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Coarsened Mixtures of Hierarchical Skew
Normal Kernels for Flow and Mass Cytometry

Analyses∗

Shai Gorsky†, Cliburn Chan‡ and Li Ma§

Abstract. Cytometry is the standard multi-parameter assay for measuring single
cell phenotype and functionality. It is commonly used for quantifying the relative
frequencies of cell subsets in blood and disaggregated tissues. A typical analysis of
cytometry data involves cell classification—that is, the identification of cell sub-
groups in the sample—and comparisons of the cell subgroups across samples or
conditions. While modern experiments often necessitate the collection and pro-
cessing of samples in multiple batches, analysis of cytometry data across batches
is challenging because differences across samples may occur due to either true
biological variation or technical reasons such as antibody lot effects or instrument
optics across batches. Thus a critical step in comparative analyses of multi-sample
cytometry data—yet missing in existing automated methods for analyzing such
data—is cross-sample calibration, whose goal is to align corresponding cell subsets
across multiple samples in the presence of technical variations, so that biological
variations can be meaningfully compared. We introduce a Bayesian nonparamet-
ric hierarchical modeling approach for accomplishing both calibration and cell
classification simultaneously in a unified probabilistic manner. Three important
features of our method make it particularly effective for analyzing multi-sample
cytometry data: a nonparametric mixture avoids prespecifying the number of cell
clusters; a hierarchical skew normal kernel that allows flexibility in the shapes
of the cell subsets and cross-sample variation in their locations; and finally the
“coarsening” strategy makes inference robust to departures from the model not
captured by the skew normal kernels. We demonstrate the merits of our approach
in simulated examples and carry out a case study in the analysis of a multi-sample
cytometry data set. We provide an R package for our method.

Keywords: nonparametric estimation, mixture models, cytometry.

1 Introduction
Cytometry is a standard biological assay for measuring single cell features, referred to as
“markers”, and is commonly used for quantifying the relative frequencies of cell subsets
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in blood and disaggregated tissues. In this assay, individual cells are first incubated
with monoclonal antibodies linked to fluorescent molecules (flow cytometry) or heavy
metal isotopes (mass cytometry), then passed through a detection system that quantifies
the relative amount of each marker (a macromolecule recognized by the monoclonal
antibody) on every cell. Flow and mass cytometry can scan millions of cells in solution
in minutes and provide information on the distribution of cell types in a sample, most
typically reporting on the distribution of immune cell subsets in a blood sample. This
information has multiple applications in clinical research, including determining the
immune response to infection or vaccine challenge. As the data generated from flow
and mass cytometry are very similar in nature, we treat them interchangeably in our
analysis.

Cytometry data can generally be presented as an n × p matrix with n being the
number of cells and p the number of markers. Each row (observation) represents an
individual cell, and each column (variable) represents a parameter (e.g., marker) value
of the cells. In multiple-sample studies, each observation is also associated with a sample
(e.g. with an additional column denoting a sample number.)

Traditionally, cytometry data is analyzed manually by visual demarcation of cell
subsets on a sequence of 2D projections, a process known as gating. Manual gating
becomes unwieldy as the data dimensionality grows, and automated methods for cell
subset identification from cytometry data are becoming increasingly necessary.

However, variations in cell subset locations (in the marker space) frequently occur
due to uncontrolled technical reasons unrelated to the underlying biological differences.
In particular, technical differences often make it extremely challenging to compare sam-
ples processed in different batches and/or laboratories. Within a single cytometry lab-
oratory, batch differences may occur because of instrument and reagent variability over
time. In Figure 1 we provide an example of a data set arising from measuring the same
biological specimen in three different samples. Such “negative controls”—as there are no
underlying biological difference—are referred to as “batch controls”, whose main purpose
is to allow the quantification of cross-sample technical variation. These sample differ-
ences are compounded when multiple laboratories are involved in processing the data,
for example, in large multi-center vaccine trials, with additional variability introduced
by center-specific instruments and sample processing protocols. Thus a prerequisite for
proper analysis of such data is cross-sample calibration—aligning cell subsets across
multiple samples—so that cell subset properties can be meaningfully compared.

While we present a first unified framework for achieving automated classification and
calibration simultaneously, it is worth noting that a number of previous works in the
literature for cytometry data have considered cross-sample variability in the context of
cell classification, without explicitly addressing the calibration as a standalone task. For
example, Cron et al. (2013) developed an extension to the Dirichlet Process Mixture
(DPM) of Gaussian kernels, in which each sample has its own set of weights, thus
accounting for sample variability in subset sizes. Dundar et al. (2014) further expanded
the approach to also model cross-sample variability in kernel parameters by adding a
DPM prior on the means of the Gaussian kernels. Pyne et al. (2014) and Lee et al.
(2015) proposed a two-layer model where each sample is a finite mixture of multivariate
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Figure 1: Plots of three samples of 19-dimensional, uncalibrated batch control cytometry
data. (a) Three pairs of margins from the dataset. In circles are the misaligned clusters.
(b) t-SNE plots of the raw data. The t-SNE method (van der Maaten and Hinton,
2008) is a nonlinear dimensionality reduction method that projects high-dimensional
data to two dimensions. In the two-dimensional representation, points that are near one
another are also more similar in the high dimensional space. Thus, clusters of points
in the two-dimensional representation reflect clusters of points in the high-dimensional
space. Here, we apply the t-SNE algorithm to the full data set (all samples) at once
and present the results separately for each sample. The left sample is clearly misaligned
with the two right samples. The goal of calibration in the context of batch control is to
bring the different samples to look as similar as possible. In Section 4 we demonstrate
how our method successfully performs this task for these data and compare it to other
state-of-the-art methods for classification. There are many zero values in the data, likely
arising from the number of metal isotopes being below the limit of detection when the
cell expression of a marker is zero or very low. While this has been addressed using
approaches such as zero-inflated models (Minoura et al., 2020), we have found that the
“coarsening” strategy (Section 2.2) we utilize in our method provides a very effective
and robust approach to addressing this challenge.
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skew-t distributions with an embedded linear random effects model to allow cross-sample
variation in the cluster, estimated using Expectation-Maximization (EM). Instead of
linear mixed-effects models, Soriano and Ma (2019) suggested using a (nonparametric)
mixture with a hierarchical kernel to allow for variability in cell subset locations across
samples.

