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Abstract

To characterize Navier-Stokes type equations where the Laplacian is extended to a
singular second order differential operator, we propose a class of SDEs depending on
the distribution in future. The well-posedness and regularity estimates are derived for
these SDEs.
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1 Introduction

Let d € IN. Consider the following incompressible Navier-Stokes equation on E := R¢
or R%/74:
Oyur = kAuy — (up - V)ug — Vr, t€[0,T] (1.1)

with V -y := Z?Zlﬁiui =0, where T > 0 is a fixed time,
w:=(u', - u?): [0,T] x E—-RY ¢:[0,T]x E =R,

and u; - V = Z?:1 uid;. This equation describes viscous incompressible fluids, where u
is the velocity field of a fluid flow, p is the pressure, and « > 0 is the viscosity constant.

Besides existing probabilistic characterizations on Navier-Stokes equations, see [1]
and references therein, in this paper we propose a new type stochastic differential
equation (SDE) depending on distributions in the future, such that the solution of (1.1) is
explicitly given by the initial datum wu( and the pressure p. By proving the well-posedness
of the SDE, we derive the well-posedness of (1.1) in C;'(n > 2) with given pressure
(which is however a part of solution in Navier-Stokes equations), see [3] for an analytic
characterization on the pressure to ensure V - u; = 0.

Indeed, we will prove a more general result for the following Navier-Stokes type
equation on E := R? or E := R¢/Z:

8tut = Ltut - (Ut . V)ut + ‘/t, te [O,T], (12)
where
Lt = tr{atVZ} + bt -V
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Distribution dependent SDEs for Navier-Stokes type equations

and
V,b:[0,T] x E—=R% a:[0,T] x E — R¥®4

are measurable, and a,(z) is positive definite for (¢,2) € [0,T] x E.
To characterize (1.2), we consider the following SDE on R¢ where differentials are in
s€et,T]:

dX7, = \/2ar . (XE,)dW,
T
+{bT_s<X§fs> [Eu()(X N+ [ VT_T<X;<T>dr]

te0,T),s € [t,T], X}, =z € RY,

}d& (1.3)
=X7

Yy t,s

where (W;)co,1) is a d-dimensional Brownian motion on a complete filtered probability
space (0, F,{Fs}scpo,r),P). When E = T¢ := R?/Z, by extending a function f from
domain E to domain R? as

flx+k)=f(zx), zc0,1)%kez? (1.4)

we also have the SDE (1.3) for the case E = T¢.

Regarding s as the present time, the SDE (1.3) depends on the distribution of
(Xs.7)refs,r) coming from the future. So, this is a future distribution dependent equation,
but is essentially different from McKean-Vlasov SDEs which depend on the distribution at
present rather than future. We will use X := (Xﬁs)ogtgsgnme g to formulate the solution
to (1.2).

Let Dy :={(t,s) : 0 <t < s <T}. We define the solution X of (1.3) as follows.

Definition 1.1. A family X := (X{,)(s.2)e D, xre Of random variables on R? is called
a solution of (1.3), if ngs is F,-measurable forall z € R*and 0 < t < s < T, P-as.
continuous in (¢, s, x),

E / T{HaT-s<Xzs>||+ br—s(X7,) — [Euo(ng)HE / TvT_T<X;{T>dr} . }ds<oo
s y=X¢
for (t,x) € [0,T] x RY, and P-a.s.
Xt =t [ VB (xE)aw,
t
+/S{bT_,.(ng,) {Euo +E/ Vr_( dﬁ] }dr, (t,s,z) € Dr x R%.
t y=X2

We will allow the operator L; to be singular, where the drift contains a locally
integrab1e~term introduced in [4] for singular SDEs. For any p,q > 1and 0 <t < s, we
write f € LP(t,s) if f = (fr(2))(rz)e[t,5)xre iS @ measurable function on [t, s] x R* such
that

11250 = sup (/ ||fr13<z,1>ll%pdr) < o0,
z€R4 t

where B(z, 1) is the unit ball at z, and || - || » is the LP-norm for the Lebesgue measure.
We denote f € HP(t,s) if |f| + |V f| +[[V*f| € LP(t,s). When (t,s) = (0,T) we simply
denote

Fp _ § 720 _ 72,

Lh = Lh(0,T), HP = H,SP(0,T).

