #(AB)#(Y A−1).

EJP 27 (2022), paper 26.
Page 10/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP745
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-jump random walks on finite groups

Proof of Theorem 1.6. Let Ĝ = N(`, k) denote the free nilpotent group of class ` gener-
ated by S of class `. Let W be the set words generated by entries of S and ρ̂ and ρ be
the natural projection maps from Ĝ and G, respectively, to W. Using this lifting, we
can define an (S, a)-cost function on Ĝ, which we will call ||| · |||S, a to differentiate. We
will also use B̂ and B to denote balls with respect to ||| · |||S, a and || · ||S, a respectively.
Further, there exists ϕ :W → Ĝ so that the following diagram commutes.

Ĝ = N(`, k)

S W G

ϕ

i

ρ̂

ρ

With this, by the way that the cost function is defined, for all ĝ ∈ N(`, k), |||ĝ|||S, a ≥
||ϕ(ĝ)||S, a.

By Example 1.5 from [12], there exist constants c1, c2 > 0

c1r
d(`,k) ≤ #B̂(e, r) ≤ c2rd(`,k) where d(`, k) =

∑̀
m=1

∑
d|m

µ(d)km/d (3.1)

and µ is the classical Möbius function. Thus, N(`, k) has polynomial growth with respect
to ||| · |||S, a.

Next, we apply Lemma 3.1 with the group action of ĝ ∈ Ĝ on x ∈ G via x · ĝ = xϕ(ĝ),
and the sets

Y = {eG},

A = B̂(e, r) = {x ∈ N(`, k) : |||x|||S, a ≤ r} and

B = B̂(e, 2r) = {x ∈ N(`, k) : |||x|||S, a ≤ 2r}.

First, notice that since ||x||S, a = ||x−1||S, a, Y A−1 = Y A. We then show Y A−1 = Y A =

B(e, r) by showing inclusion both ways. Let x ∈ B(e, r) and w ∈ W that realizes the
cost of x, i.e., ||x||S, a = maxi(degsi w)αi . Consider x̂ = ρ̂(w) ∈ N(k, `). By construction,

ϕ(x̂) = x, |||x̂|||S, a ≤ r, and thus x̂ ∈ B̂(eG, r). It follows that Y A 3 eG · x̂ = eGϕ(x̂) = x,
and B(eG, r) ⊆ AY .

Now let y · a ∈ Y A. Let w be a word that realizes cost of a, i.e., |||a|||S, a =

maxi(degsi w)αi . As in the previous case ρ(w), which is also equal to ϕ(a) = y · a,
must have cost less than or equal to r. Therefore, Y A ⊆ B(eG, r).

Next, we want to show that AB ⊆ B̂(e, 6r). Let a ∈ A and b ∈ B. Let w0, w1, and w2

be words that realizes the costs of ab, a and b respectively. By the triangle inequality for
our quasi-norm, ||ab||S, a ≤ 2(||a||S, a + ||b||S, a). So A ⊆ B̂(e, 6r).

Finally, we can show doubling

#B(e, 2r)

#B(e, r)
=

#Y B

#Y A−1
≤ #AB

#A
(by Lemma 3.1)

≤ #B̂(e, 6r)

#B̂(e, r)
≤ c2(6r)d(`,k)

c1rd(`,k)
≤ 6d(`,k)(c2/c1).

Doubling imples the following property, which we use in Section 4.

Corollary 3.2. For all 0 ≤ r ≤ R ≤ DS, a,

V (e, r) ≥ A−2V (e,R)

(
r + 1

R+ 1

)d
, where d = log2A.
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Proof. We have that for R+1
2k
≤ r + 1,

V (e,R) ≤ V (e,R+1) ≤ 2V (e,
R+ 1

2
) ≤ · · · ≤ AkV (e,

R+ 1

2k
) ≤ AkV (e, r+1) ≤ Ak+1V (e, r),

After taking log2(R+1
r+1 ) ≤ k ≤ log2(R+1

r+1 ) + 1, we can deduce

V (e,R)

V (e, r)
≤ Alog2(R+1

r+1 )+2 = A2

(
R+ 1

r + 1

)d
.

To conclude this section, we show that || · ||S, a also satisfies a “reverse doubling”
property, i.e. a lower bound of V (e,R)/V (e, r) by a quantity that is a polynomial of R/r.

Lemma 3.3. Let G be a finite group, || · ||S, a be the cost function of an (S, a)-long-jump
random walk. Let 1 ≤ R < DS, a, there exists g ∈ G such that R/4 ≤ ||g||S, a ≤ R.

Proof. In the case that 1 ≤ R ≤ 4, fix s in S that is not the identity. Then, s ∈ B(e,R), and
R/4 ≤ ||s||S, a ≤ R. Now consider R such that 4 ≤ R < DS, a. Since R is strictly smaller
than DS, a, G\B(e,R) is non-empty and there exists g ∈ B(e,R) such that gs ∈ G\B(e,R)

where s is an entry in S. Therefore, R < ||gs||S, a ≤ 2(||g||S, a + ||s||S, a) = 2(||g||S, a + 1),
and ||g||S, a > R/4.

Proposition 3.4. For all 1 ≤ R ≤ DS, a and r = 2−7R,

V (e,R)

V (e, r)
≥ 2.

Consequently, for all 1 ≤ r ≤ R ≤ DS, a,

V (e,R)

V (e, r)
≥ 1

2
(R/r)

1/7
. (3.2)

Proof. There are no elements with cost in (0, 1). So if 1 ≤ R ≤ 4, #B(e, r) = 1 and
#B(e,R) ≥ 2. Now, we assume that 4 ≤ R ≤ DS, a. By Lemma 3.3, there exists
o ∈ B(e,R/4), such that 23r = R/24 ≤ ||o||S, a ≤ R/22. We will show that

1. B(e, r) ∩B(o, r) = ∅

2. B(e, r) ∪B(o, r) ⊆ B(e,R).

This immediately implies that there are two disjoint balls of radius r in B(e,R), which is
our desired result. To show (1), suppose there exists g ∈ B(o, r)∩B(e, r). By definition, we
know that ||g||S, a ≤ r and ||o−1g||S, a ≤ r. This implies that 23r ≤ ||o||S, a ≤ 2(||o−1g||S, a +

||g||S, a) ≤ 22r, which is a contradition. For (2), the fact that B(e, r) ⊆ B(e,R) is clear. If
g ∈ B(o, r), then ||g||S, a ≤ 2(||o||S, a + ||o−1g||S, a) ≤ 2(R/4 +R/27) ≤ R.

To show (3.2), observe that for R ≥ 27kr,

V (e,R) ≥ 2V (e, 2−7R) ≥ · · · ≥ 2kV (e, 2−7kR) ≥ 2kV (e, r).

By choosing k so that 1
7 log2(R/r)− 1 ≤ k ≤ 1

7 log2(R/r), we get the desired result.