We present a model that adopts and enriches key features of these previous meth-
ods for characterizing cross-sample variation. Our approach incorporates all sources
of uncertainty in a joint hierarchical model and can be applied either as a joint clus-
tering method over related samples that adjust for cross-sample heterogeneity or as
a standalone tool for cross-sample calibration that aligns the samples for downstream
analysis. Specifically, we explicitly model cross-sample variability in cluster weights by
allowing each sample its own set of weights. Second, we incorporate hierarchical multi-
variate skew normal kernels to characterize both the flexible shapes of the cell subsets
as well as their variation across samples. This hierarchical kernel gives rise to a natural
scheme for performing calibration, as explained in Section 2.3. Finally, we incorporate
a recently introduced model-robustification strategy called “coarsening” (Miller and
Dunson, 2018).

We have found that robustifying generative models for cytometry data is necessitated
by the complex shapes of cell clusters and the presence of outliers. With this strategy,
our method becomes robust to limitations of the skew Gaussian kernels and mitigates
the undesirable issue of DPMs in producing a diverging number of clusters as sample size
grows, thereby increasing the efficacy of our model in classification and calibration. A
final contribution of our framework is computational. When fitting mixtures with mul-
tivariate skew kernels, maximum-likelihood estimation with expectation-maximization
(EM) or Bayesian approaches with conjugate priors and Gibbs sampling face difficul-
ties in overcoming the multimodality of the likelihood function of those kernels. We
introduce a hybrid sampler that embeds a Population Monte Carlo (PMC) step into a
Gibbs sampler, which reduces the risk of the sampler to be caught in a local mode and
allows us to adopt non-conjugate priors effectively. We call our method COMIX, for
COarsened MIXtures of hierarchical skew normal kernels, and provide an R package of
the same name that implements our method.

Before describing our method in detail, we provide a quick review of some other
previous statistical approaches to analyzing cytometry data in terms of classification
only, without attempting to calibrate misaligned data. Murphy (1985) applied K-means
cluster analysis to cytometry data. Generally, K-means clustering can be highly de-
pendent on the initialization and centroid calculations, and lacks statistical interpreta-
tion. Bakker Schut et al. (1993) performed cluster analysis using K-means initialized
with a large number of seed points, followed by a modified nearest neighbor technique
to reduce the large number of subclusters. This method caters to symmetric clusters.
Boedigheimer and Ferbas (2008) applied finite Gaussian mixtures to cytometry data,
and adopted a frequentist estimation strategy based on the EM algorithm. Chan et al.
(2008) fit cytometry data with a finite mixture of multivariate Gaussians using standard
conjugate Bayesian analysis and Gibbs sampling for inference. Methods that model cy-
tometry data with vanilla Gaussian kernels suffer from the obvious weakness that cell
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clusters are typically asymmetric. Malsiner-Walli et al. (2017) offered a Bayesian model
that allows a finite mixture of mixtures of Gaussian kernels and demonstrate this ap-
proach on cytometry data. This method automates the selection of the number of clus-
ters, and allows asymmetric clusters. In the frequentist literature, Pyne et al. (2010)
formulated the FLAME framework that models cytometry data with a finite mixture
model of skew-t distributions. O’Hagan et al. (2016) suggested using the multivariate
normal inverse Gaussian distribution kernels in the context of finite mixture models.
Lo et al. (2008) proposed a finite mixture of t distributions with a Box-Cox transfor-
mation in order to reduce asymmetry. This method depends on expert opinion or the
utilization of additional methods to determine initial conditions that will increase the
chances of convergence of the EM algorithm, which means that full automation of the
process is difficult. Arellano-Valle et al. (2009) discussed Bayesian mixtures of multi-
variate skew normal kernels, but did not provide a unified approach that handles all
three parameters of the skew normal distribution. Frühwirth-Schnatter and Pyne (2010)
developed a Bayesian, fully conjugate multivariate finite mixture model with multivari-
ate skew normal and skew-t distributions. As is further discussed in Section 2.4 this
formulation is constrained by the strong conjugate prior structure and does not allow
for intuitive treatment of calibration for cytometry data. Hejblum et al. (2017) used
the Bayesian formulation of Frühwirth-Schnatter and Pyne (2010) that also accommo-
dates dependencies within the data using a sampler that sequentially uses information
from previous time points or previous samples as priors for successive estimations of
(approximate) posterior distributions. Other methods for classification that do not in-
volve explicit statistical modeling are commonly used for flow cytometry data. Two
of the most popular are FLowSOM (Van Gassen et al., 2015) and PhenoGraph (Levine
et al., 2015). FLowSOM consists of a workflow of four steps: reading the data, building a
self-organizing map, building a minimal spanning tree and computing a meta-clustering
result. PhenoGraph constructs a nearest-neighbor graph to capture the phenotypic re-
latedness of high-dimensional data points and then applies the Louvain graph partition
algorithm to dissect the nearest-neighbor graph into phenotypically coherent subpopu-
lations.

The rest of the paper is organized as follows. Section 2 provides the details of our
Bayesian hierarchical model, the coarsening strategy, as well as the inference recipe
for achieving classification and calibration jointly. In Section 3 we provide numerical
examples on simulated data that demonstrate the efficacy of our model. In Section 4
we carry out a case study on a 19-dimensional mass cytometry data set.

