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Inference for Bayesian Nonparametric Models
with Binary Response Data via Permutation

Counting

Dennis Christensen∗,†

Abstract. Since the beginning of Bayesian nonparametrics in the early 1970s,
there has been a wide interest in constructing models for binary response data.
Such data arise naturally in problems dealing with bioassay, current status data
and sensitivity testing, and are equivalent to left and right censored observations
if the inputs are one-dimensional. For models based on the Dirichlet process, in-
ference is possible via Markov chain Monte Carlo (MCMC) simulations. However,
there exist multiple processes based on different principles, for which such MCMC-
based methods fail. Examples include logistic Gaussian processes and quantile
pyramids. These require MCMC for posterior inference given exact observations,
and thus become intractable when the data comprise both left and right censored
observations. Here we present a new importance sampling algorithm for nonpara-
metric models given exchangeable binary response data. It can be applied to any
model from which samples can be generated, or even only approximately gener-
ated. The main idea behind the algorithm is to exploit the symmetries introduced
by exchangeability. Calculating the importance weights turns out to be equivalent
to evaluating the permanent of a certain class of (0, 1)-matrix, which we prove
can be done in polynomial time by deriving an explicit algorithm.
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1 Introduction
In many statistical applications, we only observe a Bernoulli random variable indicating
whether a real-valued latent variable is below or above a certain threshold. Examples
include problems in current status data and bioassay, where we aim to estimate a
distribution P governing the probability that an individual has transitioned from state
0 to state 1 before time t (Albert and Chib, 1993; Keiding et al., 1996; Groeneboom and
Jongbloed, 2014). Another example is sensitivity testing, in which we repeatedly choose
an impact level E of energy and then observe whether a physical system is intact or
broken after the impact. Such methods are used for studying the sensitivity of explosives
or a material’s resistance to stress (Dixon and Mood, 1948; Neyer, 1994; Christensen,
2022).

Since the beginning of Bayesian nonparametrics, there has been an interest in such
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binary response problems. Following the introduction of the Dirichlet process by Fer-
guson (1973), Antoniak (1974) showed that the posterior distribution of a Dirichlet
process given censored data is a mixture of Dirichlet processes, and applied this to
bioassay. Dirichlet processes with binary response data were further studied in Bhat-
tacharya (1981); Kuo (1988); Gelfand and Kuo (1991); Doss (1994); Newton and Zhang
(1999). These methods rely on one or more of the following particularly useful prop-
erties of the Dirichlet process: its conjugate posterior representation (Ferguson, 1973),
its explicit marginal distribution (Antoniak, 1974) and its stick-breaking representation
(Sethuraman, 1994). These three properties have also allowed for the development of
Markov chain Monte Carlo (MCMC) sampling methods for Dirichlet process mixture
models (DPMMs) (Ferguson, 1983; Lo, 1984). In the terminology of Papaspiliopoulos
and Roberts (2008), this may be achieved either with marginal MCMC methods (Es-
cobar and West, 1995; Neal, 2000) or conditional MCMC methods (Walker, 2007; Kalli
et al., 2011). Due to the tractability of the mixture components, such MCMC techniques
also apply when dealing with binary response data (see Paulon et al. (2020) for a recent
application with current status data and dependent censoring). In principle, this is not
only true for DPMMs, but for any mixture model with tractable marginal mixture dis-
tributions, such as normalised random measures with independent increments (NRMIs)
(Regazzini et al., 2003; Lijoi et al., 2005, 2007), or with stick-breaking representations
(Hjort, 1990; Paisley et al., 2010; Ishwaran and James, 2001). On the semiparametric
side, Bayesian inference for the proportional hazards model (Cox, 1972) with current
status data has been studied via Gibbs sampling (Cai et al., 2011) and expectation
maximisation (Wang et al., 2015).

Although models based on Dirichlet processes are largely applicable to problems
with binary response data, many nonparametric models are not. A notable example of
this is the logistic Gaussian process (Leonard, 1978; Lenk, 1988, 1991) and the Gaussian
process density sampler (Murray et al., 2008). In these models, the likelihood function
will contain an integral of a Gaussian process due to the censoring. Thus, a direct
implementation of MCMC-based inference is not feasible. Furthermore, since there is
no conjugate posterior representation for such models, alternatives such as successive
substitution sampling (Doss, 1994) are also out of reach. The same is true for other
model choices in Bayesian nonparametrics, such as quantile pyramids (Hjort and Walker,
2009), normalised infinitely divisible multinomial (NIDM) processes (Lijoi et al., 2019)
and Pitman-Yor multinomial processes (Lijoi et al., 2020). These examples are in line
with Orbanz and Teh’s (2011) prediction that over time, more Bayesian nonparametric
models which are not based on the Dirichlet process will continue to arise.

In this paper, we introduce a new importance sampling algorithm which enables full
Bayesian inference for models with exchangeable binary response data. The construction
is highly general and applies to any model from which a data sample can be simulated.
In particular, it does not rely on the tractable properties of Dirichlet processes. Unlike
approximate methods such as the approximate Bayesian computation (ABC) rejection
sampling algorithm (see Marin et al. (2012) for a review), our new simulation algorithm
converges to the true posterior distribution, not just an approximation of it. As is
illustrated in our simulation case study (see Section 4), this exact convergence result
also holds when it is only possible to sample from a finite-dimensional truncation of the
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model, as studied by Muliere and Secchi (1995); Campbell et al. (2019); Arbel et al.
(2019); Lijoi et al. (2019, 2020).

The key to the new algorithm is to exploit the symmetry introduced by exchange-
ability of the data, and then essentially to correct for this exploitation by multiplying by
an appropriate importance weight. Calculating the weight turns out to be equivalent to
evaluating the permanent of a (0, 1)-matrix, that is, a matrix whose entries are all either
0 or 1. For a general such matrix, this is known to be a #P-complete problem (Valiant,
1979). However, for the matrices arising in our setting, we are able to derive an explicit
algorithm which computes their permanents in polynomial time. Code for implementing
this new algorithm can be found in the publicly available GitHub repository.

