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Abstract

The paper contains the study of sharp extensions of weak-type estimates for a mar-
tingale maximal function. Given 1 < p <∞ and a pair (x, y) of nonnegative numbers
satisfying xp ≤ y, we identify the optimal upper bounds for ‖| supn fn|‖p,∞, for non-
negative martingales f = (fn)n≥0 satisfying ‖f‖1 = x and ‖f‖pp = y.
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1 Introduction

As evidenced in numerous works, maximal inequalities play a distinguished role in
harmonic analysis and probability theory. The purpose of this paper is to present a
refined study of certain weak-type estimates arising in the context of martingales.

We start with the description of the background and notation used throughout the
text. In what follows, (Ω,F ,P) will denote the probability space, equipped with the
discrete-time filtration (Fn)n≥0. For an adapted martingale f = (fn)n≥0, the symbol
f∗ := supn≥0 |fn| will stand for the associated maximal function, we will also use the
notation f∗n := max0≤k≤n |fk| for its truncated version (n = 0, 1, 2, . . .).

Estimates between f and f∗ (equivalent to the boundedness of the maximal operator
on various function spaces) are of fundamental importance to the martingale theory and
form the base for stochastic integration. For example, we have the classical weak- and
strong-type estimates (cf. [2], see also [1, 8] for a different perspective)

‖f∗‖p,∞ ≤ ‖f‖p, 1 ≤ p <∞,

‖f∗‖p ≤
p

p− 1
‖f‖p, 1 < p ≤ ∞,

where ‖f∗‖p,∞ := supλ>0

(
λpP(f∗ ≥ λ)

)1/p
stands for the weak-Lp quasinorm of f∗ and

‖f‖p := supn≥0
(
E|fn|p

)1/p
is the Lp norm of a martingale f . Both inequalities are sharp:

the constants 1 and p/(p− 1) cannot be decreased without additional conditions on f .
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Maximal estimates

The purpose of this paper is to study a certain modification and extension of the
weak-type bound. Consider the following alternative norming of the Lorentz space Lp,∞:
for 1 < p <∞ and an arbitrary random variable ξ, put

‖|ξ|‖p,∞ := sup

{
P(A)1/p−1

∫
A

|ξ|dP
}
,

where the supremum is taken over all events A of positive probability. It is well-known
that the quantities ‖ · ‖p,∞ and ‖| · |‖p,∞ are equivalent for 1 < p <∞ (cf. [3]): we have
‖ξ‖p,∞ ≤ ‖|ξ|‖p,∞ ≤ cp‖ξ‖p,∞ for some constant cp depending only on p. We will identify
the optimal constant in the weak-type estimate under this new norming.

Theorem 1.1. For any 1 < p <∞ and any martingale f we have the sharp estimate

‖|f∗|‖p,∞ ≤ Γ

(
2p− 1

p− 1

)1−1/p

‖f‖p. (1.1)

Note that it is enough to study the above estimate for nonnegative martingales f
only. Indeed, given an arbitrary, real-valued Lp-bounded martingale f , let us denote
its pointwise limit by f∞. Then the passage from f to the nonnegative martingale
(E(|f∞| |Fn))n≥0 does not change the right-hand side of (1.1), while the left-hand side can
only increase. Thus, from now on, we will restrict ourselves to nonnegative martingales.
We will be able to study the following much more precise version of (1.1). Namely, fix
1 < p < ∞ and suppose that f = (fn)n≥0 is a nonnegative, Lp bounded martingale
satisfying ‖f‖1 = x and ‖f‖pp = y. Here x, y are arbitrary positive numbers with xp ≤ y
(it is easy to see that for such x and y, there is at least one nonnegative martingale
satisfying the norm requirements). What is optimal upper bound for ‖|f∗|‖p,∞? Of

course, (1.1) will give ‖|f∗|‖p,∞ ≤ Γ
(

2p−1
p−1

)1−1/p
y1/p, but this does not have to be sharp:

for example, if xp = y, then f must be a constant martingale: f0 = f1 = f2 = . . . ≡ x and
hence ‖|f∗|‖p,∞ = x.

