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A Metropolized Adaptive Subspace Algorithm
for High-Dimensional Bayesian Variable

Selection

Christian Staerk∗, Maria Kateri†, and Ioannis Ntzoufras‡

Abstract. A simple and efficient adaptive Markov Chain Monte Carlo (MCMC)
method, called the Metropolized Adaptive Subspace (MAdaSub) algorithm, is
proposed for sampling from high-dimensional posterior model distributions in
Bayesian variable selection. The MAdaSub algorithm is based on an independent
Metropolis-Hastings sampler, where the individual proposal probabilities of the
explanatory variables are updated after each iteration using a form of Bayesian
adaptive learning, in a way that they finally converge to the respective covariates’
posterior inclusion probabilities. We prove the ergodicity of the algorithm and
present a parallel version of MAdaSub with an adaptation scheme for the pro-
posal probabilities based on the combination of information from multiple chains.
The effectiveness of the algorithm is demonstrated via various simulated and real
data examples, including a high-dimensional problem with more than 20,000 co-
variates.
Keywords: adaptive MCMC, generalized linear models, high-dimensional data,
sparsity, variable selection.

1 Introduction
Variable selection in regression models is one of the big challenges in the era of high-
dimensional data where the number of explanatory variables might largely exceed the
sample size. During the last two decades, many classical variable selection algorithms
have been proposed which are often based on finding the solution to an appropriate
optimization problem. As the most famous example, the Lasso (Tibshirani, 1996) relies
on an �1-type relaxation of the original �0-type optimization problem. Convex methods
like the Lasso are computationally very efficient and are therefore routinely used in high-
dimensional statistical applications. However, such classical methods mainly focus on
point estimation and do not provide a measure of uncertainty concerning the best model,
per se, although recent works aim at addressing these issues as well (see e.g. Wasserman
and Roeder, 2009, Meinshausen and Bühlmann, 2010 and Lee et al., 2016). On the other
hand, a major advantage of a fully Bayesian approach is that it automatically accounts
for model uncertainty. In particular, Bayesian model averaging (Raftery et al., 1997)
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and the median probability model (Barbieri and Berger, 2004) can be used for predictive
inference. Furthermore, posterior inclusion probabilities of the individual covariates can
be computed to quantify the Bayesian evidence.

Important �0-type criteria like the Bayesian Information Criterion (BIC, Schwarz,
1978) and the Extended Bayesian Information Criterion (EBIC, Chen and Chen, 2008)
can be derived as asymptotic approximations to a fully Bayesian approach (compare e.g.
Liang et al., 2013). It has been argued that �0-type methods posses favourable statistical
properties in comparison to convex �1-type methods with respect to variable selection
and prediction (see e.g. Raskutti et al., 2011 and Narisetty and He, 2014). Since solving
the associated, generally NP-hard, discrete optimization problems by an exhaustive
search is computationally prohibitive, there have been recent attempts in providing more
efficient methods for resolving such issues, as for example, mixed integer optimization
methods (Bertsimas et al., 2016) and Adaptive Subspace (AdaSub) methods (Staerk,
2018; Staerk et al., 2021).

The challenging practical issue of a fully Bayesian approach is similar to that of op-
timizing �0-type information criteria: computing (approximate) posterior model proba-
bilities for all possible models is not feasible if the number of explanatory variables p is
very large, since there are in general 2p possible models which have to be considered.
Often, Markov Chain Monte Carlo (MCMC) methods based on Metropolis-Hastings
steps (e.g. Madigan et al., 1995), Gibbs samplers (e.g. George and McCulloch, 1993;
Dellaportas et al., 2002) and “reversible jump” updates (e.g. Green, 1995) are used in
order to obtain a representative sample from the posterior model distribution. How-
ever, the effectiveness of MCMC methods depends heavily on a sensible choice of the
proposal distributions being used. Therefore, such methods may suffer from bad mix-
ing resulting in a slow exploration of the model space, especially when the number of
covariates is large. Moreover, tuning of the proposal distribution is often only feasible
after manual “pilot” runs of the algorithm. Adaptive MCMC methods aim to address
these issues by updating the proposal parameters “on the fly” during a single run of
the algorithm so that the proposal distribution automatically adjusts according to the
currently available information. Recently, a number of different adaptive MCMC al-
gorithms have been proposed in the Bayesian variable selection context, see e.g. Nott
and Kohn (2005), Lamnisos et al. (2013), Ji and Schmidler (2013), Griffin et al. (2014),
Griffin et al. (2021) and Wan and Griffin (2021).

In this work we propose an alternative, simple and efficient adaptive independent
Metropolis-Hastings algorithm for Bayesian variable selection, called the Metropolized
Adaptive Subspace (MAdaSub) algorithm, and compare it to existing adaptive MCMC
algorithms. In MAdaSub the individual proposal probabilities of the explanatory vari-
ables are sequentially adapted after each iteration. The employed updating scheme is
inspired by the AdaSub method introduced in Staerk et al. (2021) and can itself be
motivated in a Bayesian way, such that the individual proposal probabilities finally
converge against the true respective posterior inclusion probabilities. In the limit, the
algorithm can be viewed as a simple Metropolis-Hastings sampler using a product of in-
dependent Bernoulli proposals which is the closest to the unknown target distribution in
terms of Kullback-Leibler divergence (among the distributions in the family of indepen-
dent Bernoulli form). In comparison with alternative samplers based on “local” model
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proposals, the adaptive independent proposals in MAdaSub encourage “global” moves
towards regions near to the median probability model, which are particularly suited
for high-dimensional settings with low signal-to-noise ratios and multimodal posterior
distributions.

The paper is structured as follows. The considered setting of Bayesian variable selec-
tion in generalized linear models (GLMs) is briefly described in Section 2. The MAdaSub
algorithm is motivated and introduced in Section 3. By making use of general results
obtained by Roberts and Rosenthal (2007), it is shown that the MAdaSub algorithm
is ergodic despite its continuing adaptation, i.e. that “in the limit” it samples from the
targeted posterior model distribution (see Theorem 1). Alternative adaptive approaches
are also briefly discussed and conceptually compared to the newly proposed algorithm.
In Section 4, a parallel version of MAdaSub is presented where the proposal probabil-
ities can be adapted using the information from all available chains, without affecting
the ergodicity of the algorithm (see Theorem 3). Detailed proofs of the theoretical re-
sults of Sections 3 and 4 can be found in the Supplement to this paper (Staerk et al.,
2022). The adaptive behaviour of MAdaSub and the choice of its tuning parameters
are illustrated via low- and high-dimensional simulated data applications in Section 5,
emphasizing that the speed of convergence against the targeted posterior depends on
an appropriate choice of these parameters. In Section 6 various real data applications
demonstrate that MAdaSub provides an efficient and stable way for sampling from
high-dimensional posterior model distributions. The paper concludes with a discussion
in Section 7. An R-implementation of MAdaSub is available at https://github.com/
chstaerk/MAdaSub.

2 The setting
In this work we consider variable selection in univariate generalized linear models
(GLMs), where the response variable Y is modelled in terms of p possible explana-
tory variables X1, . . . , Xp. More precisely, for a sample of size n, the components of the
response vector Y = (Y1, . . . , Yn)T are assumed to be independent with each of them
having a distribution from a fixed exponential dispersion family with

g
(
E(Yi |Xi,∗)

)
= μ +

p∑
j=1

βjXi,j , i = 1, . . . , n , (1)

where g is a (fixed) link function, μ ∈ R is the intercept and β = (β1, . . . , βp)T ∈ R
p

is the vector of regression coefficients. Here, X = (Xi,j) ∈ R
n×p is the design matrix;

it’s i-th row Xi,∗ corresponds to the i-th observation and it’s j-th column X∗,j ≡ Xj

corresponds to the values of the j-th predictor. For a subset S ⊆ {1, . . . , p}, the model
induced by S is defined by a GLM of the form (1) but with design matrix XS ∈ R

n×|S|

in place of X ∈ R
n×p and corresponding vector of coefficients βS ∈ R

|S|, where XS

denotes the submatrix of the original design matrix X containing only the columns with
indices in S. For brevity, we often simply refer to the model S. Without further notice,
we assume that we always include an intercept μ in the corresponding GLM with design

https://github.com/chstaerk/MAdaSub
https://github.com/chstaerk/MAdaSub
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matrix XS . We denote the set of labelled explanatory variables by P = {1, . . . , p} and
the full model space by M = {S; S ⊆ P}.