The remainder of the paper is structured as follows. In Section 2, we set up the
problem and introduce the importance sampling algorithm. We show how to calculate
the marginal likelihood and how to carry out posterior inference. In Section 3, we
derive an algorithm for calculating the importance weights in polynomial time. Next,
in Section 4, we apply the new importance sampling algorithm to experiments with
both simulated and real data. The theory is then extended in Section 5 to problems
with multidimensional inputs. Finally, we briefly discuss extensions, limitations and
consistency in Section 6.

2 Construction
2.1 Model

Let ([0,∞),F ) be the measurable space of non-negative real numbers equipped with the
Borel σ-algebra. We use [0,∞) as our sample space to more conveniently illustrate the
theory, although everything also applies to R or a real bounded interval. Let P ∼ π(·) be
a random probability distribution on ([0,∞),F ). Then P induces a random cumulative
distribution function (cdf) F on [0,∞). Our binary data y = (y1, . . . , yn) ∈ {0, 1}n is
assumed to be generated by

yi | F ∼ Bernoulli(F (ti)),

independently for i = 1, . . . , n, for some known thresholds t1, . . . , tn. That is, π(yi |
F ) = F (ti)yi{1 − F (ti)}1−yi . We also write π(y) for the marginal distribution of y,
having marginalised over F .

It is useful to introduce the latent variables x = (x1, . . . , xn) ∈ [0,∞)n with xi | P ∼
P independently for i = 1, . . . , n. That is, π(xi | P ) = P . Then our binary variables yi
can be seen as indicator variables, yi = 1xi≤ti . Let π(x) be the marginal distribution of
x, marginalising over P . Note that the xi need not be marginally independent. However,
they will always form an exchangeable sequence. The same is true for the yi. Since π(·)
may both refer to the distribution of P and the marginal distributions of x or y, we will
make it clear from context which distribution is in use.

https://github.com/dennis-christensen/permutation_counting
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We shall need to introduce some notation. Given y1, . . . , yn, let

Bi =
{

[0, ti] if yi = 1,
(ti,∞) if yi = 0,

(2.1)

for i = 1, . . . , n. Thus, observing y is equivalent to observing that xi ∈ Bi for all
i = 1, . . . , n. Now, let n0 = #{i | yi = 1}. Then, by exchangeability, we may without
loss of generality order the yi so that y1 = · · · = yn0 = 1 and yn0+1 = · · · = yn = 0,
and further so that t1 ≤ · · · ≤ tn0 and tn0+1 ≤ · · · ≤ tn. Note that this also induces
an ordering of the sets B1, . . . ,Bn. We write B = B1 × · · · × Bn, so that observing
y is equivalent to observing that x ∈ B. For now, we will assume that there are no
repeated values amongst the thresholds t1, . . . , tn. Later on, in Section 2.2, we show
how to account for situations where we have repeated values amongst them.

2.2 Estimating the marginal likelihood
Our first objective is to estimate the marginal likelihood π(y) = P(x ∈ B) of the model.
In addition to being valuable in its own right, this will also guide how to perform
posterior inference for P in general, to be covered in Section 2.3. For brevity of notation,
define the measure P on ([0,∞)n,Fn) by P(A) = P(x ∈ A). The marginal likelihood
will be estimated via an importance sampling algorithm, exploiting the symmetries
present as a result of the xi being exchangeable.

Let 1 denote the indicator function, so 1B(x) returns 1 if x ∈ B and 0 otherwise.
Consider first the following naive estimator.

P̂T (B) = 1
T

T∑
t=1

1B(x(t)), (2.2)

where x(t) ∼ π(·) independently for t = 1, . . . , T .

By the law of large numbers, P̂T (B) is indeed a consistent estimator for the marginal
likelihood P(B). However, in practice, we will never experience that x ∈ B if n is even
moderately large, so P̂T (B) will always just be zero. This is also true even if parallel
computing is employed, as the acceptance probability decreases exponentially with n.
In order to adjust it to yield something practically feasible, we will have to loosen the
condition that x ∈ B by replacing B with a larger space. We do this by exploiting the
symmetries of the measure P due to the exchangeability of the xi.

The group Sn of n-permutations acts on [0,∞)n via permutations of indices. Specif-
ically, for x = (x1, . . . , xn) ∈ [0,∞)n, we write σ(x) = (xσ(1), . . . , xσ(n)) for the result
of hitting x with the permutation σ ∈ Sn. Similarly, Sn acts on Fn via permutations,
and we write σ(B) = Bσ(1) × · · · × Bσ(n) for B = B1 × · · · × Bn ∈ Fn. We define the
orbit1 Orb(B) of B to be the set

Orb(B) =
⋃

σ∈Sn

σ(B).

1Strictly speaking, this is the union of the orbit, where the orbit is usually defined as {σ(B) | σ ∈ Sn}.
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Figure 1: A two-dimensional example of calculating permutation numbers.

Next, we define the permutation number w(x;B) of x with respect to B as

w(x;B) = #{σ ∈ Sn | σ(x) ∈ B}.

Note that 0 ≤ w(x;B) ≤ n! for all x, and furthermore that w(x;B) = 0 if and only if
x /∈ Orb(B), that is, if and only if σ(x) /∈ B for all permutations σ ∈ Sn.

Example. We show how to calculate permutation numbers in a simple two–dimensional
example. Consider the set B = B1 × B2 = [0, 2] × (1,∞), drawn in Figure 1a. In order
to calculate the permutation numbers of the points p, q, r, s, we hit these points with the
nontrivial permutation σ ∈ S2, as shown in Figure 1b. That is, we reflect them across
the diagonal x1 = x2. Now, p /∈ B and σ(p) /∈ B, so w(p;B) = 0. Next, q ∈ B and
σ(q) /∈ B, so w(q;B) = 1. Similarly, r /∈ B and σ(r) ∈ B, so w(r;B) = 1. Finally, s ∈ B
and σ(s) ∈ B, so w(s;B) = 2. Note in particular that w(r;B) > 0 even though r /∈ B.