Our main result can be formulated as follows. Suppose that x, y are arbitrary positive
numbers with xp ≤ y. Introduce the function

Bp(x, y) = sup
{
‖|f∗|‖p,∞ : f ≥ 0, ‖f‖1 = x, ‖f‖pp = y

}
.

Theorem 1.2. The function Bp is given by

Bp(x, y) =


Γ
(

2p−1
p−1

)1−1/p
y1/p if p−1

p Γ
(

p
p−1

)p−1
y > xp,

c1−p∗ y + x+ (p− 1)c∗γ
(
x
c∗

)p
− pγ

(
x
c∗

)p−1
x if p−1

p Γ
(

p
p−1

)p−1
y ≤ xp < y,

x if y = xp.

where the function γ and c∗ = c∗(x, y) are defined in Section 2.1 below.

By a standard approximation, the above result extends to the continuous-time context.
That is, if (Xt)t≥0 is a nonnegative, continuous-time cádlág martingale satisfying ‖X‖1 =

x and ‖X‖pp = y, then its maximal function X∗ = supt≥0 |Xt| satisfies

‖|X∗|‖p,∞ ≤ Bp(x, y).

Furthermore, the constant on the right cannot be decreased: for each x, y there is a
martingale X with prescribed first and p-th norms, for which both sides above are equal.

For related results involving the standard weak Lp-norm ‖ · ‖p,∞ in the place of
‖| · |‖p,∞, see the paper [4] by Melas and Nikolidakis, which makes use of combinatorial
and analytic arguments.
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Maximal estimates

The advantage of ‖| · |‖p,∞ over ‖ · ‖p,∞ lies in the fact that the former is actually
a norm on Lp,∞ (see [3]), which enables an additional averaging procedure. This, for
example, leads to the following extension of our result to the multivariate case. Suppose
that (f (j))j≥0 is a sequence of p-integrable random variables satisfying ‖f (j)‖1 = x and
‖f (j)‖pp = y for each j (e.g., take an arbitrarily dependent sequence of random variables

having the same distribution). Let (F (j)
n )n≥0 be a family of filtrations and let Q be

some probability measure on Z+ = {0, 1, 2, . . .}, independent of P. With a slight abuse

of notation, let f (j) = (E(f (j)|F (j)
n ))n≥0 be the martingale generated by f (j) and the

filtration F (j). Then the “average” maximal operatorMf =
∫
Z+

(f (j))∗dQ satisfies

‖|Mf |‖p,∞ ≤ EQ‖|(f (j))∗|‖p,∞ ≤ Bp(x, y).

This bound is sharp: if all the variables f (j) are the same and the filtrations coincide, we
recover our main result. There is a natural question whether the above estimate holds
if we pass to the quasinorm ‖ · ‖p,∞ (and consider the corresponding value of Bp(x, y)).
We strongly believe that this is not the case and some multiplicative constant in front
of Bp(x, y) is necessary. As an indication, note that the first bound (i.e., ‖Mf‖p,∞ ≤
EQ‖(f (j))∗‖p,∞) does not hold in general. Indeed, consider the probability space [0, 1]

equipped with its Borel subsets and Lebesgue’s measure, with a single filtration F0 =

{∅, [0, 1]}, F1 = F2 = . . . = {∅, [0, 1/2), [1/2, 1], [0, 1]}. Then the random variables f (0) =

1[0,1/2), f
(1) = 1[1/2,1] have the same distribution and we have

(f (0))∗ = 1[0,1/2) +
1

2
1[1/2,1], (f (1))∗ =

1

2
1[0,1/2) + 1[1/2,1],

so ‖(f (0))∗‖p,∞ = ‖(f (1))∗‖p,∞ = 2−1/p. Setting Q = 1
2δ{0} + 1

2δ(1), we check thatMf ≡
3/4 and hence ‖Mf‖p,∞ = 3/4 > 2−1/p = EQ‖|(f (j))∗|‖p,∞, at least for small p. For
related phenomena involving ‖ · ‖p,∞ and ‖| · |‖p,∞, arising in the context of martingale
study of Fourier multipliers, see e.g. [6, 7].