In a fully Bayesian approach we assign prior probabilities π(S) to each of the con-
sidered models S ∈ M as well as priors π(μ, ψ,βS |S) for the parameters of each model
S ∈ M, where ψ denotes a possibly present dispersion parameter (e.g. the variance in
a normal linear model). After observing data D = (X,y), with X ∈ R

n×p and y ∈ R
n,

the posterior model probabilities are proportional to

π(S | D) ∝ π(y |X, S)π(S) , S ∈ M , (2)

where

π(y |X, S) =
∫ ∫ ∫

f(y |X, S, μ, ψ,βS)π(μ, ψ,βS |S) dμ dψ dβS (3)

is the marginal likelihood of the data y under model S, while f(y |X, S, μ, ψ,βS) de-
notes the likelihood of the data y under model S given the parameter values μ, ψ,βS and
the values of the explanatory variables X. Note that the marginal likelihood π(y |X, S)
is generally only available in closed form when conjugate priors are used.

Remark 2.1. A prominent example in normal linear models is a conjugate prior struc-
ture, where the prior on the variance ψ = σ2 is given by Jeffreys prior (independent of
the model S) and the prior on the vector of coefficients βS in model S ∈ M is given by
a multivariate normal distribution, i.e.

βS |S, σ2 ∼ N|S|(ϑS , σ
2gWS), π(σ2) ∝ 1

σ2 , (4)

where ϑS ∈ R
|S|, g > 0 and WS ∈ R

|S|×|S| are hyperparameters. After centering each
of the covariates Xj , j ∈ P, the improper prior π(μ) ∝ 1 is a common choice for the
intercept μ (again, independent of the model S). With no specific prior information,
the prior mean of βS can be set to the zero vector (ϑS = 0). The matrix WS is often
chosen to be the identity matrix I |S| of dimension |S| or to be WS = (XT

SXS)−1 yielding
Zellner’s g-prior (Zellner, 1986). The first choice corresponds to Ridge Regression and
implies prior independence of the regression coefficients, while the second choice with
g = n corresponds to a unit information prior. In case no specific prior information
is available about the possible regressors, a natural choice for the model prior is an
independent Bernoulli prior of the form

π(S |ω) = ω|S|(1 − ω)p−|S|, S ∈ M , (5)

where ω = π(j ∈ S) is the prior probability that variable Xj is included in the model,
for all j ∈ P. One can either set the prior inclusion probability ω to some fixed value or
consider an additional hyperprior for ω, with the latter option yielding more flexibility.
A convenient choice is the (conjugate) beta prior ω ∼ Be(aω, bω), where aω > 0 and
bω > 0 can be chosen in order to reflect the prior expectation and prior variance of the
model size s = |S|, S ∈ M (see Kohn et al., 2001 for details). In practice, one often
imposes an a-priori upper bound smax on the model size (with smax ≤ n) by setting
π(S) = 0 for |S| > smax (cf. Liang et al., 2013; Rossell, 2021), while for fixed control
variables Xj one can enforce the inclusion of such variables by setting π(j ∈ S) = 1.
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In the general non-conjugate case the marginal likelihood is not readily computable
and numerical methods may be used for deriving an approximation to the marginal like-
lihood. Laplace’s method yields an asymptotic analytic approximation to the marginal
likelihood (Kass and Raftery, 1995). Similarly, different information criteria like the
Bayesian Information Criterion (BIC, Schwarz, 1978) or the Extended Bayesian Infor-
mation Criterion (EBIC, Chen and Chen, 2008) can be used directly as asymptotic
approximations to fully Bayesian posterior model probabilities under suitable choices
of model priors. Under a uniform model prior, i.e. π(S) = 1

2p for all S ∈ M, the
BIC can be derived as an approximation to −2 log(BF(S)) = −2 log(PO(S)), where
BF(S) = π(y |X, S)/π(y |X, ∅) denotes the Bayes factor of model S ∈ M versus the
null model ∅ ∈ M and PO(S) denotes the corresponding posterior odds (Schwarz, 1978;
Kass and Wasserman, 1995). In a high-dimensional but sparse situation, in which only a
few of the many possible predictors contribute substantially to the response, a uniform
prior on the model space is a naive choice since it induces severe overfitting. Therefore,
Chen and Chen (2008) propose the prior

π(S) ∝
(

p

|S|

)−γ

, (6)

where γ ∈ [0, 1] is an additional parameter. If γ = 1, then π(S) = 1
p+1

(
p
|S|

)−1, so the
prior gives equal probability to each model size, and to each model of the same size;
note that this prior does also coincide with the beta-binomial model prior discussed
above when setting aω = bω = 1, providing automatic multiplicity correction (Scott
and Berger, 2010). If γ = 0, then we obtain the uniform prior used in the original
BIC. Similar to the derivation of the BIC one asymptotically obtains the EBIC with
parameter γ ∈ [0, 1] as

EBICγ(S) = −2 log
(
f(y |X, S, μ̂S , ψ̂S , β̂S)

)
+
(

log(n) + 2γ log(p)
)
|S| , (7)

where f(y |X, S, μ̂S , ψ̂S , β̂S) denotes the maximized likelihood under the model S ∈ M
(compare Chen and Chen, 2012). Under the model prior (6) and a unit-information prior
on the regression coefficients for each model S ∈ M, one can asymptotically approximate
the model posterior by

π(S | D) ≈
exp

(
−1

2 × EBICγ(S)
)

∑
S′∈M exp

(
−1

2 × EBICγ(S′)
) , S ∈ M . (8)

In this work we consider situations where the marginal likelihood π(y |X, S) is avail-
able in closed form due to the use of conjugate priors (see Remark 2.1) or where an
approximation to the posterior π(S | D) is used (e.g. via equation (8) with the EBIC
or any other �0-type criteria such as the risk inflation criterion, cf. Foster and George,
1994; Rossell, 2021). This assumption allows one to focus on the essential part of effi-
cient sampling in very large model spaces, avoiding challenging technicalities regarding
sampling of model parameters for non-conjugate cases. It also facilitates empirical com-
parisons with other recent adaptive variable selection methods, which focus on conjugate
priors (Zanella and Roberts, 2019; Griffin et al., 2021). Furthermore, conjugate priors
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such as the g-prior as well as normalized �0-type selection criteria such as the EBIC in
equation (8) have been shown to provide concentration of posterior model probabilities
on the (Kullback-Leibler) optimal model under general conditions even in case of model
misspecification (Rossell, 2021), as well as model selection consistency for the true model
in GLMs without misspecification (Chen and Chen, 2012; Liang et al., 2013).

3 The MAdaSub algorithm
A simple way to sample from a given target distribution is to use an independent
Metropolis-Hastings algorithm. Clearly, the efficiency of such an MCMC algorithm de-
pends on the choice of the proposal distribution, which is in general not an easy task
(see e.g. Rosenthal, 2011). In the ideal situation, the proposal distribution for an in-
dependence sampler should be the same as the target distribution π(S | D), leading
to an independent sample from the target distribution with corresponding acceptance
probability of one. Adaptive MCMC algorithms aim to sequentially update the proposal
distribution during the algorithm based on the previous samples such that, in case of the
independence sampler, the proposal becomes closer and closer to the target distribution
as the MCMC sample grows (see e.g. Holden et al., 2009, Giordani and Kohn, 2010).
However, especially in high-dimensional situations, it is crucial that the adaptation of
the proposal as well as sampling from the proposal can be carried out efficiently. For
this reason, we restrict ourselves to proposal distributions which have an independent
Bernoulli form: if S ∈ M is the current model, then we propose model V ∈ M with
probability

q(V |S; r) ≡ q(V ; r) =
∏
j∈V

rj
∏

j∈P\V
(1 − rj) , (9)

for some vector r = (r1, . . . , rp) ∈ (0, 1)p of individual proposal probabilities.

3.1 Serial version of the MAdaSub algorithm

The fundamental idea of the newly proposed MAdaSub algorithm (given below as Al-
gorithm 1) is to sequentially update the individual proposal probabilities according to
the currently “estimated” posterior inclusion probabilities. In more detail, after initial-
izing the vector of proposal probabilities r(0) =

(
r
(0)
1 , . . . , r

(0)
p

)
∈ (0, 1)p, the individual

proposal probabilities r
(t)
j of variables Xj are updated after each iteration t of the al-

gorithm, such that r
(t)
j finally converges to the actual posterior inclusion probability

πj = π(j ∈ S | D), as t → ∞ (see Corollary 2 below). Therefore, in the limit, we make
use of the proposal

q(V ; r∗) =
∏
j∈V

πj

∏
j∈P\V

(1 − πj), V ∈ M , with r∗ = (π1, . . . , πp) , (10)

which is the closest distribution (in terms of Kullback-Leibler divergence) to the actual
target π(S | D), among all distributions of independent Bernoulli form (9) (see Clyde
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Algorithm 1 Metropolized Adaptive Subspace (MAdaSub) algorithm.

Input:
• Data D = (X,y).
• (Approximate) kernel of posterior π(S | D) ∝ π(y |X, S)π(S) for S ∈ M.