4 Estimates on mixing and proof of Theorem 1.4

Theorem 4.1. Let K be the Markov kernel of an (S, a)-long-jump random walk on
a finite group G with nilpotency `, and π be the uniform distribution. There exists
b1, b2, c1, c2 > 0 such that for all n > 0

c1
V (e, n)1/2

exp (−n/b1DS, a) ≤ ||kne − 1||2 ≤
c2

V (e, n)1/2
exp (−n/b2DS, a) .
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Proof of the upper bound of Theorem 4.1. We have shown that there exists positive real
numbers d = d(`, k, a) ≥ 1 and a = a(`, k, a) ≥ 1, for all 0 ≤ r ≤ R ≤ DS, a and f ∈ `2(π),

V (e, r) ≥ A−2V (e,R)

(
r + 1

R+ 1

)d
||f − fr||22 ≤ ar EµS, a(f, f). (4.1)

It is straighforward to check that the proof of [4, Theorem 5.2] works for quasi-norms.

Using [4, Remark 5.4 (2)] with α = 1 and M = A2(R+1)d

V (e,R) , (4.1) implies that

∀f ∈ `2(π), ||f ||2+2/d
2 ≤ C

(
EµS, a(f, f) +

1

aR2
||f ||22

)
||f ||2/d1 ,

where C = (1 + 1/(2d))2(1 + 2d)1/dA2/d(R + 1)(V (e,R))−1/da. This is called a Nash
inequality [4]. By [4, Corollary 3.1] with R = n, we obtain that,

∀n ≤ DS, a, ||Kn||2→∞ ≤
c3

V (e, n)1/2
, (4.2)

where c3 = 2
√

2(2d/2)(1 + d2de)2d(1 + 1/(2d))d(1 + 2d)1/2ad/2A.
Now, fix n > 0 and write n = n1 + n2 with n1 = min(bDS, ac , n). We have

||kne − 1||2 = ||Kn − 1||2→∞ ≤ ||Kn1 ||2→∞||Kn2 − π||2→2,

e.g. [10, Section 1.2.4]. Inequality (4.2) implies that ||Kn1 ||2→∞ ≤ c3
V (e,n)1/2

, and Theo-
rem 1.3 and (2.2) give

||Kn2 − π||2→2 ≤ (1−min(2α∗, 1/aDS, a))n2 (where α∗ = min
α∈ a

α

2(1 + α)
)

≤ (1− 2α∗/aDS, a)n2 (since 2α∗ ≤ 1 and aDS, a ≥ 1)

≤ exp(−2α∗n2/aDS, a).

It follows that

||kne − 1||2 ≤ ||Kn1 ||2→∞||Kn2 − π||2→2 ≤
c3

V (e, n1)1/2
exp(−2α∗n2/aDS, a)

≤ c2
V (e, n1)1/2

exp(−n/b2DS, a) (where c2 = e1/ac3 and b2 = a/(2α∗)).

For the lower bound, we will use this following lemma which orginates from [2,
Proposition 2.3] and [14, Lemma 3.1].

Lemma 4.2. For all n ≥ 0, there exists a constant C ≥ 0 such that

||kne ||2 ≥
e−2C

V (e, n)1/2
.

Proof. Let U = B(e, n) and KU (x, y) = K(x, y) when x or y are in U and KU (x, y) = 0

otherwise. Let βU is the largest eigenvalue of KU and ϕU be its associated eigenvector.
The argument is based on the fact that as a consequence of Cauchy-Schwarz inequality,
the function n 7→ ||Knf ||2

||K(n−1)f ||2
is decreasing. We have

||kne ||2 = ||Kn||1→2 = max
f 6=0

{
||Knf ||2
||f ||1

}
= max

f 6=0

{
||Knf ||2
||Kn−1f ||2

· · · ||Kf ||2
||f ||2

||f ||2
||f ||1

}
≥ max

f 6=0

{(
||Kf ||2
||f ||2

)n−1 ||f ||2
||f ||1

}
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≥ max
f 6=0

supp(f)⊆U

{(
||Kf ||2
||f ||2

)n−1
1

V (e, n)1/2

}
(by C-S and U = B(e, n))

≥
(
||KϕU ||2
||ϕU ||2

)n−1
1

V (e, n)1/2

≥
(
||KUϕU ||2
||ϕU ||2

)n−1
1

V (e, n)1/2
(ϕU is positive)

= βn−1
U

1

V (e, n)1/2
.

Consider the value

βU = max
f 6=0,supp(f)⊆U
||f ||2=1

||KUf ||2 = max
f 6=0,supp(f)⊆U
||f ||2=1

〈Kf, f〉π = 1− min
f 6=0,supp(f)⊆U
||f ||2=1

EµS, a(f, f).

Consider the test functions 1e and ζ+, the function from (2.6) with R = n. From

Lemma 2.6 and (2.7), there exist a constant C = C(k, `, a) such that
EµS, a (ζ+,ζ+)

||ζ+||2 ≤ C/n.
Thus, we have

βU ≥ 1−min

{EµS, a(1e,1e)

||1e||2
,
EµS, a(ζ+, ζ+)

||ζ+||2

}
≥ 1−min

{
α∗
8
,
C

n

}
.

Collecting our lower bound on ||kne ||2 and βU , we derive

||kne ||2 ≥
(

1−min

{
α∗
8
,
C

n

})n
1

V (e, n)1/2

≥ exp

(
−min

{
α∗
4
,

2C

n

}
n

)
1

V (e, n)1/2

≥ e−2C 1

V (e, n)1/2
.

Proof of lower bound of Theorem 4.1. We have that ||kne − 1||2 ≥ 2||µ(n)
S, a − π||TV ≥ βn1 .

From Theorem 1.3, we know that there exists a > 0 such that β1 ≥ 1 − a/DS, a. We
also have the bound βmin ≥ −1 + 1

8α∗ by using test function 1e in (2.1). Let c =

min(a/DS, a, α∗/8), and we compute further

||kne − 1||2 ≥ (1− c)n ≥ e−2an/DS, a , (since 0 ≤ c ≤ 1/2.) (4.3)

Let C > 0 be the constant from Lemma 4.2. In the case that V (e, n) ≤ e−4C/4, we have
n ≤ DS, a, and the term exp(−2an/DS, a) is roughly constant, namely,

e−2a ≤ exp(−2an/DS, a) ≤ 1.

Hence, it follows from Lemma 4.2 that

||kne − 1||2 ≥ ||kne ||2 − 1 ≥ e−2C

V (e, n)1/2
− 1 ≥ e−2C

2V (e, n)1/2
≥ e−2C

2V (e, n)1/2
exp(−2an/DS, a).

When V (e, n) ≥ e−4C/4, by (4.3), we have

||kne − 1||2 ≥ exp(−2an/DS, a) ≥ e−2C

2V (e, n)1/2
exp(−2an/DS, a).

Thus, the lower bound is true for c1 = exp(−2C)/2 and b1 = 1/2a.
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The proof for continuous time is similar and we have the following result. For the
definition of Ht and het , see the Notation section at the end of Section 1.

