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Abstract

In this paper, we prove that the price of a defaultable bond, under a Vasicek short rate
dynamics coupled with a Cox-Ingersoll-Ross default intensity model, is a real analytic
function, in a neighborhood of the origin, of the correlation parameter between the
Brownian motions driving the processes, used to express the dependence between the
short rate and the default intensity of the bond issuer. Employing conditioning and a
change of numéraire technique, we obtain a manageable representation of the bond
price in this non-affine model which allows us to control its derivatives and assess
the convergence of the series. By truncating the expansion at the second order, a
quadratic approximation formula for the price is then provided. Finally, practical
applications of the result are highlighted by performing a numerical comparison with
alternative pricing methodologies.
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1 Introduction

It has always been known that credit risk is one of the most important aspects of
fixed income markets, for this reason bond pricing models must incorporate it in a
meaningful way allowing, at the same time, for fast and efficient calibration of the model
parameters to market data. In the last twenty years, two alternative approaches have
been recognized to be capable to fulfill these requirements of coherence and applicability:
the structural model and the intensity model, each one having its own advantages and
limits. They are based on different assumptions, but attempts have been made to try
to reconcile them ([15], [13], see also [12]). In this work, we fully pursue the second
approach, while we refer to Merton’s original paper [25] as the main source for the first
one and to the classical books [7] and [23] for its subsequent large developments. The
literature on the intensity-based approach, or reduced-form model, is also quite vast
and the previous mentioned books (and refs therein) remain extremely good sources,
however historically the main ideas were introduced by Jarrow and Turnbull [19] and
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Convergent power series method to price defaultable bonds

then by Madan and Unal [26] and Lando [22]. In the reduced form model, the issuer
may default at any time τ before the bond maturity. Moreover default comes unexpected,
as experienced by many investors: it is an unpredictable event determined also by
exogenous factors, and contrary to the structural approach it cannot be foreseen by
monitoring the financial state of the bond issuer. On the mathematical side, the crucial
assumption is the existence of the density for the conditional distribution of the random
time τ given the smaller filtration containing all the market information, which leads
to defining a hazard process with an intensity (see [8]). It is then common practice
to calibrate conditional defaulting probabilities by using CDS spreads observed in the
swap market, the ease of this calibration procedure being often considered a plus of
the approach. However, in this respect, the possibility of hybrid models, such as [12],
should be considered (see e.g. [5] where CDS pricing is discussed), since they might
offer the advantage of being able to incorporate an analysis of credit implied volatilities,
as recently done in [27] for the structural approach.

When considering an arbitrage free market where all securities are priced by using
some short-rate process (rt) and a martingale measure P, an important feature of the
intensity based approach (strongly emphasized in the highly influential paper by Duffie
and Singleton [16]) is that the defaultable securities prices can be obtained in a “default-
free manner”, by replacing the short rate process with the “default-adjusted” short-rate
process given by the sum of (rt) and the intensity process (λt), multiplied by the expected
fractional loss (Lt). When restricting to affine modeling of default-free bond prices, a
simple consequence of the Duffie and Singleton observation is that if the default-adjusted
short rate process remains in the affine class, then also defaultable bond prices can
be computed by the same procedure used for the default-free case, a highly desirable
feature.

In the present paper, we study a market where the default-adjusted short rate
process falls out of the affine class and so the previous implication breaks down. This
easily happens, when assuming that the short rate follows a Vasicek dynamics, while
the intensity follows a CIR dynamics, with correlated driving Brownian motions. It is
important to notice that this market model is not artificial, indeed it arises naturally,
considering the current long period of zero or negative interest rates and that an intensity
process must be necessarily positive to be interpreted as a (infinitesimal) defaulting
probability (refer to [20] for a similar choice). It is readily seen that in case of non-zero
correlation the system interest rate/intensity is not jointly affine, by consequence its
analytical tractability becomes challenging since the usual pricing methods based on
Fourier transforms are ruled out, leaving Monte Carlo simulations as the only actual
computational tool. Although loss of affinity might look an unpleasant feature, one should
be aware that non-affine models arise quite naturally also in the pricing of options under
stochastic volatility, where they were found to be even more realistic than their affine
counterparts (see e.g. [14],[18]).