• Vector of initial proposal probabilities r(0) =
(
r
(0)
1 , . . . , r

(0)
p

)T

∈ (0, 1)p.
• Parameters Lj > 0 for j ∈ P, controlling the adaptation rate of the algorithm

(e.g. Lj = L = p).
• Constant ε ∈ (0, 0.5) (chosen to be small, e.g. ε ≤ 1

p ).
• Number of iterations T ∈ N.
• Starting point S(0) ∈ M (optional).

Algorithm:
(1) If starting point S(0) not specified:

Sample b
(0)
j ∼ Bernoulli

(
r
(0)
j

)
independently for j ∈ P.

Set S(0) = {j ∈ P; b
(0)
j = 1}.

(2) For t = 1, . . . , T :
(a) Truncate vector of proposal probabilities to r̃(t−1) =

(
r̃
(t−1)
1 , . . . , r̃

(t−1)
p

)T

,
i.e. for j ∈ P set

r̃
(t−1)
j =

⎧⎪⎨
⎪⎩
r
(t−1)
j , if r(t−1)

j ∈ [ε, 1 − ε] ,
ε , if r(t−1)

j < ε ,

1 − ε , if r(t−1)
j > 1 − ε .

(b) Draw b
(t)
j ∼ Bernoulli

(
r̃
(t−1)
j

)
independently for j ∈ P.

(c) Set V (t) = {j ∈ P; b
(t)
j = 1}.

(d) Compute acceptance probability

α(t) = min
{

π(y |X, V (t))π(V (t)) q(S(t−1); r̃(t−1))
π(y |X, S(t−1))π(S(t−1)) q(V (t); r̃(t−1))

, 1
}

.

(e) Set S(t) =
{
V (t) , with probability α(t),

S(t−1) , with probability 1 − α(t).

(f) Update vector of proposal probabilities r(t) =
(
r
(t)
1 , . . . , r

(t)
p

)T

via

r
(t)
j =

Ljr
(0)
j +

∑t
i=1 1S(i)(j)

Lj + t
, j ∈ P .

Output:
• Approximate sample S(b+1), . . . , S(T ) from posterior distribution π(· | D), after

burn-in period of length b.
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et al., 2011). Note that the median probability model (Barbieri and Berger, 2004; Bar-
bieri et al., 2021), defined by SMPM = {j ∈ P; πj ≥ 0.5}, has the largest probability
in the limiting proposal (10) of MAdaSub, i.e. arg maxV ∈M q(V ; r∗) = SMPM. Thus,
MAdaSub can be interpreted as an adaptive algorithm which aims to adjust the pro-
posal so that models in the region of the median probability model are proposed with
increasing probability.

For j ∈ P, the concrete update of r(t)
j after iteration t ∈ N is given by

r
(t)
j =

Ljr
(0)
j +

∑t
i=1 1S(i)(j)

Lj + t
=

(
1 − 1

Lj + t

)
r
(t−1)
j + 1S(t)(j)

Lj + t
, (11)

where, for j ∈ P, Lj > 0 are additional parameters controlling the adaptation rate of
the algorithm and 1S(i) denotes the indicator function of the set S(i). If j ∈ S(t) (i.e.
1S(t)(j) = 1), then variable Xj is included in the sampled model in iteration t of the
algorithm and the proposal probability r

(t)
j of Xj increases in the next iteration t + 1;

similarly, if j /∈ S(t) (i.e. 1S(t)(j) = 0), then the proposal probability decreases. The
additional “truncation” step 2 (a) in the MAdaSub algorithm ensures that the truncated
individual proposal probabilities r̃(t)

j , j ∈ P, are always included in the compact interval
I = [ε, 1−ε], where ε ∈ (0, 0.5) is a pre-specified “precision” parameter. This adjustment
simplifies the proof of the ergodicity of MAdaSub. Note that the mean size of the
proposed model V from the proposal q(V ; r̃) in equation (9) with r̃ ∈ [ε, 1 − ε]p is at
least E|V | ≥ ε × p; thus, in practice we recommended to set ε ≤ 1

p , so that models of
small size including the null model can be proposed with sufficiently large probability.
On the other hand, if ε is chosen to be very small, then the MAdaSub algorithm may
take a longer time to convergence in case proposal probabilities of informative variables
are close to ε ≈ 0 during the initial burn-in period of the algorithm. Simulations and
real data applications show that the choice ε = 1

p works well in all considered situations
(see Sections 5 and 6).

The updating scheme of the individual proposal probabilities is inspired by the
AdaSub method proposed in Staerk (2018) and Staerk et al. (2021) and can itself be
motivated in a Bayesian way: since we do not know the true posterior inclusion prob-
ability πj of variable Xj for j ∈ P, we place a beta prior on πj with the following
parametrization

πj ∼ Be
(
Ljr

(0)
j , Lj

(
1 − r

(0)
j

))
, (12)

where r
(0)
j = E[πj ] is the prior expectation of πj and Lj > 0 controls the variance of πj

via
Var(πj) = 1

Lj + 1 × r
(0)
j

(
1 − r

(0)
j

)
. (13)

If Lj → 0, then Var(πj) → r
(0)
j (1 − r

(0)
j ), which is the variance of a Bernoulli random

variable with mean r
(0)
j . If Lj → ∞, then Var(πj) → 0. Now, one might view the samples

S(1), . . . , S(t) obtained after t iterations of MAdaSub as “new” data and interpret the
information learned about πj as t approximately independent Bernoulli trials, where
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j ∈ S(i) corresponds to “success” and j /∈ S(i) corresponds to “failure”. Then the
(pseudo) posterior of πj after iteration t of the algorithm is given by

πj |S(1), . . . , S(t) ∼ Be
(
Ljr

(0)
j +

t∑
i=1

1S(i)(j), Lj(1 − r
(0)
j ) +

t∑
i=1

1P\S(i)(j)
)

, (14)

with posterior expectation

E(πj |S(1), . . . , S(t)) =
Ljr

(0)
j +

∑t
i=1 1S(i)(j)

Lj + t
= r

(t)
j (15)

and posterior variance

Var(πj |S(1), . . . , S(t)) = 1
Lj + t + 1 × r

(t)
j

(
1 − r

(t)
j

)
. (16)

The interpretation of r(0)
j as the prior expectation for the posterior inclusion proba-

bility πj motivates the choice of r(0)
j = π(j ∈ S) as the actual prior inclusion probability

of variable Xj . If no particular prior information about specific variables is available,
but the prior expected model size is equal to q ∈ (0, p), then we recommend to set
r
(0)
j = q

p and L = Lj = p for all j ∈ P, corresponding to the prior πj ∼ Be(q, p− q) in
equation (12). In this particular situation, equation (15) reduces to

E(πj |S(1), . . . , S(t)) =
q +

∑t
i=1 1S(i)(j)
p + t

= r
(t)
j . (17)

Even though it seems natural to choose the parameters r
(0)
j and Lj of MAdaSub as

the respective prior quantities, this choice is not imperative. While the optimal choices
of these parameters generally depend on the setting, various simulated and real data ap-
plications of MAdaSub indicate that choosing r

(0)
j = q

p with q ∈ [2, 10] and Lj ∈ [p/2, 2p]
for j ∈ P yields a stable algorithm with good mixing in sparse high-dimensional set-ups
irrespective of the actual prior (see Sections 5 and 6). Furthermore, if one has already run
and stopped the MAdaSub algorithm after a certain number of iterations T , then one
can simply restart the algorithm with the already updated parameters r(T )

j and Lj + T
(compare equation (16)) as new starting values for the corresponding parameters.

Using general results for adaptive MCMC algorithms by Roberts and Rosenthal
(2007), we show that MAdaSub is ergodic despite its continuing adaptation.

Theorem 1. The MAdaSub algorithm (Algorithm 1) is ergodic for all choices of r(0) ∈
(0, 1)p, Lj > 0 and ε ∈ (0, 0.5) and fulfils the weak law of large numbers.

The proof of Theorem 1 can be found in Section A of the Supplement, where it
is shown that MAdaSub satisfies both the simultaneous uniform ergodicity condition
and the diminishing adaptation condition (cf. Roberts and Rosenthal, 2007). As an
immediate consequence of Theorem 1 we obtain the following important result.
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Corollary 2. For all choices of r(0) ∈ (0, 1)p, Lj > 0 and ε ∈ (0, 0.5), the proposal
probabilities r

(t)
j of the explanatory variables Xj in MAdaSub converge (in probability)

to the respective posterior inclusion probabilities πj = π(j ∈ S | D), i.e. for all j ∈ P it
holds that r(t)

j
P→ πj as t → ∞.

3.2 Comparison to related adaptive approaches

In this section we conceptually compare the proposed MAdaSub algorithm (Algo-
rithm 1) with other approaches for high-dimensional Bayesian variable selection, fo-
cusing on adaptive MCMC algorithms most closely related to the new algorithm (see
Section D of the Supplement for details on further related methods).