Theorem 4.3. LetHt, t > 0, be the continuous time Markov kernel of an (S, a)-long-jump
random walk on a finite group G with nilpotency `, and π be the uniform distribution.
Then, there exists a1, a2, c1, c2 > 0 such that for all t > 0

c1
V (e, t)1/2

exp (−t/a1DS, a) ≤ ||het − 1||2 ≤
c2

V (e, t)1/2
exp (−t/a2DS, a) .

We now have the ingredients to prove Theorem 1.4, the mixing time result.

Proof of Theorem 1.4. We want to show that there exists a1, a2, b1, b2 > 0 such that for
all n > 0,

a1 exp(−n/b1DS, a) ≤ ||Kn(e, ·)− π||TV ≤ a1 exp(−n/b2DS, a).

The lower bound follows directly from the fact that ||Kn(x, ·) − π||TV ≥ βn1 , see [11,
Proposition 5.5]. For the upper bound, we know from Theorem 4.1,

||Kn(e, ·)− π||TV ≤
1

2
||kne − 1||2 ≤

c1
V (e, n)1/2

exp (−n/c2DS, a) , (4.4)

for some c1, c2 > 0. When n ≥ DS, a, V (e, n) is equal to one and only the exponential
term remains. The total variation is always bounded above by 2, and when n ≤ DS, a the
exponential term bounded above by a constant, which gives us our upper bound. It thus
follows that

a1(log 2)DS, a ≤ tmix ≤ a2(log 4)DS, a.

5 On computing the diameter

As one would expect, computing DS, a for arbitrary groups, S, and a is a difficult
problem in general. More surprisingly, even just on the cyclic group computing DS, a is
still quite nuanced. In Section C, we give an exact formula for DS, a when the S = (1, s)

and arbitrary a and use those results in our examples. We start with a remark about the
relationship between DS, a and the diameter of the Cayley graph:

Remark 5.1. Let G be a finite group and S = (s1, s2, . . . , sk) be a k-tuple whose elements
generate G. Recall from the introduction,W is the set of words generated by an alphabet
S = {s±1

1 , s±1
2 , . . . , s±1

k } generated from S. We define the following quantity, which is
comparable to the diameter of the Cayley graph.

DS = max
g∈G

{
min

w∈W:g=ρ(w)
max

1≤i≤k
|degsi(w)|

}
.

Notice the following facts:

1. if a = (α, . . . , α) for some α ∈ (0, 2), then DS, a = Dα
S , and

2. if c > 0 and a such that a and ca ∈ (0, 2)k, then Dc
S, a = DS,c a.

Now we are ready to present three examples in the vein of the example in the
introduction, Example 1.2. We will compute DS, a for G = Z/NZ where a and N are
fixed and S is set to (1, s) for various s of the same order. See Appendix C for detailed
computations.

Example 5.2 (Simple variation of Example 1.2). Let t be a postive integer larger than 5

and
N = t(t2 + 1)(t2 + 2).
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We want to find DS, a for G = Z/NZ, a = (α, 1), α ∈ (0, 2), and S = (1, s), where
s = (t2 + 1)(t2 + 2). By Theorem C.1,

DS, a � min{Nα,max{N4α/5, N1/5}}.

Breaking this into cases, we have

DS, a �


Nα if α ∈ (0, 1/5),

N1/5 if α ∈ [1/5, 1/4),

N4α/5 if α ∈ [1/4, 2).

For this example, s is of order N4/5 where s divides N , which is the same set up in
Example 1.2 from the introduction.

Example 5.3. Next, we still have t > 5, N = t(t2 + 1)(t2 + 2), G = Z/NZ, and a = (α, 1)

for some α ∈ (0, 2). For this example, we pick S′ = (1, s′), with s′ = t2(t2 + 2) and we
will compute DS′, a. As in the previous example, s′ � N4/5, but s′ doesn’t quite divide N .
Dividing N by s′ using the Euclidean algorithm, we get

N = ts′ + r (where r = t3 + 2t)

s′ = tr.

Applying Theorem C.1, we have

DS′, a � min{Nα,max{N4α/5, N1/5},max{N3α/5, N2/5}},

which gives us what we got in Example 5.2 with two more cases

DS′, a �


Nα if α ∈ (0, 1/5),

N1/5 if α ∈ [1/5, 1/4),

N4α/5 if α ∈ [1/4, 1/2),

N2/5 if α ∈ [1/2, 2/3),

N3α/5 if α ∈ [2/3, 2).

Example 5.4. Again, we let t > 5, N = t(t2 + 1)(t2 + 2), G = Z/NZ, a = (α, 1), α ∈ (0, 2).
We choose S′′ = (1, s′′), with s′′ = (t2 + 1)2, which does not divide N “even more” than
in the previous example. Specifically, dividing N by s′′ using the Euclidean algorithm
terminates in three steps instead of two:

N = ts′ + t3 + t (where r1 = t(t2 + 1))

s′′ = tr1 + r2 (where r2 = t2 + 1)

r1 = tr2.

Applying Theorem C.1, we get

DS′′, a � min{Nα,max{N4α/5, N1/5},max{N3α/5, N2/5},max{N2α/5, N3/5}},

and DS′′, a

DS′′, a �



Nα if α ∈ (0, 1/5),

N1/5 if α ∈ [1/5, 1/4),

N4α/5 if α ∈ [1/4, 1/2),

N2/5 if α ∈ [1/2, 2/3),

N3α/5 if α ∈ [2/3, 1),

N3/5 if α ∈ [1, 3/2),

N2α/5 if α ∈ [3/2, 2).
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Remark 5.5. In the three examples above, N is the same and s, s′ and s′′ are comparable
in size (N4/5), but the resulting diameters DS, a change according to the length of the
Euclidean division of N by s, s′ or s′′.

Next we give DS, a for a non-abelian group for different sets of generators.

Example 5.6. Let G = H3(Z/NZ) be the group of upper triangular matrices in M3×3

(Z/NZ) with 1’s on the diagonal. Let g be a element of H3(Z/NZ), which we will write
of the form 1 x z

0 1 y

0 0 1

 . (5.1)

Let

s1 =

1 1 0

0 1 0

0 0 1

 s2 =

1 0 0

0 1 1

0 0 1

 and s3 =

1 0 1

0 1 0

0 0 1

 .
Consider DS, a with S = (s1, s2, s3) and a = (α1, α2, α3), where each αi ∈ (0, 2). Then,

||g||S, a � max
{xα1 ,

yα2 ,min
{zα3 , |z|

α1α2
α1+α2

}}
. (5.2)

Therefore, DS, a � Nmax{α1,α2,α3}.

If we also include st1 in S, this decreases the cost of elements in both the s1 and s3

direction.