We will take (p, ¢) from the following class:
d 2
K= {(nq) pg>2, -+ =< 1}-
p g

We now make the following assumption on the operator L;.
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(H) Let b, = 5" +b"), and when E = T we extend a;, b\” and b\") to R¢ as in (1.4).

(1) a is positive definite with

lalloo +lla Moo == sup  [la(@)|+  sup  [la(x)" < oo,
(t,z)€[0,T|xE (t,z)€[0,T|xE
lim sup llar(x) — a(y)]| = 0.

£20 3 y|<e,tel0,T]

(2) There exist! € IN, {(p;,¢:)}o<i<t CKand 0 < f; € ifl’;’,() < ¢ <, such that
l
DO < fo, IVall <D i
i=1

(3) 16™M(0)]loo := sup(; 1yefo.r DM (0)] < o0, and

01—y
HVb(l)”oo = sup Sup| t (./L') t (y)|

< 0. (1.5)
tel0,T) z#y ‘ZE - y|

Under this assumption, we will prove the well-posedness of (1.3) and solve (1.2) in the
class

U(po, qo) := {u [0,T) x E = R ulleo + ||Vt oo + ||V2uH558 < oo}.

Recall that W1 (E;R?) is the space of all weakly differentiable functions f : E — R?
with || fllee + [V flee < o0

Theorem 1.1. Assume (H). Let uy € WH*°(E;RY) and fOT Vil dt < oo. Then the
following assertions hold.

(1) The SDE (1.3) has a unique solution X := (X{)(t,s,.2)e Dy xR -
(2) If u solves (1.2) and u € U(po, q0), then
T
ug(x) = E{UO(X%tyT) + Vr_o(X7_,5)ds|, (t,z)€[0,T] x E. (1.6)
T—t

Moreover, there exists a constant ¢ > 0 such that for any i € {1, 2} and 7,5’ € {0,1},

i—j . T i—j/ -/
1V 20 o gct—%nwuonmﬂ/ (s+t—T)" |V Vi |wds, ¢ € (0,T). (1.7)
T—t

(3) If b = 0 and u, V; € C? with fOT [Vi|lczdt < oo, then u given by (1.6) solves (1.2),
and u is in the class U(po, qo)-

In the next two sections, we prove assertions (1) and (2)-(3) of Theorem 1.1 respec-
tively, where in Section 2 the well-posedness is proved for a more general equation
than (1.3). Finally, in Section 4 we apply Theorem 1.1 to the equation (1.1).

2 Proof of Theorem 1.1(1)

Let P be the set of all probability measures on R? equipped with the weak topology,
let L¢ be the distribution of a random variable ¢ on R?. Let

I:=C(Dr x R%P)

ECP 27 (2022), paper 36. https://www.imstat.org/ecp
Page 3/12


https://doi.org/10.1214/22-ECP479
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

Distribution dependent SDEs for Navier-Stokes type equations

be the space of continuous maps from Dy x R? to P. For any A > 0, I is a complete
space under the metric

() = sup e M|yl 2 e, AP ET,
(t,s,x)€Dr xR%

where || - ||var is the total variation norm defined by

I = vlvar == sup |u(f) —v(f)l, p,veP
If1<1

for (f) := [« fdu. Note that the convergence in || - ||, is stronger than the weak
convergence.
We consider the following more general equation than (1.3):

axy, = (B (X0,) + Zo(X7,, £x) s + /2ar—, (XE,)AW,,

(2.1)
te[0,T],s € [t,T], X}, =z € R%,
where Lx € I'is defined by {Lx }1 5, := 'CX?;S' and
Z:[0,T] x REx T — RY
is measurable.
It is easy to see that (2.1) covers (1.3) for
(0) T
Zt(xvv) = bT—t(x) - / UO(y)’yt,T,z(dy) - / dS/ VTfs(y)’yt,s,z(dy)v
R t R4 (2.2)

(t,z,7) €[0,T] x R* x T.

The solution of (2.1) is defined as in Definition 1.1 using bg})_s(ngs) + Z(X{, Lx) replac-
ing

T
bT—s(Xtais) - |:EU,O(X5y7T) + E/ VT—T(Xg,T)dT:| .
s y=X7,

We make the following assumption.
(A) b and a satisfy (H), and there exists (po,qo) € K and f, € igg such that
|Zi(x,7)| < folt,x), (t,z,v)€[0,T] x RYxT.
Moreover, there exists 0 < g € L2([0,T]) such that

sup |Zi(z,7") — Ze(z,7°) < g sup taw — Visallvar, tE€[0,T],9",9% €T.
r€Rd (s,z)€[t,T] xR

When ||ug|loo + fOT |Vi]|2,dt < oo, (H) implies (A) for Z given by (2.2). So, Theo-
rem 1.1(1) follows from the following result, which also includes regularity estimates on
the solution.