In a pioneering work, Nott and Kohn (2005) propose an adaptive sampling algo-
rithm for Bayesian variable selection based on a Metropolized Gibbs sampler, showing
empirically that the adaptive algorithm outperforms different non-adaptive algorithms
in terms of efficiency per iteration. However, since their approach requires the compu-
tation of inverses of estimated covariance matrices, it does not scale well to very high-
dimensional settings. Recently, several variants and extensions of the original adaptive
MCMC sampler of Nott and Kohn (2005) have been developed, including an adaptive
Metropolis-Hastings algorithm by Lamnisos et al. (2013), where the expected number
of variables to be changed by the proposal is adapted during the algorithm. Zanella and
Roberts (2019) propose a tempered Gibbs sampling algorithm with adaptive choices of
components to be updated in each iteration. Furthermore, different individual adapta-
tion algorithms have been developed in Griffin et al. (2014) as well as in the follow-up
works of Griffin et al. (2021) and Wan and Griffin (2021), which are closely related to
the proposed MAdaSub algorithm. These strategies are based on adaptive Metropolis-
Hastings algorithms, where the employed proposal distributions are of the following
form: if S ∈ M is the current model, then the probability of proposing the model
V ∈ M is given by

q̃(V |S;η) =
∏

j∈V \S
Aj

∏
j∈S\V

Dj

∏
j∈P\(S∪V )

(1 −Aj)
∏

j∈S∩V

(1 −Dj) , (18)

where η = (A1, . . . , Ap, D1, . . . , Dp)T ∈ (0, 1)2p is a vector of tuning parameters with
the following interpretation: For j ∈ P, Aj is the probability of adding variable Xj if it
is not included in the current model S and Dj is the probability of deleting variable Xj

if it is included in the current model S. An important difference is that the adaptation
strategies in Griffin et al. (2021) specifically aim to guard against low acceptance rates of
the proposal (18), while MAdaSub aims at obtaining a global independent proposal with
the largest possible acceptance rate, focusing on regions close to the median probability
model. Furthermore, the adaptation of the individual proposal probabilities in MAdaSub
can be motivated in a Bayesian way, leading to a natural parallel implementation of the
algorithm with an efficient joint updating scheme for the shared adaptive parameters
(see Section 4). Finally, in contrast to MAdaSub, Griffin et al. (2021) make use of Rao-
Blackwellized estimates of posterior inclusion probabilities to speed up convergence.
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Schäfer and Chopin (2013) develop sequential Monte Carlo algorithms (cf. South
et al., 2019) using model proposals which directly account for the non-independent pos-
terior inclusion of covariates. In contrast, MAdaSub is an adaptive MCMC algorithm
which is based on independent Bernoulli proposals. While similar extensions of MAda-
Sub might be desirable to better approximate the posterior distribution, this may come
at the price of a larger computational cost for updating and sampling from the pro-
posal. The simple independent Bernoulli proposals in MAdaSub can also be viewed as
mean-field variational approximations to the full posterior model distribution. Despite
its connection with variational Bayes approaches (e.g. Carbonetto and Stephens, 2012;
Ormerod et al., 2017), MAdaSub samples from the full posterior distribution and the
accuracy of the approximation only affects the efficiency of the sampler, as final accep-
tance rates are expected to be smaller for larger distances between the posterior and the
closest independent Bernoulli proposal (cf. Neklyudov et al., 2019). Empirical results for
MAdaSub (see Sections 5 and 6) indicate that even the simple independent Bernoulli
proposals yield good mixing and sufficiently large acceptance rates in various settings.

Finally, MAdaSub is an extension of the Adaptive Subspace (AdaSub) method
(Staerk et al., 2021), a stochastic search algorithm aiming to identify the best model
according to a particular selection criterion (such as the EBIC) by adaptively solving
low-dimensional sub-problems of the original problem. While the purpose of AdaSub is
to obtain the solution to an optimization problem, its Metropolized version MAdaSub
constitutes an adaptive MCMC algorithm which samples from the full posterior model
distribution. Despite this difference, the adaptation scheme of AdaSub for the covariates’
inclusion probabilities in the sub-problems can be similarly motivated in a Bayesian way
(cf. Staerk, 2018). The adaptation in AdaSub and MAdaSub is also related to Thomp-
son sampling for multi-armed bandits in reinforcement learning, which has recently
been investigated in the context of non-parametric Bayesian variable selection (Liu and
Ročková, 2021). In contrast to MAdaSub, Thompson Variable Selection (TVS) does
not provide samples from the posterior distribution but is designed to minimize the
regret (i.e. the difference between optimal and actual rewards); as a consequence, the
sampling probabilities in TVS are not guaranteed to converge to the posterior inclusion
probabilities.

4 Parallelization of the MAdaSub algorithm
In this section we present a parallel version of the MAdaSub algorithm which aims at
increasing the computational efficiency and accelerating the convergence of the chains.
The simplest approach to parallelization would be to independently run the MAdaSub
algorithm in parallel on each of K ∈ N different workers, yielding K individual chains
which, in the limit, sample from the posterior model distribution (see Theorem 1).
However, it is desirable that the information learned about the adaptive parameters
can be shared efficiently between the different chains, so that the convergence of the
adaptive parameters to their optimal values can be accelerated, leading to a faster
convergence of the chains to their common limiting distribution.

We propose a parallel version of MAdaSub, where the workers sample individual
MAdaSub chains in parallel, but the acquired information is exchanged periodically be-
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tween the chains and the adaptive proposal probabilities are updated together (see Al-
gorithm 2 in Section B of the Supplement for full algorithmic details). More specifically,
let S(k,1), . . . , S(k,T ) denote the models sampled by MAdaSub (see Algorithm 1) for the
first T iterations on worker k, for k ∈ {1, . . . ,K}. Then, for each worker k ∈ {1, . . . ,K},
we define the jointly updated proposal probabilities after the first round (m = 1) of
T iterations by

r̄
(k,1)
j =

L
(k)
j r

(k,0)
j +

∑T
t=1

∑K
l=1 1S(l,t)(j)

L
(k)
j + TK

, j ∈ P , (19)

where r
(k,0)
j denotes the initial proposal probability for variable Xj and L

(k)
j the corre-

sponding adaptation parameter (both can be different across the chains).

After the joint update, each MAdaSub chain is resumed (with r̄
(k,1)
j as initial pro-

posal probabilities and L
(k)
j + TK as initial prior variance parameters for j ∈ P) and is

run independently on each of the workers for T additional iterations in a second round
(m = 2); then the proposal probabilities are updated jointly again to r̄

(k,2)
j , and so on

(up to m = R rounds in Algorithm 2 of the Supplement). The joint updates of the
proposal probabilities after m ∈ N rounds of T iterations are given by

r̄
(k,m)
j =

L
(k)
j r

(k,0)
j +

∑mT
t=1

∑K
l=1 1S(l,t)(j)

L
(k)
j + mTK

, k ∈ {1, . . . ,K}, j ∈ P. (20)

Similarly to the serial version of MAdaSub, the adaptive learning of its parallel
version can be naturally motivated in a Bayesian way: each worker k = 1, . . . ,K can
be thought of as an individual subject continuously updating its prior belief about the
true posterior inclusion probability πj of variable Xj through new information from its
individual chain; additionally, after a period of T iterations the subject updates its prior
belief also by obtaining new information from the K − 1 other subjects. If the (possibly
different) priors of subjects k = 1, . . . ,K on πj are

πj ∼ Be
(
L

(k)
j r

(k,0)
j , L

(k)
j

(
1 − r

(k,0)
j

))
, j ∈ P , (21)

where r
(k,0)
j = E[πj ] is the prior expectation of subject k about πj and L

(k)
j > 0 controls

its prior variance, then the (pseudo) posterior of subject k about πj after m rounds of
T iterations of the parallel MAdaSub algorithm is given by (compare to equation (14))

πj

∣∣S(1,1), . . . , S(k,mT ) ∼ Be
(
L

(k)
j r

(k,0)
j +

mT∑
i=1

K∑
l=1

1S(l,i)(j),

L
(k)
j (1 − r

(k,0)
j ) +

mT∑
i=1

K∑
l=1

1P\S(l,i)(j)
)

(22)

with posterior expectation (compare to equation (15))

E(πj |S(1,1), . . . , S(k,mT )) = r̄
(k,m)
j , (23)
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corresponding to the joint update in equation (20).

Although the individual chains in the parallel MAdaSub algorithm make use of the
information from all the other chains in order to update the proposal parameters, the
ergodicity of the chains is not affected.