In Section 3, we will derive an algorithm for efficiently computing the permutation
numbers w(x;B). For now, we shall show how they can be used to construct an impor-
tance sampling algorithm as an alternative to (2.2). Consider the modified estimator

P̂IS
T (B) = 1

T

T∑
t=1

1
n!w(x(t);B), (2.3)

where x(t) ∼ π(·) independently for t = 1, . . . , T . This is essentially an importance
sampling estimator with proposal distribution x ∼ π(·) and weights W (x) = w(x;B)/n!.

Proposition 2.1. P̂IS
T (B) is an unbiased and consistent estimator for the marginal

likelihood P(B).
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Proof. We have that w(x;B) = #{σ ∈ Sn | σ(x) ∈ B} = #{σ ∈ Sn | x ∈ σ(B)}, so that
taking expectations, we get

E

[
1
n!w(x;B)

]
= 1

n!

∫
Orb(B)

w(x;B) dπ(x) = 1
n!

∑
σ∈Sn

∫
σ(B)

dπ(x)

= 1
n!

∑
σ∈Sn

P(σ(B)) = P(B),

where we have used exchangeability for the final equality. This proves that the estimator
is unbiased. Applying the law of large numbers to (2.3) establishes consistency.

The benefit of calculating P̂IS
T (B) rather than the naive estimate P̂T (B) is that

we only require x to land in Orb(B), which is a much larger set than B. In practice,
this means that we get way more contributing samples when calculating (2.3) rather
than (2.2).

Given x and B, it is not, a priori, easy to determine whether x ∈ Orb(B). However,
by considering the order statistics of x, we can establish an easily verifiable criterion.

Definition 2.1. Let x ∈ [0,∞)n be fixed and let σ ∈ Sn be any n-permutation such
that xσ(1) ≤ · · · ≤ xσ(n). That is, σ(x) are the order statistics of x. We say that x is
B-admissible if σ(x) ∈ B.

Proposition 2.2. Let x ∈ [0,∞)n. Then w(x;B) > 0 if and only if x is B-admissible.

Proof. See the Supplementary Material (Christensen, 2023).

Proposition 2.2 simplifies computations significantly. For instance, when calculating
P̂IS

T (B), we now have a simple criterion for checking whether x ∈ Orb(B). Namely, we
check whether σ(x) ∈ B, where σ is as in Definition 2.1.

Example. We illustrate the volume of Orb(B) via a simple simulation study. For n =
1, . . . , 300, we let 0 < r1 < . . . rn < 1 be uniformly spaced and simulated u1, . . . , un ∼
Uniform[0, 1] independently. As in Section 2.1, we write n0 = #{i | ui ≤ ri} and let
t1 < · · · < tn0 be those ri satisfying ui ≤ ri. Similarly, we let tn0+1 < · · · < tn be those
ri satisfying ui > ri. This defines the set B.

Two experiments were conducted, one where x1, . . . , xn ∼ Uniform[0, 1] and another
where x1, . . . , xn ∼ Beta(2, 2), independently. The probability that x ∈ B is given by

P(x ∈ B) =
n0∏
i=1

F (ti) ×
n∏

i=n0+1
{1 − F (ti)} ,

where F denotes the cdf of the Uniform and Beta distribution in the first and second
experiment, respectively. In either case, this probability decays exponentially and gets
vanishingly small as n gets large. In order to compare P(x ∈ B) with the probability
P(x ∈ Orb(B)), we repeatedly simulated copies of x a total of 1000 times and counted
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Figure 2: Empirical estimates of P(x ∈ B) and P(x ∈ Orb(B)) for x1, . . . , xn ∼
Uniform[0, 1] independently and x1, . . . , xn ∼ Beta(2, 2) independently.

how many times we observed x ∈ B and how many times we observed x ∈ Orb(B)
(using Proposition 2.2). We did this 100 times for each n and averaged the results,
which are plotted in Figure 2. We note that in both experiments, we get a much higher
acceptance proportion when working with Orb(B). Also, this proportion does not seem
to decrease with n. This makes sense intuitively, since the number of permutations
increases exponentially with n.

Remark. The quality of the estimate P̂IS
T (B) is diagnosed by calculating the effective

sample size (ESS), given by

ESS =

(∑T
t=1 w(x(t);B)/n!

)2

∑T
t=1

(
w(x(t);B)/n!

)2 =

(∑T
t=1 w(x(t);B)

)2

∑T
t=1 w(x(t);B)2

.

In (2.3), it may be useful not to treat T as a fixed sample size, but rather to keep adding
terms until the ESS reaches a fixed, predetermined value.

In principle, P̂IS
T (B) can also be computed in cases where all observations are only

right or left censored. That is, in cases where n0 = 0 or n0 = n. However, for such
problems, we experience that the ESS increases too slowly. By studying the geometry of
the situation, we can gain some insight into why this is the case. The ESS will be small
if only a few weights dominate. Now, if all the Bi extend to the right, say, then samples
x(t) with all x(t)

i far to the right will yield large permutation numbers w(x(t);B). Indeed,
the maximum value w(x(t);B) = n! is attainable if the x

(t)
i are sufficiently far to the

right. However, when both left and right censored observations are present, the Bi are
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no longer nested, and so the weights tend to be more uniformly spread out, making a
larger effective sample size obtainable.
Remark. Some of the thresholds ti may be equal. Let r1 ≤ · · · ≤ rl be the unique
values of the set {t1, . . . , tn} and for each j = 1, . . . , l, let aj = #{i | ti = rj} and
bj = #{i | ti = rj , i ≤ n0}. That is, aj is the number of trials conducted at input rj
and bj is the number of successes. The observations are now a sequence of binomial
variables, and so the marginal likelihood takes the form P(x ∈ B) ×

∏l
j=1

(
aj

bj

)
. Hence,

if we have repeated trials, we may simply redefine w(x;B) to be w(x;B) ×
∏l

j=1
(
aj

bj

)
and carry out our analysis as normal. We continue without explicitly multiplying by this
factor in our notation, but it should be kept in mind that the permutation numbers are
multiplied by this factor if the data include repeated trials.
Remark. In (2.3), the samples come from the prior. Although the simulation study
above indicates that this naive approach works sufficiently well, other choices of proposal
distribution may be more efficient and increase performance. Examples of methods that
might do so include sequential Monte Carlo (see Cappé et al. (2007) for a review),
defensive mixture proposal distributions (Hesterberg, 1995) and population Monte Carlo
(Cappé et al., 2004). For the sake of simplicity, in the present paper, we shall only
consider the case where the samples are drawn from the prior.

