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Bayesian Inference on Hierarchical Nonlocal
Priors in Generalized Linear Models∗

Xuan Cao† and Kyoungjae Lee‡,§

Abstract. Variable selection methods with nonlocal priors have been widely stud-
ied in linear regression models, and their theoretical and empirical performances
have been reported. However, the crucial model selection properties for hierarchi-
cal nonlocal priors in high-dimensional generalized linear regression have rarely
been investigated. In this paper, we consider a hierarchical nonlocal prior for high-
dimensional logistic regression models and investigate theoretical properties of the
posterior distribution. Specifically, a product moment (pMOM) nonlocal prior is
imposed over the regression coefficients with an Inverse-Gamma prior on the tun-
ing parameter. Under standard regularity assumptions, we establish strong model
selection consistency in a high-dimensional setting, where the number of covariates
is allowed to increase at a sub-exponential rate with the sample size. We imple-
ment the Laplace approximation for computing the posterior probabilities, and a
modified shotgun stochastic search procedure is suggested for efficiently exploring
the model space. We demonstrate the validity of the proposed method through
simulation studies and an RNA-sequencing dataset for stratifying disease risk.

Keywords: high-dimensional, nonlocal prior, strong selection consistency.
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1 Introduction
The advance in modern technology has led to an increased ability to collect and store
data on a large scale. This brings opportunities and, at the same time, tremendous
challenges in analyzing data with a large number of covariates per observation, the so-
called high-dimensional problem. In high-dimensional analysis, variable selection is one
of the very important tasks and commonly used techniques, especially in radiological
and genetic research, with the high-dimensional data naturally extracted from imaging
scans and gene sequencing. There is an extensive frequentist literature on variable se-
lection, especially ones that are based on regularization techniques enforcing sparsity
through penalization functions that share the common property of shrinkage toward
sparse models (Tibshirani, 1996; Fan and Li, 2001; Zhang, 2010). On the other hand,
Bayesian model selection expresses the sparsity through a sparse prior, such as the
popular spike and slab prior (Ishwaran and Rao, 2005; George and McCulloch, 1993;
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Narisetty and He, 2014) and continuous shrinkage prior (Liang et al., 2008; Johnson and
Rossell, 2012; Liang et al., 2013), i.e., a distribution that supports on the sparse model or
model with sparse parameters, and inference is carried out through posterior inference.

In this paper, we are interested in nonlocal priors (Johnson and Rossell, 2010)
that are identically zero whenever a model parameter is equal to its null value. Com-
pared to local priors, nonlocal prior distributions have relatively appealing properties
for Bayesian model selection. Specifically, nonlocal priors discard spurious covariates
faster as the sample size grows, while preserving exponential learning rates to detect
nontrivial coefficients (Johnson and Rossell, 2010). Under the setup of linear regression
with p predictors, Johnson and Rossell (2012) introduced the product moment (pMOM)
nonlocal prior with density

dp(2π)−
p
2 (τσ2)−rp− p

2 |Up|
1
2 exp

(
−
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p Upβp

2τσ2

) p∏
i=1

β2r
i . (1.1)

Here Up is a p×p nonsingular matrix, r is a positive integer referred to as the order of the
density and dp is the normalizing constant independent of the scale parameter τ and the
error variance σ2. Variations of the density in (1.1), called the product inverse-moment
(piMOM) and product exponential moment (peMOM) density, have also been developed
in Johnson and Rossell (2012) and Rossell et al. (2013). Under regularity conditions,
Johnson and Rossell (2012); Shin et al. (2018) and Cao and Lee (2020) demonstrated
that the posterior distributions based on the pMOM and piMOM nonlocal prior densities
can achieve strong model selection consistency in high-dimensional settings. It implies
that the posterior probability assigned to the true model converges to one as the sample
size grows. When the number of covariates is much smaller than the sample size, Shi
et al. (2019) established the posterior convergence rate of the probability regarding the
Hellinger distance between the posterior model and the true model under pMOM priors
in a logistic regression model.

In the pMOM prior (1.1), the hyperparameter τ controls the dispersion of the den-
sity around the origin, and thus implicitly determines the magnitude of the regression
coefficients that will be shrunk to zero (Johnson and Rossell, 2012). Wu et al. (2020) and
Cao et al. (2020) extended the work in Johnson and Rossell (2012) and Shin et al. (2018)
by proposing a fully Bayesian approach with the pMOM nonlocal prior and an appro-
priate Inverse-Gamma prior on the hyperparameter τ referred to as the hyper-pMOM
prior. Compared with pMOM priors, the hyer-pMOM density possesses a thicker tail
and is able to accommodate large magnitudes of regression coefficients to carry out
robust inference (Wu et al., 2020). In particular, Wu et al. (2020) investigated model
selection properties of hyper-pMOM priors in a generalized linear model (GLM) under a
fixed dimension p, and Cao et al. (2020) established strong model selection consistency
of hyper-pMOM priors in linear regression when p is allowed to grow at a polyno-
mial rate of n. For the hyper-piMOM priors composed of the mixture of piMOM and
Inverse-Gamma densities, Bian and Wu (2017) established model selection consistency
in generalized linear models under rather restrictive assumptions.