From now on, we denote by P d(t, T ) the current price of a defaultable bond (T being
the maturity) with zero fractional recovery. This price is going to depend on several
parameters appearing in the equations describing the evolution of the state variables,
the interest rate and the intensity. Typically, these parameters have small values, in
particular correlation, which cannot exceed the unit in absolute value. This opens up
the possibility to evaluate the price P d(t, T ), employing a power series expansion in the
correlation parameter around the origin. If this series converges to the actual price,
one can rightfully use it to derive an approximate formula up to any desired order of
accuracy. At computational level this might provide a much faster evaluation than by
MC methods, but with comparable accuracy.

Here, we denote by ρ the correlation coefficient between the Brownian motions
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Convergent power series method to price defaultable bonds

driving the state processes, and we prove that the defaultable bond price, P d(t, T ) is an
analytic function of ρ in a neighborhood of the origin. To do so, we first condition the
payoff to the filtration generated by the Brownian motion driving the intensity process,
enucleating two functions of ρ, whose derivatives can be explicitly estimated. The
estimates are sufficient to ensure the convergence of the series. To identify the series
coefficients, we use a change of numéraire technique to isolate the contribution given by
the intensity, that we can compute exploiting the affine properties of the CIR process.
Finally, we use the second-order Taylor polynomial to write an approximation formula
for the price.

In general, proving the convergence of the price’s power series is very hard, and
it strongly depends on the type of contract one considers. Once the price functional
representation is written, the main issue is the estimation of its derivatives, that we could
obtain in our case. Employing estimates of completely different type, similar results
were proven in [4] under constant interest rate for a forward contract, and in [2] and [3],
for option pricing, so providing, the same as here, approximation formulas with much
shorter computational times than Monte Carlo simulations.

Price approximations via power expansion are not a novelty in the literature, often
developed with respect to different parameters such as the volatility of the underlying
asset (see for instance [1]). The advantage of our parameter choice resides in the fact
that expanding at zero correlation often allows exploiting semi-explicit expressions under
independence of the driving processes. We finally remark that our methodology extends
quite easily to include more factors in the model, as shown in [4].

The paper is organized as follows. In Section 2, we present the market model, and
via a conditioning technique, we show that the bond price is an analytic function of
the correlation coefficient. In Section 3, we identify the series coefficients, by using
the Girsanov theorem that makes it possible to employ the results of classical bond
pricing theory to evaluate them. In Section 4, we consider a second-order approximation
of the price, and we run a numerical analysis comparing it with the price evaluations
obtained by Monte-Carlo simulations (MC method) and by a numerical method proposed
in [17] by Grzelak and Oosterlee consisting in approximating a non affine system with a
closely related affine one (GO method). The results show that our approximation has
computational times comparable to those of the GO method, without losing accuracy
(both methods being superior to MC). However, the main strength of our approach lies in
the possibility to improve the error estimate by increasing the order of the approximation,
by virtue of the convergence result.

2 The Vasicek-CIR market model: the main result

We consider a finite time interval [0, T ] and a complete probability space (Ω,F ,P),
endowed with a filtration {Ft}t∈[0,T ], augmented with the P− null sets and made right
continuous. We assume that all processes have a càdlàg version.

We are interested in pricing a defaultable zero-coupon bond, under the assumption
that the short rate process (rt) follows a Vasicek model

rt = r + k

∫ t

0

(θ − rs)ds+ σBt, 0 ≤ t ≤ T, (2.1)

where k, σ > 0, r, θ ∈ R, and B is an Ft− Brownian motion. The probability P is a
risk-neutral measure determined by the calibration of the market model.

The issuer of the bond might default at a random time τ , which is not necessarily
an Ft− stopping time. As we mentioned in the introduction, we are going to use the
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Convergent power series method to price defaultable bonds

reduced-form approach, first progressively enlarging the filtration Ft by

Gt = Ft ∨ σ(1{τ≤s}, s ≤ t) (the smallest filtration making τ a stopping time),

then assuming we can represent the conditional distribution function P(τ ≤ t|Ft) by
a hazard process with intensity λt. We remark that here we are abusing a little the
notation by keeping the same notation P for the extension of the probability to the G−
filtration.