We conclude this section by showing that our estimate P̂IS
T (B) yields a smaller

variance than the naive estimate P̂T (B).
Proposition 2.3. We have that

Var
(

1
n!w(x;B)

)
= Var (1B(x)) + P(B) − 1

n!
∑
σ∈Sn

P(σ(B) ∪ B).

In particular,

Var
(

1
n!w(x;B)

)
≤ Var (1B(x)) .

Proof. Using the same reasoning as in Proposition 2.1, we have that

w(x;B)2 = #{(σ, τ) ∈ S2
n | σ(x), τ(x) ∈ B} = #{(σ, τ) ∈ S2

n | x ∈ σ(B) ∩ τ(B)},
and so

E

[(
1
n!w(x;B)

)2
]

= 1
(n!)2

∫
Orb(B)

w(x;B)2 dπ(x) = 1
(n!)2

∑
σ,τ∈Sn

∫
σ(B)∩τ(B)

dπ(x)

= 1
n!

∑
σ∈Sn

P(σ(B) ∩ B) = 1
n!

∑
σ∈Sn

{P(σ(B)) + P(B) − P(σ(B) ∪ B)}

= 2P(B) − 1
n!

∑
σ∈Sn

P(σ(B) ∪ B).

Subtracting E[(1/n!)w(x;B)]2 from both sides yields the first result. For the second,
note that P(σ(B) ∪ B) ≥ P(B) for all σ ∈ Sn.
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2.3 Posterior inference
We now extend the results from the previous section to a general importance sampling
algorithm targeting the posterior distribution of P given that x ∈ B. Let θ = θ(P ) ∈ R

be some quantity related to P , such as a specific cdf value F (t) = P ([0, t]) or a quantile
F−1(q). Then consider the estimator

θ̂IS
T =

∑T
t=1 θ

(t)w(x(t);B)∑T
t=1 w(x(t);B)

, (2.4)

where θ(t) = θ(P (t)), x(t) ∼ P (t) and P (t) ∼ π(·), independently for t = 1, . . . , T .

Proposition 2.4. The statistic θ̂IS
T is a consistent estimator for the posterior mean

E[θ | x ∈ B].

Proof. The expression (2.4) is precisely the self-normalised importance sampling esti-
mator targeting∫

[0,∞)n×R
θw(x;B) dπ(x, θ)∫

[0,∞)n×R
w(x;B) dπ(x, θ)

=

∫
Orb(B)×R

θw(x;B) dπ(x, θ)∫
Orb(B)×R

w(x;B) dπ(x, θ)
=

∫
B×R

θ dπ(x, θ)∫
B×R

dπ(x, θ)

=
∫
R

θ dπ(θ | x ∈ B) = E [θ | x ∈ B] ,

as required.

3 Permutation numbers
We now outline how to calculate the permutation numbers w(x;B). For the remainder
of this section, assume that x is B-admissible, so we know that w(x;B) > 0. The first
step of the derivation is to express the permutation number w(x;B) as the permanent
of a (0, 1)-matrix.

Definition 3.1. Let A = (aij) be an m× n matrix where m ≤ n. Let Sn,m denote the
set of all m-permutations of the set {1, . . . , n}. The permanent perm(A) of A is defined
by

perm(A) =
∑

τ∈Sn,m

m∏
i=1

ai,τ(i) (3.1)

Note that the permanent is defined for rectangular matrices, not just square ones.
In order to express the permutation number w(x;B) as the permanent of a matrix, we
make the following definition. Given x ∈ [0,∞)n, the matching matrix A = (aij) of x is
the n× n (0, 1)-matrix defined by

aij =
{

1 if xi ∈ Bj

0 if xi /∈ Bj .
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Lemma 3.1. Let A be the matching matrix of x. Then

w(x;B) = perm(A).

The key ingredient in the proof is to count the number of matchings in a bipartite
graph. If the reader is unfamiliar with these notions, we recommend reading Bollobás
(1979, Chapter 3).

Proof of Lemma 3.1. Let G = (V,E) be the bipartite graph with vertex set V =
{x1, . . . , xn}∪{B1, . . . ,Bn} and edges E = {(xi,Bj) ∈ V 2 | xi ∈ Bj}. Then the permuta-
tion number w(x;B) is equal to the number of bijections f : {x1, . . . , xn} → {B1, . . . ,Bn}
such that xi ∈ f(xi). That is, the number of perfect matchings in G. But this is precisely
the permanent of the biadjacency matrix of G. That is, the permanent of the matrix
A.

Permanents are notoriously difficult to compute. Unlike the closely related deter-
minant function (which is obtained by multiplying each term in (3.1) by sign(τ)), the
permanent function is not multiplicative, and thus we cannot employ Gaussian elimina-
tion to compute permanents in polynomial time. In general, computing permanents of
(0, 1)-matrices is known to be a #P-complete problem (Valiant, 1979). The fastest gen-
eral formula known for (0, 1)-matrices is that by Ryser (1963), which requires O(2n−1n)
operations for an n × n matrix. More recently, Huh (2022) has presented an efficient
quantum algorithm for estimating permanents.