Despite recent developments in model selection using nonlocal priors, a rigorous
Bayesian inference of hyper-pMOM priors in GLMs has not been undertaken to the
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best of our knowledge. Motivated by this gap, we establish model selection consistency
of the hyper-pMOM prior on regression coefficients in a GLM, in particular, logis-
tic regression when the number of covariates grows at a sub-exponential rate of the
sample size (Theorems 3.1 to 3.4). Our theory reveals that, under a uniform model
prior, increasingly diffuse priors on the scale parameter τ are needed for model selection
consistency, where Shin et al. (2018) reported similar conditions for the piMOM and
peMOM priors. Furthermore, it is known that the computation problem can arise for
Bayesian approaches due to the non-conjugate nature of priors in GLMs. To address
this issue, we obtain posterior probabilities via Laplace approximation and then imple-
ment a slightly modified shotgun stochastic search algorithm for exploring the sparsity
pattern of the regression coefficients. We demonstrate that the proposed method can
outperform existing state-of-the-art methods including both penalized likelihood and
Bayesian approaches in various settings. Finally, the proposed method is applied to an
RNA-sequencing dataset consisting of gene expression levels to identify differentially
expressed genes for disease risk stratification.

The rest of paper is organized as follows. Section 2 provides background material
regarding GLMs and revisits the hyper-pMOM distribution. We detail strong selec-
tion consistency results in Section 3, and proofs are provided in the Supplementary
Material (Cao and Lee, 2022). The posterior computation algorithm is described in
Section 4, and we show the performance of the proposed method and compare it with
other competitors through simulation studies in Section 5. In Section 6, we conduct a
data analysis for predicting asthma and show that the hyper-pMOM prior yields better
prediction performance compared with other contenders. We conclude with a discussion
in Section 7.

2 Methodology
2.1 Variable Selection in Logistic Regression
We first describe the framework and introduce some notations for Bayesian variable
selection in logistic regression. Let y ∈ {0, 1}n be the binary response vector and X ∈
Rn×p be the design matrix. Without loss of generality, we assume that the columns of
X are standardized to have zero mean and unit variance. Let xi ∈ Rp denote the ith row
vector of X that contains the covariates for the ith subject. Let β be the p × 1 vector
of regression coefficients. We first consider the standard logistic regression model:

P
(
yi = 1 | xi, β

)
=

exp
(
x�
i β

)
1 + exp

(
x�
i β

) , for i = 1, 2, . . . , n. (2.1)

We present a scenario where the dimension of predictors, p, grows with the sample size
n. Thus, the number of predictors is a function of n, that is, p = pn, but we denote it as
p for notational simplicity. The goal of this paper is variable selection, i.e., to correctly
identify all the locations of nonzero regression coefficients.

We denote a model by k =
{
k1, k2, . . . , k|k|

}
⊆ [p] =: {1, 2, . . . , p} if and only if

all the nonzero elements of β are βk1 , βk2 , . . . , βk|k| , where |k| is the cardinality of k.
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For any β ∈ Rp and k ⊆ [p], let βk =
(
βk1 , βk2 , . . . , βk|k|

)� ∈ R|k|. Similarly, for any
m × p matrix A and k ⊆ [p], let Ak ∈ Rm×|k| denote the submatrix of A containing
the columns of A indexed by model k. In particular, for any 1 ≤ i ≤ n and k ⊆ [p], we
denote xik ∈ R|k| as the subvector of xi ∈ Rp containing the entries of xi corresponding
to model k.

2.2 Hierarchical Nonlocal Priors
The class of the following hierarchical nonlocal priors can be used for variable selection:

π (βk | τ, k) = dk(2π)−
|k|
2 (τ)−r|k|− |k|
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, βk ∈ R|k|, (2.2)
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τ

)
, τ > 0, (2.3)

where U is a p × p nonsingular matrix, r is a positive integer and ψ1, ψ2 are positive
constants. we refer to the mixture of densities of pMOM and Inverse-Gamma in (2.2)
and (2.3) as the hyper-pMOM prior (Wu et al., 2020; Cao et al., 2020). It is easy to see
that the marginal density of βk, after integrating out τ , has the following form:

π (βk | k) =
∫

π(βk | τ, k)π(τ)dτ

= ψψ1
2
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Compared to the pMOM density in (2.2) with a given τ , π (βk | k) possesses heavier tails
as shown in Figure 1 and Figure 2. To be more specific, we consider the univariate and
bivariate cases corresponding to |k| = 1 and |k| = 2 respectively. For a fair comparison,
we set ψ1 = 1 and let the fixed hyperparameter τ in the pMOM density equal to the
expectation of the Inverse-Gamma prior (2.3), leading to ψ2 = τ . It is also important to
note that the hyper-pMOM priors become increasingly diffuse as ψ2 grows, suggesting
a data-dependent value of ψ2 should be adopted for asymptotic considerations in high
dimensions.

There are several effects resulting from the mixture of priors as noted in Wu et al.
(2020). First, it is clearly reflected in Figures 1 and 2 that when approaching the tail,
the hyper-pMOM prior vanishes more gently than the pMOM prior, making hyper-
pMOM better suited for detecting nonzero regression coefficients with relatively larger
magnitudes. Second, the scale mixture of priors could achieve better empirical model
selection performance especially for smaller dimensions. See for example Liang et al.
(2008) and Wu et al. (2020) that investigate the finite sample performance of hyper-g
and hyper-pMOM priors.

For the prior over the model space, we suggest using the following uniform prior and
restricting the analysis to models with a size of less than or equal to mn:

π(k) ∝ 1(|k| ≤ mn). (2.4)
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Figure 1: The univariate comparison of hyper-pMOM and pMOM densities.

Figure 2: The bivariate comparison of hyper-pMOM and pMOM densities.

A similar setup has also been considered in Narisetty et al. (2019), Shin et al. (2018)
and Cao et al. (2020). One may view the uniform prior (2.4) constructed in the following
way by assuming all models with the same size receive equal prior probability, i.e.,

π(k) = π(|k|)(
p
|k|
) and π(|k|) ∝

(
p

|k|

)
.