Theorem 2.1. Assume (A). Then the following assertions hold.

(1) (2.1) has a unique solution, and the solution has the flow property

T

XP, = Xop®, 0<t<s<r<T, zecR%. (2.3)
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(2) Foranyj > 1,

r+tev x

Vo X[, = lim % selt,T]

exists in L’ (2 — C([t,T];R%),P), and there exists a constant c(j) > 0 such that

sup E{ sup VUXt”’SP] <c(f)vf, veR% (2.4)
(t,)€[0,T|xRe L s€[t,T] ’

(3) Forany 0 <t<s<T,vcR%and f € By(RY),
VABF(X; )} (@) = SltE{f(ng) /t (Vo) v, dWT>} (2.5)

Proof. (a) We first explain the idea of proof using fixed point theorem on I'. For any
v € I', we consider the following classical SDE

dXZ’f = {bgls(xg»sw) + Zs(xngﬁ)}ds + «/2aT_S(XZ=Sw)dWs,
te[0,T],s €[t,T],X];" =z € R

(2.6)

By [2, Theorem 2.1] for [t,T] replacing [0,7], see also [4] for (1) = 0, this SDE is
well-posed, such that for any j > 1 and v € RY, the directional derivative

v,T+ev YT
Xt7s - Xt,s

VX" :=1lim
. 10 €

, s€t,T)
exists in L7 (2 — C([t,T];R%),P), and there exists a constant c(j) > 0 such that

sup IE[ sup |VUX3’SIj} < c(f)v, veRY, (2.7)
(t,2)€[0,T]xR L se[t,T) ’

and for any f € B(R?),

VABSXI} @) = o) [ ((VEm) v an)]. e

By the pathwise uniqueness of (2.6), the solution satisfies the flow property

X)r = x5 0<t<s< d
tr — “rs,r 5 =~ _S_’I"ST,QCQR. (29)

Moreover,
(b(’)/)t,sw = EX;Y’:’ (t,s,x) € DT X Rd

defines a map @ : I' — I'. If ® has a unique fixed point 4 € T, then (2.6) with v = ¥
reduces to (2.1), the well-posedness of (2.6) implies that of (2.1), and the unique solution
is given by

Xr =X/
Then (2.3), (2.4) and (2.5) follow from (2.9), (2.7) and (2.8) for v = ¥ respectively.
Therefore, it remains to prove that ® has a unique fixed point.

(b) By the fixed point theorem, we only need to find constants A > 0 and ¢ € (0,1)
such that

pA(@ (), (%)) < pa(v',7?), A7 el (2.10)

Below, we prove this estimate using Girsanov’s theorem.
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For i = 1,2, consider the SDE
ax;r = ol (XE0) + Zo(X072) b + 2ar— (Xp5)aw,
te0,T],s€[t,T],X,;} =2 €R™.
By the definition of ®, we have
(Y )t sw = Lyiw, i=1,2, (t,5,2) € Dr X R4, (2.11)

Let
x -1 x x
§s = (\/ 2aT78(Xt1,’s )) {ZS(th,E ) = ZS(th,’s 7'7’2)}a s € [t,T].
By (A), there exists a constant KX > 0 such that

|§s| < Kgs sup ||’7;,T,x - 75,7‘,9:”’110«’“ (2.12)
(r,z)€[s, T] xR

By Girsanov theorem,

W, =W, — /S &dr, set,T)
is a Brownian motion under the weighted tprobability dQ; := R,dP, where

Ry = el (€aW) =4 JT le. s
With this new Brownian motion, the SDE for X! becomes

ax! 7 = o) (X00) + Zo(X[ 4% bs + \2ar o (X[ D)aW, s € [1T).