A (0, 1)-matrix A is said to be convertible if there exists a matrix A′ obtained by
changing the signs of some of the entries in A such that perm(A) = det(A′). This
means that perm(A) can be computed in polynomial time. Little (1975) provided a
classification of all convertible matrices. Namely, a matrix A is convertible if and only
if it can be realised as the biadjacency matrix of a bipartite graph G which does not
contain an even subdivision J of the complete bipartite graph K3,3 such that G − V (J)
has a perfect matching. It is easy to construct examples of matching matrices which
violate this criterion. For example, let x = (1, 1, 1, 3) and B = [0, 2]3 × (2,∞). If G
denotes the graph constructed in the proof of Lemma 3.1, then G ∼= K3,3 +K1,1, where
the plus denotes disjoint union. Thus, G contains K3,3 as a subgraph and still contains a
perfect matching once this subgraph has been removed. Consequently, the corresponding
matching matrix is not convertible.

The above example demonstrates that we cannot use convertibility to compute the
permanents of matching matrices. However, we will show that matching matrices belong
to a larger class of matrices, which we shall call block rectangular. We will then prove
that the permanent of a block rectangular matrix can be calculated in polynomial time.

3.1 Block rectangular matrices

We begin with the definition of block rectangular matrices.
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Definition 3.2. Let k,m, n be natural numbers, where k,m ≤ n. Let α ∈ Z
k
>0 and

β, γ ∈ Z
k−1
≥0 be three integer-valued vectors such that

k∑
r=1

αr = n,

k−1∑
r=1

βr ≤ m,

k−1∑
r=1

γr ≤ m (3.2)

and
t∑

r=1
βr ≤

t∑
r=1

αr,

k−1∑
r=t

γr ≤
k∑

r=t+1
αr (3.3)

for all t = 1, . . . , k. The block rectangular matrix M = (mij) associated to α, β, γ,m is
the m× n (0, 1)-matrix such that mij = 1 if and only if there exists t ∈ {1, . . . , k} such
that

t−1∑
r=1

βr < i ≤ m−
k−1∑
r=t

γr,

t−1∑
s=1

αs < j ≤
t∑

s=1
αs. (3.4)

We say that a matrix M is block rectangular if there exist α, β, γ,m such that M is the
block rectangular matrix associated to α, β, γ,m. Note that we suppress k and n in the
definition as these are implicitly defined through α.

Example. We consider three examples of constructing a block rectangular matrix from
its associated parameters, as well as an example of a matrix which is not block rectan-
gular.

(a) Let α = (1, 3, 1, 1, 1), β = (0, 1, 2, 1), γ = (1, 1, 1, 0) and m = 7. This choice of
α, β, γ satisfies conditions (3.2) and (3.3). Constructing the matrix from these
parameters is done as follows. Firstly, n =

∑5
i=1 αi = 7, which, together with

m = 7, determines the dimensions of the matrix. We consider each rectangular
block separately. Letting t = 1 in (3.4), we obtain that 0 < i ≤ 4 and 0 < j ≤ 1.
Repeating this step for t = 2, . . . , T establishes the dimensions of all the rectangular
blocks, resulting in the matrix shown in Figure 3a.

(b) A block rectangular matrix need not be square. Let α = (3, 2, 2, 1), β = (1, 0, 2), γ =
(1, 1, 1), m = 6. Then α, β, γ satisfy conditions (3.2) and (3.3), but n =

∑4
r=1 αr =

8 > 6, so the resulting matrix, shown in Figure 3b, is not square.

(c) In the two examples above, we have m =
∑k−1

r=1 βr +
∑k−1

r=1 γr. This need not be
the case. Indeed, let α = (2, 3, 1, 2), β = (1, 0, 2), γ = (0, 1, 1),m = 7. Then α, β, γ

satisfy condition (3.2) and (3.3), but
∑3

r=1 βr +
∑3

r=1 γr = 5 < 7. This means
that the matrix contains 7− 5 = 2 rows of ones, as can be seen in Figure 3c. This
example illustrates why we need to include m as a separate parameter in order to
describe the matrix uniquely.

(d) The matrix in Figure 3d is not block rectangular. Indeed, if it were, then it would
be associated with the parameters α = (2, 2, 2, 2), β = (2, 3, 1), γ = (3, 1, 0),m = 8.
But then we have that α1 + α2 = 4 < 5 = β1 + β2, which violates condition (3.3).
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Figure 3: The matrices from the example above with the contours of the rectangular
blocks highlighted.

As the definition stands, it is possible for a block rectangular matrix to contain a
row of zeros. Indeed, consider for instance the matrix A parametrised by α = (1, 1, 1),
β = (1, 0), γ = (0, 1), m = 1. Then A is the 1× 3 zero matrix since no i, j, t will satisfy
condition (3.4). We say that a block rectangular matrix A is complete if it does not
contain a row of zeros.

Note that multiple parametrisations will give rise to the same block rectangular
matrix. Indeed, we can always subdivide a rectangular block into more rectangular
blocks of equal heights. In our notation, this would mean that for some r ∈ {1, . . . , k−1},
we have βr = γr = 0. However, by insisting that k = dim(α) should always be minimal,
we obtain a unique parametrisation for every block rectangular matrix. We refer to this
as the minimal parametrisation.

There are examples of block rectangular matrices which cannot be realised as match-
ing matrices. For example, let α = (1, 1, 1), β = (1, 1), γ = (1, 1),m = 3. Then A is the
3 × 3 identity matrix, which is not a matching matrix. However, we have the following
converse result.

Proposition 3.1. Let x be B-admissible and let A be the matching matrix of x. Then,
after permuting its columns if necessary, A is a complete block rectangular matrix.

Proof. See the Supplementary Material (Christensen, 2023).
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B1

B2,B3

B4

B5

B6

B7

x1 x2, x3, x4 x5 x6 x7

(a)

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
0 1 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)

Figure 4: Example of a matching of x and B. (a) Pictorial representation of x and B.
The xi are marked along the horizontal axis. The Bi are drawn along the same axis,
and stacked vertically for visual clarity. (b) The resulting matching matrix, with the
contours of the rectangular blocks highlighted.