As alternatives to the uniform prior, one may also consider the Beta-Binomial(1,1) prior
(Rossell, 2022; Scott and Berger, 2010) taking the form of

π(|k|) ∝ 1
p + 1

(
p

|k|

)−1

, (2.5)



104 Hierarchical Nonlocal Priors in GLMs

or the complexity prior (Castillo et al., 2015) with the expression of,

π(|k|) ∝ c
−|k|
1 p−c2|k|,

for some positive constants c1 and c2. Note that the Beta-Binomial(1,1) yields a slightly
more sparse formulation of prior on the model space compared with the uniform prior
under the constraint of only considering realistically large models. One can obtain simi-
lar model selection consistency under the Beta-Binomial prior as shown in Theorem 3.4.

It is worthwhile to mention that the penalty over large models can be derived di-
rectly from the nonlocal densities themselves with large τ values, and there is no need of
the extra penalization through the prior over the model space (Shin et al., 2018). In par-
ticular, Cao et al. (2020) conducted simulation studies to compare the model selection
results under a uniform prior and a complexity prior using the same hyper-pMOM den-
sity with τ = n/2, and they showed the superior performance of model selection under a
uniform prior. If one is using nonlocal priors with finite τ or hierarchical nonlocal priors
with fixed ψ2, model priors like complexity prior or independent Bernoulli priors with
small variable indicator probability (Narisetty and He, 2014) should be adopted for es-
tablishing high-dimensional model selection consistency. However, as shown in Rossell
(2022), although the complexity prior attains better asymptotic results, even with a
small τ value, the combined pMOM and Beta-Binomial priors are still able to discard
spurious parameters and achieve better power/sparsity tradeoffs in finite samples.

Note that in the hierarchical nonlocal prior (2.1) to (2.4), no specific conditions have
yet been assigned to the hyperparameters. Some standard regularity assumptions on the
hyperparameters will be provided in Section 3.

By the hierarchical model (2.1) to (2.4) and Bayes’ rule, the resulting posterior
probability for model k is denoted by

π(k | y) = π(k)
m(y)mk(y),

where m(y) is the marginal density of y, and mk(y) is the marginal density of y under
model k given by

mk(y) =
∫∫

exp
{
Ln(βk)

}
π (βk | τ, k)π(τ) dτdβk

=
∫

exp
{
Ln(βk)

}
π (βk | k) dβk,

(2.6)

where

Ln(βk) = log
(
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{ exp
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ikβk

)
1 + exp

(
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ikβk

)}yi
{

1
1 + exp

(
x�
ikβk

)}1−yi
)

(2.7)

is the log-likelihood function. The above marginal posterior probabilities for model k
can be used to find the posterior mode, k̂ = arg maxk π(k | y). The closed form of these
posterior probabilities cannot be obtained due to the non-conjugate nature of nonlocal
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densities. Therefore, special efforts need to be devoted for both consistency results and
computational strategy as we shall see in the following sections. In Section 4, we will
adopt a (modified) stochastic search algorithm that utilizes posterior probabilities to
target the mode in a more efficient way compared with Markov chain Monte Carlo
(MCMC).

2.3 Extension to Generalized Linear Model

In this section, we extend our previous discussion on logistic regression to a GLM. Given
predictors xi and an outcome yi for 1 ≤ i ≤ n, a GLM has a probability density function
or probability mass function of the form

p(yi | θi) = exp
{
a(θi)yi + b(θi) + c(yi)

}
,

in which a(·) is a continuously differentiable function with respect to θ with nonzero
derivative, b(·) is also a continuously differentiable function of θ, c(·) is some constant
function of y, and θi = θi(β) = x�

i β is the natural parameter.

The class of hierarchical pMOM densities specified in (2.2) and (2.3) can still be used
for model selection in the generalized setting by noting that the log-likelihood function
in (2.6) and (2.7) now takes the general form of

Ln(βk) =
n∑

i=1

{
a(θi(βk))yi + b(θi(βk)) + c(yi)

}
.

Using similar techniques in Section 4, one can also develop efficient search algorithms
based on different log-likelihood functions to navigate the posterior mode through the
model space.

3 Main Results
In this section, we show that the hyper-pMOM prior enjoys desirable model selection
properties in a GLM. The results in this section are based on the assumption that p
grows to infinity as n increases and do not apply to the case where p is fixed. Let
t = {t1, t2, . . . , t|t|} ⊆ [p] be the true model, which means that the nonzero locations
of the true coefficient vector are t = (j, j ∈ t). We consider |t| to be a fixed value. Let
β0 ∈ Rp be the true coefficient vector and β0,t ∈ R|t| be the vector of the true nonzero
coefficients. For a given model k ⊆ [p], we denote Ln(βk) and sn(βk) = ∂Ln(βk)/(∂βk)
as the log-likelihood and score function, respectively. In the following analysis, we will
focus on logistic regression, but our argument can be extended to any other GLMs such
as a probit regression model by imposing certain conditions on the design matrix to
effectively bound the Hessian matrix. Let

Hn(βk) = −∂2Ln(βk)
∂βk∂βk

� =
n∑

i=1
σ2
i (βk)xikx

�
ik = Xk

�Σ(βk)Xk
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be the negative Hessian of Ln(βk), where Σ(βk) ≡ Σk = diag(σ2
1(βk), . . . , σ2

n(βk)),
σ2
i (βk) = μi(βk){1 − μi(βk)} and μi(βk) = exp

(
x�
ikβk

)
/{1 + exp

(
x�
ikβk

)
}. In the rest

of the paper, we denote Σ = Σ(β0,t), μ = (μi(β0,t)) and σ2
i = σ2

i (β0,t) for simplicity.