By the (weak) uniqueness for the SDE with ¢ = 2, we derive

Lxiria = Lxzr = 20 s

where £ XL71Q is the distribution of thf under Q;. Combining this with (2.11), we get

1DV )tse — PV 150 llvar = Iilll<pl |E[f(X.5) — F(XED)R| < BIR, — 1] (2.13)

By Pinsker’s inequality and the definition of R;, we obtain
T
(E|R; — 1])? < 2E[R; log R;] = 2Eq, [log R;] = 2Eq, / €| ds, (2.14)
t

where [Eq, is the expectation under the probability Q;. Combining (2.13) and (2.14)
with (2.12), and using the definition of p,, we arrive at

T
‘|(I)(71)t,s,z - (I)(fyz)t,s,xuvar S (QKQ/ gf sup H’Y;,r,y - 73,r,y|1%ard5>
t (ry)€ls, TIxR?

N

T
< PA(71772)<2K2/ gfe”(Ts)dS> , (t,z) €[0,T] x R™.
t

Therefore
pA(@(71), 2(v?)) < eapa(rhs7?),
where
T 7
€)= sup <2K2/ gfez)‘(St)ds) J0as A1 oo.
te[0,T] t

By taking large enough A > 0, we prove (2.10) for some ¢ < 1. O
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For later use we present the following consequence of Theorem 2.1.

Corollary 2.2. Assume (A) and let
Poof(z) = E[f(X7,)], (t,s,2) € Dr x RY, f € By(RY).
Then there exists a constant ¢ > 0 such that for any function f,
IV P flloo < emin{ (s = )72 flloes V4]l }.
V2P s flloo < (s — 1) 2|V oo, 0<t<t<T.

Proof. By (2.5) we have
_1
VP flloo < et —3)7 2| flloo

for some constant ¢ > 0. Next, by chain rule and (2.4),
VP f (@) = [BUVFXE), VXEN| < el Ve, (,5,2) € D x R
holds for some constant ¢ > 0. Moreover,
VP of(x) = B{VF(XE,), VX )] = Elg(X],)];

where g(X7?,) :== (Vf(X},), E(VX},|X],)). Combining this with (2.5) and (2.4), we find
a constant ¢ > 0 such that

1927210 < 9Bl
Elaxz )P (B [l 19X Par ) < A9l

Then the proof is finished. O

“g xz)| ‘/ V2ar—,) TN (XE)VL X, AW, )

1
t—s

<

3 Proofs of Theorem 1.1(2)-(3)

We will need the following lemma implied by [5, Theorem 2.1, Theorem 3.1, Lemma
3.3], see also [4] and references within for the case (1) = 0.

Lemma 3.1. Assume (A)(1), (4)(3) and Hb(o)”if;g < oo for some (pg, qo) € K. Let oy =
v/2a;. Then the following assertions hold.

(1) Forany p,q>1,A>0,0<ty <ty <Tand f € Eg(tg,tl), the PDE
(@ + Lt)ut = /\Ut + ft, t e [fo,tl],utl = O7 (31)

has a unique solution in flgvp (to,t1). If (2p,2q) € K, then there exist a constant
c¢>0suchthatforany0 <ty <t; <Tand f € ifl’(to, t1), the solution satisfies

[ulloe + IVulloo + 10 + Vo )ull gp 104,y + ||V2U||if;(t0,t1) < llf 122 (29,00

(2) Let (X¢):eqo,1) be a continuous adapted process on R? satisfying

t t
Xt:Xo+/ bs(XS)ds+/ o (X )AW,, te0,T). (3.2)
0 0

For any p,q > 1 with (2p,2q) € K, there exists a constant ¢ > 0 such that for any X;
satisfying (3.2),

B [ 1500
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(3) Let p,g > 1 with % +§ < 1. For any u € H2p with |[(9; + b(* )u||Lp < 00,
{us(Xt)}eepo,7) is @ semimartingale satisfying

dUt(Xt) = Ltut(Xt)dt + <Vut(Xt), O't(Xt)th>7 t e [O,T]
In the following we consider £ = R? and T respectively.

3.1 E=R¢
Proof of Theorem 1.1(2). Let u € U(po, qo) solve (1.2). Then

we HZP, (0 + b0 - V)ul g < oo (3.3)

as required by Lemma 3.1(3). It remains to prove (1.6), which together with Corollary 2.2
implies (1.7).
Let
£t = tI‘{CLT,tVQ} + Bt .

- (3.4)
bi(z) = br_¢(x) — Euo(X / Vr_o(X{5)ds, (t,7)€[0,T] x RY.