Example. Suppose we have four left-censored observations, with s1 = 2, s2 = s3 =
3, s4 = 4, and three right-censored observations, with t5 = 1, t6 = 2, t7 = 3. Next,
let x = (x1, . . . , x7) = (0.5, 1.5, 1.5, 1.5, 2.5, 3.5, 4.5). See Figure 4a. To construct the
matching matrix A, we first consider x1. We observe that x1 ∈ B1, . . . ,B4, but not
B5,B6 or B7. Hence the first column of A consists of four ones followed by three zeros.
We continue this way for all the xi, which results in the matrix in Figure 4b. Note that
A is block rectangular. In fact, we recognise it as the matrix from Figure 3a.

We are now ready to state the main result of this section.

Theorem 3.1. Let A be an m×n complete block rectangular matrix. Then there exists
an implementable algorithm for computing perm(A), whose computational complexity
grows polynomially with n.

Proof. See the Supplementary Material (Christensen, 2023).

Thus, with Theorem 3.1, we are able to compute the permutation numbers needed
for the estimators (2.3) and (2.3). Code for computing permanents can be found in
the publicly available GitHub repository. For a reasonably large value of n, say n =
200, this new approach is able to compute tens of thousands of permanents of n × n
block rectangular matrices within a few hours. This is in contrast with more general
approaches, such as the aforementioned Ryser’s formula, which would not be able to
handle even a single matrix of this dimension. In the following section, we illustrate the
efficiency of the new approach with experiments.

https://github.com/dennis-christensen/permutation_counting
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4 Experiments
We now look at two simulation studies and a real data example in order to illustrate
the performance of the new estimator. The first simulation study is a tractable bioassay
problem involving a Dirichlet process model. Such models were first studied by Antoniak
(1974). This problem is included to verify that the new algorithm agrees with existing
methods. More precisely, we will compare it with the successive substitution sampling
(SSS) algorithm introduced by Doss (1994). In the second simulation study, we employ
the new algorithm to fit a quantile pyramids model, introduced by Hjort and Walker
(2009), to binary response data. This is an example of a process from which data samples
may only be simulated approximately, but where our new algorithm nevertheless works
exactly. Finally, we employ a Pitman-Yor multinomial process model (Lijoi et al., 2020)
to real seroprevalence data, originally studied by Keiding et al. (1996). All code was run
on a computer running Windows 11 Pro with an Intel(R) Core(TM) i7-8550U CPU @
1.80GHz and 16GB DDR4 RAM.

4.1 Simulations

A tractable Dirichlet process problem

For the first simulation study, we used the data reported in Table 1. This data was
generated by simulating n = 100 points u1, . . . , un ∼ 1

3N (−2, 0.72) + 2
3N (1, 0.72), a

mixture of two normal distributions, and observing whether these points were below
or above the respective thresholds in Table 1. Thus, for example, since the number of
trials at the threshold −3 was 10, the number of successes there refers to the quantity
#{i ∈ {1, . . . , 10} | ui ≤ −3}. In the prior we let P be distributed according to a
Dirichlet process with concentration parameter α = 1 and base measure N (0, 1). The
prior mean and individual realisations of the prior process are plotted in Figure 5.
Using (2.3), the log marginal likelihood was calculated to be −12.861. Note that we
have repeated thresholds in the data set. Repeating this calculation ten times yielded
a standard deviation of 0.0137, showing that the estimate is stable. On average, it took
T = 438, 606 iterations to yield an ESS of 2000. Out of these, an average number
of 411, 837 yielded a vanishing permanent which could immediately be discarded. The
average computation time for calculating the permanents was 6 minutes and 33 seconds.
The slowest run took 6 minutes and 57 seconds.

Due to the posterior tractability of the Dirichlet process, the posterior process can be
simulated directly, for instance via the SSS method, introduced by Doss (1994). Table 2
show how the new importance sampling algorithm compares with the SSS method by
comparing the values of the posterior mean at various quantiles. As we can see, the two
methods are in agreement. Figure 5 shows plots of the posterior mean, calculated using
the two different methods, along with individual realisations of the posterior process.
This plot further verifies the agreement of the two approaches, illustrating that the new
algorithm indeed converges to the posterior process.
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Threshold Number of successes Number of trials
−3 0 10
−2.33 0 10
−1.67 2 10
−1 1 10
−0.33 4 10

0.33 6 10
1 9 10
1.67 10 10
2.33 10 10
3 10 10

Table 1: The thresholds, number of successes and number of trials for the Dirichlet
process simulations.

Figure 5: Prior and posterior estimates of the Dirichlet process model given n = 100
binary response data points. On the left, the solid curve is the prior mean and the dotted
curves are realisations of the prior process. On the right, the solid and dashed curves
are the posterior mean as obtained via permutation counting or successive substitution
sampling, respectively, and the dotted curves are realisations of the posterior process.

Quantile pyramids simulations
Our next simulation study is a problem in which we wish to fit a quantile pyramids
model, given binary response data. Such models were first studied by Hjort and Walker
(2009), and provide an appealing alternative to Pólya trees, since they avoid the spec-
ification of a partition of the sample space. More specifically, we model P as a Beta
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q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SSS −1.851 −0.949 −0.572 −0.283 0.015 0.305 0.525 0.784 1.176
PC −1.842 −0.950 −0.576 −0.290 0.040 0.349 0.558 0.789 1.130

Table 2: Posterior estimates of E[F−1(q) | x ∈ B] for different values of q, calculated
via successive substitution sampling (SSS) and the new importance sampling algorithm
based on permutation counting (PC).

quantile pyramid with parameters (1
2am, 1

2am), where am = cm3 and c = 2.5. This is
the same model as that considered in the simulation study by Hjort and Walker (2009).
Given exact observations, the posterior process is intractable and so MCMC-based infer-
ence is required. As a result, there is, a priori, no straightforward way of simulating the
posterior process given censored data. However, our new importance sampling algorithm
will circumvent this issue.