2 Method
2.1 A Bayesian nonparametric hierarchical model
The complexity of the observed structures in cytometry data requires flexible statistical
models to characterize their key features. Our model captures those by a DPM (Fergu-
son, 1983) with several modeling choices that allow sample variability in weights and
kernel locations as well as flexibility in the kernel shapes. Since cytometry data rarely
involve symmetric clusters we choose to work with skew normal (SN) kernels. These are
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Figure 2: A graphical representation of our hierarchical model. j indicates the sample
number; i the observation number within a sample j; k indexes cluster labels. yi,j is
the ith observation in sample j; Ti,j the cluster assignment random variable specifying
which cluster yi,j belongs to. ξj,k is the sample and cluster-specific location parameter.
ωj,ks are cluster and sample specific DPM weights. αk and Σk are, respectively, the
skewness vector and scale matrix for each cluster, they are shared among all samples.
ξ0,k and Ek are, respectively, the mean and the covariance of the multivariate normal
distribution from which the sample specific location parameters are drawn.

characterized by a location parameter ξ, a scale parameter Σ, and a skew parameter
α. (See Supplementary Materials 1 (Gorsky et al., 2023) for further details about the
multivariate SN distribution.)

To allow the clusters to vary in sizes across samples, we endow each sample with its
own set of mixing weights. In order to allow differences in the location of the clusters,
we posit a hierarchical structure for the SN kernels. Figure 2 presents a full graphical
view of our model. We next describe the model components in detail.

In the following, we assume that p-dimensional data are generated in J samples:

yi,j
iid∼ Fj , i = 1, . . . , nj and j = 1, . . . , J

such that yi,j is the ith observation in sample j, nj is the number of observations in
sample j ∈ {1, . . . , J} and n =

∑J
j=1 nj is the total number of observations across all

samples.

Cluster assignment and weights. Let K be a countable set of cluster labels shared
over all samples. For each i = 1, . . . , nj and j = 1, . . . , J , let Ti,j be the latent cluster
assignment variable for observation i in sample j, such that Ti,j = k if and only if yi,j

belongs to cluster k for each k ∈ K. As discussed above, we allow each sample to have
its own set of weights (i.e., cluster sizes), ωj,k := P(Ti,j = k). The subscript j indicates
that cluster sizes may vary across samples.
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To form a DPM, we assign a Griffiths-Engen-McCloskey (GEM) prior with parame-
ter η (Ewens, 1990; Sethuraman, 1994) on the sample specific weights. That is, for each
j ∈ {1, . . . , J}, let

{ωj,k}k∈K
iid∼ GEM(η).

The weights {ωj,k}k∈K are all positive. Nonetheless, these weights may be very close
to zero in some sample but non-negligible in other samples. In such cases, a finite data
set generated from the model may have certain clusters that include points in the sample
with the non-negligible weights but no data points in the samples with the near zero
weights. In order to learn η, we also assign it a hyperprior, η ∼ Gamma(aη, bη).

Hierarchical multivariate skew normal kernels. Assume now that each Fj has the
density

fj(·) =
∑
k∈K

ωj,k · g(· | λj,k)

where g is the density function of the multivariate SN distribution, and each λj,k is
comprised of the three parameters of the SN distribution: λj,k = {ξj,k,Σk,αk}. In
particular, for each cluster k we assume that the scale parameter Σk and the skew
parameter αk are the same across samples. We allow sample variability in the sample-
specific location parameter ξj,k by assuming that they are distributed around a grand
“centroid” cluster location ξ0,k following a multivariate Gaussian with covariance Ek.
Thus we have the following hierarchical kernel for generating an observation in each
cluster

[ξj,k | ξ0,k,Ek]
iid∼ N(ξ0,k,Ek)

[yi,j | Ti,j = k, ξj,k,Σk,αk]
iid∼ SNp(ξj,k,Σk,αk).

We will further discuss the justification for only letting the location parameter vary
between samples in Section 2.2.

We assign multivariate Gaussian and inverse-Wishart priors for the means and co-
variances of the kernels:

ξ0,k
iid∼ N(b0,B0)

Σk
iid∼ W−1(m,Λ)

and follow Liseo and Parisi (2013) and Parisi and Liseo (2018) in the prior assignment
for the skewness parameter:

p(δk,Σk) = p(δk | Σk)p(Σk)

p(δk | Σk) =
(

π
p
2

Γ(p2 + 1)
√
|Ωk|

)−1

· I(δTk Ω−1
k δk < 1),

where I(·) is the indicator function, δk is a transformed version of αk as explained
in Supplementary Materials 1 (Gorsky et al., 2023), and Ωk is the correlation ma-
trix corresponding to the covariance Σk. That is, Ωk = diag(Σ−1/2

k,1,1 , . . . ,Σ
−1/2
k,p,p ) · Σk ·
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Figure 3: An illustration of a 3-sample data set generated from our model, limited to
three clusters. The “centroid” cluster parameters ξ0,k, Σk and αk are all shared across
the samples. Each sample has its own set of weights ωj,k and, e.g., cluster 2 in sample 3
is empty with ω3,2 ≈ 0 so that Ti,3 �= 2 for all i ∈ {1, . . . , n3}. The location parameters
of the first cluster ξ1,1, ξ2,1 and ξ3,1 are spread around ξ0,1. Similarly, ξ1,2, ξ2,2, ξ3,2 are
spread around ξ0,2 and ξ1,3, ξ2,3 and ξ3,3 are spread around ξ0,3.

diag(Σ−1/2
k,1,1 , . . . ,Σ

−1/2
k,p,p ) where diag(v1, . . . , vp) is the diagonal matrix whose diagonal el-

ements are (v1, . . . , vp). The priors for δ and Σ induce priors on an alternative equivalent
parametrization in terms of ψ and G, which are derived from δ and Σ by multiplying
the following Jacobian term, defined separately for each cluster k ∈ K:

|Jk[(ξ0,k,Σk, δk) → (ξ0,k,Gk,ψk)]| =
p∏

j=1
(Gk(j, j) + ψk(j)2)−

1
2 .