Let us say a few words about our approach towards Theorem 1.2. A natural idea is
to apply Burkholder’s method (sometimes referred to in the literature as the Bellman
function technique). This approach relates a given martingale inequality to the existence
of a certain special function, enjoying appropriate size and concavity requirements:
convenient references on this subject are [1] and [5]. However, a direct application of
the method requires the invention of a complicated special function of four variables
(which control the first norm of f , the p-th norm of f , the size of the maximal function and
the size of the event A which appears in the definition of the weak norm, respectively). To
overcome this technical difficulty, we propose an alternative novel approach which is of
independent interest. Namely, appropriate optimization and homogenization arguments
allow to reduce the problem to the investigation of a much simpler martingale inequality.
To prove this inequality, we will still use Burkholder’s method, but this time the special
functions will involve two variables only.

The paper is organized as follows. In the next section we introduce the technical
background needed for our investigation and establish the simple martingale estimate
discussed above. The final part of the paper contains the proofs of Theorem 1.1 and 1.2.

2 An auxiliary estimate

In this section, we assume that 1 < p < ∞ is a fixed parameter. Throughout, the
monotonicity of functions is understood in the strict sense: by saying that a given
function is increasing or decreasing, we mean that it is strictly monotone.
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Maximal estimates

2.1 Some technical facts

We start our analysis with the introduction of a certain special function of one variable.
Let g : [0,∞)→ [0,∞) be given by

g(s) := p(p− 1) exp(psp−1)

∫ ∞
s

up−1 exp(−pup−1)du.

We will need the following properties of this object.

Lemma 2.1. The function g is increasing and satisfies g(s) > s, lims→∞ g(s)/s = 1.

Proof. The asymptotics lims→∞ g(s)/s = 1 follows easily by de l’Hospital rule. The
estimate g(s) > s is equivalent to

p(p− 1)

∫ ∞
s

up−1 exp(−pup−1)du− s exp(−psp−1) > 0.

It is enough to note that the left-hand side vanishes at infinity and its derivative at s
equals − exp(−psp−1) < 0. Finally, the monotonicity of g is a direct consequence of the
equation

g′(s) = p(p− 1)sp−2(g(s)− s) (2.1)

and the estimate g(s) > s we have just established.

Put λ0 := g(0) = p−1/(p−1)Γ
(

p
p−1

)
and let γ : [λ0,∞) → [0,∞) be the inverse to

g. Then the estimate g(s) > s implies that γ(t) < t for t ≥ λ0. Furthermore, plugging
s := γ(t) into (2.1) and noting that g′(γ(t))γ′(t) = 1, we see that γ satisfies the differential
equation

γ′(t) =
(
p(p− 1)γ(t)p−2(t− γ(t))

)−1
, t > λ0. (2.2)

We extend γ to a continuous function on the whole half-line [0,∞), setting γ(t) := 0 for
t < λ0. Later on, we will need the following property of γ.

Lemma 2.2. The function ξ : (0,∞)→ R given by

ξ(x) :=

(
γ(x)p +

x

p− 1

)
x−p

is continuous, decreasing and satisfies limx→0 ξ(x) =∞, limx→∞ ξ(x) = 1.

Proof. The equality limx→0 ξ(x) = ∞ is evident, the identity limx→∞ ξ(x) = 1 follows
directly from the asymptotics lims→∞ g(s)/s = 1 established in the previous lemma.
Since γ is continuous, so is ξ and hence, to show the monotonicity of ξ, it is enough to
prove it separately on (0, λ0] and (λ0,∞). The property holds on the interval x ∈ (0, λ0],
because γ(x) = 0 there. For x ∈ (λ0,∞), we make the substitution x := g(y); since g is
increasing, we see that we must prove that the function

y 7→
(
yp +

g(y)

p− 1

)
g(y)−p

is decreasing on (0,∞). By the direct differentiation of this function and (2.1), it suffices
to show that

g(y)2 < p(g(y)− y)((p− 1)yp + g(y)). (2.3)

However, integrating by parts, we obtain

g(y) = p(p− 1) exp(pyp−1)

∫ ∞
y

sp−1 exp(−psp−1)ds,

g(y)− y = exp(pyp−1)

∫ ∞
y

exp(−psp−1)ds
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Maximal estimates

and

(p− 1)yp + g(y) = p(p− 1)2 exp(pyp−1)

∫ ∞
y

s2p−2 exp(−psp−1)ds. (2.4)

Plugging these three identities into (2.3) we obtain the equivalent bound(∫ ∞
y

sp−1 exp(−psp−1)ds

)2

<

∫ ∞
y

exp(−psp−1)ds ·
∫ ∞
y

s2p−2 exp(−psp−1)ds,

which follows by Schwarz’ inequality.