Theorem 3. Consider the parallel version of MAdaSub (see Algorithm 2 in the Sup-
plement). Then, for each worker k ∈ {1, . . . ,K} and all choices of r(k,0) ∈ (0, 1)p,
L

(k)
j > 0, j ∈ P and ε ∈ (0, 0.5), each induced chain S(k,0), S(k,1), . . . of the workers

k = 1, . . . ,K is ergodic and fulfils the weak law of large numbers.

Corollary 4. For each worker k ∈ {1, . . . ,K} and all choices of r(k,0) ∈ (0, 1)p, L(k)
j >

0, j ∈ P and ε ∈ (0, 0.5), the proposal probabilities r̄(k,m)
j of the explanatory variables Xj

converge (in probability) to the respective posterior inclusion probabilities πj = π(j ∈
S | D), i.e. for all j ∈ P and k = 1, . . . ,K it holds that r̄(k,m)

j
P→ πj as m → ∞.

Thus, the same convergence results hold for the parallel version as for the serial
version of MAdaSub. The benefit of the parallel algorithm is that the convergence of
the proposal probabilities against the posterior inclusion probabilities can be accelerated
via the exchange of information between the parallel chains, so that the MCMC chains
can converge faster against the full posterior distribution. There is a practical trade-
off between the effectiveness regarding the joint update for the proposal probabilities
and the efficiency regarding the communication between the different chains. If the
number of rounds R is chosen to be small with a large number of iterations T per
round, the available information from the multiple chains is not fully utilized during the
algorithm; however, if the number of rounds R is chosen to be large with a small number
of iterations T per round, then the computational cost of communication between the
chains increases and may outweigh the benefit of the accelerated convergence of the
proposal probabilities. If Tmax denotes the maximum number of iterations, we observe
that choosing the number of rounds R ∈ [10, 100] with T = Tmax/R iterations per round
works well in practice (see Sections 5 and 6 as well as Table G.4 of the Supplement).

5 Simulated data applications
5.1 Illustrative example

We first illustrate the adaptive behaviour of the serial MAdaSub algorithm (Algo-
rithm 1) in a relatively low-dimensional setting. In particular, we consider an illus-
trative simulated dataset D = (X,y) with sample size n = 60 and p = 20 explanatory
variables, by generating X = (Xi,j) ∈ R

n×p with i-th row Xi,∗ ∼ Np(0,Σ), where
Σ = (Σi,j) ∈ R

p×p is the covariance matrix with entries Σk,l = ρ|k−l|, k, l ∈ {1, . . . , p},
corresponding to a Toeplitz correlation structure with ρ = 0.9. The true vector of re-
gression coefficients is considered to be

β0 = (0.4, 0.8, 1.2, 1.6, 2.0, 0, . . . , 0)T ∈ R
p ,
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with active set S0 = {1, . . . , 5}. The response y = (y1, . . . , yn)T is then simulated from
the normal linear model via yi

ind.∼ N(Xi,∗β0, 1), i = 1, . . . , n. We employ the g-prior
with g = n and an independent Bernoulli model prior with inclusion probability ω = 0.5,
resulting in a uniform prior over the model space (see Remark 2.1). In the MAdaSub
algorithm we set r(0)

j = 1
2 for j ∈ P, i.e. we use the prior inclusion probabilities as initial

proposal probabilities. We first consider the choice Lj = p (for j ∈ P) for the variance
parameters of MAdaSub, corresponding to equation (17). Furthermore, we set ε = 1

p
and run the MAdaSub algorithm for T = 20,000 iterations. To compare the results of
MAdaSub with the true posterior model distribution, we have also conducted a full
model enumeration using the Bayesian Adaptive Sampling (BAS) algorithm, which is
implemented in the R-package BAS (Clyde, 2017).

To illustrate the efficient adaptation of MAdaSub, we present comparisons with
independent Metropolis-Hastings algorithms where the individual proposal probabilities
are not adapted during the algorithm, i.e. we set r

(t)
j = r

(0)
j for all t ∈ N and j ∈ P. In

particular, we consider the choice r
(t)
j = r

(0)
j = 0.5, corresponding to the initial proposal

distribution in MAdaSub, and the choice r
(t)
j = r

(0)
j = π(j ∈ S | D), corresponding to

the targeted proposal distribution, which is, as stated above, the closest independent
Bernoulli proposal to the target π(· | D) in terms of Kullback-Leibler divergence (Clyde
et al., 2011). Note that the non-adaptive independence sampler with posterior inclusion
probabilities as proposal probabilities (r(t)

j = π(j ∈ S | D)) is only considered as a
benchmark and cannot be used in practice, since the true posterior probabilities are
initially unknown and are to be estimated by the MCMC algorithms. Furthermore,
we also present comparisons with a standard local “Markov chain Monte Carlo model
composition” (MC3) algorithm (Madigan et al., 1995), which in each iteration proposes
to delete or add a single variable to the current model.

Figure 1 depicts the sizes |V (t)| of the proposed models and the sizes |S(t)| of the
sampled models, while Figure 2 shows the evolution of the acceptance rates along the
iterations t of the different MCMC algorithms. As might have been expected, the non-
adaptive sampler with prior marginals as proposal probabilities performs poorly with
a very slow exploration of the model space and a small acceptance rate which remains
close to zero. On the other hand, the non-adaptive sampler with posterior marginals as
proposal probabilities leads to fast mixing with corresponding acceptance rate of approx-
imately 0.54. Even though the MAdaSub algorithm starts with exactly the same “initial
configuration” as the non-adaptive sampler with prior marginals, it quickly adjusts the
proposal probabilities accordingly, so that the resulting acceptance rate approaches the
target value of 0.54 from the non-adaptive sampler with posterior marginals. In particu-
lar, when inspecting the evolution of the sampled model sizes in Figure 1, the MAdaSub
algorithm is very difficult to distinguish from the sampler with posterior marginals after
a very short burn-in period (see also Figure E.1 of the Supplement).

To illustrate the behaviour of the MAdaSub algorithm with respect to the variance
parameters Lj , additionally to the choice Lj = p we examine two further runs of MAda-
Sub with the same specifications as before, but with Lj = p/n and with Lj = 100p,
respectively. Figure 2 indicates that the original choice Lj = p is favourable, yielding a
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Figure 1: Illustrative example with g-prior. Evolution of the sizes |V (t)| of the proposed
models (black) and of the sizes |S(t)| of the sampled models (red) along the first 5,000
iterations (t) for non-adaptive sampler with prior marginals as proposal probabilities,
for MAdaSub (with Lj = p), for non-adaptive sampler with posterior marginals as
proposal probabilities and for local add-delete MC3 sampler (from top to bottom).

fast and “sustainable” increase of the acceptance rate (see also Figure E.2 of the Sup-
plement for the evolution of proposal probabilities for the different Lj). On the other
hand, for Lj = 100p the proposal probabilities in MAdaSub are slowly adapted, while
for Lj = p/n the proposal probabilities are adapted very quickly, resulting in initially
large acceptance rates; however, this increase is only due to a premature focus of the
proposal on certain parts of the model space and thus the acceptance rate decreases at
some point when the algorithm identifies other areas of high posterior probability that
have not been covered by the proposal. This illustrative example shows that — despite
the ergodicity of the MAdaSub algorithm for all choices of its tuning parameters (The-
orem 1) — the speed of convergence against the target distribution crucially depends
on an appropriate choice of these parameters. Regarding the variance parameters we
observe that the choice Lj = p for j ∈ P works well in practice (see also results below).
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Figure 2: Illustrative example with g-prior. Evolution of acceptance rates along the iter-
ations for non-adaptive independence sampler with prior marginals (blue) and posterior
marginals (red) as proposal probabilities, for add-delete MC3 sampler (gray), as well
as for MAdaSub with Lj = p (black), Lj = p/n (orange) and Lj = 100p (purple) for
j ∈ P.

The adaptive nature of MAdaSub entails the possibility for an automatic check of
convergence of the algorithm: as the proposal probabilities r

(t)
j are continuously ad-

justed towards the current empirical inclusion frequencies f
(t)
j = 1

t

∑t
i=1 1S(i)(j) (see

equation (11)), the algorithm may be stopped as soon as the individual proposal prob-
abilities and empirical inclusion frequencies are within a prespecified distance δ ∈ (0, 1)
(e.g. δ = 0.005, see Figure E.3 of the Supplement), i.e. the algorithm is stopped at
iteration tc if maxj∈P |f (tc)

j −r
(tc)
j | ≤ δ. Even when automatic stopping may be applied,

we additionally recommend to investigate the convergence of the MAdaSub algorithm
via the diagnostic plots presented in this section and in Section E of the Supplement.

5.2 Low-dimensional simulation study

In this simulation study we further investigate the performance of the serial MAdaSub
algorithm in relation to local non-adaptive and adaptive algorithms. In particular, we
analyse how the algorithms are affected by high correlations between the covariates.