In practice, we will infer on ψk and Gk and then transform them back to the original
parameters. (See Supplementary Materials 1 for further details on the alternative pa-
rameterizations of the multivariate SN distribution and its computational advantages.)

We further assign an inverse-Wishart prior to the covariance of the normal distribu-
tion of the cluster locations around the grand location:

Ek
iid∼ W−1(ν0,E0).

This completes the specification of our hierarchical model. Figure 2 provides a graph-
ical model representation of the full hierarchical model while Figure 3 illustrates the
structure of the data generated from this model.
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2.2 Model robustification through coarsening
We use the “coarsening” strategy introduced in Miller and Dunson (2018) to make
inference robust to model misspecifications. This is particularly relevant in the context of
cytometry data, where clusters with parametric distributions usually do not adequately
fit the actual shape of cell subsets and the massive sample sizes of cytometry data makes
the resulting inference particularly sensitive to such model misspecifications.

Generally, for a model family indexed by some parameter θ, {Pθ : θ ∈ Θ}, one defines
an “idealized distribution” as a member in the model family that we use to represent
the data generative mechanism. (Here it is the full hierarchical model presented above.)
The coarsening approach assumes the existence of unobserved “ideal data”, denoted
by Y1, . . . , Yn, from this distribution. The observed data, denoted by y1, . . . , yn, are
assumed to be drawn from a true distribution which is in an R-neighborhood (under
some discrepancy measure d) of the idealized distribution. When the observed and ideal
distributions are the same, Bayesian inference is conducted on the standard posterior
distribution, π(θ | Y1 = y1, . . . , Yn = yn). When they differ, Bayesian inference is
performed on the “coarsened posterior”: π(θ | d({Y1, . . . , Yn}, {y1, . . . , yn}) < R). That
is, the “posterior” is computed conditional on the event that the empirical distributions
of the observed and ideal data are within an R-ball defined by a discrepancy measure d.
R can be taken as a random variable, and assigned a prior. When R ∼ exp(γ) and d is
the Kullback-Leibler (KL) divergence (or dn a consistent estimator of it), the coarsened
posterior is approximated by:

π(θ | dn({Y1, . . . , Yn}, {y1, . . . , yn}) < R) ∝∼ p(θ)
n∏

i=1
pθ(yi)ζ

where ∝∼ means “approximately proportional to”, ζ = γ
γ+n , p(θ) is the prior on θ and pθ is

the density function of Pθ. Given some ζ ∈ [0, 1], the quantity
∏n

i=1 pθ(yi)ζ is referred to
as the “power likelihood” while p(θ)

∏n
i=1 pθ(yi)ζ is referred to as the “power posterior”.

This form is easily implemented within the context of Gibbs sampling for mixture
models, and we do so for our model. In our context, we consider the entire hierarchical
DPM model as the idealized distribution. The types of deviations that the coarsening
procedure tolerates depends on the discrepancy measure. In the current context, our
hierarchical kernel robustifies inference with respect to cross-sample deviations in the
cluster locations. Adopting the KL divergence in coarsening complements our model
by robustifying inference with respect to variations in cluster shapes because the KL
divergence tends to be more sensitive to changes in locations than shape variation.

2.3 Cross-sample calibration through posterior prediction
To calibrate multiple samples, we aim to shift each observation in a cluster in each
sample by the estimated difference between the grand “centroid” mean and the sample-
specific mean of that cluster. That is, when Ti,j = k we compute a corrected value for
each observation by adjusting for the shift in the mean (which is equal to the shift in
the location parameters):

ỹi,j = yi,j − ((ξj,k + ωkδk
√

2/π) − (ξ0,k + ωkδk
√

2/π)) = yi,j − (ξj,k − ξ0,k)
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where ỹi,j is the shifted observation corresponding to the original observation yi,j . In
the above, ω and δ are alternative parameterizations to Σ and α. See Supplementary
Materials 1 (Gorsky et al., 2023) for further details on the multivariate SN distribution.
To incorporate the posterior uncertainty in the cluster assignment, we follow the tech-
nique suggested in Soriano and Ma (2017) for calibration by integrating out the cluster
assignment variables Ti,j :

E[ỹi,j | {yi,j}] = yi,j − E[ξj,k − ξ0,k | {yi,j}] ≈ yi,j −
1
N

N∑
n=1

(ξ(n)
j,T

(n)
i,j

− ξ
(n)
0,T (n)

i,j

).

where {yi,j} represents the totality of all observations, N is the number of steps saved
in the MCMC chain, T (n)

i,j is the assigned label to observation i in sample j at the nth
step in the saved MCMC chain, ξ(n)

j,T
(n)
i,j

the estimated location parameter for sample j

and cluster T
(n)
i,j at the nth step in the saved MCMC chain and ξ

(n)
0,T (n)

i,j

the estimated

“grand location” parameter for cluster T
(n)
i,j at the nth step in the saved MCMC chain.

A desirable byproduct of this integrating-out strategy is that through it we also bypass
potential label switching issues, which will be discussed further in the next subsection.

