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longest temporal period of a periodic solution*
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Abstract

We study one-dimensional cellular automata whose rules are chosen at random from
among r-neighbor rules with a large number n of states. Our main focus is the
asymptotic behavior, as n → ∞, of the longest temporal period Xσ,n of a periodic
solution with a given spatial period σ. We prove, when σ ≤ r, that this random variable
is of order nσ/2, in that Xσ,n/n

σ/2 converges to a nontrivial distribution. For the case
σ > r, we present empirical evidence in support of the conjecture that the same result
holds.
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1 Introduction

In an autonomous dynamical system, a closed trajectory is a temporally periodic
solution and obtaining information about such trajectories is of fundamental importance
in understanding the dynamics [26]. If the evolving variable is a spatial configuration,
we may impose additional requirements on periodic solutions, such as spatial periodicity.
What sort of periodic solutions does a typical dynamical system have? This question is
perhaps easiest to pose for temporally and spatially discrete local dynamics of a cellular
automaton. Indeed, if we fix a neighborhood and a number of states, the number of
cellular automata rules is finite, and the notion of a random rule straightforward. To date,
not much seems to be known about properties of random cellular automata; however,
see [29], which introduces a setting similar to the one adopted here and considers
prevalence of various properties of cellular automata, including intrinsic universality.
The aim of the present paper is to further understanding of temporal periods of their
periodic solutions with a fixed spatial period. To this end, the particular random quantity
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One-dimensional cellular automata with random rules

we address is the longest temporal period, to complement the work in [15] on the
shortest one.

To introduce our formal set-up, the set of sites is one-dimensional integer lattice
Z, and the set of possible states at each site is Zn = {0, 1, . . . , n − 1}, thus a spatial
configuration is a function ξ : Z → Zn. A cellular automaton (CA) produces a
trajectory, that is, a sequence ξt of configurations, t ∈ Z+ = {0, 1, 2, . . . }, which is
determined by the initial configuration ξ0 and the following local and deterministic update
scheme. Fix a finite neighborhood N ⊂ Z. Then a rule is a function f : ZNn → Zn that
specifies the evolution as follows: ξt+1(x) = f(ξt|x+N ). In this paper, we fix an r ≥ 2, and
consider one-sided rule with the neighborhood N = {−(r− 1),−(r− 2), . . . ,−1, 0}, which
results in

ξt+1(x) = f(ξt(x− r + 1), . . . , ξt(x)), for all x ∈ Z. (1.1)

In words, the state at a site at time t+ 1 depends in a translation-invariant fashion on
the state at the same site and its left r − 1 neighbors at time t. Keeping the convention
from [15], we often write f(a−r+1, . . . , a0) = b as a−r+1 · · · a0 7→ b.

It is convenient to interpret a trajectory as a space-time configuration, a mapping
(t, x) 7→ ξt(x) from Z+ ×Z to Zn that is commonly depicted as a two-dimensional grid of
painted cells, in which different states are different colors, as in Figure 1. We remark
that the one-sided neighborhoods are particularly suitable for studying periodicity and
that any two-sided rule can be transformed to a one-sided one by a linear transformation
of the space-time configuration [12].

In this paper, we are interested in trajectories that exhibit both temporal and spatial
periodicity, defined as follows. Let L be a configuration of length σ. Form the initial
configuration ξ0, denoted by L∞, by appending doubly infinitely many L’s, by default
placed so that the leftmost state of a copy of L is at the origin. Run a CA rule f starting
with ξ0 = L∞. If at some time τ , ξτ = ξ0, we say that we have found a periodic solution
(PS) of the CA rule f with temporal period τ and spatial period σ. We assume that τ
and σ are minimal, that is, L∞ does not appear at a time that is smaller than τ and L

cannot be divided into two or more identical words. We emphasize that this minimality is
of central importance in our main results and their proofs. (See, for example, the notion
of cemetery states in Section 3.) A PS with periods τ and σ is characterized by a tile,
which is any rectangle with τ rows and σ columns within its space-time configuration.
We view the tile as a discrete torus filled with states and represent any periodic solution
with its corresponding tile. We do not distinguish between rotations of a tile and thus
identify spatial and temporal translations of a PS.

Figure 1: A piece of a PS of a 3-state rule. The states 0, 1 and 2 are represented by
white, red and black cells, respectively.

To give an example, Figure 1 displays a piece of the space-time configuration of a 3-
state 2-neighbor rule. The spatial and temporal axes are oriented horizontally rightward
and downward, respectively, as is common in this field. This PS is generated by any
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One-dimensional cellular automata with random rules

2-neighbor rule with 3 states that satisfies 20 7→ 1, 12 7→ 1, 11 7→ 1, 10 7→ 2, and 01 7→ 0.
The initial configuration 012∞ re-appears for the first time after 6 updates, thus in this
case τ = 6, σ = 3, and the tile (which is, by definition, unique) is

0 1 2

1 0 1

1 2 0

0 1 1

2 0 1

1 1 0

.

Periodic configurations generated by CA have received some attention in the mathe-
matical literature. The groundwork was laid in [24], which extensively studied additive
CA, but also devoted some attention to non-additive ones. An important observation is
the link between periodicity in CA and state transition diagrams, which we find useful
in this paper as well. Successors of [24] include [18, 19, 17, 32, 33, 21]. In [7, 6], the
authors take a dynamical systems point of view and explore the density of temporally
and spatially periodic (which they call jointly periodic) configurations. Our research is
also motivated by [12], where the authors investigate 3-neighbor binary CA and their PS
that expand into any environment with positive speed; see also [13].

Long temporal periods generated by CA have been of particular interest because of
their applications to random number generation [31, 9, 28, 27, 25, 10]. In this paper,
we focus on this aspect of randomly selected rules, a subject which so far remained
unexplored, to our knowledge. For a fixed n and r, the natural probability space is
Ωr,n, containing all the nn

r

r-neighbor rules, with P that assigns the uniform probability
P({f}) = 1/|Ωr,n| = 1/nn

r

to every f ∈ Ωr,n. We also fix the spatial period σ, and define
the random variable Xσ,n by letting Xσ,n(f) be the longest temporal period with spatial
period σ, for any rule f ∈ Ωr,n. We are interested in the typical size of Xσ,n when r and
σ are fixed and n is large. Our main result covers the case σ ≤ r. The case σ > r is much
harder, but we expect the same result to hold; see the discussion in Section 4.

Theorem 1.1. Fix a number of neighbors r and a spatial period σ ≤ r. Then
Xσ,n

nσ/2
converges in distribution, as n→∞, to a nontrivial limit.

Computations with the limiting distribution are a challenge, so we resort to Monte-
Carlo simulations in Section 6 to illustrate Theorem 1.1.

In our companion paper [15], we assume that r = 2 and show that the limiting proba-
bility, as n→∞, that a random rule has a PS with temporal and spatial periods confined
to a finite set S ⊂ N×N, is nontrivial and can be computed explicitly. Consequently, we
answer another natural question, on the asymptotic size of the shortest temporal period
Yσ,n of random-rule PS with a spatial period σ. This random variable converges to a
nontrivial distribution ([15], Corollary 3), and is therefore much smaller than Xσ,n, which
is on the order nσ/2, at least for r = σ = 2. It is also interesting to compare the typical
value of Xσ,n to its maximum over all rules [14]. It turns out that even maxf Yσ,n(f) is on
the order of nσ (which, by the pigeonhole principle, is the largest possible).