Example 5.7. Fix t > 0, and N = t2. Let G = H3(Z/NZ), S = (s1, s
′
1, s2, s3), s′1 = st1, and

a = (α1, α1, α2, α3). Let g = sm3
3 sm2

2 sm1
1 . Define x(m) and y(m) so that m = y(m)t+ x(m)

where |x(m)| ≤ t/2, and therefore, |y(m)| ≤ t, Then

||g||S, a � max
{

max{|x(m1)|, |y(m1)|}α1 , |m2|α2 ,

min
{
|m3|α3 ,max{|x(m3)|, |y(m3)|}

α1α2
α1+α2

}}
.

Therefore, DS, a � N
max

{
α1
2 ,α2,α3,

α1α2
2(α1+α2)

}
.

6 Generalizing results to a ∈ (0,∞)k.

In this section, we discuss how to generalize the main results of the paper (Theo-
rem 1.3, Theorem 1.4, and Theorem 4.1) when a ∈ (0,∞)k.

Definition 6.1. For any α > 0, define a function Φα : Z/NZ→ R as follows.

Φα(x) =


xα if α ∈ (0, 2)x2/ log

x if α = 2x2 if α > 2

. (6.1)

We redefine the cost function from (1.6) as follows.

Definition 6.2. For g ∈ G,

||g||S, a = min
w∈W:
ρ(w)=g

{
max

1≤i≤k

{
Φαi(degsi(w))

}}
, (6.2)

whereW is is the set of words generated by the alphabet S = {s±1 , . . . , s
±
k }, and ρ is the

canonical projection fromW to G. We redefine the (S, a)-diameter with respect to the
new cost function

DS, a = max
g∈G
||g||S, a.
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Theorem 6.3. Fix C0 > 0 and 0 < ε < 1. There exist c1, c2 > 0 (depending on C0 and ε)
such that for any `, k < C0, a ∈ (ε, 1/ε)k, and any finite nilpotent group G of nilpotency
class ` generated by a k-tuple S, the (S, a)-long jump random walk satifies

c1/DS, a ≤ 1− β1 ≤ c2/DS, a.

To prove this we need the following lemma:

Lemma 6.4. Fix N > 0, α > 0, and G = Z/NZ. Then, there exists C(α) > 0 so that for
all r > 0, Φα(y) ≤ r and f ∈ `2(π),

1

N

∑
x∈Z/NZ

|f(x)− f(x+ y)|2 ≤ C(α)Φα(y) EpN,α(f, f), (6.3)

where

pN,α(x) =
c

(1 +
x)1+α

c−1 =
∑

j∈Z/NZ

1

(1 +
j)1+α

.

Proof. When α > 2, both Ep and EpN,α have finite second moment, where p is the measure
that drives lazy simple random walks on Z/NZ. Therefore, the two forms are comparable
up to a constant, see [9, Corollary 1.5]. The case when α = 2 is treated in [14, Proposition
A.4].

Proof of Theorem 6.3. For the lower bound, we repeat the argument from Section 2.
The appropriate version of Theorem 2.1 comes from [12, Theorem 2.10]. Lemma 6.4
is the corresponding version of (2.5). From there, the proof follows the same line of
reasoning.

For the lower bound, adapting details of Section 2.2 is a straightfoward calculus
exercise. The main details of the computation is also covered in [1, Lemma 4.2].

Still following the same reasoning as for a ∈ (0, 2)k, we arrive to the following
theorem.

Theorem 6.5. Let K be the Markov kernel of an (S, a)-long-jump random walk on
a finite group G with nilpotency `, and π be the uniform distribution. There exists
b1, b2, c1, c2 > 0 such that for all n > 0

c1
V (e, n)1/2

exp (−n/b1DS, a) ≤ ||kne − 1||2 ≤
c2

V (e, n)1/2
exp (−n/b2DS, a) ,

where
V (x, r) =

∑
y∈G:||x−1y||S, a≤r

π(y).

Example 6.6. Fix t > 0, and let N = t2, G = Z/NZ, S = (1, t), and a = (1, 2). For each
g ∈ Z/NZ, we can write g = x1 + x2t so that |x1| and |x2| are strictly less than t. Then,

||g||S, a = ||x1 + x2t||S, a � max

{
|x1|,

|x2|2

log |x2|

}
.

A A note on properties of µS,a

In this section, we prove some useful lemmas about µS, a that are used frequently
throughout the paper, such as bounds for the normalization constants and its moments.
We will also discuss how µS, a compares to the probability measure that drives the
wrap-around model.

EJP 27 (2022), paper 26.
Page 18/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP745
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-jump random walks on finite groups

Lemma A.1. Let N be a positive integer, α be a positive real number, and

c =

 ∑
j∈Z/NZ

1

(1 +
j)1+α

−1

,

the normalization constant on individual cycles from Definition 1.1. Then,

α

2(1 + α)
≤ c ≤ 1.

Proof. Since the summand corresponding to j = 0 is 1, c is less than or equal to 1. For
the lower bound, we have that for all N ≥ 1,

c−1 ≤ 2

1 +

N/2∑
k=1

1

(1 + k)1+α

 ≤ 2

(
1 +

∫ N/2

0

1

(1 + s)1+α
ds

)
≤ 2

(
1 +

1

α

)
.

Lemma A.2. Let p : Z/NZ → [0, 1], p(j) = c/(1 +
j)1+α with

∑
j∈Z/NZ p(j) = 1.

There exists a constant C(α) > 0, so that∑
|t|>a

p(t) ≤ C(α)

aα

∑
|t|<a

|t|2p(t) ≤ C(α)a2−α.

Proof. If a = 1, then both sums are less than or equal to 1 = 1/aαi = a2−α. If a > 1, we
can compute ∑

|t|>a

p(t) ≤ 2

∫ ∞
max(2,a)−1

p(t) dt ≤ 2c

∫ ∞
a/2

dt

(1 + t)1+α

=
2c

α(1 + a/2)α
≤ 2c(2α)

α

1

aα
.

Moreover, ∑
|t|<a

|t|2p(t) ≤ 2

∫ 4a

0

t2p(t) dt ≤ 2c

∫ 4a

0

(1 + t)1−α dt

≤ 25c

2− α
a2−α

Thus, the statement of the lemma is true for C(α) = max{1, 2c(2α)/α, 25c/(2− α)}.

Next, we prove that the wrap-around definition described in the introduction and
one given in Definition 1.1 are comparable. Specifically, we will show that on cycles, the
probability measures are comparable up to multiplicative constants depending only on α.
Therefore, the probability measures on the full group are comparable up to constants
depending on a. For fixed N > 0 and α ∈ (0, 2), the measure driving our long-jump
random walks on Z/NZ is

p(g) =
c

(1 +
g)1+α

, where c−1 =
∑

j∈Z/NZ

1

(1 +
j)1+α

,

and the measure driving the wrap-around model is

p̃(g) =
∑
j∈Z

c̃

(1 + |g +Nj|)1+α
, where c̃−1 =

∑
g∈Z/NZ

∑
j∈Z

1

(1 + |g +Nj|)1+α

 .
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Lemma A.3. For all α > 0, there exist constants c1, c2 > 0 depending on α, such that for
all positive integer N and k ∈ Z/NZ,

c1p(k) ≤ p̃(k) ≤ c2p(k).