2.4 Posterior computation by hybrid Gibbs-PMC sampling

The multimodality of the SN likelihood poses difficulties to EM estimation in frequentist
settings and to Gibbs samplers in Bayesian settings. For example, Frühwirth-Schnatter
and Pyne (2010) offered a conjugate structure and a Gibbs sampler to perform Bayesian
estimation of the parameters of the SN distribution. Liseo and Parisi (2013) demon-
strated how this approach may fail when multimodality arises in the likelihood. In
addition, our experimentation in simulation studies of the conjugate prior approach
also suggests that the posterior estimates are very close to the prior values, regardless
of the values used to generate the data. One would often need hundreds of thousands
of observations to allow correct inference for highly skewed kernels. Furthermore, the
conjugate prior structure entails the elicitation of a joint prior for the location parame-
ter ξ and the skewness parameter ψ, which in the context of cytometry data will make
tasks such as cross-sample calibration difficult. For these reasons, it is important to find
a reasonable non-conjugate prior on the SN kernel parameters along with an efficient
computational strategy in the context of cytometry data.

Liseo and Parisi (2013) suggested utilizing the Population Monte Carlo (PMC) ap-
proach to tackle the problem of multimodality while allowing prior modeling on the
location parameter independently from those of the other SN parameters—that is,
ξ ⊥⊥ (Σ, δ) a priori. This strategy allows us to select flexible and intuitive priors that
offer a simple hierarchical structure for the location parameter. Because the resulting
priors are not conjugate, we cannot use a vanilla Gibbs sampler. (In contrast, Hejblum
et al. (2017), Dundar et al. (2014), and Soriano and Ma (2019) all constrained their
models so that the prior structure will be conjugate and allow blocked Gibbs sampling.)
We thus construct a hybrid “Gibbs-PMC” sampler.
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A “Gibbs-PMC” hybrid sampler. Our sampler uses PMC moves for the SN parame-
ters ξj,k, Gk, ψk, ξ0,k, Ek and zi,j . Given summary statistics (mean) of all particles for
these parameters, it uses Gibbs moves for the weights ωj,k and latent cluster assignment
Ti,j along with Metropolis-Hastings moves for the DPM concentration parameter η. The
full sampling algorithm is as follows.

• Step 0: Initialize Ti,j and a population of M particles ξ1:M
j,k , G1:M

k , ψ1:M
k , ξ1:M

0,k ,
E1:M

k and z1:M
i,j for j ∈ {1, . . . , J}, i ∈ {1, . . . , nj} and k ∈ K, the set of all cluster

labels.

• Step t > 0:

– Update the DPM concentration parameter η using a Metropolis-Hastings
step with the proposal:

η∗ | η ∼ Gamma(η2 · η0, η · η0)

where η0 is calibrated during the burn-in iterations.
– Sample from the full conditional distribution (FCD) of the mixture weights,

ωj,k.
– For k ∈ K:

If the number of observations in cluster k is 0, sample particles from priors.
Else, for cluster k, follow the PMC sampling scheme suggested by Liseo and
Parisi (2013):
∗ For every j ∈ {1, . . . , J}, sample M particles z1:M

1,j , . . . , z1:M
nj,k,j

from the
proposal q(m)

z as the FCD of zi,j (i.e. z(m)
i,j depends via q

(m)
z on ψ

(m)
k ,

G
(m)
k , ξ(m)

j,k and ξ
(m)
0,k for m = 1, . . . ,M).

∗ In a random order, perform the next 5 updating steps:
1. For every j ∈ {1, . . . , J}, sample M particles ξ1:M

j,k from the proposal
q
(m)
ξj,k

as the FCD of ξj,k.

2. Sample M particles G1:M
k from the proposal q

(m)
Gk

as the inverse-
Wishart part of the FCD of Gk.

3. Sample M particles ψ1:M
k from the proposal q(m)

ψk
as the p-dimensional

multivariate normal part of the FCD of ψj,k.
4. Sample M particles ξ1:M

0,k from the proposal q(m)
ξ0,k

as the FCD of ξ0,k.

5. Sample M particles E1:M
k from the proposal q(m)

Ek
as the FCD of Ek.

∗ Compute the ratios

	(m) ∝
π
(
{ξ(m)

j,k }j ,G(m)
k ,ψ

(m)
k , ξ

(m)
0,k ,E

(m)
k , {z(m)

i,j }j,i | {yi,j}j,i
)

q(m)
(
ξ

(m)
j,k ,G

(m)
k ,ψ

(m)
k , ξ

(m)
0,k ,E

(m)
k , {z(m)

i,j }j,i
)

where {·}j is a shorthand notation for {·}j∈{1,...,J}, {·}j,i is a shorthand
notation for {·}j∈{1,...,J},i∈{1,...,nj,k} and q(m) is the joint proposal for
each particle.
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∗ Scale the {	(m)}m∈{1,...,M} to sum to 1.

∗ Resample
{
{ξ(m)

j,k }j ,G(m)
k ,ψ

(m)
k , ξ

(m)
0,k ,E

(m)
k

}
m∈{1,...,M}

according to the

weights {	(m)}m∈{1,...,M}.

∗ Compute (mean over M index)
{
ξ1:M
j,k

}
j
, G1:M

k , ψ1:M
k , ξ1:M

0,k , E1:M
k and{

z1:M
i,j

}
j,i

.
(This is the last per-cluster PMC step)

– Sample from the FCD of Ti,j , based on the values
{
ξ1:M
j,k

}
j∈{1,...,J},k∈K

,{
G1:M

k

}
k∈K

,
{
ψ1:M

k

}
k∈K

and {ωj,k}j∈{1,...,J},k∈K

– (For each t) store:
{
ξ1:M
j,k

}
j∈{1,...,J},k∈K

,
{
G1:M

k

}
k∈K

,
{
ψ1:M

k

}
k∈K

,
{
ξ1:M
0,k

}
k∈K

,{
E1:M

k

}
k∈K

and
{
z1:M
i,j

}
j,i

, {Ti,j}j,i, η and {ωj,k}j∈{1,...,J},k∈K.