We now give an outline of the rest of the paper. In Section 2, we construct a directed
graph, similar to the one in [15], and its use in analysis of PS is spelled out in Section 3.
The proof of Theorem 1.1 is finally given in Section 5. On the way, we prove the following
theorem, which may be of independent interest, in which Cn = Cσ,n is the number of
equivalence classes of initial conditions, modulo translations, that are periodic with
(minimal) period σ and are such that the CA evolution never reduces the spatial period.

Theorem 1.2. Assume σ ≤ r. If σ is even, then, as n → ∞, n−σCn converges in
distribution to 1 − τ , where τ is the hitting time of 0 of the Brownian bridge η(t) that
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starts at η(0) = 1/
√
σ and ends at η(1) = 0. If σ is odd, n−σCn → 1 in probability.

See [2, 1] for related results on random mappings. To prove Theorem 1.2, we present
a sequential construction of the random rule that yields a stochastic difference equation
whose solution converges to the Brownian bridge. Once Theorem 1.2 is established,
the remainder of the proof of Theorem 1.1 is largely an application of existing results
on random mappings and random permutations, which we adapt for our purposes in
Section 4. In our final Section 6, we discuss extensions of our results, present several
simulation results and propose a few open problems for future consideration.

2 The directed graph on equivalence classes of configurations

In this section, we introduce a variant of the configuration digraph [15], a concept
introduced in [30]. While conceptually straightforward, this is a very convenient tool to
study temporal periods of PS with a fixed spatial period σ ≥ 1. In a sense, it is dual to
the label digraph [12, 15], where a temporal period is fixed instead. It will be convenient
to interpret periodic configuration with a spatial period σ, or a divisor of σ, as evolving
on the finite interval {0, . . . , σ − 1} with periodic boundary conditions, as in [30]. All our
finite configurations will be on this interval, with indices taken modulo σ. We use the
standard notation µ and ϕ for Möbius and Euler totient function.

In paper [12], we define when a label right-extends to another label. The following
definition introduces an analogous natural relationship between configurations.

Definition 2.1. Fix a spatial period σ ≥ 1 and an r-neighbor rule f . Let A = a0 . . . aσ−1

and B = b0 . . . bσ−1 be two configurations. We say that A down-extends to B if the rule
maps A to B in one update, that is,

f(ai−r+1, . . . , ai) = bi, i = 0, . . . , σ − 1,

and we write A↘ B.

For example, if f is the rule with the PS of Figure 1, and σ = 3, then 012↘ 101↘ 120,
etc.

Definition 2.2. Fix a spatial period σ and suppose σ′ is a proper divisor of σ. A con-
figuration A = a0 . . . aσ−1 is periodic with period σ′ if it can be divided into σ/σ′ > 1

identical words, and σ′ is the smallest such number. If no such σ′ exists, and therefore
the spatial period cannot be reduced, we call A aperiodic.

Lemma 2.3. The number of length-σ n-state aperiodic configurations is

T (σ, n) =
∑
d
∣∣σ n

dµ
(σ
d

)
=

{
nσ − nσ/2 + o(nσ/2), if σ is even

nσ + o(nσ/2), if σ is odd
.

Proof. See [8].

Definition 2.4. A circular shift is a map π : Zσn → Zσn on length-σ configurations,
satisfying π(a0a1 . . . aσ−1) = a`a`+1 . . . aσ−1+` for some ` ∈ Z+, for all a0a1 . . . aσ−1 ∈ Zσn
(recall the subscripts are taken modulo of σ). The order of a circular shift π is the
smallest k such that πk(A) = A for all A ∈ Zσn, and is denoted by ord(π).

We say that A is equal to B up to circular shift, or in short A is equivalent to
B, if there is a circular shift π : Zσn → Zσn such that A = π(B). We record the following
observation from [15].

Lemma 2.5. The following two statements hold:
(1) Let π be a circular shift on Zσn. Then ord(π)

∣∣ σ;
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(2) Let A ∈ Zσn be any aperiodic finite configuration and d
∣∣ σ. Then

| {B ∈ Zσn : A = π(B) for some circular shift π with ord(π) = d} | = ϕ(d).

As A↘ B implies π(A)↘ π(B) for any circular shift π, this relation defined a directed
graph on equivalence classes in [15]. We now define a convenient variant, which we
call the digraph on equivalence classes (DEC) Gσ(f) = (Vσ, Eσ(f)), associated with f
and σ. Under the equivalence relation defined above, Zσn is partitioned into equivalence
classes, which inherit periodicity or aperiodicity from their representatives. Note that
the cardinality of an aperiodic equivalence class is σ, while the cardinality of a periodic
equivalence class is a proper divisor of σ. We regard each aperiodic equivalence class
as a single vertex, called aperiodic vertex, of the DEC; thus there are T (σ,n)

σ aperiodic
vertices.

Next, we combine periodic classes together to form vertices called periodic vertices,
so that, with one possible exception, each vertex contains σ configurations. (The
cardinality σ is necessary so the periodic vertices have the same probability of mapping
as the aperiodic ones. The one exception is necessary because the number of periodic
classes may not be divisible by σ.) This can be achieved for a large enough n (certainly
for n ≥ σ2) as follows. For each proper division σ′ > 1 of σ, divide all configurations
with period σ′ into sets, which all have cardinality σ, except for possibly one set; fill that
last set with the necessary number of period-1 configurations to make its cardinality
σ. Each of these sets represents a different periodic vertex. At the end, we have
ι = nσ − T (σ, n)− σbn

σ−T (σ,n)
σ c < σ leftover period-1 configurations, which we combine

into the exceptional initial periodic vertex, denoted by v0. We let Va and Vp be the sets
of aperiodic and non-initial periodic vertices, so that the vertex set is Vσ = Va ∪ Vp ∪ {v0}.

Having completed the definition of the vertex set of DEC, we now specify its set Eσ(f)

of directed edges. An arc −→uv ∈ Eσ(f) if and only if: 1. u ∈ Va, v ∈ Vσ; and 2. there exist
A ∈ u and B ∈ v such that A↘ B.

An example of DEC with σ = 2 of a 5-state rule is given in Figure 2. In this example,
Vp = {{00, 11} , {22, 33}}, v0 = {44} and other vertices are all in Va. We do not completely
specify the rule that generate this DEC, as different CA rules (even a with different range
r) may induce the same DEC.

{01, 10}

{02, 20}
{03, 30}{04, 40}

{12, 21}
{13, 31}

{14, 41}

{23, 32}

{24, 42}

{34, 43}

{00, 11}

{22, 33}

{44}

Figure 2: DEC of a 2-neighbor, 5-state rule.

The set of all DEC’s generated by r-neighbor n-state rules is denoted by Gσ = Gσ,r,n.
Choosing f at random, we obtain a random DEC denoted by Gσ = (Vσ, Eσ) ∈ Gσ. We
now give the resulting distribution of Gσ.
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Lemma 2.6. For any u ∈ Va and v ∈ Vσ

P(−→uv ∈ Eσ) =

{
σ
nσ , if v 6= v0

ι
nσ , if v = v0

.