Then, by exploiting the well known Key Lemma and its extensions (see for instance
[7], and [9]), we may write the price of a defaultable bond as

P d(t, T ) = E
(

e−
∫ T
t
rsds1{τ>t}

∣∣∣Ft) = 1{τ>t}E
(

e−
∫ T
t

(rs+λs)ds
∣∣∣Ft). (2.2)

We also remark the payoff’s square integrability guarantees that the prices remain
martingales also in the larger G− filtration.

In general, we expect the processes (rt) and (λt) to be correlated, as the interest rate
might influence the issuer’s solvability. To model this dependence, one can make several
choices; a possibility is to take (λt) as a function of the rate with the possible addition
of an independent component (see [16]). We find this choice a little restrictive, and we
represent the intensity by an additional diffusion, a CIR process

λt = λ+ α

∫ t

0

(β − λs)ds+ γ

∫ t

0

√
λsdB

1
s , (2.3)

with positive constants λ, α, β, γ, and Feller’s condition, 2αβ > γ2, satisfied so that the
process stays almost surely positive. The process B1 is a Brownian motion correlated
with B, such that 〈B,B1〉t = ρt, with ρ ∈ (−1, 1), so possibly constructing an appropriate
probability space, we may assume the pair (rt, λt) satisfies

rt =r + k

∫ t

0

(θ − rs)ds+ σ
[
ρB1

t +
√

1− ρ2B2
t

]
λt =λ+ α

∫ t

0

(β − λs)ds+ γ

∫ t

0

√
λsdB

1
s ,

(2.4)

where B1 and B2 are independent Brownian motions.
If the short rate and the intensity processes are independent, then (2.2) reduces to

the product of the Vasicek and CIR bond prices ((rt) and (λt) being the respective rates),

P d(t, T ) = PV (t, T )PCIR(t, T ). (2.5)

The processes (rt), (λt) are singularly affine, hence under independence, we have an
explicit expression of each factor. Unfortunately, when ρ 6= 0, factorization (2.5) is no
longer possible, the system (2.4) is not affine, and there is no hope to achieve an explicit
evaluation of (2.2), applying Fourier transform techniques.

On the other hand, system (2.4) is Markovian, whence evaluation (2.2) is a Borel
function of the state variables, which also depends on the correlation parameter ρ.
Therefore, we may write

P d(t, T ) ≡ P d(t, r, λ, T ; ρ) = E
(

e−
∫ T
t
λudue−

∫ T
t
rudu

∣∣∣rt = r, λt = λ
)
. (2.6)

Remark 2.1. By exploiting Feynman-Kaĉ’s formula within this market model, it turns
out that P d(t, r, λ, T ; ρ) solves the following two-dimensional parabolic problem{

∂u
∂t (t, r, λ) + Lρu(t, r, λ) = 0 (t, r, λ) ∈ [0, T )×R× (0,+∞)

u(T, r, λ) = 1 (r, λ) ∈ R× (0,+∞),
(2.7)
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with Lρ := L0 +A, where

L0 =

(
σ2

2

∂2

∂r2
+ κ(θ − r) ∂

∂r
− r
)

+

(
γ2λ

2

∂2

∂λ2
+ α(β − λ)

∂

∂λ
− λ
)

(2.8)

A = ρσγ
√
λ

∂2

∂r∂λ
. (2.9)

When ρ = 0 equation (2.7) can be explicitly solved by separating the variables.This
confirms that it might be promising to develop the general solution in power series of ρ
around 0.

In the following Theorem 2.3, we are going to show that P d(t, r, λ, T ; ·) is a C∞

function of ρ and that, for each fixed t, r, T , the Taylor series

∞∑
n=0

1

n!

∂nP d

∂ρn
(t, r, T ; 0)ρn (2.10)

converges to (2.6) in an open interval around ρ = 0. Without loss of generality, we prove
this result at t = 0, as it is sufficient to substitute T with T − t in the general case.

We first provide an alternative representation for (2.6).