Since |lup|loo + fOT 1Villoo b(O)HLg’g < oo implies by(z) := b(Tllt(x) + 5(z) with

160|720 < co. Then (A) holds for b replacing b, so that by (3.3) and Lemma 3.1(3), the
0
following It6’s formula holds for Xt’fs solving (1.3):

dur—s(X7,) = (0s + Ls)ur—s(X{)ds + { Vur_g( ts},/2aT5 (XP)dWs, selt,T],

(3.5)

where (Vu)f; := (0ju')1<4,j<a- By (1.2) and (3.4), we obtain

(85 + ES)UT—S(X;;Ijs) + VT—S(th;s)
T
~{[ur-s) - Btz - [ Ve cegar] Ve,
s y=X7,

Combining this with the follow property (2.3) and (3.5), we derive

Buo(X{r) —ur—i(z) = Elur_o(X{7) — up_o(X7,)]

T T
& [ (w0 - Bl B [ Ve (xar) b (s
t s y=X{

T
—E/ Vr_o(X[,)ds, (t,z)€[0,T] x R%.
t

Letting
hy := sup |ur—¢(z) — Bug(X / Vr_s(Xis)ds|, t€[0,T7,
z€R4
we arrive at T
hy < / hol[Vulwds, ¢ € [0,T].
t
By Grownwall’s inequality we prove h; = 0 for ¢ € [0, 7], hence (1.6) holds. O

Proof of Theorem 1.1(3). (a) Let P, ,f = E[f(X},)] for f € By(R?), where X}, solves
(1.3). For u given by (1.6) we have

T
U = PT_f/’TUO + / PT—t,sVT—sdsa te [O,T] (36)
T—t
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By |Juol|co + fOT IV]|oodt < co and (1.7), we find a constant ¢ > 0 such that

lulloo + [Vulloo < ¢ [Vl < ctié, t € (0,7T). (3.7)

Moreover, the SDE (1.3) becomes
dXt”fS = \/2aT,S(X,ffS)dWS + {bT,s — uT,S}(Xt’fs)ds,

te0,T],s€[t,T), X}, =z € R, 58
and the generator in (3.4) reduces to
Ls = tr{aT_SVQ} + {bT_S - uT_s} -V, s€10,T].
(b) We prove the Kolmogorov backward equation
OuPsof = —LiPof, feCEte]0,s],s€(0,T)]. (3.9)
For any f € C?, by It6’s formula we have
P of(x) = f(z)+ /t P, (L. f)(x)dr, (t,s) € Dr, (3.10)

where [ P, (L, f)(z)dr = E [ £, f(X{,)dr exists, since Krylov’s estimate in Lemma
3.1(2) holds under (A) and |u/|c. < co.
By (3.10), we obtain the Kolmogorov forward equation

aSPtﬁsf:Pt’s(ﬁsf), S € [t,T} (311)
On the other hand, o) = 0 and (A) imply
1£flIzz0 < collfllez (3.12)

for some constant ¢y > 0. By Lemma 3.1(1), for any s € (0, 7], the PDE
(at + ,Ct)ﬂt = —»th, te [0, 8],’&45 =0 (313)
has a unique solution @ € U(po, go), such that
V2@l z20 (0,.6) < 1l £ 2200, (3.14)
holds for some constant ¢; > 0 independent of s. By It6’s formula in Lemma 3.1(3),
Aty (X§,) = ~Lof (X5,) + (VI(XG,),v/2ar— (X5, )AW,), t € [0,5].
This and (3.11) imply

0=ife) = () — [ (Purkof)(wr

— () - / ) L (PorDr = (@) — Puaf(a) + f(2), t€0,5].

Thus,
=P sf — f, t€]0,s]. (3.15)

Combining this with (3.13) we derive (3.9).
(c) By (3.7) and (3.9), we see that u solves (1.6) with u € U(po, go) provided

IV2ullzo < oo (3.16)
By (3.12), (3.14) and (3.15), we find a constant c; > 0 such that

tShlJp] ||V2P'7Sf||f/§8(0,s) < CQ”fHCfa ERS (OaT]a f € Cg
€|0,s

Combining this with (3.6), () = 0 and [[uollez + foT [Vi]lczdt < oo, we prove (3.16). O
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32 E=T¢

In this case, all functions on E are extended to R? as in (1.4), so that the proof for
E = R? works also for the present setting if we could verify the following periodic
property for the solution of (1.3):

X = X! +k, (t,s)€ Dr, z€RY, ke z. (3.17)

Let X;t = ngs + k. Since the coefficients of (1.3) satisfies (1.4), ngs solves (1.3) with
ngt = x + k. By the uniqueness of (1.3) ensured by Theorem 1.1(1), we derive (3.17).