Moreover, the outgoing edges for different vertices in Va are independent.

Proof. For any configurations A ∈ u and B ∈ v, P(A↘ B) = 1/nσ. Then P(−→uv ∈ Eσ) =

|v|P(A↘ B), giving the desired result.

3 The connection between DEC and PS

In a DEC, we call a vertex a cemetery vertex if it is either a periodic vertex or there
is a directed path from it to a periodic vertex (which, we repeat, is a set of configurations
with spatial periods less than σ). Otherwise, a vertex is said to be non-cemetery. For
example, in Figure 2, the vertices {00, 11}, {22, 33} and {44} are cemetery as they are
periodic; {03, 30}, {04, 40}, {12, 21}, {14, 41} and {13, 31} are also cemetery as there
exists a directed path from each of them to a periodic vertex; other five vertices are
non-cemetery. The reason that we declare a vertex C 3 A of length σ to be cemetery
is that when the CA updates to configuration A, the spatial period is reduced and the
dynamics cannot produce a PS of spatial period σ. For example, in the DEC of Figure 2,
a PS with σ = 2 cannot contain the configuration 21, as its appearance leads to 44, which
has spatial period 1.

It is also important to note that different rules can have the same DEC. In particular,
a cycle in a DEC may generate PS with different temporal periods depending on the
rule. We illustrate this by the σ = 2 example in Figure 2. First, we locate a directed
cycle, say, the one of length 3. Using a configuration from any vertex on the cycle,
say 23, as the initial configuration, run the rule starting with 23 until 23 appears again.
Now, the temporal period can be either 3 or 6, depending on the rule f . Namely, if
the rule assignments result in, say, 23 ↘ 24 ↘ 43 ↘ 23, then τ = 3, while if they are
23 ↘ 24 ↘ 43 ↘ 32, then τ = 6. In general, if a cycle in DEC has length `, then the
corresponding temporal period of the PS generated by this cycle may have length d`,
where d is any divisor of σ.

For an arbitrary G ∈ Gσ, define M(G) to be the number of directed cycles in G.
(For example, M(G) = 2 for G in Figure 2.) Let C(i)(G) be the ith longest directed
cycle of G. Then let Li(G), i = 1, 2, . . . , be the length of C(i)(G), with Li(G) = 0

for i > M(G). Then, for a rule f , define M(f) = M(Gσ(f)) and Li(f) = Li(Gσ(f)).
Furthermore, if a PS of temporal period d` results from a cycle C of length ` in Gσ(f),
we say that C has expanding number d under f , and use the notation Ef (C) = d. We
let Ei(f) = Ef (C(i)(Gσ(f))), again defined to be 0 when C(i)(Gσ(f)) does not exist, i.e.,
when i > M(f). Thus, Li(f) and Ei(f) are defined for all i. The following lemma explains
how the cycle lengths in DEC and expending numbers determine the longest temporal
period.

Lemma 3.1. Let f be a CA rule and Gσ(f) be its DEC of period σ. Then we have

Xσ,n(f) = max {Li(f) · Ei(f) : i = 1, 2, . . .} .

Moreover, if C(k)(Gσ(f)) is the longest cycle that is σ-expanded, then

Xσ,n(f) = max {Lk(f) · σ, Li(f) · Ei(f) : i = 1, 2, . . . , k − 1} .

Proof. The first part is clear from the definition, and the second part follows as σ is the
largest possible expanding number.
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As a consequence of the above lemma, our task is to study the properties of DEC and
expanding numbers when a rule is randomly selected. A random DEC is essentially a
random mapping, after eliminating cemetery vertices, as we will see. We formulate a
lemma on expanding numbers next.

Lemma 3.2. Let G ∈ Gσ be a fixed DEC, and σ ≤ r. Select a rule f at random. Then,
conditioned on the event {Gσ(f) = G}, the random variables Ei(f), i = 1, . . . ,M(G), are
independent. Also

P

(
Ei(f) = d

∣∣∣∣ Gσ(f) = G

)
=
ϕ(d)

σ
,

for i = 1, . . . ,M(G) and d
∣∣ σ.

Proof. Let a cycle C(i)(G) be v1 → v2 → · · · → vk → v1. Let Aj ’s be configurations of
length σ such that Aj ∈ vj , j = 1, . . . , k. Then there are circular shifts, πj ’s, j = 1, . . . , k,
such that A1 ↘ π2(A2) ↘ · · · ↘ πk(Ak) ↘ π1(A1), under rule f . Now, Ei(f) = d if and
only if ord(π1) = d, thus the equality follows from Lemma 2.5. Since σ ≤ r, the rule f
does not share assignments among different cycles, and therefore the independence
holds.

In summary, we may study the probabilistic behavior of Xσ,n by moving from the
sample space Ωr,n to the product space Gσ × Ξ∞σ , where Ξσ = {d ∈ N : d

∣∣ σ}. The
marginal probability distributions on all factors are independent from each other. The
distribution on the factor Gσ is given in Lemma 2.6, while the distribution on each factor
of Ξ∞σ is given by Lemma 3.2: P ({w}) = ϕ(w)

σ , for w ∈ Ξσ. We now define random
variables Ti, and reinterpret the random variables Li, on this product space. Take
(Gσ, w1, w2, . . .) ∈ Gσ × Ξ∞σ . Then Ti assigns to this vector the coordinate wi ∈ Ξσ. Thus,
Ti represents the expanding number of the ith directed cycle of a randomly selected rule.
The reinterpretation of the random variable Li acts on the same vector by returning
Li(Gσ). Then the distribution of Xσ,n is given by

max {Li · Ti : i = 1, 2, . . . } .

Let Kσ = min{i : Ti = σ} be a random variable that represents the smallest index of

Ti’s that is equal to σ. Then P (Kσ = k) =
(

1− ϕ(σ)
σ

)k−1 (
ϕ(σ)
σ

)
for k ≥ 1, i.e., Kσ is

Geometric
(
ϕ(σ)
σ

)
. Then we may write

Xσ,n = max {Li · T ′i , LKσσ, i = 1, 2, . . . ,Kσ − 1} ,

where T ′i are independent (of each other and of Li and Kσ) random variables with

distribution P (T ′i = d) = P
(
Ti = d

∣∣ Ti 6= σ
)

= ϕ(d)
σ−ϕ(σ) , for d

∣∣ σ and d 6= σ.

4 Random mappings

In this section, we discuss a result about the cycle structure of random mapping,
indicating that the joint distribution of the longest k cycles converges after a proper
scaling.

We will consider the function space RN = {g : ZN → ZN} containing all functions
from ZN into itself. Clearly |RN | = NN . A finite sequence x0, . . . , x`−1 ∈ ZN is a cycle
of length ` if g(x0) = x1, g(x1) = x2, . . . , g(x`−2) = x`−1 and g(x`−1) = x0. We call g a

random mapping if g is randomly and uniformly selected from RN . Let P (k)
N be the

random variable representing the kth longest cycle length of a random mapping from
RN . More extensively studied function space is SN = {g : ZN → ZN : g is bijective}
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containing all permutations of ZN . Clearly, |SN | = N ! and a cycle can be defined in the
same way. We call g a random permutation if g is randomly and uniformly selected
from SN and we use Q(k)

N to denote the random variable representing the kth longest

cycle length of a random permutation from SN . The probabilistic properties of P (k)
N and

Q
(k)
N have been investigated in a number of papers, including [4, 11, 3, 16].