– Merge clusters for which the Kullback-Leibler divergence is smaller than a
preset threshold.

The full conditional and proposal distributions used in the sampler are described in
Supplementary Materials 2 (Gorsky et al., 2023).

In implementing the sampler, we utilize the finite-dimensional symmetric Dirichlet
distribution approximation (Ishwaran and James, 2001) to the Dirichlet process mixture.
With this approximation, the J infinite sequences of mixture weights {ωj,k}k∈K are
replaced for each j = 1, . . . , J by:

{ωj,k}k∈{1,...,K}
iid∼ Dirichlet(η/K, . . . , η/K)

where we need to specify the maximal number of clusters K, which should be much
larger than the actual number of clusters to provide adequate approximation to the
DPM. For cytometry data, we found that a value of K ≥ 40 to 50 is generally adequate.
This approximation is a special case of a more general class of models called sparse finite
mixtures (Malsiner-Walli et al., 2016). A known issue of this approximation for DPMs
when applied to large data sets is that the posterior will concentrate on a diverging
number of clusters and K is often the de facto number of estimated clusters. In our
approach, however, this issue is addressed with the coarsening strategy—we can set K
to be very large while the estimated number of clusters will still be much smaller than
K even for large and noisy data sets such as those from flow or mass cytometry.

A common phenomenon in inference algorithms for mixture models that utilize a
cluster assignment variable is known as label switching. Since the values the cluster
assignment variable assigns (the labels) to the different clusters are exchangeable, the
prior and posterior distributions for the parameters of the mixture components are
symmetric with respect to permutations of the labels. This causes no concern in our
framework when calibration is the sole purpose as our calibration strategy integrates
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out the different labeling scenarios. For cell classification, on the other hand, label
switching needs to be addressed and many possible strategies are available. Our software
implementation handles this issue post hoc using the method of Cron and West (2011).
A coherent classification is maintained by choosing a reference classification, which we
take from the last iteration of the MCMC chain. Then, for each saved classification a
cost matrix is computed (based only on the values of the cluster assignment variable)
and minimized by selecting a permutation on its columns using the Hungarian algorithm
of Munkres (1957). The resulting minimizing permutation is then applied to the cluster
labels. Individual labels for each observation are set to the mode from the set of all
labels generated in the saved MCMC chain for an observation.

3 Simulation study
We demonstrate our method using 18-dimensional simulated data consisting of 10 sam-
ples with a total of 64,622 observations across all samples. To examine the robustness
of our method to model misspecification in kernel shapes and the effects of coarsening,
we apply our method to two different data sets. The first is simulated under a finite
mixture model with 7 multivariate skew-normal components, with the same hierarchical
structure for the kernels as in our model. This represents a case in which our model is
correctly specified even without coarsening. The second data set is generated by “dis-
torting” the first, “ideal” data set to induce model misspecification. In the distorted
samples three out of the seven clusters are narrowed asymmetrically. Figure 4 presents
two margins from both the “ideal” data (top row) and the “distorted” data (bottom
row).

To each data set, we apply COMIX with K = 40, five PMC particles, and a burn-in
period of 3,500 samples, and save 500 samples from the chain. To assess convergence,
trace plots of the MCMC chain for several parameters are shown in Supplementary
Materials 5 (Gorsky et al., 2023). All other parameters and hyperpriors are set to

Figure 4: Two-dimensional scatter plots of the two 18-dimensional simulated data sets.
Top row: an “ideal” data set with 7 clusters in 10 samples. Bottom row: a distorted
version of the “ideal” data. The colors correspond to true cluster labels.
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their default values for our implementation, as specified in Supplementary Materials 3
(Gorsky et al., 2023). The total run time for each model fit on a laptop computer utilizing
four 3.00GHz Intel R© Xeon(R) E3-1505M v6 CPU cores is approximately 1 hour and 40
minutes, utilizing a total of 1.3GB of RAM. We have found in many numerical studies
that ζ = 0.2 provides robust results for classification and calibration in many contexts
where the observed data deviate from the theoretical skew kernels. As such we adopt 0.2
as a default value in our software. In order to demonstrate the effects of coarsening, we
show model estimates and calibration results with our recommended level of coarsening
(ζ = 0.2), a suboptimal level of coarsening (ζ = 0.5) and without coarsening (ζ = 1).
In applications we recommend the user to still carry out a context-specific sensitivity
analysis for ζ to ensure that an appropriate value is selected. We carry out a sensitivity
analysis on the value of ζ and provide the details in Supplementary Materials 4 (Gorsky
et al., 2023). Later we will demonstrate how the recommended level 0.2 produces robust
analysis in the case studies.

The classification and calibration results for the data drawn from the “ideal” kernels
are shown in Figures 5 and 6. The results for the distorted data are shown in Figures 7
and 8. In Figure 5, where the clusters are drawn from the same distribution as in our
generative model, each true cluster is identified as such both with and without coars-
ening. However, in Figure 7, where the distorted data are not exactly from SN kernels
as our generative model prescribes, the true clusters are broken into several clusters

Figure 5: Calibrated samples for the “ideal” data with our recommended level of coars-
ening (top row, ζ = 0.2), a suboptimal level of coarsening (middle row, ζ = 0.5) and
without coarsening (bottom row, ζ = 1). The colors indicate estimated cluster label
assignment. In this case, calibration results are similar across the different levels of
coarsening.
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Figure 6: t-SNE plots showing the raw “ideal” data (top row) and calibration results
for three different levels of coarsening: ζ = 1 (top row), ζ = 0.5 (middle row) and
ζ = 0.2 (bottom row). The colors indicate the true cluster labels in the top row, and the
estimated cluster labels in the bottom three rows. Calibration results are similar across
the different levels of coarsening.