Lemma 2.2. Given the model (2.4), we have

P d(0, r, λ, T ; ρ) = e−θT−(r−θ) 1−e−kT
k F (ρ)G(ρ), (2.11)

where

F (ρ) = E
(

e−
σ
k

√
1−ρ2

∫ T
0

[1−e−k(T−s)]dB2
s

)
= e

σ2

2k2 (1−ρ2)
∫ T
0

[1−e−k(T−s)]2ds, (2.12)

G(ρ) = E(e−
∫ T
0
λudue−

σ
k ρ

∫ T
0

[1−e−k(T−s)]dB1
s ). (2.13)

Proof. We recall that the explicit solution of (2.1) at time t = T is

rT = θ + (r − θ)e−kT + σe−kT
∫ T

0

eksdBs, Bs = ρB1
s +

√
1− ρ2B2

s ,

whence, by using the first equation in (2.4), we may derive∫ T

0

rtdt = θT +
r − rT + σBT

k
= θT + (r − θ)1− e−kT

k
+ σ

∫ T

0

1− e−k(T−t)

k
dBt.

We have

P d(0, r, λ, T ;ρ) = E

(
e−

∫ T
0
λudue−θT−(r−θ) 1−e−kT

k −σ
∫ T
0

1−e−k(T−t)
k d(ρB1

t+
√

1−ρ2B2
t )

)
. (2.14)

By conditioning the expectation argument to the σ−algebra F1
u = σ({B1

s : 0 ≤ s ≤ u}),
we obtain

P d(0,r,λ,T ;ρ)=e−θT−(r−θ) 1−e−kT
k

×E
[
e−

∫ T
0
λudu−σρk

∫ T
0

[1−e−k(T−t)]dB1
tE
(
e−

σ
√

1−ρ2
k

∫ T
0

[1−e−k(T−t)]dB2
t

∣∣F1
T

)]
=e−θT−(r−θ) 1−e−kT

k E
[
e−

∫ T
0
λudu−σρk

∫ T
0

[1−e−k(T−t)]dB1
tE
(
e−

σ
√

1−ρ2
k

∫ T
0

[1−e−k(T−t)]dB2
t
)]
,

because of the independence of the two Brownian motions. The inner expectation is F (ρ),
and the last equality in (2.12) comes from the Gaussian distribution of the stochastic
integral. 2

We finally present our main result.
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Theorem 2.3. Given the model (2.4), under Feller’s condition, P d(0, r, λ, T ; ρ) given by
(2.11) is a real-analytic function of ρ in (−1, 1).

Proof. For the sake of simplicity, we denote by

St = e−
∫ t
0
λudu, Zit =

σ

k

∫ t

0

(1− e−k(t−s))dBis ∼ N
(

0,
σ2

k2

∫ t

0

(1− e−k(t−s))2ds
)
, i = 1, 2.

From (2.12), we have that the function F (ρ) is a real analytic function of ρ, and we may
write

G(ρ) = E(ST e
−ρZ1

T ).

By Feller’s condition ST ≤ 1, therefore we have∣∣∣∣ ∂n∂ρnG(ρ)

∣∣∣∣ =

∣∣∣∣E(ST
∂n

∂ρn
(e−ρZ

1
T )

∣∣∣∣ = |E(ST (−Z1
T )ne−ρZ

1
T )|

≤E
(
|Z1
T |ne−ρZ

1
T

)
≤
[
E
(
|Z1
T |2ne−2ρZ1

T

)] 1
2

.

We can easily evaluate the last quantity, indeed for any Gaussian random variable
Z ∼ N (0; Σ2), we have

E(Z2ne−2ρZ) =

∫
R

1√
2πΣ2

z2ne−2ρze−
z2

2Σ2 dz = Σ2ne2ρ2Σ2

∫
R

1√
2π

(v − 2Σρ)2ne−
v2

2 dv

=Σ2ne2ρ2Σ2
2n∑
i=0

(
2n

i

)
(−2Σρ)2n−i

∫
R

vie−
v2

2 dv

=Σ2ne2ρ2Σ2
n∑
j=0

(
2n

2j

)
(−2Σρ)2n−2j

∫
R

v2je−
v2

2 dv

=Σ2ne2ρ2Σ2
n∑
j=0

(
2n

2j

)
(2Σρ)2n−2j(2j − 1)!! ≤ Σ2ne2ρ2Σ2

(2n− 1)!!(1 + 2Σ|ρ|)2n

Since |ρ| < 1, taking

Σ2 :=
σ2

k2

∫ T

0

(1− e−k(T−s))2ds, (2.15)

we have that ∣∣∣∣ ∂n∂ρnG(ρ)

∣∣∣∣ ≤ eρ
2Σ2√

(2n− 1)!!(1 + 2Σ)2n, ∀ ρ ∈ (−1, 1),

and by Lagrange Theorem

|Rn−1(ρ)| =
∣∣∣∣ρnn!