What is relevant to us is the distribution of
(
P

(1)
N , P

(2)
N , . . . , P

(k)
N

)
as N → ∞, for

which we are not aware of a direct reference. To handle this, call E the event that, in a
random mapping g of Zn, every element belongs to a cycle. Conditioned on the event E ,
g becomes a random permutation of Zn. We will now make use of this fact. To begin, we
let MN be the number of elements from ZN that belong to cycles of a random mapping
from RN . The following well-known result provides the distribution of MN , see [4] or
[5].

Lemma 4.1. We have

P (MN = s) =
s

N

s−1∏
j=1

(
1− j

N

)
, s = 1, . . . , N.

The next result is adapted from Corollary 5.11 in [3].

Proposition 4.2. As N →∞,

1

N

(
Q

(1)
N , Q

(2)
N , . . .

)
→
(
Q(1), Q(2), . . .

)
, in distribution,

in ∆ = {(x1, x2, . . . ) ⊂ (0, 1)∞ :
∑
i xi = 1}. Here, for each k,

(
Q(1), Q(2), . . . , Q(k)

)
has

density

q(k)(x1, . . . , xk) =
1

x1x2 · · ·xk

1 +

∞∑
j=1

(−1)j

j!

∫
Ij(x)

dy1 · · · dyj
y1 . . . yj

 ,

on ∆, where Ij(x) is the set of (y1, . . . , yj) that satisfy

min{y1, . . . , yj} > x−1 and y1 + · · ·+ yj < 1

and

x =
1− x1 − · · · − xk

xk
.

Lemma 4.3. For a fixed N , let

hN (x) =
s√
N

s−1∏
j=1

(
1− j

N

)
,

for x ∈
(
s−1√
N
, s√

N

]
and s = 1, 2, . . . . Then hN (x) ≤ 4 max (x, 1) exp

(
−x2/2

)
for all x > 0,

which is integrable on (0,∞). Also, hN (x)→ x exp
(
−x2/2

)
, as N →∞, for all x ∈ (0,∞).

Proof. Since hN (x) = 0 for x >
√
N , it suffices to show the inequality for x ≤

√
N , i.e.,

s ≤ N . Since 1− j
N < exp

(
− j
N

)
, it follows that

∏s−1
j=1

(
1− j

N

)
< exp

(
− s2

2N

)
exp

(
s

2N

)
<

2 exp
(
− s2

2N

)
, for s ≤ N . So, if x ∈

(
s−1√
N
, s√

N

]
, then

hN (x) ≤ 2
s√
N

exp

(
−x

2

2

)
.
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When s = 1, s/
√
N ≤ 2, while for s ≥ 2, s/

√
N ≤ 2(s−1)/

√
N ≤ 2x, proving the inequality.

To prove convergence, observe that

hN (x) =
d
√
Nxe√
N

d
√
Nxe−1∏
j=1

(
1− j

N

)

=
d
√
Nxe√
N

d
√
Nxe−1∏
j=1

exp

{
− j

N
+O

(
j2

N2

)}

=
d
√
Nxe√
N

exp

−d
√
Nxe

(
d
√
Nxe − 1

)
2N

+O
(

1√
N

)
→ x exp

(
−x2/2

)
,

as N →∞.

Theorem 4.4. For any k = 1, 2, . . . , let P (k)
N be the kth longest cycle length in a random

mapping from RN . Then

N−1/2
(
P

(1)
N , P

(2)
N , . . . , P

(k)
N

)
converges to a nontrivial joint distribution, as N →∞.

Proof. Conditioning on the event that a set S ⊂ ZN is exactly the set of elements of ZN
that belong to cycles, the random mapping is a random permutation of S. It follows that
for any bounded continuous function φ : Rk → R,

E

[
φ

(
P

(1)
N√
N
, . . . ,

P
(k)
N√
N

)]
=

N∑
s=1

E

[
φ

(
P

(1)
N√
N
, . . . ,

P
(k)
N√
N

) ∣∣∣∣MN = s

]
P (MN = s)

=

N∑
s=1

E

[
φ

(
Q

(1)
s√
N
, . . . ,

Q
(k)
s√
N

)]
s

N

s−1∏
j=1

(
1− j

N

)

=

N∑
s=1

E

[
φ

(
Q

(1)
s

s

s√
N
, . . . ,

Q
(k)
s

s

s√
N

)]
s

N

s−1∏
j=1

(
1− j

N

)
.

Define h̃N : R→ R

h̃N (x) = E

[
φ

(
Q

(1)
s

s

s√
N
, . . . ,

Q
(k)
s

s

s√
N

)]
s√
N

s−1∏
j=1

(
1− j

N

)
,

for x ∈
(
s−1√
N
, s√

N

]
, s = 1, 2, . . . By Lemma 4.3 and Proposition 4.2, h̃N is bounded by an

integrable function and, for every fixed x ≥ 0,

lim
N→∞

h̃N (x) = lim
N→∞

E

φ
Q(1)

d
√
Nxe

d
√
Nxe

d
√
Nxe√
N

, . . . ,
Q

(k)

d
√
Nxe

d
√
Nxe

d
√
Nxe√
N

x exp

(
−x

2

2

)

= E
[
φ
(
Q(1)x, . . . , Q(k)x

)]
x exp

(
−x

2

2

)
.
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Then,

lim
N→∞

E

[
φ

(
P

(1)
N√
N
, . . . ,

P
(k)
N√
N

)]

= lim
N→∞

∫ ∞
0

h̃N (x)dx

=

∫ ∞
0

E
[
φ
(
Q(1)x, . . . , Q(k)x

)]
x exp

(
−x

2

2

)
dx,

by dominated convergence theorem.

As a consequence, we obtain the following convergence in distribution.

Lemma 4.5. Let T ′j ’s, for j = 1, 2, . . . , be i.i.d. with

P
(
T ′j = d

)
=

ϕ(d)

σ − ϕ(σ)
,

for all divisors d 6= σ of σ, and independent of the random mapping. Let

D
(k)
N = max

{
P

(k)
N · σ, P (j)

N · T ′j : j = 1, 2, . . . , k − 1
}
.

Then N−1/2D
(k)
N converges to a nontrivial distribution, for any k and σ.

Proof. Note that T ′j ’s do not depend on N . So the vector

N−1/2
(
P

(1)
N T ′1, . . . , P

(k−1)
N T ′k−1, P

(k)
N σ

)
converges in distribution as N →∞. The conclusion follows by continuity.

In the sequel, we denote by D(k) a generic random variable with the limiting distribu-
tion of N−1/2D

(k)
N .

5 The main results

5.1 The case σ = 1

In this case, a DEC does not have cemetery vertices thus our problem simply reduces
to a random mapping problem. To be precise,

X1,n

n1/2
=

L1

n1/2
=d

P
(1)
n

n1/2
, (5.1)

which converges in distribution by Theorem 4.4. The first equality in (5.1) holds because
a cycle in a DEC cannot be expanded when σ = 1 and the second equality in (5.1) is true
because there are no cemetery states for σ = 1.