4 Application to (1.1)

For any n € IN, let C]’ be the class of real functions f on E having derivatives up to
order n such that

I £lleg =D IV flloo < 00,
i=0
where V°f := f. Moreover, for a € (0,1), we denote f € C; " if f € C' such that
V" f(z) =V f ()l

fllon+e == fllen + sup < oo
[1£lle; [1flle; sup P—

Consider the following future distribution dependent SDE on R¢:

T
dXy, = [E/ Vor (XY, )dr — Eug(X{ 1) ds + V2kdW,, X =a,s€[t,T].
s y=X7
“4.1)
See Definition 1.1 below for the definition of solution. When E = T? := R?/Z?, we
extend v and p; to R? periodically, i.e. for a function f on T¢, it is extended to R¢ as
in (1.4). With this extension, we also have the SDE (4.1) for the case E = T<.

Theorem 4.1. If there exists n > 2 such that vy € C}’ and g, € C for a.e. t € [0,T] with

T
/ (1902 + loelep )t < oo.
0

Then (4.1) is well-posed and (1.1) has a unique solution satisfying

sup |lutllep < oo, (4.2)
t€[0,T
and the solution is given by
T
ug(r) = Bug(X7_, 1) — E Vor (X7_4 ¢)ds. (4.3)
T—t

We only prove for £ = R¢ as the case for E = T follows by extending functions from
T to R¢ as in (1.4).

Let I; be the d x d identity matrix. By Theorem 1.1 with b = 0,a = klyand V = -V,
for any (po, o) € K, (1.1) has a unique solution in the class U(poy, qo), and by (4.3),

T
u(x) = EUO(X%;—t,T) - VpT—S(X%—t,s)dS
S (4.4)
= Pr_s pup(x) 7/ Pr_; NVor_s(z)ds, (t,z) € [0,T] x R
T—t
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By (3.8) for the present a and b, ngs solves the SDE
dX7, = V2rkdW, —ur_(X/,)ds, X/, =ux,tec[0,T],s€[t,T], (4.5)

and the generator is

Ls:=rA—ur_s-V, s€[0,T].
It remains to prove (4.2). To this end, we present the following lemma.
Lemma 4.2. Let P, f := ]E[f(ngs)] for the SDE (4.5). Let m > 1 such that

sup |lugllep + || fllgm+1 < oo, (4.6)
te[0,7) b

then Sup(t,s)eDT ||Pt,sf| C{:H»l < Q.
Proof. By (4.5) and sup,¢(o 77 [|utllc;» < 0o, we have

sup E[|[VX]|]] <oo, 1<i<m.
(t,s,2)€Dr xR4 '

By chain rule, this implies that for some constant ¢y > 0,

sup  [|Psglley < collglleyr, g € Cp* (4.7)
(t,s)eDr

Let P = e"~t, By 0,P°_, = P°_,xA and (3.9), we have
0P P f =P’ (VP ofur_.), 7€l s]

So,
P sf= Pf_tf —/ Pro_t(VPT,Sf, up—pydr. (4.8)
t

It is well known that for any «, 8 > 0 there exists a constant c, s > 0 such that
1Pgllcoss < cat Ellgllcp, t> 0,9 €CF- (4.9)

This together with (4.8) implies that for some constants ci,co > 0,

[P, f|

< allf]

® _s3
ot + c1 /t (t+r—s)"2|(VPsf, uT,,«>Hcgn_1dr.
b

C;n+%
Combining this with (4.7) and || f|lc;» + sup,epo, 77 [[utllc < 0o, we obtain

sup ||Pt,sfH m+l < 00
(t,s)eDr Cy

By this together with (4.8) and (4.6), we find a constant c; > 0 such that

sup || P f] et < C2||ch;”+1
(t,s)eDr
S
+cy sup / (t+r— s)_% (VP s four—r)|| -y dr < oo. O
(t,s)eDr Jt G

We now prove (4.2) as follows. By u € U(po, qo), we have
[ulloo + [Vtrlloo < o0

Combining this with (4.4) and Lemma 4.2, we prove (4.2) by inducing in m up to m = n.
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