Before establishing the main results, we introduce the following notation. For any
a, b ∈ R, a∨ b and a∧ b mean the maximum and minimum of a and b, respectively. For
any positive real sequences an and bn, we denote an � bn, or equivalently an = O(bn),
if there exists a constant C > 0 such that |an| ≤ C|bn| for all large n. We denote
an 
 bn, or equivalently an = o(bn), if an/bn −→ 0 as n → ∞. We denote an ∼ bn,
if there exist constants C1 > C2 > 0 such that C2 < bn/an ≤ an/bn < C1. The 	2-
norm for a given vector v = (v1, v2, . . . , vp)� ∈ Rp is defined as ‖v‖2 = (

∑p
j=1 v

2
j )1/2.

For any real symmetric matrix A, let λmax(A) and λmin(A) be maximum and minimum
eigenvalue of A, respectively. We assume the following standard conditions for obtaining
the asymptotic results:

Condition (A1) For some constant 0 < d′ < 1, logn � log p = o(n) and mn =
O
(
(n/ log p) 1−d′

2 ∧ p
)
, as n → ∞.

Condition (A2) For some constants C > 0, λ > 0 and 0 ≤ d < (1 + d)/2 ≤ d′ ≤ 1,
‖β0,t‖2

2 = O
(
(log p)d

)
and

max
i,j

|xij | ≤ C,

0 < λ ≤ min
k:|k|≤mn

λmin

(
n−1Hn(β0,k)

)
≤ Λmn ≤ C2

( n

log p ∧ log p
)d

,

and Λζ = maxk:|k|≤ζ λmax(n−1X�
k Xk) for any integer ζ > 0. Furthermore, for any model

k ∈ {k ⊆ [p] : |k| ≤ mn} and any

u ∈ {u ∈ Rn : u is in the space spanned by the columns of Σ1/2Xk},

there exists a small constant δ∗ > 0 such that for any n ≥ N(δ∗),

E
[
exp

{
u�Σ−1/2(y − μ)

}]
≤ exp

{ (1 + δ∗)u�u

2

}
.

Condition (A3) For some constant c0 > 0,

min
j∈t

‖β0,j‖2
2 ≥ c0|t|Λ|t|

( log p
n

∨ 1
log p

)
.

Condition (A4) For some constants δ, a1, a2 > 0, the hyperparameters satisfy

a1 < ψ1 < a2, ψ
r+1/2
2 ∼ n−1/2p2+δ and a1 < λmin(U) ≤ λmax(U) < a2,

where r is a positive integer in (2.2).

Condition (A1) ensures our proposed method can accommodate high dimensions
where the number of predictors grows at a sub-exponential rate of n. Condition (A1)
also specifies the parameter mn in the uniform prior (2.4) that restricts our analysis on
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a set of reasonably large models. We essentially require mn 
 n to avoid over-fitting
problems. Similar assumptions restricting the model size have been commonly assumed
in the sparse estimation literature (Liang et al., 2013; Narisetty et al., 2019; Shin et al.,
2018; Lee et al., 2019).

Condition (A2) gives lower and upper bounds of λmin
(
n−1Hn(β0,k)

)
and

λmax
(
n−1X�

k Xk

)
, respectively, where k belongs to the set of reasonably large models.

The lower bound condition can be seen as a restricted eigenvalue condition for k-sparse
vectors and is satisfied with high probability for sub-Gaussian design matrices (Narisetty
et al., 2019). Similar conditions have been used in the linear regression literature (Ish-
waran and Rao, 2005; Yang et al., 2016; Song and Liang, 2017). For the last assumption
in Condition (A2), as stated in Narisetty et al. (2019), due to the sub-Gaussianity of
Σ−1/2(y − μ), for typical random designs, the variable u�Σ−1/2(y − μ)/‖u‖ is asymp-
totically distributed as the standard normal, so this assumption is expected to hold for
some small constant δ∗ > 0.

Condition (A2) also allows the magnitude of true signals to increase to infinity but
stay bounded above by (log p)d up to some constant, while Condition (A3), the well-
known beta-min condition, gives a lower bound for nonzero signals. In general, this type
of condition is necessary to not neglect any small signals.

Condition (A4) suggests appropriate conditions for the hyperparameters in (2.2)
and (2.3). Similar assumption has also been considered in Shin et al. (2018), Johnson
and Rossell (2012) and Cao et al. (2020). In particular, we extend the previous poly-
nomial rate of the dimension in Cao et al. (2020) by considering a larger order of the
hyperparameter ψ2. Note that the prior expectation and variance of τ are ψ2/(ψ1 − 1)
and ψ2

2/{(ψ1−1)2(ψ1−2)}, respectively, if ψ1 > 2. Therefore, the priors on τ satisfying
Condition (A4) are increasingly diffuse as n grows.

3.1 Model Selection Consistency

Theorem 3.1 (No super set). Under Conditions (A1), (A2) and (A4),

π
(
k � t | y

) P−→ 0, as n → ∞.

Theorem 3.1 says that, asymptotically, our posterior does not overfit the model, i.e.,
it does not include unnecessarily many variables. Of course, the result does not guarantee
that the posterior will concentrate on the true model. To capture every significant
variable, we require the magnitudes of nonzero entries in β0,t not to be too small.
Theorem 3.2 shows that with an appropriate lower bound specified in Condition (A3),
the true model t will be the mode of the posterior.