For a general σ, the problem may be handled similarly to the case of σ = 1 only after
eliminating the cemetery vertices. As a consequence, we must determine the behavior of
Cn = Cσ,n from Section 1, which we may reinterpret as the random variable representing
the number of non-cemetery vertices in a DEC of spatial period σ. The strategy is as
follows: construct the random DEC via a sequential algorithm that naturally provides a
system of stochastic difference equations for the number of non-cemetery classes with
Cn related to a hitting time; then show that the solution of the stochastic difference
equations, appropriately scaled, converges to a diffusion, giving the asymptotic behavior
of Cn.
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Algorithm 1: Construction of a random DEC

CA ← Vp ∪ {v0} or Vp, if v0 does not exist // Active cemetery vertices
CP ← ∅ // Passive cemetery vertices
CN ← Va // Non-cemetery vertices
E ← ∅ // Set of arcs
k ← 0

if v0 ∈ CA then // If v0 exists
CA ← CA \ {v0}
CP ← CP ∪ {v0} // Make it passive
Let β0 ∼ Binomial

(
Y0,

ι
nσ

)
Pick random v1, . . . , vβ0

in CN // Select non-cemetery vertices that map
to v0

for j = 1, . . . , β0 do
E ← E ∪ {−−→vjv0} // Add the arcs to the set of arcs
CA ← CA ∪ {vj} // Make the vertices active cemetery
CN ← CN \ {vj}

end
Y0 ← |CN | // Update the number of temporary non-cemetery vertices
Z0 ← |CA| // Update the number of active cemetery vertices
k ← 1

end
while |CA| > 0 do // When CA = ∅, the non-cemetery vertices are
determined

Pick an arbitrary v ∈ CA // Pick an arbitrary active cemetery vertex v

CA ← CA \ {v}
CP ← CP ∪ {v} // Make v passive

Let βk ∼ Binomial
(
Yk,

1
Yk+Zk

)
Pick random v1, . . . , vβk in CN // Select non-cemetery vertices that map
to v

for j = 1, . . . , βk do
E ← E ∪ {−→vjv} // Add the arcs to the set of arcs
CA ← CA ∪ {vj} // Make the vertices active cemetery
CN ← CN \ {vj}

end
Yk ← |CN | // Update the number of non-cemetery vertices
Zk ← |CA| // Update the number of active cemetery vertices
k ← k + 1

end
for v ∈ CN do // Assign arcs among non-cemetery vertices.

Pick a u uniformly from CN
E = E ∪ {−→vu}

end
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5.2 Construction of a random DEC and the difference equations

Recall the notation from Section 2 and Lemma 2.6. Algorithm 1 formally describes a
way of generating a random DEC that sequentially adds cemetery vertices until all are
gathered. The idea of this algorithm is to start with the set of cemetery vertices, which
are essentially the equivalence classes of periodic configurations. Then determine the
vertices of DEC that map into those and then iteratively work backwards until the set of
all vertices on oriented paths that lead to the periodic configurations is established.

The algorithm specifies the evolution of the set of cemetery vertices, which are
separated into active and passive ones, initially all active. After the kth step (k = 0, 1, . . . ),
we let Yk and Zk be the numbers of non-cemetery and active cemetery vertices. In the
kth step (k = 0, 1, . . . ), we pick an active cemetery vertex v, making it passive. We also

select βk non-cemetery vertices that map to v, where βk ∼ Binomial
(
Yk,

1
Yk+Zk

)
. (If

k = 0 and v0 exists, the initial pick is v0 and the probability changes accordingly.) This
distribution is justified by Lemma 2.6, i.e., all non-cemetery vertices share the same
probability of mapping into a vertex that is not passive cemetery. We make those βk
vertices active cemetery, because each one of them has the ability to “absorb” non-
cemetery vertices (thus is active), while itself maps into a periodic class of a lower period
along a directed path (thus is cemetery). The above procedure determines all cemetery
classes in the while loop. In the final for loop, we assign a unique target uniformly for
each non-cemetery vertex.

We observe Yk+1 = Yk − βk and Zk+1 = Zk + βk − 1. To prepare for establishing the
convergence to a diffusion, we let ∆Yk = Yk+1 − Yk, and ∆Zk = Zk+1 − Zk, we obtain
the stochastic difference equation for k such that Zk ≥ 0,∆Yk = −1−∆Zk = −βk

∆Zk = βk − 1 = Yk
Yk+Zk

− 1 + ∆Bk

√
Yk

Yk+Zk

(
1− 1

Yk+Zk

) , (5.2)

where βk’s are independent and

βk ∼ Binomial

(
Yk,

1

Yk + Zk

)
,

for k = 1, 2, . . . , thus

∆Bk =
βk − Yk/(Yk + Zk)√

Yk
Yk+Zk

(
1− 1

Yk+Zk

) .
For the initial condition, we have

Y0 =

{
−S0 + T (σ,n)

σ , if ι = 0

−S1 + T (σ,n)
σ , if ι 6= 0

,

and

Z0 =

{
S0 − 1 + bn

σ−T (σ,n)
σ c, if ι = 0

S1 − 1 + bn
σ−T (σ,n)

σ c, if ι 6= 0
,

where S0 ∼ Binomial
(
T (σ,n)
σ , σnσ

)
and S1 ∼ Binomial

(
T (σ,n)
σ , ι

nσ

)
. To define the pro-

cesses for all k = 0, 1, . . . , N − 1, we stop Yk and Zk once Zk hits zero.

5.3 Convergence to a diffusion

Let N = |Vσ| = nσ/σ + O(nσ/2) be the total number of vertices. We scale Yk and
Zk by dividing by N and

√
N , respectively. We do so as Yk will converge to the time

EJP 27 (2022), paper 25.
Page 12/23

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP744
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


One-dimensional cellular automata with random rules

coordinate and Zk to the space coordinate in the diffusion. To be more precise, consider

the 2-dimensional process ξk,N =
(
ξ

(1)
k,N , ξ

(2)
k,N

)
, for k = 0, . . . , N − 1, where ξ(1)

k,N = Yk/N

is the scaled number of non-cemetery states and ξ
(2)
k,N = Zk/

√
N is the scaled number

of active cemetery states. Let τ = τ (ξk,N ) = inf{k/N : ξ
(2)
k,N ≤ 0} be the hitting time

of zero for the second coordinate. We are thus interested in this question: when the
number of active cemetery vertices is zero, what is the limiting distribution of proportion

of non-cemetery vertices? In other words, what is limP
(
ξ

(1)
τ ≤ x

)
, for x ∈ (0, 1), as

N →∞? We will prove the following result, which is a restatement of Theorem 1.2.

Theorem 5.1. As N →∞, ξ(1)
τ → 1− τ(η) in distribution, where τ(η) = inf{t : η(t) = 0}

and η(t) satisfies

η(t) = p(σ)−
∫ t

0

η(s)

1− s
ds−Bt,

where Bt is the standard Brownian motion and p(σ) = 1/
√
σ if σ is even and p(σ) =

0, otherwise. In particular, when σ is even, ξ(1)
τ converges to a non-trivial limiting

distribution, while when σ is odd, ξ(1)
τ → 1 in probability.