Figure 7: Calibrated samples for the distorted data with our recommended level of
coarsening (top row, ζ = 0.2), a suboptimal level of coarsening (middle row, ζ = 0.5)
and without coarsening (bottom row, ζ = 1). The colors indicate estimated cluster
label assignment. Only at ζ = 0.2 do we get satisfactory results in calibration (as well
as classification).
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Figure 8: t-SNE plots showing the raw distorted data (top row) and calibration results
for three different levels of coarsening: ζ = 1 (top row), ζ = 0.5 (middle row) and
ζ = 0.2 (bottom row). The colors indicate the true cluster labels in the top row, and the
estimated cluster labels in the bottom three rows. Only at ζ = 0.2 do we get satisfactory
results in calibration (as well as classification).

without coarsening (ζ = 1). Coarsening helps identify and align the distorted clusters
correctly even though they are misspeciefied by our generative model. A comparison to a
model fit with a simplified version of COMIX, with Gaussian kernels and no coarsening,
is discussed in Supplementary Materials 8 (Gorsky et al., 2023).

Figures 3–22 in Supplementary Materials 5 (Gorsky et al., 2023) show trace plots
and effective sample sizes of two key parameters, the weights ωj,k and the grand means
ξ0,k. The plots show that we achieve MCMC convergence with good effective sample
sizes for all but the smallest clusters.

4 Case study: mass cytometry data
4.1 Fitting the COMIX model

We further apply our method to a publicly available 19-dimensional data set with 30,000
observations across three samples collected using a mass cytometer. The mass cytometry
data was published in Kleinsteuber et al. (2016), and consists of seven Flow Cytometry
Standard (FCS) files downloaded from FlowRepository (http://flowrepository.org/
id/FR-FCM-ZZTY). The data from the FCS file is a matrix where the rows (observations)
represent individual cells and the columns (variables) represent parameters of the cells.
Generally, these parameters, also known as markers, represent counts for the specific
type of cell surface protein (e.g. CD3, a component of the T cell receptor) that the
isotope-labeled antibody is specific for. The distribution of these variables is highly
right skewed, and part of the standard preprocessing for mass cytometry data is to
apply an inverse hyperbolic sine or arcsinh transformation (see Figure 9). The arcsinh

http://flowrepository.org/id/FR-FCM-ZZTY
http://flowrepository.org/id/FR-FCM-ZZTY
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Figure 9: Data before and after arcsinh transformation.

transformation is applied to each of the variables independently. After the transform,
each variable typically has a multimodal distribution. For example, there are 3 peaks in
the histogram for CD3 – a zero peak representing cells that do not express CD3, and two
peaks that represent cells expressing intermediate and high levels of CD3 respectively.

Kleinsteuber et al. (2016) described the use of spiked-in batch control samples to
enable manual calibration of mass cytometry data for comparative analysis. By de-
sign, the test samples in this study were spiked with CD45-barcoded peripheral blood
mononuclear cells (PBMC) from the same healthy donor as an internal control. Specif-
ically, each sample contains 2 × 106 CD8 T cells from HIV-infected patients labeled
with anti-CD45 antibodies conjugated to 141Pr, together with 4 × 105 spiked PBMC
from the same healthy donor labeled with anti-CD45 antibodies conjugated to 89Y.
Using the CD45 barcode, the spiked cells were retrieved from each sample and treated
as batch controls for the evaluation of COMIX calibration. We show that COMIX can
align the data using these spiked-in controls, providing a proof in principle approach to
the automated calibration of mass cytometry data with spiked-in batch controls.

To each data set, we apply COMIX with K = 50, 50 PMC particles, and a burn-in
period of 3,500 samples, and save 500 samples from the chain. All other parameters
and hyperpriors are set to their default values for our implementation, as specified in
Supplementary Materials 3 (Gorsky et al., 2023). The total run time for each model fit
on a laptop computer utilizing four 3.00GHz Intel R© Xeon(R) E3-1505M v6 CPU cores
is approximately 6 hours and 30 minutes, utilizing a total of 900MB.

Figure 10 shows t-SNE plots for the raw and calibrated data of the three samples
for ζ = 0.2, ζ = 0.5 and ζ = 1. The calibrated data is very similar across the samples
for all levels of coarsening, attaining our goal. In this case, we get that for ζ = 0.5 and
ζ = 1 the number of estimated clusters is 12 across all samples, whereas for ζ = 0.2
it is 11. Figure 11 shows some marginal scatter plots of the raw and calibrated data
for the three settings. Although the results are largely similar, here too the smaller
number of estimated clusters due to coarsening is beneficial, as the smallest cluster in
the CD45RO-Perforin plot of the left sample for ζ = 0.5 and ζ = 1 appears to be
artificial and uninformative.
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Figure 10: t-SNE plots for the 19-dimensional data. Top row: raw data. Second row
from top: calibrated data for 3 samples with ζ = 0.2. Third row from top: calibrated
data for 3 samples with ζ = 0.5. Bottom row: calibrated data for 3 samples with ζ = 1.
Color coding corresponds to estimated cluster assignment label.

Figure 12 presents the marginal densities of the 19 markers before and after calibra-
tion.

Figures 23–32 in Supplementary Materials 5 (Gorsky et al., 2023) show trace plots
and effective sample sizes of two key parameters, the weights ωj,k and the grand means
ξ0,k. The plots show that we achieve MCMC convergence with good effective sample
sizes for all but the smallest clusters.

Posterior mean estimates for skewness of the non-empty clusters when ζ = 1 are
shown in Tables 2 and 3 in Supplementary Materials 7 (Gorsky et al., 2023). (Here
we focus on ζ = 1 to eliminate coarsening thereby demonstrating the extent to which
the generative model alone captures the skewness in the data.) The high skewness
values indicate that there are significant shape deviations from Gaussian kernels. A
comparison to a model fit with a simplified version of COMIX, with Gaussian kernels
and no coarsening, is discussed in Supplementary Materials 9 (Gorsky et al., 2023).