Theorem 3.2 (Posterior ratio consistency). Under Conditions (A1)–(A4) with c0 =
{(1 − ε0)λ}−1[2(4 + 2δ) + 5{(1 − ε0)λ}−1] for some small constant ε0 > 0,

max
k �=t

π
(
k | y

)
π
(
t | y

) P−→ 0, as n → ∞.
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Posterior ratio consistency is a useful property especially when we are interested in
the point estimation with the posterior mode, but does not provide how large is the
probability that the posterior puts on the true model. In the following theorem, we state
that our posterior achieves strong selection consistency. By strong selection consistency,
we mean that the posterior probability assigned to the true model t converges to 1,
which requires a slightly stronger condition on the lower bound for the magnitudes of
nonzero entries in β0,t compared to that in Theorem 3.2.

Theorem 3.3 (Strong selection consistency). Under Conditions (A1)–(A4) with c0 =
{(1− ε0)λ}−1[2(9+2δ)+5{(1− ε0)λ}−1] for some small constant ε0 > 0, the following
holds:

π
(
t | y

) P−→ 1, as n → ∞.

As discussed in Section 2, one may also choose other types of priors over the model
space. Indeed, next theorem establishes that the strong selection consistency can likewise
be achieved under the Beta-Binomial prior.

Theorem 3.4 (Consistency under Beta-Binomial (1,1)). If instead of the uniform prior,
the Beta-Binomial (1,1) distribution in (2.5) is imposed over the model space, then under
the exact same conditions stated in Theorem 3.3, the following holds:

π
(
t | y

) P−→ 1, as n → ∞.

3.2 Comparison with Existing Work
We compare our results and assumptions with those of existing methods using nonlocal
priors in generalized linear regression. Shi et al. (2019) established the posterior con-
vergence rate for nonlocal priors under the assumption of p log(1/ε2n) 
 nε2n for some
εn ∈ (0, 1] satisfying nε2n � 1, which indicates that p can increase with the sample
size but slower than n. Wu et al. (2020) investigated the model selection performance
of hyper-nonlocal priors that combine the Fisher information matrix with the pMOM
density and established asymptotic properties under a fixed dimension of predictors.
Both works considered the setting of low to moderate dimensions, while we allow p to
grow at a sub-exponential rate of n, the so-called “ultra high-dimensional” setting (Shin
et al., 2018).

Bian and Wu (2017) considered the following hyper-piMOM priors for regression
coefficients in GLMs and established the high-dimensional model selection consistency:

βk | τ̃k ∼
|k|∏
i=1

(τiσ2) r
2

Γ( r2 ) |βki |−(r+1) exp
(
− τiσ

2

β2
ki

)
,

τi
i.i.d.∼ Inverse-Gamma

(r + 1
2 , ψ

)
, for i = 1, . . . , |k|,

where τ̃k = (τ1, τ2, . . . , τ|k|)�. In particular, the authors put an independent piMOM
prior on each linear regression coefficient (conditional on the hyperparameter τi) and
an Inverse-Gamma prior on τi.
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There are some fundamental differences between Bian and Wu (2017) and our work
in terms of the models considered and corresponding analysis. Firstly, unlike the pi-
MOM prior, the pMOM prior in our model does not in general correspond to assigning
an independent prior to each entry of βk. In particular, pMOM distributions introduce
correlations among the entries in βk through Uk and create more theoretical challenges.
Furthermore, as β → 0, piMOM converges to 0 faster at a quasi-exponential shrink-
age rate, while pMOM densities yield a polynomial shrinkage rate Rossell and Telesca
(2017). These different prior dispersions near the origin lead to the piMOM densities
imposing a stronger penalty on coefficients with magnitudes close to 0 and being more
conservative in identifying nonzero signals compared with the pMOM densities. This
means by exploiting piMOM, one may avoid more false positives at the cost of a potential
decrease in statistical power. Finally, from a practical standpoint, as shown in Rossell
et al. (2021), pMOM can facilitate the approximate Laplace approximation to attain a
faster and at the same time better inference compared with the Laplace approximation.
In terms of technical assumptions, Bian and Wu (2017) assumed the eigenvalues of the
Hessian matrix to be bounded below and above by some constants, while we allow the
upper bound to grow with n (Condition (A2)). In addition, to prove the model selection
consistency, Bian and Wu (2017) required the spectral norm of the difference between
the Hessian matrices corresponding to any two models to be bounded above by a func-
tion of the 	2-norm difference between the respective regression coefficients, and they
assumed that the product of the response variables and the entries of design matrix
are bounded by a constant, while these constraints are not imposed in our study. See
assumptions B1, B2 and C1 in Bian and Wu (2017) for details. Thirdly, no simulation
studies were conducted in Bian and Wu (2017), leaving the empirical validity of the
proposed method in question, while we include the computational strategy in the fol-
lowing section and examine the practical utility of the hyper-pMOM prior through gene
expression analysis.

4 Posterior Computation
In this section, we describe how to approximate the marginal density of data and conduct
the model selection procedure. The integral formulation in (2.6) cannot be calculated
in a closed form. Hence, we use Laplace approximation to compute mk(y) and π(k | y).
Similar approaches to compute posterior probabilities have been used in Johnson and
Rossell (2012), Shi et al. (2019) and Shin et al. (2018). We note here that the model
selection results in Section 3 assume the exact marginal likelihoods and do not apply
to the Laplace-approximated marginal likelihoods.

For any model k, when Uk = Ik, the normalization constant dk in (2.2) is given by
dk =

{
(2r − 1)!!