To avoid excessive notation, we let τ stand for the hitting time of 0 in both discrete and
continuous cases. Our strategy in proving Theorem 5.1 is to verify the conditions in [23]
for a solution of a stochastic difference equation to converge to a diffusion. However,
trying to prove this directly for ξk,N runs into uniform continuity and boundedness

problems, so we need an intermediate process ξ̃k,N . For a fixed N , we define the

stochastic difference equations of ξ̃k,N =
(
ξ̃

(1)
k,N , ξ̃

(2)
k,N

)
by giving ∆ξ̃

(i)
k,N = ξ̃

(i)
k+1,N − ξ̃

(i)
k,N ,

i = 1, 2, as follows {
∆ξ̃

(1)
k,N = − 1

N −∆ξ̃
(2)
k,N

1√
N

∆ξ̃
(2)
k,N = − 1

N Ψ̃ + 1√
N

∆b̃ Υ̃
. (5.3)

The quantities Ψ̃, Υ̃, and ∆b̃ depend on additional parameters δ ≥ 0 and M ≥ 0, which
are necessary to make Ψ̃ and Υ̃ bounded. Define

g(x) = max(x, δ) and h(x) = min(max(x,−M),M). (5.4)

Then

Ψ̃ =
h
(
ξ̃

(2)
k,N

)
g
(
ξ̃

(1)
k,N

)
+ h

(
ξ̃

(2)
k,N

)
/
√
N
,

Υ̃ =

√√√√√Φ̃

1− 1

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

)
,

∆b̃ =
β̃k − Φ̃

Υ̃
,

β̃k ∼ Binomial

bNg (ξ̃(1)
k,N

)
c, 1

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

)
 ,

Φ̃ =
bNg

(
ξ̃

(1)
k,N

)
c

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

) = Eβ̃k.

We view the Ψ̃, Υ̃, and Φ̃ (and their relatives defined later) alternatively as the expres-
sions in ξ̃k,N or functions from R2 to R, which use ξ̃k,N as values of their independent
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arguments. When N > (M/δ)2, the denominators in the above expressions are positive,
and thus the process is automatically defined for k = 1, . . . , N − 1. When δ = 0 and

M =∞, the difference equation (5.3) is exactly the difference equation for
(
ξ

(1)
k,N , ξ

(2)
k,N

)
,

when ξ(2)
k,N ≥ 0. We assume δ > 0 (but small) and M <∞ (but large) for the rest of this

section. The initial conditions for ξ̃k,N and ξk,N agree: ξ̃0,N = ξ0,N . We now record some
immediate consequences of the above definitions.

Lemma 5.2. When N > (2M/δ)2, the following statements hold:

1. For all k, 0 < Φ̃ < 3.

2. For all k, 0 < Υ̃ < 2.

3. For all k, |Ψ̃| ≤ 2M/δ.

4. For all `, k ≥ 0,

E

∣∣∣∆b̃kΥ̃
∣∣∣` ≤ D`,

where D` is a constant depending only on `.

Proof. Parts 1–3 are clear. For part 4, observe that E
(

∆b̃kΥ̃
)`

is the centered moment

of a Binomial(x, p) random variable with xp < 3. Then the desired bound follows from
Theorem 2.2 in [22] for even ` and from Cauchy-Schwarz for odd `.

We have now arrived at the key result on the way to proving Theorems 1.1 and 1.2.
As usual, the process ξ̃t is the piecewise linear process on [0, 1], with values ξ̃k,N at k/N .

Furthermore, we define η̃t =
(
η̃

(1)
t , η̃

(2)
t

)
to be


η̃

(1)
t = 1− t

η̃
(2)
t = p(σ)−

∫ t

0

h
(
η̃

(2)
s

)
g(1− s)

ds−Bt
, (5.5)

for t ∈ [0, 1], where p(σ) = 1/
√
σ if σ is even and p(σ) = 0, otherwise.

Lemma 5.3. As N →∞, ξ̃t → η̃t in distribution, in C([0, 1],R2).

Proof. We write

E

[
∆ξ̃k,N

∣∣∣∣ Fk] = eN

(
ξ̃k,N

)
∆tNk ,

where Fk is the σ-algebra generated by ξ̃0,N , . . . , ξ̃k,N , eN
(
ξ̃k,N

)
=

[
−1 + Ψ̃√

N

−Ψ̃

]
and

∆tNk = 1/N . Moreover,

Cov

[
∆ξ̃k,N

∣∣∣∣ Fk] = sN

(
ξ̃k,N

)
sN

(
ξ̃k,N

)T
∆tNk ,

where sN
(
ξ̃k,N

)
=

[
Υ̃√
N

−Υ̃

]
and sN

(
ξ̃k,N

)T
is its transpose. Now, define

e
(
ξ̃k,N

)
=

[
−1

−Ψ

]
,

and

s
(
ξ̃k,N

)
=

[
0

−1

]
,
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where

Ψ =
h
(
ξ̃

(2)
k,N

)
g
(
ξ̃

(1)
k,N

) .
In the following steps, we suppress the value ξ̃k,N of the independent variables in the
functions e, eN , s, sN .

Step 1 . Denoting the Euclidean norm by | · |, we will verify that

E

N−1∑
k=0

[
|eN − e|2 + |sN − s|2

] 1

N
→ 0,

as N →∞. We write

E

N−1∑
k=0

|eN − e|2
1

N
= E

N−1∑
k=0

Ψ̃2

N2
+ E

N−1∑
k=0

∣∣ Ψ̃−Ψ
∣∣2

N

and

E

N−1∑
k=0

|sN − s|2
1

N
= E

N−1∑
k=0

Υ̃2

N2
+ E

N−1∑
k=0

∣∣ 1− Υ̃
∣∣2

N
.

In the next fours steps, we show that the four expressions inside the expectations are
bounded by deterministic quantities that go to 0.

Step 2 . For the first term,
N−1∑
k=0

Ψ̃2

N2
≤
(

2M

δ

)2

· 1

N
,

by Lemma 5.2 part 3.

Step 3 . For the second term, the bounds g ≥ δ and |h| ≤ M imply that, for a large
enough N

N−1∑
k=0

∣∣ Ψ̃−Ψ
∣∣2

N
=

N−1∑
k=0

∣∣∣∣ h2
(
ξ̃

(2)
k,N

)
/
√
N(

g
(
ξ̃

(1)
k,N

)
+ h

(
ξ̃

(2)
k,N

)
/
√
N
)
g
(
ξ̃

(1)
k,N

) ∣∣∣∣2 1

N
≤
(

2M2

δ2

)2

· 1

N
.

Step 4 . For the third term, by Lemma 5.2, part 2,

N−1∑
k=0

Υ̃2

N2
≤ 4

N
.