Proof. Fix an integer k ∈ [0, N/2], and consider

p̃(k)

p(k)
=
c̃

c

∑
j∈Z

(1 + k)1+α

(1 + |k +Nj|)1+α
=
c̃

c

1 +
∑
j 6=0

(1 + k)1+α

(1 + |k +Nj|)1+α

 (A.1)

It will be convenient to define the constant A =
∑∞
j=1

1
(1+j)1+α . For the lower bound of

(A.1), notice that the term in the parenthesis is bounded below by 1. Moreover, since
rearranging the summand gives that c̃−1 ≤ 2A, combined with Lemma A.1, we see that
we can set c1 = 2(1+α)

αA .
For the upper bound of (A.1), first when k = 0, for all k ∈ [0, N/2] and j > 0,

1 + k

1 + k + jN
=

1

1 + j N
k+1

≤ 2

1 + j
,

where the last inequality is because k + 1 ≤ 2N . When j < 0, we have

1 + k

1− jN + k
≤ 1

1 + |j| Nk+1

≤ 2

1 + |j|
.

Then, ∑
j 6=0

(1 + k)1+α

(1 + |k +Nj|)1+α
≤
∑
j 6=0

(
2

1 + |j|

)1+α

≤ 22+αA.

Thus, we can set c2 = (1 + 22+α)A/c.

B Dirichlet form estimates

In this section, we establish various estimates on the Dirichlet form. We will also
let π always be the uniform distribution for simplicity of proof, but all theorems can be
made to work for arbitrary distributions. The techniques in this section were inspired by
techniques developed in [12], [13], and [14]. In particular, see Section 4 of [13].

Proposition B.1. Let G be a finite group, ||·|| a quasi-norm on G, µ a probability measure
on G, and π be the uniform distribution.

1. Suppose that there exists a function a(r) ≥ 0, such that for all r ≥ 0, f ∈ `2(π),
y ∈ B(0, r), ∑

x∈G
|f(x)− f(xy)|2π(x) ≤ a(r) Eµ(f, f).

Then for all r ≥ 0, f ∈ `2(π),

||f − fr||22 ≤ a(r) Eµ(f, f).

2. Fix s ∈ G and n to be the order of s in G. Let µ is a probability distribution on G of
the form

µ(g) =
∑

j∈Z/NZ

1sj (g)p(j),

where p is a probability distribution on Z/NZ. Let also that || · || be a quasi-norm
of the form

||g|| =

{
||m||0 if g = sm

∞ otherwise
,
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where || · ||0 is a quasi-norm on Z/NZ.

Suppose that there exists a real-valued function a(r) ≥ 0 such that for all r ≥ 0,
f : Z/NZ→ R, y ∈ Z/NZ where ||y||0 ≤ r,

1

N

∑
x∈Z/NZ

|f(x)− f(x+ y)|2 ≤ a(r) Ep(f, f).

Then we have that for all r ≥ 0, f : G→ R, y ∈ G where ||y|| ≤ r then

1

|G|
∑
x∈G
|f(x)− f(xy)|2 ≤ a(r) Eµ(f, f).

3. Let µ : G→ R be a convex combination of probability measures µi: µ =
∑k
i=1 ciµi.

Then for any f ∈ `2(π), then

Eµ(f, f) = c1 Eµ1
(f, f) + · · ·+ ck Eµk(f, f).

Proof. 1. For all r ≥ 0 and f ∈ `2(π), we have

||f − fr||22 ≤
∑
x∈G
|f(x)− fr(x)|2π(x)

=
∑
x∈G

∣∣∣∣∣∣ 1

V (e, r)

∑
y∈B(e,r)

(f(x)− f(xy))π(xy)

∣∣∣∣∣∣
2

π(x)

=
∑
x∈G

∣∣∣∣∣∣
∑

y∈B(e,r)

(f(x)− f(xy))
1

#B(e, r)

∣∣∣∣∣∣
2

π(x)

≤
∑
x∈G

1

V (e, r)

∑
y∈B(e,r)

|(f(x)− f(xy))|2 π(x) (by Jensen’s inequality)

≤ 1

#B(e, r)

∑
y∈B(e,r)

a(r) Eµ(f, f) (by assumption)

= a(r) Eµ(f, f).

2. Fix r > 0, f : G→ R and y0 ∈ G such that ||y0|| ≤ r. By the definition of || · ||, y0 is
of the form sm where ||m||0 ≤ r. We denote the cosets of 〈s〉 ≤ G as [xj〈s〉] where
the xj ’s are fixed representatives of the cosets. Then we have

Eµ(f, f) =
1

|G|
∑
x,y∈G

|f(x)− f(xy)|2µ(y)

=
1

|G|
∑
x,y∈G

|f(x)− f(xy)|2
∑

j∈Z/NZ

1sj (y)p(j)

=
1

|G|
∑
x∈G

∑
j∈Z/NZ

|f(x)− f(xsj)|2p(j).

For each x there is an unique representation as a product of one of the xj ’s and an
element in 〈s〉. So we have

Eµ(f, f) =
N

|G|

|G|/N∑
j=1

∑
`,`′∈Z/NZ

|f(xjs
`′)− f(xjs

`+`′)|2p(`) 1

N
.
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Then define fj : Z/NZ→ R to map ` 7→ f(xjs
`), and we have

Eµ(f, f) =
N

|G|

|G|/N∑
j=1

Ep(fj , fj). (B.1)

Then

1

|G|
∑
x∈G
|f(x)− f(xsm)|2 =

1

|G|

|G|/N∑
j=1

∑
`∈Z/NZ

|f(xjs
`)− f(xjs

`+m)|2

=
1

|G|

|G|/N∑
j=1

∑
`∈Z/NZ

|fj(`)− fj(`+m)|2

≤ N

|G|
a(r)

|G|/N∑
j=1

Eµ(fj , fj) (by assumption)

= a(r) Eµ(f, f) (by (B.1)).

3.

Eµ(f, f) =
∑
x,y

|f(x)− f(xy)|2µ(y)π(x)

=
∑
x,y

|f(x)− f(xy)|2(c1µ1(y) + · · ·+ ckµk(y))π(x)

= c1
∑
x,y

|f(x)− f(xy)|2µ1(y)π(x) + · · ·+ ck
∑
x,y

|f(x)− f(xy)|2µk(y)π(x)

= c1 Eµ1(f, f) + · · ·+ ck Eµk(f, f)

Definition B.2. Define p a symmetric distribution on Z/NZ to satisfy regularity condi-
tion (A) if there exists a constant Cp > 0 such that for all k ∈ [0, N/2]

min
Ik

p ≥ Cp max
Ik

p,

where Ik = [bk/9c , k]. Since p is symmetric the inequality remains true for k ∈ [−N/2, 0]

with Ik = [k, dk/9e].
Lemma B.3. Let N ≥ 0 and α > 0. The probability distribution pN,α : Z/NZ→ R, where

pN,α(x) =
cN,α

(1 + |x|)1+α
, and c−1

N,α =
∑

j∈Z/NZ

1

(1 + |j|)1+α
. (B.2)

satisfies regularity condition (A) where the constant CpN,α depends only on α, and not N .