We consider a similar low-dimensional setting as in the illustrative data application
with p = 20 covariates and sample size n = 60. To evaluate the performance in a variety
of different data situations, for each simulated dataset the number s0 of informative
variables is randomly drawn from {0, 1, . . . , 10} and the true active set S0 ⊆ P of size
|S0| = s0 is randomly selected from the full set of covariates P = {1, . . . , p}; then, for
each j ∈ S0, the j-th component β0,j of the true coefficient vector β0 ∈ R

p is simulated
from a uniform distribution β0,j ∼ U(−2, 2). As before, the covariates are simulated
using a Toeplitz correlation structure, while the response is simulated from a normal
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linear model with error variance σ2 = 1. We consider three different correlation settings
by varying the correlation ρ between adjacent covariates in the Toeplitz structure: a
low-correlated setting with ρ = 0.3, a highly-correlated setting with ρ = 0.9 and a very
highly-correlated setting with ρ = 0.99. For each of the three settings, 200 different
datasets are simulated as described above; in each case, we employ a g-prior with g = n
on the regression coefficients and a uniform prior on the model space.

For each simulated dataset we apply MAdaSub with 20,000 iterations, using Lj = p
for j ∈ P and ε = 1

p . In order to investigate the influence of the initial proposal probabil-
ities r

(0)
j in MAdaSub, two different choices for r

(0)
j are considered: choice (a) based on

prior inclusion probabilities r
(0)
j = 1

2 and choice (b) based on (approximated) marginal
posterior odds

πmarg
j = POj

1 + POj
with POj = P (S = {j} |D)

P (S = ∅ | D) , j ∈ P, (24)

and setting r
(0)
j = min{max{πmarg

j , 1
p}, 0.9} to prevent the premature focus of the al-

gorithm on some covariates (if πmarg
j ≈ 1) or the avoidance of other covariates (if

πmarg
j ≈ 0). Here, the marginal posterior odds POj are crude approximations to the

true posterior odds, derived under the assumption of posterior independence of variable
inclusion. The local MC3 algorithm (Madigan et al., 1995) is applied as before as well
as with additional swap moves to potentially improve the mixing (as in Griffin et al.,
2021). Using the R-package scaleBVS (Zanella and Cabezas Gonzalez, 2020), we ap-
ply the adaptive weighted tempered Gibbs sampling algorithm of Zanella and Roberts
(2019) to obtain (weighted) frequency estimates (as for the other algorithms) and Rao-
Blackwellized estimates of posterior inclusion probabilities (PIPs). Exact PIPs are again
derived using the BAS algorithm (Clyde, 2017). The algorithms are evaluated based on
final acceptance rates and numbers of iterations for convergence of the estimates f̂

(t)
j

to the true PIPs, where PIP convergence is defined to occur at the smallest iteration tc
for which maxj∈P |f̂ (tc)

j − πj | ≤ 0.05; if tc ≥ 20,000, then the number of iterations for
convergence is displayed as 20,000 in Figure 3.

Figure 3 shows that the acceptance rates of the MAdaSub samplers tend to be sub-
stantially larger in comparison to the local MC3 algorithms, while the acceptance rates
of the weighted Tempered Gibbs Sampler (wTGS) are equal to one by construction.
Nevertheless, for the MAdaSub samplers a decreasing trend of acceptance rates can be
observed with increasing correlations. This observation reflects that for low-correlated
situations the resulting posterior distribution is often closer to an independent Bernoulli
form than for highly-correlated cases, and thus can be better approximated by the pro-
posal distributions of MAdaSub, leading to larger acceptance rates. In the low-correlated
setting (ρ = 0.3), the choice (b) for the initial proposal probabilities in MAdaSub based
on marginal posterior odds leads to slightly larger acceptance rates and a faster PIP
convergence compared to the MAdaSub sampler (a) based on the prior inclusion proba-
bilities. However, in cases of high correlations among some of the covariates (ρ = 0.9 and
ρ = 0.99), the prior choice (a) is clearly favourable yielding larger acceptance rates and a
faster PIP convergence compared to the MAdaSub sampler (b) and the MC3 algorithm.
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Figure 3: Low-dimensional simulation study with varying correlation ρ ∈ {0.3, 0.9, 0.99}
in Toeplitz structure. Performance of MAdaSub with initial proposal probabilities r(0)

j =
0.5 based on prior inclusion probabilities (MA(a)), MAdaSub with r

(0)
j being based on

marginal posterior odds* (MA(b)), MC3 samplers with and without “swap” moves,
as well as adaptive weighted Tempered Gibbs Sampler based on weighted frequency
estimates (wTGS) and Rao-Blackwellized estimates (wTGS R-B), in terms of acceptance
rates and numbers of iterations for convergence of the estimates to the true posterior
inclusion probabilities (PIP).
*The (approximated) marginal posterior odds are provided in equation (24).

Thus, while in low-correlated settings the marginal posterior odds yield reasonable first
approximations to the true posterior odds, the prior inclusion probabilities are more
robust and to be preferred as initial proposal probabilities in MAdaSub in situations
with high correlations. Overall, the MAdaSub sampler (a) yields a well-mixing algorithm
in all considered settings, which is also competitive to the adaptive wTGS algorithm
based on weighted frequency estimates, while wTGS with Rao-Blackwellization (R-B)
provides faster convergence. Note that the computational cost of R-B is small in this
low-dimensional conjugate setting but increases for high-dimensional and non-conjugate
settings with Laplace approximations (Zanella and Roberts, 2019; Wan and Griffin,
2021). An additional sensitivity analysis regarding different variance parameters Lj in
MAdaSub (see Figure F.1 of the Supplement) supports the choice Lj = p = 20 in all con-
sidered correlation settings and indicates that results are very robust for Lj ∈ [p/2, 2p].

5.3 High-dimensional simulation study

To investigate the performance of the serial and parallel versions of MAdaSub in high-
dimensional settings, we consider the same simulation set-up as in Yang et al. (2016)
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and Griffin et al. (2021): data are simulated from a sparse linear regression model with
true coefficients

β0 = SNR ×
√

log(p)/n× (2,−3, 2, 2,−3, 3,−2, 3,−2, 3, 0, . . . , 0)T ∈ R
p. (25)

Similar to the low-dimensional simulations, covariates are generated from a Toeplitz cor-
relation structure with ρ = 0.6 and the response is simulated via yi

ind.∼ N(Xi,∗β0, 1),
i = 1, . . . , n. As in Griffin et al. (2021), we consider the conjugate prior (4) with g = 9
and prior independence of the regression coefficients (W S = I |S| for S ∈ M), together
with the model prior (5) with (fixed) prior inclusion probability ω = 10/p. For each set-
ting with n ∈ {500, 1000}, p ∈ {500, 5000} and signal-to-noise ratio SNR ∈ {0.5, 1, 2, 3},
we simulate one dataset and apply each algorithm 200 times to assess the stability of
estimated posterior inclusion probabilities. As in Griffin et al. (2021), each algorithm is
based on 5 parallel chains using 5 CPUs. We consider the serial version of MAdaSub
where the individual chains (Algorithm 1) are run in parallel but do not exchange any
information and the parallel version (Algorithm 2 of the Supplement) where the chains
exchange information regarding the proposal probabilities after each of R = 50 rounds
(considering 25 burn-in rounds for both versions; each round consists of 1000 and 10,000
iterations for p = 500 and p = 5000, respectively). For the serial version, the initial pro-
posal probabilities are set to the prior inclusion probabilities, i.e. r(k,0)

j = 10/p, and the
variance parameters L

(k)
j = p are the same for all chains k. For the parallel version, we

consider different random initializations of proposal probabilities r(k,0)
j = q(k)/p, j ∈ P,

with q(k) ∼ U(2, 10) and variance parameters L(k)
j = L(k), j ∈ P, with L(k) ∼ U(p/2, 2p)

for each chain k. For all MAdaSub chains we set ε = 1/p. Additional results of sensi-
tivity analyses regarding different choices of the tuning parameters of MAdaSub can be
found in Section G of the Supplement.

The performance of the MAdaSub algorithms (A) with serial and parallel updating
schemes is assessed in terms of median acceptance rates, as well as in comparison to
the add-delete-swap MC3 algorithm (B) in terms of the median estimated ratio r̂

(20)
A,B of

the relative time-standardized effective sample size of algorithm A versus algorithm B
for the posterior inclusion probabilities (PIPs) over the 20 variables with the largest
estimated PIPs (averaged over all algorithms). The estimated ratio of the relative time-
standardized effective sample size is given by r̂A,B = (s2

BtB)/(s2
AtA), with tA and tB

the median computation times and s2
A and s2

B the variances of PIP estimates based
on 200 independent runs of each algorithm (cf. Griffin et al., 2021). Here, we consider
the median ratio r̂

(20)
A,B over the 20 variables with the largest estimated PIPs, as many

variables receive very small posterior probability due to the sparsity-inducing prior and
the sparse generating model with only 10 signal variables (in all settings the estimated
PIPs for variables not among the top 20 are all below 0.5%, while the median estimated
PIP over all variables is below 0.07%). Complementary results regarding the median
of r̂A,B over all variables are provided in Table G.1 of the Supplement, comparing the
performance of MAdaSub also with the adaptive approaches in Griffin et al. (2021).