As can be seen from (2.3), we require that it is possible to generate samples xi ∼ P .
For the quantile pyramids model, this can only be done approximately. Indeed, the
process is realised by simulating the quantiles F−1(j/2K), j = 1, . . . , 2K − 1, for some
finite number K. Increasing the value of K increases the precision of the realisation.
If K were allowed to be infinite, then F would, by absolute continuity, be uniquely
determined. Thus, for i = 1, . . . , n, we could sample xi ∼ P by first sampling uniform
variables ui ∼ Unif[0, 1] and then letting xi = F−1(ui). In practice, K is a finite
number, and so this approach cannot determine the exact value of the xi. However,
by finding the numbers ji such that ui ∈ (ji/2K , (ji + 1)/2K ], we know that xi ∈
(F−1(ji/2K), F−1((ji + 1)/2K)]. Thus, by increasing the value of K if necessary, we
can make these intervals arbitrarily fine and thus know for certain whether xi ∈ Bj for
j = 1, . . . , n. That is, we can sample the value of w(x;B) exactly, even though x was
only simulated approximately. As a result, the convergence results for the importance
sampling algorithm still hold exactly.

The synthetic data were simulated as follows. For n = 100, we let 0 < r1 < · · · <
rn < 1 be equally spaced points on the unit interval [0, 1], and simulated u1, . . . , un ∼
Beta(1/2, 1) independently. Thus, the true underlying distribution is also the same
as in the original simulation study undertaken by Hjort and Walker (2009). Writing
n0 = #{i | ui ≤ ri}, we let t1 < · · · < tn0 be those ri such that ui ≤ ri. Similarly,
we let tn0+1 < · · · < tn be those ri such that ui > ri. As in Section 2.1, we then let
B = B1, . . . ,Bn, where Bi = [0, ti] for i = 1, . . . , n0 and Bi = (ti, 1] for i = n0 + 1, . . . , n.

Using (2.3), we calculated the log marginal likelihood to be −53.698. Performing this
calculation 10 times yielded a standard deviation of 0.013, showing that the estimate
is stable. On average, it took T = 29, 965 iterations to obtain an effective sample
size of 2000. Out of these, an average number of 8227 yielded vanishing permanents
which could be discarded immediately. The average computation time for calculating
the permanents was 6 minutes and 25 seconds. The slowest run took 8 minutes and
8 seconds. In Figure 6, we plot prior and posterior cdfs given the simulated data. We
see that the posterior estimate has moved closer to the true cdf, and that the posterior
variance is smaller than that of the prior. Indeed, Kolmogorov-Smirnov distances from
the prior and the posterior means to the ground truth are 0.25 and 0.094, respectively.



D. Christensen 309

Figure 6: Prior and posterior estimates of the Beta quantile pyramid model given n =
100 binary response data points. On the left, the solid curve is the prior mean and
the dotted curves are realisations of the prior process. On the right, the solid curve is
the posterior mean, the dotted curves are realisations of the posterior process and the
dashed curve is the true Beta(1/2, 1) cdf.

4.2 Real current status data

We also applied the new importance sampling algorithm to a real rubella seropreva-
lence data set, originally studied by Keiding et al. (1996), provided by the Institute
of Virology, Vienna. In this data set, the immunisation status of n = 230 Austrian
males older than three months was tested during the period 1–25 March 1988. On a log
scale, the data were scaled linearly so that the standard probit model P(y = 1) = Φ(x)
gave the best probit model fit. To model the time to infection, we used a Pitman-Yor
multinomial (PYM) process (Lijoi et al., 2020) as prior for P . For the sake of simplic-
ity, we used the realised probability distributions of the process to model the survival
distribution directly, rather than imposing a PYM mixture model. Lijoi et al. (2020)
showed that given exact observations, posterior simulation of PYM processes are pos-
sible without the use of MCMC methods, via the empirical marginalisation of a latent
variable. Unfortunately, this algorithm does not apply to censored data. Although it
would theoretically be possible to apply the SSS method (Doss, 1994) or similar algo-
rithms to the PYM process model given censored data, each iteration of the sampling
algorithm would require the aforementioned marginalisation. As a result, this approach
would be computationally expensive and of questionable accuracy. On the other hand,
since it is straightforward to generate samples from the PYM process model (Ridout,
2009; Lijoi et al., 2020), the new importance sampling algorithm can be directly applied
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Figure 7: Posterior estimates of the Pitman-Yor multinomial process model given the
Rubella data set (n = 230). On the left, the dotted curve is the prior mean, the solid
curve is the posterior mean and the dashed curve is the nonparametric MLE. On the
right, the solid curve is the posterior mean and the dotted curves are realisations of the
posterior process.

for posterior inference. In the notation of Lijoi et al. (2020), we set the hyperparameters
α = 2.0, σ = 0.7, H = 100, along with the standard normal distribution N (0, 1) as base
measure. These choices serve only as an illustration, and with more work, one could
optimise this choice further, or impose hyperparameter priors in order to achieve a fully
Bayesian approach. The log marginal likelihood was calculated to be −92.864. Reach-
ing an ESS of 2000 required T = 393, 011 iterations. Out of these, 219, 492 yielded a
vanishing permanent and could be discarded. Calculating the permanents took 3 hours,
55 minutes and 27 seconds of computation time. In the left plot of Figure 7, we see the
prior mean, the posterior mean and the nonparametric maximum likelihood estimator
(MLE) (Ayer et al., 1955) of the cdf F . The nonparametric MLE is a frequentist estima-
tor, analogous to the that by Kaplan and Meier (1958) for right censored data, as shown
by Turnbull (1974). In the right plot, we see individual realisations from the posterior
process, along with the posterior mean. The Kolmogorov-Smirnov distance from the
prior mean and the posterior mean to the nonparametric MLE are 0.204 and 0.158, re-
spectively, indicating an improved fit. Indeed, we see the same qualitative behaviour in
the posterior mean as the penalty term models studied by Keiding et al. (1996). For the
PYM process model, possible improvements may be achieved by optimising parameter
choices, or indeed by introducing a similar penalty mechanism into the model.
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5 Binary classification with multidimensional data
So far, we have assumed that the xi are all one-dimensional. In this section, we show
how the theory developed in the previous sections can be extended to problems where2

xi ∈ R
p for p ≥ 1. This will both enable the addition of covariates, as well as provide

an inference framework for binary classification models with multidimensional data.