}−|k|. Let

f(βk) = log
(

exp
{
Ln(βk)

}
π(βk | k)

)
=

n∑
i=1

{
yix

�
ikβk − log

(
1 + exp(x�

ikβk)
)}

− |k| log ((2r − 1)!!) − |k|
2 log(2π)
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Algorithm 1 Shotgun Stochastic Search (SSS).
Set an initial model k(1)

for i = 1 to i = N − 1 do
(a) Compute π(k | y) using (4.1) for all k ∈ nbd

(
k(i))

(b) Sample k+, k− and k0 from Γ+
k , Γ−

k and Γ0
k with probabilities proportional to π(k | y)

(c) Sample the next model k(i+1) from {k+, k−, k0} with probability proportional to{
π(k+ | y), π(k− | y), π(k0 | y)

}
end for

+ log
( ψψ1

2
Γ(ψ1)

)
−
(
r|k| + |k|

2 + ψ1

)
log

(
ψ2 + 1

2‖βk‖2
2

)
+ 2r

|k|∑
i=1

log
(
|βki |

)
+ log Γ

(
r|k| + |k|

2 + ψ1

)
.

For any model k, the Laplace approximation of mk(y) is given by

(2π)
|k|
2 exp

{
f(β̂k)

}
|V (β̂k)|−

1
2 , (4.1)

where β̂k = arg maxβk
f(βk) is obtained via the optimization function optim in R using

a quasi-Newton method, and V (βk) is a |k| × |k| symmetric matrix defined as

V (βk) = −
n∑

i=1

xikx
�
ik exp(x�

ikβk){
1 + exp(x�

ikβk)
}2 − diag

(
2r
β2
k1

, . . . ,
2r
β2
k|k|

)
−
(
r|k| + |k|

2 + ψ1

){ 1
ψ2 + ‖βk‖2

2/2
I|k| −

1
(ψ2 + ‖βk‖2

2/2)2 βkβ
�
k

}
.

The above Laplace approximation can be used to compute the posterior probability
ratio between two models.

The shotgun stochastic search (SSS) algorithm (Hans et al., 2007; Shin et al., 2018) is
inspired by MCMC but enables much more efficient identification of probable models by
swiftly moving around in the model space as the dimension escalates. The SSS algorithm
explores high-dimensional model spaces and quickly identifies “interesting” regions of
high posterior probability over models. The SSS evaluates numerous models guided by
the unnormalized posterior probabilities that can be approximated using the Laplace ap-
proximations of the marginal probabilities in (4.1). Let nbd(k) = {Γ+

k ,Γ
−
k ,Γ0

k} contain-
ing all the neighbors of model k, in which Γ+

k =
{
k ∪{j} : j /∈ k

}
, Γ−

k =
{
k\{j} : j ∈ k

}
and Γ0

k =
{
k \ {j} ∪ {l} : j ∈ k, l /∈ k

}
. Algorithm 1 describes the SSS procedure.

However, as pointed out by Shin et al. (2018), the SSS algorithm can be computation-
ally expensive in high-dimensional settings. The computational bottleneck is calculating
the Laplace approximations of the marginal probabilities for the models in Γ+

k and Γ0
k,

whose cardinalities are p− |k| and (p− |k|)|k|, respectively. To alleviate computational
burden, we slightly modify the SSS algorithm by reducing the number of entries in Γ+

k

and Γ0
k. Specifically, we reduce the number of models in Γ+

k by selecting only (1) the
top K1 variables having large absolute sample correlation with y and (2) K2 randomly
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Algorithm 2 Reduced Shotgun Stochastic Search (RSSS).
Set an initial model k(1)

for i = 1 to i = N − 1 do
(a) Compute π(k | y) using (4.1) for all k ∈ nbdR

(
k(i)) = {Γ+

R,k,Γ
−
k ,Γ

0
R,k}

(b) Sample k+, k− and k0 from Γ+
R,k, Γ−

k and Γ0
R,k with probabilities proportional to

π(k | y)
(c) Sample the next model k(i+1) from {k+, k−, k0} with probability proportional to{

π(k+ | y), π(k− | y), π(k0 | y)
}

end for

Figure 3: The average number of models searched before visiting the posterior mode.

selected variables, and we define the resulting set as Γ+
R,k. Similarly, we define a reduced

set Γ0
R,k = {k\{j}∪{l} : j ∈ k, l ∈ Γ+

R,k} and replace Γ0
k with Γ0

R,k in the algorithm. By
doing so, we can efficiently reduce the computational complexity of the algorithm. Note
that the cardinalities of Γ+

R,k and Γ0
R,k are K1 +K2 and (K1 +K2)|k|, respectively. We

call this modified algorithm the reduced SSS (RSSS) algorithm and describe it in Algo-
rithm 2. In the subsequent simulation study and real data analysis, the RSSS algorithm
with K1 = K2 = 10 is adopted for the posterior inference of the hyper-pMOM prior.

Note that the RSSS algorithm is different from the simplified shotgun stochastic
search with screening (S5) algorithm (Shin et al., 2018). The three main differences
are that the RSSS algorithm (i) does not completely ignore the set Γ0

k, (ii) does not
introduce temperature parameters and (iii) uses the marginal correlation between X
and y. Note that Shin et al. (2018) used the correlation between X and residuals of the
current model to construct the set Γ+

R,k. In the Supplementary Material, we conduct
additional simulation studies to compare the performances of the two RSSS algorithms
using (a) the marginal correlation between X and y and (b) the correlation between X
and residuals of the current model.