Table 1 shows that in all considered settings the median estimated time-standardized
effective sample size for both MAdaSub versions is several orders larger than for the MC3
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SNR = 0.5 SNR = 1 SNR = 2 SNR = 3
(n, p) MAdaSub r̂

(20)
A,B / Acc. r̂

(20)
A,B / Acc. r̂

(20)
A,B / Acc. r̂

(20)
A,B / Acc.

(500, 500) serial 69.4 / 44.6% 23.0 / 31.9% 4.8 / 6.3% 8.3 / 9.3%
parallel 22.9 / 45.3% 8.9 / 37.7% 7.5 / 18.1% 12.1 / 21.4%

(500, 5000) serial 376.9 / 47.5% 50.3 / 46.6% 8.2 / 5.1% 17.9 / 9.5%
parallel 474.4 / 48.0% 78.7 / 44.8% 82.8 / 17.5% 186.4 / 23.4%

(1000, 500) serial 110.7 / 53.4% 13.7 / 39.0% 2.4 / 6.0% 8.7 / 9.0%
parallel 62.0 / 54.2% 7.0 / 39.0% 7.3 / 17.7% 12.8 / 21.0%

(1000, 5000) serial 657.3 / 45.3% 7.5 / 26.5% 23.9 / 9.4% 35.1 / 11.6%
parallel 674.1 / 45.8% 6.2 / 10.7% 175.6 / 23.1% 281.7 / 24.7%

Table 1: Results of high-dimensional simulation study. Performance of MAdaSub algo-
rithms (A) with serial and parallel updating schemes compared to add-delete-swap MC3

algorithm (B) in terms of median estimated ratios r̂(20)
A,B of the relative time-standardized

effective sample size for PIPs over the 20 variables with the largest estimated PIPs. Me-
dian acceptance rates (Acc.) for MAdaSub are also provided.

algorithm. For low SNRs (e.g. SNR = 0.5), both MAdaSub versions tend to show larger
improvements compared to the MC3 algorithm than for high SNRs (e.g. SNR = 3). Note
that for high SNRs, the posterior distribution tends to be more concentrated around
the true model S0 = {1, . . . , 10}, so that local proposals of the add-delete-swap MC3

algorithm may also be reasonable. On the other hand, for low SNR, the posterior tends
to be less concentrated, so that global moves of MAdaSub have a larger potential to
improve the mixing compared to the MC3 algorithm. The acceptance rates of MAdaSub
are also larger in small SNR scenarios, as the posterior model distribution tends to be
better approximated by independent Bernoulli proposals. However, in all considered
settings, the acceptance rates of MAdaSub are reasonably large with median acceptance
rates between 5.1% and 54.2% (see Table 1) and are considerably larger compared to the
MC3 algorithm with median acceptance rates between 0.6% and 5.8% (detailed results
not shown).

For low SNRs (SNR ≤ 1), serial updating in MAdaSub tends to yield larger (for
p = 500) or similar (for p = 5000) time-standardized effective sample sizes compared
to parallel updating, as both versions appear to have converged to stationarity with
similar acceptance rates, while the parallel version tends to yield larger computation
times as a result of communicating chains. For large SNRs (SNR ≥ 2), MAdaSub with
parallel updating performs favourable since the proposal probabilities tend to converge
faster than with serial updating, which leads to considerably larger acceptance rates
and outweighs the computational cost of communicating chains. Previous results for
the same simulation set-up indicate that the two alternative individual adaptation al-
gorithms of Griffin et al. (2021) tend to yield the largest improvements compared to the
MC3 algorithm for higher SNR (particularly for SNR = 2). The proposal (18) of these
algorithms allows for larger moves than the add-delete-swap proposal in MC3, but —
in contrast to the independence proposal of MAdaSub — the proposal (18) still locally
depends on the previously sampled model. Overall, MAdaSub shows a competitive per-
formance compared to the adaptive algorithms of Griffin et al. (2021), with advantages
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of MAdaSub in low SNR settings and advantages of the adaptive algorithms of Griffin
et al. (2021) in high SNR settings (see Table G.1 of the Supplement).

6 Real data applications
6.1 Tecator data
We first examine the Tecator dataset which has already been investigated in Griffin
and Brown (2010), Lamnisos et al. (2013) and Griffin et al. (2021). The data has been
recorded by Borggaard and Thodberg (1992) on a Tecator Infratec Food Analyzer and
consists of n = 172 meat samples and their near-infrared absorbance spectra, repre-
sented by p = 100 channels in the wavelength range 850-1050nm (compare Griffin and
Brown, 2010). The fat content of the samples is considered as the response variable. For
comparison reasons, we choose the same conjugate prior set-up as in Lamnisos et al.
(2013), i.e. we use the prior given in equation (4) with g = 5, W S = I |S| for S ∈ M
and we employ the independent Bernoulli model prior given in equation (5) with (fixed)
prior inclusion probability ω = 5

100 .

To investigate the stability of MAdaSub for different choices of its tuning param-
eters, we run 25 independent serial MAdaSub chains (Algorithm 1) with random ini-
tializations of the proposal probabilities r

(k,0)
j = q(k)/p, j ∈ P, with q(k) ∼ U(2, 10)

and of the variance parameters L
(k)
j = L(k), j ∈ P, with L(k) ∼ U(p/2, 2p), for each

chain k = 1, . . . , 25. Furthermore, we run 25 additional parallel MAdaSub chains (Al-
gorithm 2) with the described random initializations, exchanging the information after
each of R = 58 rounds of T = 5,000 iterations (yielding in total 290,000 iterations for
each of the chains, cf. Lamnisos et al., 2013). Figure 4 shows the resulting empirical
variable inclusion frequencies (as estimates of posterior inclusion probabilities) for the
25 serial and 25 parallel MAdaSub chains. From left to right, the first three plots of
Figure 4 depict the development of the empirical inclusion frequencies for the first three
rounds of 5,000 iterations each, while the rightmost plots depict the final empirical in-
clusion frequencies after 290,000 iterations (disregarding a burn-in period of 100,000
iterations, cf. Lamnisos et al., 2013). After the first 5,000 iterations, the empirical in-
clusion frequencies show a similar variability for the serial and parallel chains, as no
communication between the parallel chains has yet occurred. After the second round of
5,000 further iterations, the benefit of the communication between the 25 parallel chains
is apparent, leading to less variable estimates due to a faster convergence of the pro-
posal probabilities against the posterior inclusion probabilities. Nevertheless, also the
serial MAdaSub chains (with different initial tuning parameters) provide quite accurate
estimates after only 10,000 iterations.

After 290,000 iterations, all of the serial and parallel MAdaSub chains yield very
stable estimates of posterior inclusion probabilities, reproducing the results shown in
Figure 1 of Lamnisos et al. (2013). Details on additional comparisons with Lamnisos
et al. (2013) and computation times can be found in Section H of the Supplement.
As the covariates represent 100 channels of the near-infrared absorbance spectrum,
adjacent covariates are highly correlated and it is not surprising that they have similar
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Figure 4: Tecator data application. Results of 25 independent serial MAdaSub chains
(Algorithm 1) and of 25 parallel MAdaSub chains exchanging information after every
5,000 iterations (Algorithm 2) in terms of empirical variable inclusion frequencies fj for
j ∈ {1, . . . , 100}.

posterior inclusion probabilities. If one is interested in selecting a final single model,
the median probability model (which includes all variables with posterior inclusion
probability greater than 0.5, see Barbieri and Berger, 2004) might not be the best choice
in this particular situation, since then only variables corresponding to the “global mode”
and no variables from the two other “local modes” in Figure 4 are selected. Alternatively,
one may choose one or two variables from each of the three “local modes” or make use
of Bayesian model averaging (Raftery et al., 1997) for predictive inference.