Step 5 . For the final term, we have, for large enough N , by Lemma 5.2, parts 1 and 2,

N−1∑
k=0

∣∣ 1− Υ̃
∣∣2

N
≤
N−1∑
k=0

|1− Υ̃2|
N

=

N−1∑
k=0

∣∣∣∣∣∣1− Φ̃

1− 1

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

)
∣∣∣∣∣∣ 1

N

≤
N−1∑
k=0

[
|1− Φ̃|+ Φ̃ · 1

δN − 1−M
√
N

]
1

N
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≤
N−1∑
k=0

|1− Φ̃|
N

+
3

δN − 1−M
√
N

≤
N−1∑
k=0

√
N
∣∣ h(ξ̃(2)

k,N

) ∣∣
bNg

(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

) · 1

N
+

3

δN − 1−M
√
N

≤ 2M

δ
· 1√

N
+

3

δN − 1−M
√
N
.

Steps 2–5 establish the claim in Step 1, and thus condition (1) in [23]. To finish the
proof, we also need to verify the conditions A1–A6 in Theorem 9.1 in [23]. The conditions
A1 and A5 hold trivially, and remaining four are handled in the next four steps.
Step 6 . For A2, it suffices to observe that e and s are bounded and continuous and eN
and sN are uniformly bounded on R2 (and none of them depend on the time variable).

Step 7 . For A3, the initial value ξ̃0,N converges in probability to

[
1

p(σ)

]
.

Step 8 . For A4, we show that

E

N−1∑
k=0

∣∣∣∣ ∆ξ̃k,N −
eN
N

∣∣∣∣4→ 0.

Indeed, the expectation equals

E

N−1∑
k=0

∣∣∣∣
[

2Ψ̃
N3/2 − ∆b̃Υ̃

N
∆b̃Υ̃√
N

] ∣∣∣∣4 = E

N−1∑
k=0

[ (
2Ψ̃

N3/2
− ∆b̃Υ̃

N

)4

+

2

(
2Ψ̃

N3/2
− ∆b̃Υ̃

N

)2(
∆b̃Υ̃√
N

)2

+

(
∆b̃Υ̃√
N

)4 ]
and goes to 0 as N →∞, by Lemma 5.2, parts 2, 3, and 4.
Step 9 . Finally, for A6, we apply the standard theory, e.g., Theorems 2.5 and 2.9 in [20],
to show that equation (5.5) has a unique solution.

We use the notation ξt and ηt for the processes resulting from taking M = ∞ in
(5.4), so that these processes have the same g but h(x) = x. Recall that ξt and ηt also
have δ = 0, i.e., g(x) = max(x, 0). We now extend Lemma 5.3 to show that ξt → ηt in
distribution.

Lemma 5.4. As N →∞, ξt → ηt in distribution.

Proof. By continuity of η̃t, for any ε > 0, there exists an M > 0 such that

P
(

max |η̃(2)
t | > M/2

)
< ε.

Let γM : R→ [0, 1] be a continuous function that vanishes outside [−M,M ] and is 1 on
[−M/2,M/2]. For any bounded continuous function F : C([0, 1],R2)→ R,

lim sup
N→∞

EF
(
ξt
)
≤ lim sup

N→∞
E
[
F
(
ξt
)
· γM (ξ

(2)

t )
]

+ lim sup
N→∞

E
[
F
(
ξt
)
· (1− γM (ξ

(2)

t ))
]

≤ lim sup
N→∞

E
[
F
(
ξ̃t

)
· γM (ξ̃

(2)
t )
]

+ sup |F | · lim sup
N→∞

P(max
∣∣ ξ̃(2)
t

∣∣≥M/2)

≤ E
[
F (η̃t) · γM (η̃

(2)
t )
]

+ sup |F | · ε

≤ E [F (ηt)] + 2 sup |F | · ε,

and a matching lower bound on lim inf EF
(
ξt
)

is obtained similarly.
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Lemma 5.5. Let δ ∈ (0, 1) be fixed and we define the approximate hitting time by
T : C

(
[0, 1],R2

)
→ [0, 1],

T
(
γ(1), γ(2)

)
= γ(1)(min{1− δ, inf{t : γ

(2)
t = 0}}).

Then T is a.s. continuous on a path of ηt. As a consequence, T (ξt)→ T (ηt) in distribution,
as N →∞.

Proof. Note that η(2)
t is a Brownian bridge prior to 1 − δ. Thus the claims follows

from well-known facts about the Brownian bridge and standard arguments. See, for
example, [20].

We can now complete the proof of Theorem 5.1, and thus also Theorem 1.2.

Proof of Theorem 5.1. Fix a δ > 0. By Lemma 5.5, P
(
T (ξt) ≤ x

)
→ P (T (ηt) ≤ x), for

all x ∈ (0, 1 − δ), as N → ∞. When x ∈ (0, 1 − δ), we also have that P (T (ξt) ≤ x) =

P
(
T (ξt) ≤ x

)
and P (T (ηt) ≤ x) = P (T (ηt) ≤ x). It follows that

P (T (ξt) ≤ x)→ P (T (ηt) ≤ x) ,

for all x ∈ (0, 1− δ). As δ > 0 is arbitrary, the claim follows.

The following proposition proves the distribution of hitting time of Brownian bridge.

Proposition 5.6. Fix an a > 0. Let ηa be the stochastic process satisfying

ηa(t) = a−
∫ t

0

ηa(s)

1− s
ds−Bt.

Define the hitting time τa = inf{t : ηa(t) = 0}. Then τa has density

gτa(x) =
a√

2πx3(1− x)
exp

{
−a

2(1− x)

2x

}
, x ∈ (0, 1).

Proof. This is well-known and follows from the fact that ηa(t) has the same distribution
as

a(1− t) + (1− t)Bt/(1−t),

which relates τa to a hitting time for the Brownian motion.

Corollary 5.7. When σ is even, the sequence of random variables ξ(1)
τ converges in

distribution to a random variable with density

g1−τ1/√σ (x) =
1√

2σπx(1− x)3
exp

{
− x

2σ(1− x)

}
, x ∈ (0, 1).

Proof. This follows from Theorem 5.1 and Proposition 5.6.

In Figure 3, we compare the empirical distribution of non-cemetery vertices and its
limit density given by Corollary 5.7. In the simulation, we fix σ = r = 2 and n = 100, and
randomly generate 10,000 rules.
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Figure 3: Normalized histogram of proportion of non-cemetery vertices in DEC, together
with the theoretical limit density.

5.4 Completion of proof of the main theorem

We now put together the results from Sections 3, 4, 5.2, and 5.3.

Proof of Theorem 1.1. Recall the geometric random variable Kσ from Section 3, and
that N = |Vσ| = nσ/σ+O(nσ/2) is the total number of vertices in a DEC from Section 5.3.
For any ε > 0, pick kε large enough such that P (Kσ > kε) < ε. Then we have

P

(
Xσ,n

nσ/2
≤ x

)
= P

(
n−σ/2 max {Li · Ti, i = 1, 2, . . . } ≤ x

)
≤

kε∑
k=1

P
(
n−σ/2 max {Li · Ti, i = 1, 2, . . . } ≤ x

∣∣ Kσ = k
)
P (Kσ = k) + ε

=

kε∑
k=1

P
(
n−σ/2 max {Li · T ′i , Lkσ, i = 1, 2, . . . , k − 1} ≤ x

)
P (Kσ = k) + ε

=

kε∑
k=1

P

(
D

(k)
Cn√
Cn
·
√
Cn
N
·
√
N

nσ/2
≤ x

)
P (Kσ = k) + ε,

where D(k)
Cn

is defined in Lemma 4.5. Therefore, it suffices to show that

P

(
D

(k)
Cn√
Cn
·
√
Cn
N
≤ x

)

converges as n→∞, for each fixed k. To this end, we partition the interval (0, 1] into M
sub-intervals, and write

P

(
D

(k)
Cn√
Cn

√
Cn
N
≤ x

)

=

M−1∑
i=0

P

(
D

(k)
Cn√
N
≤ x

∣∣∣∣
√
Cn
N
∈
(
i

M
,
i+ 1

M

])
P

(√
Cn
N
∈
(
i

M
,
i+ 1

M

])
.