Finally, we will need the following statement.

Lemma 2.3. Assume that positive numbers x, y satisfy the condition (p − 1)λp−10 y ≤
xp < y. Consider the equation

(1− p)c−py + (p− 1)γ
(x
c

)p
+
x

c
= 0 (2.5)

in the variable c > 0. This equation has a unique root c∗ = c∗(x, y). This root satisfies
c∗ ≤ x/λ0. Furthermore, the function

c 7→ c1−py + c(p− 1)γ
(x
c

)p
− pγ

(x
c

)p−1
x,

considered on (0, x/λ0], attains its minimum for c = c∗(x, y).

Proof. The equation (2.5) is equivalent to ξ(x/c) = y/xp, so the existence and the
uniqueness of the root follows at once from the previous lemma. To show that c∗(x, y) ≤
x/λ0 (that is, x/c∗(x, y) ≥ λ0), we use the monotonicity of ξ together with the estimate

ξ(λ0) =
λ1−p0

p− 1
≥ y

xp
,

which is assumed in the statement of the lemma. The second part of the assertion follows
from differentiation. Indeed, the derivative of the function in question is precisely the
left-hand side of (2.5); obviously, this derivative is a continuous function and, as we have
just proved, it has a unique zero. Thus it suffices to note that its value at c = x/λ0 is
nonnegative and its limit as c → 0 is negative. The first inequality has already been
analyzed above, the negativity of the limit follows at once from observing that

(1− p)c−py + (p− 1)γ
(x
c

)p
+
x

c
= (1− p)c−p(y − xp) + (p− 1)

(
γ
(x
c

)p
−
(x
c

)p)
+
x

c
,

and recalling that y > xp and γ(t) < t for all t.

2.2 Two martingale inequalities

We are ready to introduce a family (Uλ)λ≥0 of special functions, defined on the angular
domain D := {(x, y) : 0 ≤ x ≤ y}, which will play a central role in this paper. First we
need to consider appropriate subdomains Dλ

i of D. We consider two cases. If λ ≥ λ0, we
introduce three domains Dλ

0 , Dλ
1 and Dλ

2 , given by

Dλ
1 := {(x, y) ∈ D : λ ≤ y ≤ g(x)},

Dλ
2 := {(x, y) ∈ D : x ≥ γ(λ), y < λ},

Dλ
0 := D \ (Dλ

1 ∪Dλ
2 ).
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For 0 ≤ λ < λ0, there are four domains, defined by

Dλ
1 := {(x, y) ∈ D : λ0 ≤ y ≤ g(x)},

Dλ
2 := {(x, y) ∈ D : y < λ},

Dλ
3 := {(x, y) ∈ D : λ ≤ y < λ0},

Dλ
0 := D \ (Dλ

1 ∪Dλ
2 ∪Dλ

3 ).

See Figure 1 below.

Figure 1: The subdomains Dλ
i in the case λ ≥ λ0 (left) and λ < λ0 (right). On the right

picture, the common boundary between Dλ
0 and Dλ

1 is the graph of the function g.

To define Uλ : D → R, we also consider two cases. For λ ≥ λ0, we let

Uλ(x, y) :=


(y − λ)+ − xp if (x, y) ∈ Dλ

0 ,

y − λ+ (p− 1)γ(y)p − pγ(y)p−1x if (x, y) ∈ Dλ
1 ,

(p− 1)γ(λ)p − pγ(λ)p−1x if (x, y) ∈ Dλ
2 ,

while for 0 ≤ λ < λ0, we put

Uλ(x, y) :=


(y − λ)+ − xp if (x, y) ∈ Dλ

0 ,

y − λ+ (p− 1)γ(y)p − pγ(y)p−1x if (x, y) ∈ Dλ
1 ,

x ln(λ0/λ) if (x, y) ∈ Dλ
2 ,

y − λ+ x ln(λ0/y) if (x, y) ∈ Dλ
3 .