∂n

∂ρn
G(ρ̄)

∣∣∣∣ ≤ eρ
2Σ2

(|ρ
√

2|(1 + 2Σ)2)n√
n!

,

where 0 < |ρ̄| < |ρ|. Hence the remainder Rn(ρ) of the power series tends to zero as
n→ +∞ implying the real analyticity of G(ρ). The product of two real-analytic functions
of ρ is real-analytic, and Lemma 1 implies the result. 2

Lastly, we recall that the Vasicek bond price is given by (see e.g. [21])

PV (0, r, T ) = e−θT−(r−θ) 1−e−kT
k + σ2

2k2

∫ T
0

(1−e−k(T−s))2ds, (2.16)

consequently (2.11) may be rewritten as

P d(0, r, λ, T ; ρ) = PV (0, r, T )e−
ρ2σ2

2k2

∫ T
0

(1−e−k(T−s))2dsG(ρ). (2.17)
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3 Change of numeraire

In formula (2.17) the only non explicit factor is G(ρ). For better handling of this
function, we apply an appropriate change of numéraire. Let us introduce the positive
Fs-martingale

Ls :=
E(e−

∫ T
0
λudu|F1

s )

E(ST )
=

eA(s,T )−B(s,T )λs

E(ST )
, ⇒ L0 = 1, (3.1)

where

δ :=
√
α2+ 2γ2, A(t, T ) :=

2αβ

γ2
ln

[
2δeα+δ(T−t)

δ−α+(δ+α)eδ(T−t)

]
, B(t, T ) :=

2(eδ(T−t) − 1)

δ−α+(δ+α)eδ(T−t)
.

The random variable LT defines the T -forward measure as PT (A) := E(LT 1A) (see [6]
for the method, and [10] for a similar application), and we may write

G(ρ) = E(ST e−ρZ
1
T ) = E(ST )EP

T

(e−ρZ
1
T ) = PCIR(0, λ, T )EP

T

(e−ρZ
1
T ), (3.2)

where PCIR(0, λ, T )) := eA(0,T )−B(0,T )λ.
From (3.1), dLs = −γLs

√
λsB(s, T )dB1

s , whence by Girsanov theorem

B̃1
s := B1

s + γ

∫ s

0

B(u, T )
√
λudu

is a Brownian motion under PT and

Z1
T =

σ

k

∫ T

0

[1−e−k(T−s)]dB1
s =

σ

k

∫ T

0

[1−e−k(T−s)]dB̃1
s − γ

σ

k

∫ T

0

[1−e−k(T−s)]B(s, T )
√
λsds

=:Z̃1
T − γΛT .

By setting GT (ρ) := EP
T

(e−ρZ
1
T ) = EP

T

(e−ρ(Z̃
1
T−γΛT )) we may conclude

P d(0, r, λ, T ; ρ) = PV (0, r, T )PCIR(0, λ, T )e−
ρ2σ2

2k2

∫ T
0

[1−e−k(T−s)]2dsGT (ρ), (3.3)

which reduces to (2.5) in the case ρ = 0. Formula (3.3) is particularly appealing, indeed
the dependence on ρ in the bond price has been isolated and made more explicit. It
remains only to evaluate GT (ρ) that we are going to approximate by a second-order
Taylor polynomial, as shown in the next section.

4 Numerical analysis: the second order approximation

To complete the evaluation described by formula (3.3), we should compute GT (ρ).
Here, we suggest approximating it by its second-order Taylor polynomial

GT2 (ρ) := GT (0) +
∂GT

∂ρ
(0)ρ+

∂2GT

∂ρ2
(0)

ρ2

2
. (4.1)

We opted for the second-order expansion to capture the possible nonlinearity of this
function but trying to keep it simple, hoping it is enough to have good accuracy. If better
accuracy were required, one could always push the expansion to some higher order.