Proof. By Lemma A.2, we know that

α

2(1 + α)
≤ cN,α ≤ 1.

Let k ∈ [0, N/2]. In the trivial case, when k ∈ [0, 8], Ik only includes 0, so we have
minIk pN,α = maxIk pN,α = cN,α.

In the nontrivial case, when k ≥ 9, we have bk/9c ≥ max{1, k/9− 1}.
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Then we have

max
Ik

pN,α = c(1 + bk/9c)−(1+α) ≤ (1 + max{1, k/9− 1})−(1+α)

≤ 21+α(2 + 1 + k/9− 1)−(1+α) ≤ 181+α(18 + k)−(1+α)

≤ 181+α(1 + k)−(1+α) ≤ 181+α min
Ik

pN,α.

Thus, CpN,α can be set to 18−1−α.

Next we show that that the pseudo-Poincaré inequality holds for pN,α, as defined in
(B.2), on the cyclic group.

Theorem B.4. Fix α ∈ (0, 2) and n > 0. Then there exists C(α) so that for all r > 0,
|y|α < r and f ∈ `2(π)

1

N

∑
x∈Z/NZ

|f(x)− f(x+ y)|2 ≤ C(α)|y|α EpN,α(f, f). (B.3)

Proof. The statement is trivially true when y = 0. And for y 6= 0, we first define

I0 =

{
[by/4c , y/2] if y ≥ 0

[y/2, dy/4e] if y ≤ 0
.

Note that I0 is always non-empty, since if |y| ∈ {1, 2, 3}, then 0 ∈ I0. For all other y’s,
b|y|/4c and b|y|/2c are at least one apart. Then, first multiplying the left hand side of
(B.3) by pN,α(y), we create two sums A and B:

∑
x∈G
|f(x)− f(x+ y)|2pN,α(y) ≤ 1

|I0|

(∑
z∈I0

∑
x∈G
|f(x)− f(x+ z)|2pN,α(y)︸ ︷︷ ︸

A

+
∑
z∈I0

∑
x∈G
|f(x+ z)− f(x+ y)|2pN,α(y)︸ ︷︷ ︸

B

)
.

Define

Jy =

{
[by/9c , y] if y ≥ 0

[y, dy/9e] if y < 0
.

By the regularity property (Definition B.2) of pN,α and the fact that pN,α is symmetric
and I0 ⊆ Jy, we have

pN,α(y) ≤ 1

CpN,α
pN,α(z) for all y ∈ I0

Thus,

A ≤ 1

CpN,α

∑
x∈Z/NZ

∑
z∈I0

|f(x)− f(x+ z)|2pN,α(z) ≤ N

CpN,α
EpN,α(f, f).

Moreover, since z ∈ I0, we have

y − z ∈

{
[by/4c , y/2] if y ≥ 0

[y/2, dy/4e] if y < 0
.
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So

pN,α(y) ≤ 1

CpN,α
pN,α(y − z),

and

B ≤ 1

CpN,α

∑
z∈I0

∑
x∈Z/NZ

|f(x+ z)− f(x+ y)|2pN,α(y − z) ≤ N

CpN,α
EpN,α(f, f).

Then combining what we computed, we have

1

N

∑
x∈Z/NZ

|f(x)− f(x+ y)|2 ≤ 2

CpN,αpN,α(y)#I0
EpN,α(f, f) ≤ 4|y|1+α

#I0cN,αCpN,α
EpN,α(f, f).

where the last inequality is by:{
(1 + |y|)1+α ≤ 21−α|y|1+α if y 6= 0

(1 + |y|)1+α ≤ |y|1+α if y = 0
.

Then to count the number of elements in I0, we see that when |y| = 1, I0 has one
element; when |y| = 2, 3, 4, I0 has 2 elements, and for |y| ≥ 8, we have

#I0 ≥
⌊
|y|
2
− b|y|/4c

⌋
≥ b|y|/4c ≥ |y|/4− 1 ≥ |y|/8.

And for 4 < |y| < 8, we have that |y|/4 is one, and |y|/2 > 2, so #I0 ≥ 2. In all cases, the
#I0 ≥ |y|/8.

Therefore if we set, using previous bounds for cN,α and CpN,α , C(α) to 29+α32+α(α+

1)/α, then
1

N

∑
x∈Z/NZ

|f(x)− f(x+ y)|2 ≤ C(α)|y|α Eµ(f, f),

which is what we were looking for in (B.3).

By Theorem B.4, Proposition B.1 (2), and the definition of || · ||s,α, we obtain the
following theorem.

Theorem B.5. Let G be finite group, s ∈ G, and α ∈ (0, 2). Then as defined in the end of
Section 1,

µs,α(g) =
∑

`∈Z/NiZ

1s`i
(g)pi(`). (B.4)

There exists a constant C(α) > 0 such that for all r ≥ 0, f ∈ `2(π), and y ∈ G where
||y||s,α ≤ r, ∑

x∈G
|f(x)− f(xy)|2π(y) ≤ C(α)r Eµs,α(f, f),

where C(α) can be defined as 29+α32α(1 + α)/α.

At this point, it may be illustrative to use the above theorem to prove a pseudo-
Poincaré inequality for finite abelian groups. Let G be a finite abelian group, S be a
k-tuple of generating elements of G, and a ∈ (0, 2)k. Fix r > 0, f : G→ R, y ∈ G where
||y||S, a ≤ r. Then y can be written as y = y1y2 · · · yk so that for all i, ||yi||si,αi ≤ r. So by
Theorem B.5, for all 1 ≤ i ≤ k,∑

x∈G
|f(x)− f(xyi)|2π(x) ≤ C(αi)r Eµsi,αi (f, f),

EJP 27 (2022), paper 26.
Page 24/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP745
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Long-jump random walks on finite groups

where C(αi) is the number defined in Theorem B.5. Using these inequalities we have

1

|G|
∑
x∈G
|f(x)− f(xy)|2 =

1

|G|
∑
x∈G
|f(x)− f(xy1 · · · yk)|2

≤ k
k∑
i=1

1

|G|
∑
x∈G
|f(x)− f(xyi)|2 (by Cauchy-Schwarz inequality)

≤ C(a)rk

k∑
i=1

Eµsi,αi (f, f) (using Proposition B.1)

= C(a)rk2 EµS, a(f, f),

where C(a) = max1≤i≤k C(αi).