To demonstrate the computational efficiency of the RSSS algorithm and compare it
with the SSS algorithm, we conduct a simulation study. We generate the data from the
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model (2.1) with the true coefficient β0 = (1, 1, 1, 0, . . . , 0)� ∈ Rp and design matrix
X = (x1, . . . , xn)� ∈ Rn×p, where xi

i.i.d.∼ Np(0,Σ) for i = 1, . . . , n. The covariance
matrix Σ = (Σij) is chosen as Σij = 0.8|i−j| for any 1 ≤ i ≤ j ≤ p to consider highly
correlated covariates. The number of samples is fixed at n = 200, while the number of
variables varies over p ∈ {100, . . . , 500}. Figure 3 shows the average number of models
searched before visiting the posterior mode for each p, where the averages are calculated
based on 100 repetitions. When compared with the SSS algorithm, the RSSS algorithm
investigates a far less number of models before hitting the posterior mode. Although
the two algorithms did not always find the same posterior modes, they found exactly
the same models in approximately 64 simulations among 100 repetitions. We also found
that the RSSS algorithm produced fewer false positives and false negatives than the
SSS algorithm. Specifically, when p ∈ {100, . . . , 500}, the average numbers of false pos-
itives/negatives of the RSSS algorithm are 1.80, 1.87, 1.59, 1.65 and 1.73, respectively,
while those of the SSS algorithm are 3.16, 4.08, 4.59, 5.40 and 4.55, respectively. There-
fore, the RSSS algorithm can achieve reasonable performance compared to the SSS
algorithm while boosting computing efficiency.

We note here that the proposed RSSS algorithm can also be used to obtain estimated
posterior probabilities. As discussed in Shin et al. (2018), the normalizing constant of the
posterior model probability can be approximated by adding the unnormalized posterior
probabilities of all models visited by the RSSS algorithm. Furthermore, the Associate
Editor suggested an alternative method, which considers the RSSS as a proposal kernel
of a Metropolis-Hastings algorithm. Then, after obtaining MCMC samples of models,
we can estimate posterior inclusion probabilities of each variable and posterior model
probabilities of each model by approximating the normalizing constant as described
above.

The RSSS algorithm can be further modified by selecting variables based on other
criteria instead of considering randomly selected variables in the set Γ+

k . For example,
similar to the suggestion of Griffin et al. (2021), we can choose K2 variables having the
largest estimated posterior inclusion probabilities.

5 Simulation Studies
In this section, we investigate the performance of the hyper-pMOM prior for logistic
regression models. For given n = 200 and p ∈ {100, 300, 500}, simulated data sets
are generated from (2.1) with the true coefficient vector β0 and design matrix X =
(x1, . . . , xn)� ∈ Rn×p. We set the index set for nonzero values in β0 at t = {1, 2, 3},
where nonzero coefficients β0,t are generated under the following two different settings:

• Setting 1 (Weak signals): All the entries of β0,t are set to 0.5.
• Setting 2 (Moderate signals): All the entries of β0,t are set to 1.
• Setting 3 (Large signals): All the entries of β0,t are set to 2.

We generate covariate vectors as xi
i.i.d.∼ Np(0,Σ) for i = 1, . . . , n, under the following

cases of Σ:
• Case 1 (Isotropic design): Σ = Ip
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• Case 2 (Correlated design): Σ = (Σij), where Σij = 0.3|i−j| for any 1 ≤ i ≤ j ≤ p.
We also generate test samples {(ytest,1, xtest,1), . . . , (ytest,ntest , xtest,ntest)} with ntest = 50
to evaluate the prediction performance.

In the various scenarios mentioned above, we compare the performance of the hyper-
pMOM prior (H-pMOM) with existing variable selection methods. As Bayesian con-
tenders, we consider the nonlocal pMOM prior (Cao and Lee, 2020), piMOM prior
(Johnson and Rossell, 2012), spike and slab (SS) prior (Tüchler, 2008) and empirical
Bayesian Lasso (EBLasso) (Cai et al., 2011), while we consider Lasso (Friedman et al.,
2010), smoothly clipped absolute deviations (SCAD) (Breheny and Huang, 2011) and
minimax concave penalty (MCP) (Zhang, 2010) as frequentist competitors.

The R codes for implementing the hyper-pMOM prior are publicly available at
https://github.com/leekjstat/Hierarchical-nonlocal. Among the hyperparam-
eters in (2.2) and (2.3), we set U = Ip, r = 1 and ψ1 = 1. Furthermore, we consider
ψ2 ∈ {10ln−1/3p(2+0.001)2/3 : l = −1, 0, 1, 2} and choose the value of ψ2 that gives the
minimum mean squared prediction error based on 5-fold cross-validation. The hyperpa-
rameters of the pMOM prior are set at U = Ip and r = 1, and we find a set of τs that
makes the univariate marginal prior variance of βj of the pMOM prior and that of the
hyper-pMOM prior with each ψ2 ∈ {10ln−1/3p(2+0.001)2/3 : l = −1, 0, 1, 2} the same.
After that, we choose the value of τ giving the minimum mean squared prediction error
through 5-fold cross-validation. For a fair comparison between the hyper-pMOM and
pMOM priors, we use the same RSSS algorithm to find a posterior mode for both priors.
For the RSSS algorithm, initial models are set by randomly taking three nonzero entries.
The piMOM prior is implemented by the BVSNLP package in R, where an adaptive hyper-
parameter selection method (Nikooienejad et al., 2016) is used. For the regularization
approaches, the tuning parameters are chosen by 5-fold cross-validation.

To examine the performance of each method, the values of the precision, sensitivity,
specificity, Matthews correlation coefficient (MCC) (Matthews, 1975) and mean squared
prediction error (MSPE) are used. These criteria are defined as

Precision = TP

TP + FP
, Sensitivitiy = TP

TP + FN
, Specificity = TN

TN + FP
,

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

,

and MSPE = (ntest)−1 ∑ntest
i=1

(
ŷi−ytest,i

)2, where TP, TN, FP and FN are true positive,
true negative, false positive and false negative, respectively. Here, ŷi = exp(x�

test,iβ̂)/{1+
exp(x�

test,iβ̂)}, where β̂ is the estimated coefficient vector. For the hyper-pMOM and
pMOM priors, the nonzero part in β̂ is chosen as the posterior mode with the estimated
model k̂, i.e., β̂k̂ = arg maxk̂ f(βk̂). For the spike and slab prior, the posterior mean
based on 2,000 posterior samples is used as β̂. The averages of each criterion based on 100
repetitions are summarized in Tables 1–6. Furthermore, we also report the proportion
of simulations where the true model was selected, which we denote as P (k̂ = t).