We have GT (0) = 1, and recalling that Z̃1
T is Gaussian with zero mean and variance

Σ2, defined by (2.15), we obtain by differentiation

a1 :=
∂GT

∂ρ
(0) =−EP

T

(Z̃1
T )+γEP

T

(ΛT ) =
σγ

k

∫ T

0

(1−e−k(T−s))EP
T

(
√
λs)B(s, T )ds (4.2)

a2 :=
∂2GT

∂ρ2
(0) = EP

T[
(γΛT − Z̃1

T )2
]

= γ2EP
T

(Λ2
T ) + Σ2 − 2γEP

T

(Z̃1
TΛT ). (4.3)
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The quantities EP
T

(
√
λs),E

PT(Λ2
T ),EP

T

(Z̃1
TΛT ) cannot be computed exactly as the dis-

tributions of the random variables are unknown, hence we implement the following
approximation procedures:

• In [17], the authors propose a very efficient approximation of E[
√
λt] for a CIR

process, that we are going to adapt to our needs. They suggested employing a
first-order Taylor polynomial approximation

E[
√
λt] ≈ a+ be−ct := q(t), (4.4)

for appropriately chosen a, b, c (see Result 3.3 in [17]).

In our case, under PT , the intensity process is not a classical CIR process as it
satisfies

dλs = α
[
β − λs

(
1− γ2B(s, T )

)]
ds+ γ

√
λsdB̃

1
s . (4.5)

On the other hand, 1− γ2B(s, T ) is a slow-varying function, so we modify the above
dynamics by substituting this function with its midpoint h̄ := 1 − γ2B(0, T )/2, to
recover a standard CIR process with parameters ᾱ = αh̄, β̄ = β/h̄. Applying the
technique in [17] (that we are going to illustrate in the next subsection), we may
conclude EP

T

(
√
λs) ≈ a+ be−cs, with

a =

√
β̄ − γ2

8ᾱ
, b =

√
λ− a, c = − log(

Λ− a
b

),

Λ =

√
γ2(1− e−ᾱ)

4ᾱ

[
4ᾱλe−ᾱ

γ2(1− e−ᾱ)
− 1 +

4ᾱβ̄

γ2
+

4ᾱβ̄/γ2

2(4ᾱβ̄/γ2 + (4ᾱλe−ᾱ)/(γ2(1− e−ᾱ))

]
.

• To compute EP
T

(Z̃1
TΛT ), we apply integration by parts d(Z̃1

t Λt) = Z̃1
t dΛt + ΛtdZ̃

1
t .

When we take the expectation, the martingale term gives no contribution, and we
obtain

EP
T

(Z̃1
TΛT ) =

σ

k

∫ T

0

(1− e−k(T−s))B(s, T )E(Z̃1
s

√
λs)ds.

Approximating the process
√
λs with its mean computed as in the previous point,

we may conclude that EP
T

(Z̃1
TΛT ) ≈ 0.

• Finally, we exploit the independence of the increments of the process λs to compute
the last expectation. Setting f(s) = (1− e−k(T−s))B(s, T ), we have

EP
T

(Λ2
T ) =EP

T

[(σ
k

∫ T

0

f(s)
√
λsds

)2
]

= 2
σ2

k2

∫ T

0

∫ s

0

f(s)f(u)EP
T

(
√
λs
√
λu)dsdu

=2
σ2

k2

∫ T

0

∫ s

0

f(s)f(u)[EP
T

(
√
λs −

√
λu)EP

T

(
√
λu)− EP

T

(λu)]dsdu

=2
σ2

k2

∫ T

0

∫ s

0

f(s)f(u)
[
EP

T

(
√
λs)E

PT(
√
λu)− [EP

T

(
√
λu)]2 − EP

T

(λu)
]
dsdu.

The expectations of the square roots of the intensity can be approximated as before,
while

EP
T

(λs) = e−α
∫ s
0

(1−γ2B(u,T ))du
{
λ+ αβ

∫ s

0

eα
∫ u
0

(1−γ2B(v,T ))dvds
}
.