It is easy to check that for any fixed y > 0, the function Uλ(·, y) is of class C1 on [0, y],
in particular, the partial derivative ∂xUλ(x, y) exists for any x ∈ [0, y]. In the lemma below
we study two further important properties of the above functions.

Lemma 2.4. (i) For any (x, y) ∈ D we have the majorization

Uλ(x, y) ≥ (y − λ)+ − xp. (2.6)

(ii) For any (x, y) ∈ D and any h ≥ −x we have the estimate

Uλ(x+ h, (x+ h) ∨ y) ≤ Uλ(x, y) + ∂xUλ(x, y)h (2.7)

(we set ∂xUλ(0, 0) = 0).
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Proof. We will only check the case λ ≥ λ0, for 0 ≤ λ < λ0 the reasoning is similar.
(i) The claim is trivial for (x, y) ∈ Dλ

0 (both sides are equal). If (x, y) ∈ Dλ
1 or

(x, y) ∈ Dλ
2 , the estimate (2.6) is equivalent to

(p− 1)γ(y)p + xp ≥ pγ(y)p−1x

or
(p− 1)γ(λ)p + xp ≥ pγ(λ)p−1x,

respectively, which follows at once from Young’s inequality.
(ii) It is obvious from the formulas on Dλ

0 , Dλ
1 and Dλ

2 that for each y, the function
Uλ(·, y) : [0, y]→ R is concave. Therefore, the estimate (2.7) holds true for x+ h ≤ y and
we may restrict ourselves to x+ h > y. Exploiting the concavity of Uλ(·, y) again, we may
write

Uλ(x, y) + ∂xUλ(x, y)h = Uλ(x, y) + ∂xUλ(x, y)(y − x) + ∂xUλ(x, y)(x+ h− y)

≥ Uλ(y, y) + ∂xUλ(y, y)(x+ h− y).

Thus we will be done if we show that Uλ(x+ h, x+ h) ≤ Uλ(y, y) + ∂xUλ(y, y)(x+ h− y).
To this end, we make three observations. First, the function Uλ is of class C1 in
some neighborhood of the set {(x, y) ∈ D : x = y} (straightforward); second, the
function y 7→ ∂xUλ(y, y) is nonincreasing (this is also very simple); finally, we have
∂yUλ(y, y) = 0 for any y > 0: this is clear if (y, y) ∈ Dλ

0 ∪ Dλ
2 , and follows from the

differential equation (2.2) for (y, y) ∈ Dλ
1 . Putting these observations together, we obtain

that the function y 7→ Uλ(y, y) is concave and hence

Uλ(x+ h, x+ h) ≤ Uλ(y, y) +
(
∂xUλ(y, y) + ∂yUλ(y, y)

)
(x+ h− y)

= Uλ(y, y) + ∂xUλ(y, y)(x+ h− y).

The proof is complete.

We are ready to prove the main results of this section.

Theorem 2.5. Suppose that (fn)n≥0 is an arbitrary nonnegative martingale bounded
in Lp. Then for any λ ≥ 0 we have the estimate

E(f∗ − λ)+ ≤ ‖f‖pp + Uλ(Ef0,Ef0). (2.8)

Proof. Let us extend the filtration (Fn)n≥0 by setting F−1 := {∅,Ω}; this adds the variable
f−1 ≡ Ef0 to the martingale (fn)n≥0 (and possibly increases its maximal function, but this
will not affect the proof). The key observation is that the composition (Uλ(fn, f

∗
n))n≥−1

is a supermartingale. Indeed, the integrability of Uλ(fn, f
∗
n) follows from the estimate

Uλ(x, y) ≤ cp(1 + xp + yp), valid for some constant cp depending only on p, and the
assumed Lp-boundedness of f . Furthermore, for any n ≥ −1 we have

E
[
Uλ(fn+1, f

∗
n+1)|Fn

]
= E

[
Uλ(fn + dfn+1, (fn + dfn+1) ∨ f∗n)

∣∣Fn]
≤ Uλ(fn, f

∗
n) + ∂xUλ(fn, f

∗
n)E(dfn+1|Fn) = Uλ(fn, f

∗
n),

where the inequality follows directly from (2.7), applied with x := fn, y := f∗n and
h := dfn+1. Consequently, for any n we have EUλ(fn, f

∗
n) ≤ EUλ(f−1, f

∗
−1) = Uλ(Ef0,Ef0),

which combined with (2.6) yields

E(f∗n − λ)+ − ‖f‖pp ≤ E(f∗n − λ)+ − Efpn ≤ EUλ(fn, f
∗
n) ≤ Uλ(Ef0,Ef0).