(5.6)

Assume that σ is even and let a = 1/
√
σ. By Theorem 1.2 and Corollary 5.7,

P

(√
Cn
N
∈
(
i

M
,
i+ 1

M

])
→
∫ (i+1)/M

i/M

g√1−τa(t) dt, (5.7)
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as n→∞, where g√1−τa is the density of the random variable
√

1− τa. Moreover,

P

(
D

(k)
Cn√
N
≤ x

∣∣∣∣
√
Cn
N
∈
(
i

M
,
i+ 1

M

])
≤ P

D(k)
bi2N/M2c√
Ni/M

≤ x

i/M

 . (5.8)

It now follows from (5.6)–(5.8), Lemma 4.5, and the definition of D(k) after Lemma 4.5
that

lim sup
n→∞

P

(
D

(k)
Cn√
N
≤ x

)
≤
M−1∑
i=0

P

(
D(k) ≤ x

i/M

)∫ (i+1)/M

i/M

g√1−τa(t) dt

=

M−1∑
i=0

[
P

(
D(k) ≤ x

i/M

)(
g√1−τa

(
i

M

)
1

M
+O

(
1

M2

))]
→
∫ 1

0

P

(
D(k) ≤ x

y

)
g√1−τa(y) dy

as M → ∞ and O
(

1
M2

)
is uniform in i as g√1−τa is differentiable on [0, 1]. The same

lower bound for lim infn→∞P

(
D

(k)
Cn√
N
≤ x

)
is obtained along similar lines. For odd σ, a

simpler argument shows that

lim
n→∞

P

(
D

(k)
Cn√
N
≤ x

)
= P

(
D(k) ≤ x

)
,

and ends the proof.

6 Conclusions and open problems

In a CA, finding PS of a given temporal period reduces to finding cycles of the
corresponding DEC. When a rule is chosen at random, the out-going arcs of different
vertices are independent from each other, provided that the spatial period is less than
the number of neighbors, i.e., if σ ≤ r. The problem then reduces to finding the longest
of the expanded cycles after the cemetery vertices have been eliminated.

When σ > r, the independence among arcs in the DEC fails. For example, when r = 2

and σ = 3, the events {123↘ a1a2a3} and {124↘ b1b2b3} are dependent (as they cannot
occur simultaneously unless a2 = b2), but they are independent when r = 3. Even though
rigorous analysis seems elusive in this case, simulations strongly suggest that results
very much like Theorems 1.1 and 1.2 hold. For starters, the random variable Cn and the
cemetery vertices in a DEC may be defined in the same manner, and they have the same
connection to each other. Figure 4 supports the following conjecture.

Conjecture 6.1. Fix arbitrary σ, r ≥ 1, and let n → ∞. If σ is odd, n−σCn → 1 in
probability. If σ is even, then n−σCn converges in distribution to a nontrivial bimodal
distribution.

Turning to the longest periods themselves, we provide the loglog plots for r = 2, and
σ = 1, 2, 3, 4 in Figure 5. The first two cases are covered by Theorem 1.1, while the other
two are not. Nevertheless, the average lengths behave with the same regularity, leading
to our next conjecture.

Conjecture 6.2. Theorem 1.1 holds in the same form for σ > r, i.e.,
Xσ,n

nσ/2
converges in

distribution to a nontrivial limit, for any fixed σ ≥ 1 and r ≥ 1.
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(a) σ = 3, r = 2 (b) σ = 4, r = 2

Figure 4: Empirical proportion of non-cemetery vertices for two examples with r < σ

and n = 50, from 1000 samples.

(a) σ = 1, r = 2, 5 ≤ n ≤ 100 (b) σ = 2, r = 2, 5 ≤ n ≤ 100

(c) σ = 3, r = 2, 5 ≤ n ≤ 65 (d) σ = 4, r = 2, 5 ≤ n ≤ 36

Figure 5: Loglog plots of average lengths of longest PS with varied σ, from 1000 samples,
with corresponding regression lines.

Returning to the case σ ≤ r, one may ask whether our results can be extended to
cover other than longest periods. Indeed, as we now sketch, it is possible to show that
the length of the jth longest PS of a random rule, again scaled by nσ/2 converges in
distribution. To be more precise, recalling notation from Section 3, identify recursively
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for ` ≥ 1 the cycles with largest possible expansion numbers as follows: K(0)
σ = 0 and

K(`)
σ = min

{
k > K(`−1)

σ : Tk = σ
}
.

Then the length of jth longest PS is given by

X(j)
σ,n = max

(j)

{
Li · T ′i , LK(`)

σ
σ : i = 1, 2, . . . ,K(j)

σ − 1, i 6= K(`)
σ , ` = 1, . . . , j

}
,

where max(j) returns the jth largest element of a set. The arguments similar to those in

Sections 4 and 5.4, then show that X(j)
σ,n/nσ/2 converges in distribution to a nontrivial

limit.
We conclude with four questions on the extensions of our results in different direc-

tions, some of which are analogous to the those posed in [15].

Question 6.3. Assume that n is fixed, but σ, r →∞. What is the asymptotic behavior of
the longest temporal period with spatial period σ, depending on the relative sizes of σ
and r?

Question 6.4. For a fixed τ , define the random variable X ′τ,n to be the longest spatial
period of a PS with for a given temporal period τ , with X ′τ,n = 0 when such a PS does
not exist. What is the asymptotic behavior, as n→∞, of X ′τ,n?

In the CA literature, particularly in that on generation of long cycles, an important role
is played by two special classes of rules, permutative and additive (see the definitions
below and, for example, [24, 31, 6, 32]). In addition, additive rules are of special
importance due to the availability of algebraic methods for analysis. As the number
of rules in each of these two classes is also easy to count, the next two questions are
natural.

A rule is left permutative if the map ψb−r+1,...,b−1
: Zn → Zn given by

ψb−r+1,...,b−1
(a) = f(b−r+1, . . . , b−1, a)

is a permutation for every (b−r+1, . . . , b−1) ∈ Zr−1
n .

Question 6.5. Let L be the set of all (n!)n
r−1

left permutative rules. What is the
asymptotic behavior of Xσ,n if a rule from L is chosen uniformly at random?

Our final question is on additive rules [24], given by f(b−r+1, . . . , b0) =
∑0
i=−r+1 βibi,

for some βi ∈ Zn.

Question 6.6. Let A be the set of all nr additive rules. What is the asymptotic behavior
of Xσ,n if a rule from A is chosen uniformly at random?
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