C Algorithm for computing DS,a for cyclic groups

The goal of this section is to give an algorithmic way to compute DS, a on the cyclic
group Z/NZ with S = (1, s) and a = (α1, α2). We use this process to arrive at the
examples outlined in Section 5. For convenience, we will think of elements of Z/NZ as
integers in {0, . . . , n − 1}, and fix 1 ≤ s ≤ N/2. We know that for all positive integers
0 < a ≤ b/2, there exists positive integers q and r such that

b = qa− εr,

such that ε ∈ {±1} and 0 ≤ r ≤ a/2.
Using this fact to modify the Euclidean algorithm, we can expand N as follows:

r−1 = N = q1s− ε1r1

r0 = s = q2r1 − ε2r2

r1 = q3r2 − ε3r3

...

ri−1 = qi+1ri − εi+1ri+1

...

rK−1 = qK+1rK − rK+1 (C.1)

where rK+1 is the first ri that’s equal to zero, so rK is equal to the greatest common
divisor of N and s. The connection between this algorithm and continued fractions is
well studied, see Section 4.5.3 [8].

For 1 ≤ i ≤ K, we choose ri and εi so that

ri−1 = qi+1ri − εi+1ri+1 (C.2)

ri+1 ≤ ri/2 and (C.3)

if ri+1 = ri/2, then εi+1 = −1. (C.4)

For each i, we can write εiri in terms of N and s:

m′iN + ε̄iri = mis,

for some mi,m
′
i > 0, where ε̄i = ε1 · · · εi. One should interpret this as “using mi s-steps

(positive ones only), one can reach ε̄iri by going around the circle m′i times.”
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Using the expansion in (C.1), we get

CN + ε̄i+1ri+1 = (qi+1mi − εimi−1)s.

Immediately, we see that mi satisfy the recurrence relation

mi+1 = qi+1mi − εimi−1

with base cases m−1 = 0 and m0 = 1. The next few elements in the series are

m1 = q1 m2 = q1q2 − ε1 m3 = q1q2q3 − ε1q3 − ε2q1

As we will show, the sequence of mi’s for −1 ≤ mi ≤ K is non-negative and strictly
increasing. In addition, mi is the smallest positive integer, ` such that `s = ε̄iri mod N .

Theorem C.1.
DS, a � min

−1≤i≤K
{max{rα1

i ,mα2
i+1}}.

In other words, there exist constants c1, c2 > 0 such that

c1 min
i
{max{rα1

i ,mα2
i+1}} ≤ DS, a ≤ c2 min

i
{max{rα1

i ,mα2
i+1}}.

In particular we can set c1 = 1/25(α1+α2) and c2 = 1.

First, we present some simple corollaries.

Corollary C.2. 1. Let N = st, where s, t > 0, G = Z/NZ, S = (1, s), and a = (α1, α2).
Then,

DS, a � min {Nα1 ,max{sα1 , tα2}} .

2. Suppose sα1 ≤ (N/s)α2 . Let N = st, where s, t > 0, G = Z/NZ, S = (1, s), and
a = (α1, α2). Then,

DS, a � min{Nα1 , (N/s)α2}.

3. Let N = st1 + s2, where 0 ≤ s2 ≤ s/2 and s = s2t2, G = Z/NZ, S = (1, s), and
a = (α1, α2). Then,

DS, a � min{Nα1 ,max{sα1 , tα2
1 },max{(sα1

2 , (t1t2)α2}}.

4. Let

N = st1 + s2

s = s2t2 + s3

s2 = s3t3,

where 0 < s, 0 < s2 ≤ s/2, and 0 < s3 ≤ s2/2, G = Z/NZ, S = (1, s), and
a = (α1, α2). Then

DS, a � min{Nα1 ,max{sα1 , tα2
1 },max{(sα1

2 , (t1t2)α2},max{sα1
3 , (t1t2t3)α2}}.

Proof of the upper bound in Theorem C.1. It suffices to show that for all x ∈ Z/NZ,

||x||S, a ≤ min
i
{max{rα1

i ,mα2
i+1}}.

Fix i. For all x ∈ Z/NZ, |ks − x| < ri for some 0 ≤ k ≤ mi+1. Then x = ks + r for
some |r| ≤ ri and |k| ≤ mi+1. Therefore, ||x||S, a ≤ max{rα1

i ,mα2
i+1}, for all i. Taking the

minimum over all i, we achieve the desired result.
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Figure 1: We visualize Z/47Z, whose elements are labeled inside the circles. With
s = 17, we label [·]s for each element on the outside of the circle. Following the positive
s-steps, we can see that r1 is the first time that the path has visited (−s/2, s/2), at which
time the path turn from yellow to red. Similarly, at the 11th s-step, we visit −1 and it is
the first time we visit the interval (−r1/2, r1/2).

Our proof of the lower bound is much more involved, and will use the following
definition and proposition

Definition C.3. Fix positive integers N and s with 0 < s ≤ N/2, define

[x]s = argmin
`∈Z

{|`| : `s ≡ x mod N},

and if there are two options, choose the positive one.

Proposition C.4. For all 0 ≤ i ≤ K, |[ri]s| = mi.

First we give some properties of [·]s in the following lemma:

Lemma C.5. 1. For any x ∈ Z/NZ, represented as 0 < x ≤ N/2, if [x]s = −[x]s, then
x divides N .

2. For all i < K, [−ri]s = −[ri]s.

3. Let x, y ∈ Z/NZ, where [x]s and [y]s are positive. If [x+ y]s ≥ min([x]s, [y]s), then

[x+ y]s = [x]s + [y]s.

4. Let x, y ∈ Z/NZ, where [x]s and [y]s are positive. If [x]s > [y]s > 0, then [x− y]s =

[x]s − [y]s.
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Proof. 1. By definition, [−x]s is either −[x]s or [x]s. If the former is true, then we are
done. If the latter, then let ` = [x]s = [−x]s, and then we have

`s ≡ −x mod N

`s ≡ x mod N.

Thus, 2x ≡ 0 mod N .

2. Follows directly from (1).

3. Let a = [x]s and b = [y]s. Without loss of generality, we can assume that a > b. We
know that [x+y]s ≤ a+ b by definition. Thus suppose that 0 < [x+y]s < a+ b would
imply that 0 < [x+ y]s − b < a, which contradicts the assumption that [x]s = a.

4. We know that [x− y]s ≤ a− by definition. If [x− y]s < a− b, then it would be true
that 0 < [x− y]s + b < a, which contradicts the assumption that [x]s = a.

Proof of Proposition C.4. We prove by induction with the following induction hypotheses:

(a) [ε̄iri]s = mi (note in particular, this means that [ε̄iri]s is positive), where ε̄i =

ε1 · · · εi.

(b) For all x ∈ Si = (−2ri − ri−1, 2ri + ri−1) \ {±ri−1, 0}, |[x]s| > mi.

The base cases are for i = 0 and 1, i.e. ri being s and r1, which are trivial for both
hypotheses.