It remains to let n→∞ and apply Lebesgue’s monotone convergence theorem.
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We will also need the following refined version of the above estimate.

Theorem 2.6. Suppose that (fn)n≥0 is an arbitrary nonnegative martingale with ‖f‖1 =

x and ‖f‖pp = y. If (p− 1)λp−10 y ≤ xp < y, then for any λ > 0 we have

E(f∗ − λ)+ ≤
K(x, y)p

p− 1
λ1−p, (2.9)

where

K(x, y) :=
p− 1

p

[
c1−p∗ y + x+ (p− 1)c∗γ

(
x

c∗

)p
− pγ

(
x

c∗

)p−1
x

]
and c∗ := c∗(x, y) is given by (2.5).

Proof. We will consider two major cases x ≥ λ and x < λ separately.

Case x ≥ λ. Apply (2.8) to f/c∗ and λ/c∗ to obtain an estimate equivalent to

E(f∗ − λ)+ ≤ c1−p∗ ‖f‖pp + c∗Uλ/c∗

(
x

c∗
,
x

c∗

)
.

But x/c∗ ≥ λ0, so we get

E(f∗ − λ)+ ≤ c1−p∗ y + x− λ+ c∗(p− 1)γ

(
x

c∗

)p
− pγ

(
x

c∗

)p−1
x

(no matter whether λ/c∗ ≥ λ0 or not; in both cases, the formula for Uλ/c∗ (x/c∗, x/c∗) is

the same, since (x/c∗, x/c∗) ∈ Dλ/c∗
1 ). That is, we have shown that

E(f∗ − λ)+ ≤
pK(x, y)

p− 1
− λ,

and the latter expression does not exceed K(x, y)pλ1−p/(p− 1), by Young’s inequality.

Case x < λ. Pick the parameter c := λc∗/x and proceed as in the previous case to get

E(f∗ − λ)+ ≤ c1−p‖f‖pp + cUλ/c

(x
c
,
x

c

)
. (2.10)

Now there are two sub-cases. If x/c ≥ γ(λ/c), this is equivalent to

E(f∗ − λ)+ ≤ c1−py + (p− 1)cγ

(
λ

c

)p
− pγ

(
λ

c

)p−1
x

=

(
λ

x

)1−p
[
c1−p∗ y + (p− 1)c∗γ

(
x

c∗

)p
·
(
λ

x

)p
− pγ

(
x

c∗

)p−1
x ·
(
λ

x

)p−1]
.

Let us optimize the expression in the square brackets, considered as a function of
λ/x. We know that 1 ≤ λ/x ≤ (x/c∗)/γ(x/c∗) (the second inequality is equivalent to
x/c ≥ γ(λ/c)). Therefore, we have

d

ds

[
c1−p∗ y + (p− 1)c∗γ

(
x

c∗

)p
· sp − pγ

(
x

c∗

)p−1
x · sp−1

]

= p(p− 1)γ

(
x

c∗

)p
sp−2c∗

(
s− x/c∗

γ(x/c∗)

)
< 0

for s := λ/x. That is, the expression in the square brackets is the largest for s = 1, and
hence we obtain

E(f∗ − λ)+ ≤
(
λ

x

)1−p
[
c1−p∗ y + (p− 1)c∗γ

(
x

c∗

)p
− pγ

(
x

c∗

)p−1
x

]
, (2.11)
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or E(f∗−λ)+ ≤ (λ/x)1−p (pK(x, y)/(p− 1)− x). It remains to note that the latter expres-
sion is not bigger than K(x, y)pλ1−p/(p− 1), by Young’s inequality.

Finally, we need to consider the second sub-case x/c < γ(λ/c). Under this assumption,
the estimate (2.10) becomes

E(f∗ − λ)+ ≤ c1−p(y − xp) =

(
λ

x

)1−p

c1−p∗ (y − xp),

which implies (2.11) and the assertion, by the Young inequality again.