ECP 27 (2022), paper 19.
Page 8/12

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP458
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Convergent power series method to price defaultable bonds

4.1 The GO method

Here, we briefly explain the approximation technique proposed by Grzelak and
Oosterlee in [17] for a different pricing problem (hereafter GO approximation), that we
adapt to our framework. Their method replaces the operator A given in (2.9) with

AGO := ργσEQ(
√
λt)

∂2

∂r∂λ
≈ ργσq(t) ∂2

∂r∂λ
,

obtaining the parabolic problem{
∂u
∂t (t, r, λ) + (L0 +AGO)u(t, r, λ) = 0

u(T, r, λ) = 1,
(4.6)

that has a solution of the affine form P dGO(t, r, λ, T ; ρ) = eA(t,T )+B(t,T )rt+C(t,T )λt .
As usual, plugging this expression into (4.6), one obtains the system of ODE’s

B′(t, T ) =1 + κB(t, T ), B(T, T ) = 0,

C ′(t, T ) =1 + αC(t, T )− γ2

2
C2(t, T ), C(T, T ) = 0,

A′(t, T ) =− σ2

2
B2(t, T )− κθB(t, T )− αβC(t, T )− ργσq(t)B(t, T )C(t, T ), A(T, T ) = 0,

whence

B(t, T ) =
1

κ
(e−κ(T−t) − 1),

C(t, T ) =
−2(1− e−d(T−t))

2d+ (α+ d)(e−d(T−t) − 1)
, d =

√
α2 + 2γ2,

A(t, T ) =
σ2

2

∫ T

t

B2(s, T )ds+κθ

∫ T

t

B(s, T )ds+αβ

∫ T

t

C(s, T )ds+ργσ

∫ T

t

q(s)B(s, T )C(s, T )ds.

This approximation may be suggestively summarized into

P dGO(0, r, λ, T ; ρ) = eA(0,T )+B(0,T )r+C(0,T )λ

= eB(0,T )r+σ2

2

∫ T
0
B2(s,T )ds+κθ

∫ T
0
B(s,T )ds (Vasicek Bond price)

× eC(0,T )λ+αβ
∫ T
0
C(s,T )ds (CIR Bond price)

× eργσ
∫ T
0
q(s)B(s,T )C(s,T )ds

= PV (0, r, T )PCIR(0, λ, T )eργσ
∫ T
0
q(s)B(s,T )C(s,T )ds.

4.2 Numerical results

In this section, for varying ρ, we assess the performance of the second-order approxi-
mation

P̃ d(0, r, λ, T ; ρ) := PV (0, r, T )PCIR(0, λ, T )e−
ρ2σ2

2k2

∫ T
0

[1−e−k(T−s)]2dsG̃T2 (ρ), (4.7)

where G̃T2 (ρ) is given by

G̃T2 (ρ) = 1 + ã1ρ+ ã2
ρ2

2
.

To compute the ãi, i = 1, 2, we apply the procedure described at the beginning of this
section. We are going to compare the results with the benchmark Monte Carlo evaluation
and the GO approximation.

We chose the parameters of the intensity process as in [11] (see Table 1), which
agree with those of calibrated default intensities. For the interest rate we took r0 = 0.01,
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Table 1: Parameter sets for the CIR default intensity. The one-year survival probability
for Set a, Set b and Set c is 96.9%, 90.5% and 98.7%, respectively.

λ α β γ

Set a 0.03 0.02 0.161 0.08
Set b 0.035 0.35 0.45 0.15
Set c 0.01 0.8 0.02 0.2

Table 2: Absolute error of the second order approximation with respect to the benchmark
Monte Carlo prices, for maturity T = 0.5. The length of the 95%-confidence interval
ranges from 7.5e− 07 to 3.9e− 06.

Set a Set b Set c
ρ ARS GO ARS GO ARS GO

−0.9 5.7365e-07 5.6891e-07 3.3579e-06 3.3622e-06 1.1904e-06 1.1665e-06
−0.6 9.1318e-07 9.1376e-07 6.0312e-06 6.0336e-06 1.0482e-06 1.0621e-06
−0.3 1.0944e-07 1.0941e-07 2.3765e-06 2.3779e-06 0.3533e-06 0.3465e-06

0.3 1.9451e-06 1.9456e-06 4.9327e-06 4.9328e-06 2.9603e-06 2.9541e-06
0.6 7.5866e-07 7.5414e-07 2.3698e-06 2.3635e-06 0.2740e-06 0.2822e-06
0.9 0.2135e-07 0.3962e-07 2.1126e-06 2.0856e-06 1.3778e-06 1.3783e-06

k = 0.4, θ = 0.05 and σ = 0.1, and finally we considered three maturities, T = 0.5, T = 1,
and T = 5. All the algorithms were implemented in MatLab (R2019b).