For the induction step, we first consider when i < K − 1, and case-split based on the
signs of −ri−1,−ri, ri, and ri−1:

If the signs are (−,−,+,+), then we know that ε̄i−1 = εi = 1. Then by Lemma C.5
(3) and the induction hypothesis, we can deduce that [ri]s = mi, [2ri]s = 2mi, . . . , and
[qi+1ri]s = qi+1mi. Thus,

[εi+1ri+1]s = [ε̄i+1ri+1]s = [qi+1ri − ri−1]s

= [qi+1ri]s − [ri−1]s (Lemma C.5 (4))

= qi+1mi −mi−1 = mi+1.

For induction hypothesis (b), note that it suffices to show this for points with positive
[·]s, by Lemma C.5 (1). Starting from −ri−1, consider the path along positive s-steps.
By the induction hypothesis, the next visit to the set Si is at ri − ri−1, and the next at
2ri − ri−1, and so on. Therefore, the first visit to Si+1 is at the point qi+1ri − ri−1, by the
definition of qi+1. This point is εi+1ri+1. Therefore, for all other points in Si, specifically
the ones in Si−1, have [·]s greater than mi+1, if it is realized by a positive s-path.

If the signs are (−,+,−,+), then we know that ε̄i−1 = 1 and εi = −1. As in the
previous case, by Lemma C.5 (2) and the induction hypothesis, [qi+1ri]s = −qi+1mi, and

[ε̄i+1ri+1]s = −[εi+1ri+1]s = −[qi+1ri − ri−1]s = qi+1mi +mi−1 = mi+1.

We follow the format of the previous case, instead starting at ri−1, considering again
positive s-steps. In this case, the next visits to Si are ri−1 − ri, ri−1 − 2ri, . . ., and
ri−1 − qi+1ri, which is ε̄i+1ri+1. The last two cases are the same as the cases above with
the signs switched.

Remaining are the cases when i = K. The possible sign combinations for−rK−1,−rK ,
rK , and rK−1 are (−,+,+,+) and (+,+,+,−). Then the argument proceeds exactly the
same as above.
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Lemma C.6. 1. Let r > 0 and x ≥ n, where n is a positive integer. Then

brxc ≥ brnc − 1

brnc
rx and drxe ≤ drne

drne − 1
rx.

Note that the first inequality is only of interest of when rn > 1 and the second
inequality when rn > 2.

2. For all 1 ≤ i ≤ K + 1, qi ≥ 2.

3. The mi’s are strictly increasing.

4. Let 2 ≤ i ≤ K. Then
qi+1mi ≥

mi+1

4
.

5. Let i ≥ 1. Then

qi+1ri ≥
3ri−1

4
.

Proof. 1. The proof is simple and we omit it here.

2. Fix 1 ≤ i ≤ K + 1.
ri−2 + εiri = qiri−1.

The algorithm requires that for each i ≥ 0, ri+1 ≤ ri/2. For each i ≥ 1 we know
that ri−2 ≥ 2ri−1 and ri−1 ≤ ri/2, so

qiri−1 = ri−2 + εiri ≥ 2ri−1 − ri−1/2 = (3/2)ri−1

So qi ≥ 3/2, and since the qi’s must be positive integers, qi ≥ 2.

3. From our inductive definition we have for the base case

m2 = q1q2 − ε1 ≥ q1(2− 1/2) ≥ (3/2)q1 > m1.

and for the inductive case,

mi+1 = qi+1mi − εimi−1

≥ 2mi −mi−1 (Lemma C.6 (2))

> mi (induction hypothesis).

4. If i = 1, we have

q2m1 = q2q1 ≥
3

4
(q2q1 − 1) ≥ 3

4
(q2q1 − ε1) =

3

4
m2.

If i > 1, then qi+1mi = mi+1 − εimi−1. If mi+1/mi−1 ≤ 2, then since mi’s are
increasing by Lemma C.6 (3), we know mi+1 ≤ 2mi, as well. So,

qi+1mi ≥ qi+1
mi+1

2
≥ mi+1,

with the last inequality following from qi+1 ≥ 2, Lemma C.6 (2). If mi+1/mi−1 ≥ 2,

qi+1mi ≥ mi+1 −mi−1 ≥
1

2
mi+1.

5. ri−1 = qi+1ri − εiri+1 ≤ qi+1ri + ri+1 ≤ qi+1ri + ri−1

4
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Proposition C.7. Let 0 ≤ i ≤ K. Define

xi =

{
bqi+1/2c ri if qi+1 ≥ 8

ri if qi+1 < 8
. (C.5)

Then,

||xi||S, a ≥
1

25(α1+α2)
min{rα1

i−1,m
α2
i+1}.

Proof. First we consider the case when qi+1 ≥ 8, and thus xi = bqi+1/2c ri. Let ni =

bqi+1/4c. Consider the interval [−ri−1, ri−1] with the points reachable using at most nimi

large steps, and the two colors signify the large steps that were used with generators of
the opposite sign. The particular picture uses qi+1 = 10:

0

ri−1

ri 2ri

−ri−1
−9ri

−8ri 9ri
8ri

xi = 5ri

Consider a path that w that maps to xi under the standard projection. If degs(w) ≥ nimi

or more large steps,

nimi =
⌊qi+1

4

⌋
mi

≥ qi+1mi

23
(Lemma C.6 (1))

≥ 1

25
mi+1 (Lemma C.6 (4))

If degs(w) ≤ nimi, then

deg1(w) ≥ xi − niri =
(⌊qi+1

2

⌋
−
⌊qi+1

4

⌋)
ri

≥
(

3

4

qi+1

2
− qi+1

4

)
ri (Lemma C.6 (1))

=
qi+1

23
ri

≥ ri−1

25
(Lemma C.6 (5).)

Now consider consider the case when qi+1 < 8, and thus xi = ri. If we use fewer than
mi large steps, then the number of small steps required is

ri ≥
qi+1ri

23
≥ ri−1

25
.

If we can use mi large steps, then we can reach ri. But

mi ≥
qi+1mi

23
≥ mi+1

25
.

Proof of the lower bound of Theorem C.1. For the lower bound, let

L = argmin
i
{max{rα1

i ,mα2
i+1}}.

Suppose L = −1. Then Nα1 < qα2
1 and

DS, a ≥ ||x0||S, a ≥
1

25(α1+α2)
Nα1 .

Now we can assume that L ≥ 0,
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Case 1 (rα1

L ≤ m
α2

L+1) Then mα2

L+1 = max{rα1

L ,mα2

L+1} ≤ max{rα1

L−1,m
α2

L } = rα1

L−1, since
the mi’s are increasing. By substituting i = L into Lemma C.7, we have that

DS, a ≥
1

25(α1+α2)
min{rα1

L−1,m
α2

L+1} ≥
mα2

L+1

25(α1+α2)
.

Case 2 (rα1

L ≥ m
α2

L+1) Then rα1

L = max{rα1

L ,mα2

L+1} ≤ max{rα1

L+1,m
α2

L+2} = mα2

L+2, since
the ri’s are decreasing. By substituting i = L+ 1 into Lemma C.7, we have that

DS, a ≥
1

25(α1+α2)
min{rα1

L ,mα2

L+2} ≥
rα1

L

25(α1+α2)
.
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