3 Proofs of Theorems 1.1 and 1.2

We start with Theorem 1.2. If y = xp, then the claim is trivial: the only martingale
which satisfies the conditions ‖f‖1 = x and ‖f‖pp = xp is the constant one: f ≡ x, for
which ‖|f∗|‖p,∞ = x. Hence, from now on, we will assume that y > xp.

3.1 Proof of the upper bound for Bp

We consider two major cases: (p− 1)λp−10 y ≥ xp and (p− 1)λp−10 y < xp. In the first
case, we apply the estimate (2.8) with λ = λ0 and the martingale f/c, where c is a
positive parameter which will be specified in a moment. Since Uλ0

(s, s) ≤ 0 for all s ≥ 0,
we obtain E(f∗/c− λ0)+ ≤ ‖f/c‖pp, or

E(f∗ − cλ0)+ ≤ c1−p‖f‖pp = c1−py.

Now pick an arbitrary event A of positive probability. We may write∫
A

f∗dP = cλ0P(A) +

∫
A

(f∗ − cλ0)dP ≤ cλ0P(A) +

∫
A

(f∗ − cλ0)+dP

≤ cλ0P(A) + E(f∗ − cλ0)+ ≤ cλ0P(A) + c1−py.

The latter expression, considered as a function of c, attains its minimal value for c :=(
(p− 1)yλ−10 P(A)−1

)1/p
. Plugging this choice above, we get∫

A

f∗dP ≤ p

p− 1
λ
1−1/p
0 ((p− 1)y)1/pP(A)1−1/p = Γ

(
2p− 1

p− 1

)1−1/p

y1/p · P(A)1−1/p.

Since A was arbitrary, the estimate follows. In the case (p− 1)λp−10 y < xp the reasoning
is similar, but we apply Theorem 2.6 instead. Namely, we take an arbitrary event A with
P(A) > 0 and argue as above, obtaining∫

A

f∗dP ≤ λP(A) +
K(x, y)p

p− 1
λ1−p.

The expression on the right, considered as a function of λ, attains its minimum for
λ := K(x, y)P(A)−1/p. Plugging this special λ above, we obtain the claim.

3.2 Proof of the lower bound for Bp

We will proceed directly and construct appropriate examples. It is enough to consider
continuous-time martingales: as we have mentioned in the introductory section. As
previously, we consider two cases.

Case (p − 1)λp−10 y ≤ xp Let c∗ = c∗(x, y) be the number defined in (2.5). Consider
the probability space equal to the interval [0, 1], equipped with its Borel subsets and
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the Lebesgue measure. We introduce the continuous-time filtration (Ft)t∈[0,1], where
the σ-algebra Ft is generated by the interval [0, 1− t] and all Borel subsets of (1− t, 1].
Consider the random variable

ξ(ω) := c∗

(
γ

(
x

c∗

)p−1
− lnω

p

)1/(p−1)

and the associated martingale (ξt)t∈[0,1] := (E(ξ|Ft))t∈[0,1]. We compute that

Eξ = c∗

∫ 1

0

(
γ

(
x

c∗

)p−1
− lnω

p

)1/(p−1)

dω

= c∗

∫ ∞
0

(
γ

(
x

c∗

)p−1
+
u

p

)1/(p−1)

e−udu

= c∗p
−1/(p−1)

∫ ∞
pγ(x/c∗)p−1

u1/(p−1) exp

(
−u+ pγ

(
x

c∗

)p−1)
du

= c∗p(p− 1) exp

(
pγ

(
x

c∗

)p−1)∫ ∞
γ(x/c∗)

tp−1 exp(−ptp−1)dt

= c∗g

(
γ

(
x

c∗

))
= c∗ ·

x

c∗
= x

and, similarly,

Eξp = cp∗

∫ 1

0

(
γ

(
x

c∗

)p−1
− lnω

p

)p/(p−1)
dω

= cp∗p(p− 1) exp

(
pγ

(
x

c∗

)p−1)∫ ∞
γ(x/c∗)

t2p−2 exp(−ptp−1)dt

= cp∗

[
γ

(
x

c∗

)p
+
g (γ (x/c∗))

p− 1

]
= cp∗

[
γ

(
x

c∗

)p
+
x/c∗
p− 1

]
,

where in the third line we have applied (2.4). However, by (2.5), the last expression
above is equal to y: thus, Eξp = y. Finally, the maximal function of (ξt)t∈[0,1] satisfies