The results show that COMIX works well for calibration of mass cytometry data
with 19 dimensions, which span the range of dimensions used in the vast majority of such
experimental data sets. Calibration is broadly useful not just for multi-center studies,
but also for studies across batches of data as cytometer performance characteristics, an-
tibody lots, and sample preparation often vary over time, necessitating time-consuming
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Figure 11: Marginal scatter plots for some markers and all samples in high dimensional
mass cytometry data. Raw data (top left); calibrated data for ζ = 0.2 (top right),
ζ = 0.5 (bottom left) and ζ = 1 (bottom right). Color coding reflects inferred cluster
labels.

and error-prone manual adjustment of gates across batches in manual analysis and
reducing the robustness of automated methods that ignore the need for calibration.

4.2 Comparing COMIX to other state-of-the-art methods

To evaluate the contribution of cross-sample calibration to classification robustness, we
compare the performance of COMIX to two state-of-the-art methods for cytometric cell
subset classification, FlowSOM (Van Gassen et al., 2015) and PhenoGraph (Levine et al.,
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Figure 12: Marginal density plots for all markers and samples in the 19-dimensional
mass cytometry data set. In red circles we highlight areas in the calibrated samples for
ζ = 0.5 and ζ = 1 that are not as well aligned compared to the sample calibrated with
ζ = 0.2.

2015). FlowSOM first builds linked clusters using self-organizing maps and a minimal
spanning tree, then applies a hierarchical consensus clustering (Wilkerson and Hayes,
2010) for meta-clustering across samples. The main parameter for the meta-clustering
step is the number of clusters, which has to be set in advance. It is worth noting
that unlike the maximal number of clusters K in COMIX, which only needs to be
sufficiently large to provide adequate approximation to the DPM and may be very
large without harming the analysis, the preset number of clusters in FlowSOM needs
to be sufficiently close to the actual number of cell clusters to render reliable analysis.
PhenoGraph identifies subpopulations, which are equivalent to clusters. The main tuning
parameter of PhenoGraph is the number of nearest neighbors to be used for the nearest-
neighbor graph to capture the phenotypic relatedness of data points. A higher tuning
parameter prefers fewer, larger clusters. Meta-clustering across samples is performed on
cluster centroids with partitioning across medoids (PAM) using the average silhouette
width to determine the number of meta-clusters. Figure 13 shows the results of the
classification provided by the two methods when applied to the mass cytometry data
from Section 4.1, thereby allowing us to directly compare the performance of those to
that of COMIX.

FlowSOM, when asked to classify the data to 12 clusters (top row in Figure 13)
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Figure 13: t-SNE plots for the 19-dimensional mass cytometry data. Top row: clas-
sification results for FlowSOM when 12 clusters are requested. Second row from top:
classification results for FlowSOM when 30 clusters are requested. Third row from top:
classification results for PhenoGraph with the tuning parameter set to 30 (the default
value). Bottom row: classification results for PhenoGraph with the tuning parameter set
to 300. Color coding corresponds to estimated cluster assignment label.

correctly identifies the misaligned cluster (yellow and orange cluster). However, in all
other settings that cluster is identified as separate. This kind of result will be pervasive in
the presence of misalignment with algorithms that do not explicitly account for it. When
the correct number of clusters is correctly identified a priori, which is uncommon in
practice, such algorithms could sometimes succeed in identifying the misalignment, but
in general they tend to break larger clusters into an increasing number of smaller clusters
as the number of specified clusters grows, and the first “victims” for this misclassification
will be the misaligned clusters.

5 Discussion
We have presented a principled probabilistic approach for calibrating and classifying
multi-sample cytometry data. Our approach utilizes a flexible Bayesian nonparametric
mixture model with multivariate SN kernels to accommodate the key features of cy-
tometry data and incorporate the “coarsening” strategy to make inference robust to
model misspecification. Moreover, we constructed a Gibbs-PMC hybrid sampler, which
embeds PMC moves for the SN parameters into a Gibbs sampler, thereby addressing
the multimodality of the posterior on the kernel parameters.
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It is possible to extend the COMIX model to incorporate additional experimental
design features. For example, when the samples fall into multiple batches and the batch
information is available, one could incorporate cross-batch variability by inserting an
additional layer of hierarchical modeling into the kernel parameters and/or the weight
generation.

While our method is motivated by and developed for the purpose of analyzing multi-
sample cytometry data, the modeling and inference techniques used are generally ap-
plicable to other multi-sample data that can be effectively modeled by mixtures. In
particular, the idea of adopting a flexible kernel, allowing hierarchical structure on the
kernel, and incorporating coarsening to further robustify the method can all be readily
applied to other types of data.

Software

Our R package COMIX is available at https://CRAN.R-project.org/package=COMIX.
Code for the numerical examples is available at https://github.com/MaStatLab/
COMIX_Numerical_Examples.

Supplementary Material
Supplementary material for coarsened mixtures of hierarchical skew normal kernels for
flow and mass cytometry analyses (DOI: 10.1214/22-BA1356SUPP; .pdf). Includes the
following sections: The multivariate skew normal distribution; Full conditionals and
MCMC proposals; COMIX: default hyperpriors and parameters; Case study: sensitiv-
ity analysis; Simulation study: MCMC trace plots and diagnostics for main estimated
parameters; Case study: MCMC trace plots and diagnostics for main estimated pa-
rameters; Case study: estimates of skewness parameters; Simulation study: model fit
with Gaussian kernels; Case study: model fit with Gaussian kernels; Data generating
mechanism for the simulation study of Section 3.
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