We implemented the Monte Carlo method by using the Euler discretization scheme
with full truncation for the intensity process λt (see [24]) and the exact simulation of
the short rate process rt. To reduce the variance of the estimator, we used a control
variates technique, taking the default-free bond price as control. In the considered cases,
this shortened the length of the confidence interval by at least one order of magnitude.
In our numerical experiments, we generated M = 107 sample paths, with a time step
discretization equal to 10−3 for all the maturities. The length of the 95% confidence
interval ranged approximately from 1.0e− 07 to 1.0e− 05. 1

In Tables 2 – 4, we report the absolute errors of our implementation with respect to
the Monte Carlo algorithm. The computing time to calculate one approximated price was
about 0.002 seconds. Furthermore, our method achieves comparable accuracy respect to
the GO approximations, which has a similar computational time of about 0.001 seconds.

The quality of our approximations appears to be satisfactory, almost uniformly in the
values of the correlation parameter ρ, while it tends to worsen slightly for increasing
maturities.

The advantage that we see in our methodology relies on the fact that a higher-order
expansion might achieve better accuracy, where it is needed, while the performance of
the GO approximations cannot be improved.

For the sake of completeness, we also run a basic sensitivity analysis of the approxi-
mated defaultable bond prices for the model parameters λ0, θ, T, γ, as the correlation
varies between -0.9 and 0.9. As expected, variations in ρ do not affect the price behavior
in λ0 and θ much, which is roughly linear. More interesting is the effect of the maturity,
T , and of the intensity volatility γ.

In the first case, it can be easily seen that all prices are decreasing in T , and below

1 A Monte Carlo estimate of the defaultable bond price may be obtained directly from the representation
(3.3), in which case only the intensity process (4.5) must be simulated. This reduces the computational burden
of the algorithm, but results are comparable (in all the considered cases) to the MC procedure previously
described.
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Table 3: Absolute error of the second order approximation with respect to the benchmark
Monte Carlo prices, for maturity T = 1. The lenght of the 95%-confidence interval ranges
from 2.0e− 06 to 1.1e− 05.

Set a Set b Set c
ρ ARS GO ARS GO ARS GO

−0.9 0.7728e-06 0.5677e-06 3.4001e-05 3.4157e-05 2.0549e-06 1.4446e-06
−0.6 2.8839e-06 2.9067e-06 3.4866e-05 3.4971e-05 2.6326e-06 2.9351e-06
−0.3 0.3118e-06 0.3109e-06 1.7943e-05 1.8007e-05 1.3155e-06 1.1719e-06

0.3 5.4730e-06 5.4977e-06 1.3988e-05 1.4007e-05 9.5357e-06 9.4207e-06
0.6 1.7739e-06 1.5500e-06 1.1658e-05 1.1299e-05 4.2103e-06 4.1694e-06
0.9 0.5507e-06 1.4414e-06 1.6879e-05 1.5483e-05 1.0814e-05 1.1343e-05

Table 4: Absolute error of the second order approximation with respect to the benchmark
Monte Carlo prices, for maturity T = 5. The lenght of the 95%-confidence interval ranges
from 1.3e− 05 to 4.3e− 05.

Set a Set b Set c
ρ ARS GO ARS GO ARS GO

−0.9 5.5635e-04 7.2537e-04 2.7751e-04 1.3394e-04 9.4493e-04 1.4816e-03
−0.6 2.7842e-04 2.8514e-04 2.6543e-04 1.2197e-04 5.9211e-04 7.0611e-04
−0.3 0.8389e-05 1.4300e-05 1.2988e-04 0.5633e-04 1.8608e-04 2.1583e-04

0.3 1.8655e-04 2.6171e-04 4.0959e-04 4.9280e-04 0.2405e-05 0.9859e-05
0.6 0.8296e-04 6.5552e-04 3.0717e-04 8.7900e-04 0.1987e-04 3.1365e-04
0.9 6.8537e-04 1.3782e-03 3.5605e-04 1.4314e-03 6.3288e-04 8.5577e-04

the default-free price, and the more negative the correlation is, the lower the price. The
latter is a very reasonable effect: higher intensity should imply lower prices.

The behavior of the price in γ is more articulate. As a matter of fact, a visual analysis
of the price curves shows that positive correlation amplifies the usual increasing effect of
volatility upon bond prices, while the interplay between r and λ may revert this behavior
for large negative values of ρ, lowering the bond price.
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