ξ∗(ω) ≥ ξω(ω) = (1− ω)−1
∫ 1−ω
0

ξ(s)ds. Carrying out similar calculations to those above,
we obtain

‖|ξ∗|‖p,∞ ≥ Eξ∗ ≥ c∗

(
px/c∗
p− 1

+ pγ

(
x

c∗

)p
− pγ

(
x

c∗

)p−1
x

c∗

)
,

which is the desired lower bound, by (2.5).

Case (p− 1)λp−10 y > xp Consider the auxiliary parameters

x̄ := (p− 1)1/(p−1)
(y
x

)1/(p−1)
λ0 and ȳ := (p− 1)1/(p−1)

(y
x

)p/(p−1)
λ0.

Note that x̄ > x, by the assumption of our case. Furthermore, we check easily that
(p − 1)λp−10 ȳ = x̄p, so by the construction from the previous case, there is a random
variable ξ̄ on [0, 1] such that the associated martingale satisfies ‖ξ̄‖1 = x̄, ‖ξ̄‖pp = ȳ and

Eξ̄∗ = Bp(x̄, ȳ) = x̄+ λp−10 x̄1−pȳ = p(p− 1)1/(p−1)−1λ0

(y
x

)1/(p−1)
.
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We introduce the martingale (ξt)t∈[0,1] as follows. First we pick an event A of probability
x/x̄. We assume that on Ac, the compliment of A, the martingale (ξt)t∈[0,1] is constant
and equal to zero; on the other hand, on A its conditional distribution is the same as
that of ξ̄. Formally, we consider the probability space [0, x̄/x] with its Borel subsets and
normalized Lebesgue’s measure, and equip it with the filtration (Ft)t∈[0,1], where Ft is
generated by [0, 1 − t] ∪ (1, x̄/x] and all Borel subsets of (1 − t, 1]. We extend ξ̄ to the
variable ξ given on the whole [0, x̄/x], setting ξ(ω) = 0 for ω ∈ (1, x̄/x]. Then the process
(ξt)t∈[0,1] := (E(ξ|Ft))t∈[0,1] is a martingale enjoying the above properties (with A = [0, 1]).
In addition, we have ‖ξ‖1 = ‖ξ̄‖1 · x/x̄ = x, ‖ξ‖pp = ‖ξ̄‖pp · x/x̄ = xȳ/x̄ = y and

‖|ξ|‖p,∞ ≥ P(A)1/p−1
∫
A

ξ∗dP = P(A)1/p · Eξ̄∗ =
(x
x̄

)1/p
·Bp(x̄, ȳ) = Bp(x, y).

3.3 Proof of Theorem 1.1

To show (1.1), it is enough to prove the estimate

Bp(x, y) ≤ Γ

(
2p− 1

p− 1

)1−1/p

y1/p.

If (p− 1)λp−10 y ≥ xp, then both sides are equal; otherwise, the inequality is equivalent to

c1−p∗ y + x+ (p− 1)c∗γ

(
x

c∗

)p
− pγ

(
x

c∗

)p−1
x ≤ pλ

1−1/p
0

(p− 1)1−1/p
y1/p.

Lemma 2.3 implies that the left-hand side of above inequality is not greater than

h(x) := a1−py y + x+ (p− 1)ayγ

(
x

ay

)p
− pγ

(
x

ay

)p−1
x,

where ay := [(p − 1)y]1/pλ
−1/p
0 < x/λ0. However, h(x) ≤ a1−py y + ayλ0. Indeed, for

x = ayλ0 we have equality here and h′(x) = −pγ (x/ay)
p−1 ≤ 0. It remains to observe

that a1−py y + ayλ0 = p(p− 1)1/p−1λ
1−1/p
0 y1/p. This gives (1.1). Its sharpness follows at

once from the fact that Bp(x, y) = Γ
(

2p−1
p−1

)1−1/p
y1/p on a part of the domain of Bp.
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