Let g ∼ π(·) be a (possibly random) function from R
p to R and let F ∼ π(·)

be a (possibly random) cdf on R. We model the binary responses yi as yi | F, g ∼
Bernoulli(F (g(xi))) independently for i = 1, . . . , n.

Example. We now consider three key examples which are covered by the above setup.

• Let g almost surely be a neural network and let F almost surely be the sigmoid
activation function F (a) = 1/(1+exp(−a)). Then the above model is the standard
neural network model for binary classification (Bishop, 2006).

• Let g be a Gaussian process and let F almost surely be the sigmoid activation
function. Then the above model is the standard Gaussian process model for binary
classification (Rasmussen and Williams, 2006).

• Let g almost surely be a linear function with coefficients β and let F be the cdf
of a random probability distribution P . Then the above model is semiparametric,
and corresponds to the addition of covariates in the basic model introduced in
Section 2.1.

Again, we first provide an estimator for the marginal likelihood π(y) of our n obser-
vations y = (y1, . . . , yn) ∈ {0, 1}n, which now takes the form

π(y) = E

[
n∏

i=1
F (g(xi))yi {1 − F (g(xi))}1−yi

]
.

We need to introduce some notation before we can write down our estimator. Given
F , let z = (z1, . . . , zn) ∼ π(· | F ) be distributed such that P(zi ≤ t | F ) = F (t)
independently for all i = 1, . . . , n. Also, given g, write Bg = Bg,1 × · · · × Bg,n, where

Bg,i =
{

(−∞, g(xi)] if yi = 1,
(g(xi),∞) if yi = 0.

Then,

P(z ∈ Bg | g, F ) =
∫
Bg

dπ(z | F ) =
n0∏
i=1

F (g(xi))yi{1 − F (g(xi))}1−yi . (5.1)

2In generative models for binary classification, there is also a distribution for the inputs xi. However,
for evaluation of the marginal likelihood and posterior inference of the hyperparameters, we condition
on these input values, effectively treating them as constant. Hence, everything in this section also
applied to generative models, but we omit conditioning on the value of xi for the sake of clarity.
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Now consider the following estimator.

π̂IS
T (y) = 1

T

T∑
t=1

1
n!w(z(t);Bg(t)), (5.2)

where z(t) ∼ π(· | F (t)), F (t) ∼ π(·) and g(t) ∼ π(·).
Proposition 5.1. The statistic π̂IS

T (y) is an unbiased and consistent estimator for the
marginal likelihood π(y).

Proof. Using double expectation, we have that

E

[
1
n!w(z;Bg)

]
= 1

n!E [[E[w(z;Bg) | g, F ]] = 1
n!E

[∫
Orb(Bg)

w(z;Bg)π(dz | F )
]

= 1
n!E

[ ∑
σ∈Sn

∫
σ(Bg)

π(dz | F )
]

= E

[∫
Bg

π(dz | F )
]

= E

[
n∏

i=1
F (g(xi))yi{1 − F (g(xi))}1−yi

]
= π(y),

where the penultimate equality follows from (5.1). This proves that the estimator is
unbiased. Applying the law of large numbers to (5.2) establishes consistency.

As in Section 2.3, it is possible to extend this result to a normalised importance
sampling estimator for general posterior inference for g and P .

6 Discussion
We conclude the paper with a few points of discussion which shed light on directions
for future work and further improvements.

In this paper, we have only considered binary responses, which for one-dimensional
inputs corresponds to left and right censored observations. This is because such data
yield block rectangular matching matrices, whose permanents are computable in poly-
nomial time. However, for more complicated observations, such as interval censored
data or polychotous responses (as opposed to binary), it is easy to construct examples
of matching matrices which are not block rectangular. Hence, in order to apply the
methods developed in this paper to such problems, it is necessary to develop an efficient
and accurate estimation procedure for the permanents of the corresponding matching
matrices. Further work in this direction is encouraged.

We have proved the consistency of the new estimator (2.4), in the sense that as
T → ∞, this converges to the posterior mean E[θ | x ∈ B]. However, a separate ques-
tion is whether this posterior mean itself is consistent. For parametric models, this is
guaranteed via the Bernstein–von Mises theorem, which asserts consistency of the pos-
terior mean and links Bayesian credibility sets with frequentist confidence intervals.
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In contrast, Doss (1985a,b) and Diaconis and Freedman (1986) showed that for non-
parametric models, there exist examples of reasonable choices of priors which lead to
inconsistent posteriors. Hence, consistency does not automatically apply in Bayesian
nonparametrics. Multiple positive consistency results have since been established for
specific choices of nonparametric priors (Brunner and Lo, 1996; Ghosal et al., 1999),
some of which also allow for censored data (Kim and Lee, 2004; De Blasi et al., 2009;
Camerlenghi et al., 2021; Jongbloed et al., 2022). In general, the issue of consistency in
Bayesian nonparametrics should be considered only a partially resolved question, espe-
cially for problems involving censored data. Further research in this area is needed to
answer to which extent the asymptotic theory of the frequentist nonparametric MLE
(Ayer et al., 1955; Groeneboom and Jongbloed, 2014) transfers to the Bayesian non-
parametric setting.

Supplementary Material
Supplementary Material for “Inference for Bayesian nonparametric models with binary
response data via permutation counting” (DOI: 10.1214/22-BA1353SUPP; .pdf). Proofs
of Proposition 2.2, Proposition 3.1 and Theorem 3.1.
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