6.2 PCR and Leukemia data

We illustrate the effectiveness of MAdaSub for two further high-dimensional datasets. In
particular, we consider the polymerase chain reaction (PCR) dataset of Lan et al. (2006)
with p = 22,575 explanatory variables (expression levels of genes), sample size n = 60
(mice) and continuous response data (the dataset is available in JRSS(B) Datasets Vol.
77(5), Song and Liang, 2015). Furthermore, we consider the leukemia dataset of Golub
et al. (1999) with 6817 gene expression measurements of n = 72 patients and binary
response data (the dataset can be loaded via the R-package golubEsets, Golub, 2017).
For the PCR dataset we face the problem of variable selection in a linear regression
framework, while for the leukemia dataset we consider variable selection in a logistic
regression framework. We have preprocessed the leukemia dataset as described in Dudoit
et al. (2002), resulting in a restricted design matrix with p = 3571 columns (genes).
Furthermore, in both datasets we have mean-centered the columns of the design matrix
after the initial preprocessing.
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Figure 5: PCR data application. Evolution of empirical variable inclusion frequencies
for 25 serial MAdaSub chains (Algorithm 1, top) and 25 parallel MAdaSub chains
exchanging information after every round of 20,000 iterations (Algorithm 2, bottom).
Bold lines represent median frequencies with 5%- and 95%-quantiles (shaded area) over
the chains within each round, for most informative variables Xj (with final estimate
fj ≥ 0.05 for at least one chain).

Here we adopt the posterior approximation induced by EBICγ with γ = 1 (see equa-
tion (8)), corresponding to a beta-binomial model prior with aω = bω = 1 as parameters
in the beta distribution (see Section 2). For both datasets we run 25 independent serial
MAdaSub chains with 1,000,000 iterations and 25 parallel MAdaSub chains exchanging
information after each of R = 50 rounds of T = 20,000 iterations (yielding also 1,000,000
iterations for each parallel chain). For each serial and parallel chain k = 1, . . . , 50, we
set ε = 1

p and randomly initialize the proposal probabilities r(k,0)
j = q(k)/p, j ∈ P, with

q(k) ∼ U(2, 5) and the variance parameters L
(k)
j = L(k), j ∈ P, with L(k) ∼ U(p/2, 2p).

For the leukemia dataset we make use of a fast C++ implementation for ML-estimation
in logistic regression models via a limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm, which is available in the R-package RcppNumerical (Qiu et al.,
2016). For both datasets, the 50 MAdaSub chains are run in parallel on a computer
cluster with 50 CPUs, yielding overall computation times of 2,836 seconds for the PCR
data (2,310 seconds for a single chain) and 1,402 seconds for the leukemia data (995
seconds for a single chain).

Figures 5 and 6 show that, despite the high-dimensional model spaces and the dif-
ferent initializations of each chain, the parallel MAdaSub algorithm provides stable
estimates of posterior inclusion probabilities for both datasets after a small number
of rounds. In particular, the estimates from the parallel MAdaSub algorithm stabilize
after only three rounds of 20,000 iterations (see also Figures I.3 and I.4 of the Sup-
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Figure 6: Leukemia data application. Evolution of empirical variable inclusion frequen-
cies for 25 serial MAdaSub chains (Algorithm 1, top) and 25 parallel MAdaSub chains
exchanging information after each round of 20,000 iterations (Algorithm 2, bottom) for
most informative variables Xj (with final estimate fj ≥ 0.1 for at least one chain), cf.
Figure 5.

plement). For the PCR data, all serial and parallel MAdaSub chains yield congruent
estimates of posterior inclusion probabilities after 1,000,000 iterations (Figures 5, I.2
and I.3). The final acceptance rates of MAdaSub for the PCR dataset are between 20%
and 22%, while the acceptance rates for the leukemia dataset are between 3% and 6%.
The smaller acceptance rates for the leukemia dataset indicate that this corresponds to
a more challenging scenario (i.e. the targeted posterior model distribution seems to be
“further away” from an independent Bernoulli form). This observation is also reflected
in the larger variability of the estimates from the MAdaSub chains without parallel
updating (Figures 6, I.2 and I.4). The leukemia data application particularly illustrates
the benefits of the parallel version of MAdaSub, where multiple chains with different
initializations sequentially explore different regions of the model space, but exchange the
information after each round of 20,000 iterations, increasing the speed of convergence
of the proposal probabilities to the posterior inclusion probabilities.

Note that in very high-dimensional settings such as for the PCR data (with p =
22,575), the classical MC3 algorithm (Madigan et al., 1995) does not yield stable esti-
mates due to slow mixing (cf. Griffin et al., 2021), while the BAS algorithm (Clyde, 2017)
using sampling without replacement is computationally intractable. Further results in
Griffin et al. (2021) show that several competing adaptive algorithms — including se-
quential Monte Carlo algorithms of Schäfer and Chopin (2013) and tempered Gibbs
sampling algorithms of Zanella and Roberts (2019) — do not provide reliable estimates
of posterior inclusion probabilities for the PCR data; only the adaptively scaled individ-
ual adaptation algorithm of Griffin et al. (2021) with proposals of the form (18) yields
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stable results for the PCR data similarly to MAdaSub with a slightly different prior
set-up (see Figures 10 and 11 of the Supplement of Griffin et al., 2021).

Due to the very large model spaces in both considered examples, posterior probabil-
ities of individual models are generally small and corresponding MCMC estimates will
typically not be very reliable. Therefore, as in similar studies (see Griffin et al., 2021),
we have focused on the estimation of posterior inclusion probabilities (PIPs). For the
PCR data two variables (genes) stand out with respect to the final estimates of their
PIPs, namely the gene 1438937_x_at (covariate index j = 7640) with estimated PIP
between 0.54 and 0.56, and the gene 1438936_s_at (j = 7639) with estimated PIP
between 0.35 and 0.37. Similarly, for the leukemia data two genes stand out, namely the
genes M23197_at (j = 956) with estimated PIP between 0.39 and 0.43 and X95735_at
(j = 2481) with estimated PIP between 0.21 and 0.22 (considering final estimates from
the 25 parallel chains only); these two genes are also among the four top scoring genes
in a Bayesian probit regression analysis in Ai-Jun and Xin-Yuan (2009).

7 Discussion
We introduced the Metropolized Adaptive Subspace (MAdaSub) algorithm for sampling
from high-dimensional posterior model distributions in situations where conjugate priors
or approximations to the posterior are employed. We further developed an efficient
parallel version of MAdaSub, where the information regarding the adaptive proposal
probabilities of the variables can be shared periodically between the different chains.
Simulated and real data applications illustrated that MAdaSub can efficiently sample
from multimodal posterior model distributions, yielding stable estimates of posterior
inclusion probabilities even for ten thousands of possible covariates.

The reliable estimation of posterior inclusion probabilities is particularly important
for Bayesian inference, since the median probability model (MPM) — including all
variables with posterior inclusion probability larger than 0.5 — has been shown to yield
optimal predictions for uncorrelated covariates (Barbieri and Berger, 2004) and also a
favourable performance for correlated designs (Barbieri et al., 2021), e.g. compared to
the largest posterior probability model. MAdaSub provides a natural adaptive MCMC
algorithm which focuses on the sequential adaptation of currently estimated inclusion
probabilities, with the aim of driving the sampler quickly into regions near to the MPM;
in the limit, the MPM itself is the model which receives the largest probability under the
independent Bernoulli proposal of MAdaSub. Despite the continuing adaptation of the
proposals, we have shown that MAdaSub constitutes a valid MCMC algorithm which
samples from the full posterior model distribution. While the serial and parallel versions
of MAdaSub are ergodic for all choices of their tuning parameters (see Theorem 1
and Theorem 3), in practice the speed of convergence against the targeted posterior
depends crucially on a proper choice of their tuning parameters (see Section 5). Deriving
theoretical results regarding the mixing time of the proposed algorithms is an important
but challenging issue for further research.

Since MAdaSub is based on adaptive independent proposal distributions, in each
iteration of the algorithm the proposed model is (almost) independent of the current
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model, so that “distant” moves in the model space are encouraged. This can be ad-
vantageous in comparison to Gibbs samplers and Metropolis-Hastings algorithms based
on local proposal distributions, which may yield larger acceptance rates but are more
prone to be stuck in local modes of the posterior model distribution. In future work
one may also consider combinations of the adaptive independent proposals in MAda-
Sub with adaptive local proposals as for example in Lamnisos et al. (2013) and Zanella
and Roberts (2019). While MAdaSub yields competitive results without the use of Rao-
Blackwellization compared to the related adaptive algorithms of Griffin et al. (2021), the
incorporation of Rao-Blackwellized estimates of posterior inclusion probabilities in the
burn-in phase or as initial proposal probabilities may further increase the speed of con-
vergence of MAdaSub. Finally, the extension of MAdaSub to settings with non-conjugate
priors is interesting to be investigated, for example by considering data augmentation
approaches with additional latent variables or by incorporating reversible-jump moves
(Green, 1995; Wan and Griffin, 2021).

Supplementary Material
Supplementary material for “A Metropolized adaptive subspace algorithm for high-
dimensional Bayesian variable selection” (DOI: 10.1214/22-BA1351SUPP; .pdf). The
Supplement includes detailed proofs of the ergodicity results, algorithmic details of the
parallel version of MAdaSub, further details on related approaches, as well as additional
results for the simulated and real data applications.
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