Based on the simulation results, Bayesian methods tend to achieve high precision,
specificity, MCC and P (k̂ = t), which means that they produce low false positives.

https://github.com/leekjstat/Hierarchical-nonlocal
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Precision Sensitivity Specificity MCC P (k̂ = t) MSPE

Setting 1

H-pMOM 0.933 0.420 0.998 0.599 0.03 0.242
pMOM 0.958 0.380 0.999 0.588 0.02 0.240
piMOM 0.962 0.423 0.999 0.524 0.10 0.238

SS 0.946 0.460 0.999 0.582 0.08 0.243
EBLasso 0.704 0.683 0.977 0.635 0.09 0.246

Lasso 0.367 0.890 0.912 0.493 0.03 0.234
SCAD 0.377 0.887 0.924 0.506 0.02 0.233
MCP 0.570 0.800 0.968 0.598 0.09 0.233

Setting 2

H-pMOM 0.965 0.960 0.998 0.957 0.79 0.174
pMOM 0.988 0.937 0.999 0.955 0.80 0.173
piMOM 0.956 0.997 0.998 0.974 0.82 0.167

SS 0.958 0.990 0.998 0.971 0.82 0.173
EBLasso 0.835 0.957 0.989 0.874 0.49 0.234

Lasso 0.287 1.000 0.888 0.491 0.01 0.179
SCAD 0.325 1.000 0.918 0.536 0.01 0.172
MCP 0.623 1.000 0.973 0.767 0.20 0.171

Setting 3

H-pMOM 0.981 1.000 0.999 0.989 0.95 0.107
pMOM 0.998 1.000 1.000 0.999 0.99 0.106
piMOM 0.954 1.000 0.998 0.974 0.84 0.108

SS 0.899 1.000 0.996 0.943 0.63 0.106
EBLasso 0.681 1.000 0.981 0.810 0.16 0.258

Lasso 0.189 1.000 0.833 0.391 0.00 0.119
SCAD 0.471 1.000 0.955 0.661 0.02 0.108
MCP 0.750 1.000 0.984 0.850 0.38 0.108

Table 1: The summary statistics for Case 1 (isotropic design) when p = 100.

Precision Sensitivity Specificity MCC P (k̂ = t) MSPE

Setting 1

H-pMOM 0.962 0.443 0.999 0.630 0.06 0.227
pMOM 0.980 0.360 1.000 0.583 0.01 0.229
piMOM 0.938 0.523 0.998 0.669 0.06 0.223

SS 0.945 0.713 0.998 0.790 0.31 0.226
EBLasso 0.769 0.593 0.983 0.620 0.04 0.238

Lasso 0.425 0.920 0.936 0.568 0.03 0.220
SCAD 0.479 0.907 0.953 0.609 0.05 0.221
MCP 0.665 0.817 0.978 0.693 0.15 0.220

Setting 2

H-pMOM 0.933 0.890 0.996 0.896 0.56 0.159
pMOM 0.982 0.863 0.999 0.911 0.60 0.158
piMOM 0.944 0.960 0.998 0.947 0.72 0.153

SS 0.929 0.970 0.997 0.944 0.71 0.161
EBLasso 0.845 0.923 0.989 0.862 0.48 0.222

Lasso 0.317 1.000 0.901 0.519 0.03 0.159
SCAD 0.363 1.000 0.927 0.568 0.03 0.157
MCP 0.646 0.997 0.975 0.781 0.19 0.156

Setting 3

H-pMOM 0.988 1.000 0.999 0.994 0.96 0.089
pMOM 0.990 0.997 1.000 0.993 0.95 0.090
piMOM 0.960 1.000 0.998 0.978 0.84 0.090

SS 0.879 1.000 0.995 0.932 0.56 0.089
EBLasso 0.774 1.000 0.988 0.869 0.32 0.227

Lasso 0.213 1.000 0.849 0.417 0.00 0.101
SCAD 0.347 1.000 0.930 0.561 0.00 0.094
MCP 0.630 1.000 0.976 0.774 0.16 0.093

Table 2: The summary statistics for Case 2 (correlated design) when p = 100.

On the other hand, frequentist methods show high sensitivity, which means that they
produce low false negatives. Compared with the pMOM prior, the hyper-pMOM prior
gives better MCC, P (k̂ = t) and MSPE for weak and moderate signal settings (Settings
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Precision Sensitivity Specificity MCC P (k̂ = t) MSPE

Setting 1

H-pMOM 0.818 0.323 0.999 0.501 0.02 0.245
pMOM 0.827 0.283 0.999 0.480 0.00 0.245
piMOM 0.971 0.227 1.000 0.310 0.03 0.244

SS 0.919 0.277 1.000 0.393 0.01 0.247
EBLasso 0.585 0.557 0.988 0.502 0.02 0.249

Lasso 0.441 0.687 0.970 0.416 0.01 0.241
SCAD 0.444 0.687 0.974 0.422 0.01 0.240
MCP 0.570 0.600 0.988 0.461 0.03 0.238

Setting 2

H-pMOM 0.973 0.880 0.999 0.909 0.72 0.182
pMOM 1.000 0.760 1.000 0.852 0.56 0.189
piMOM 0.973 0.980 1.000 0.973 0.85 0.172

SS 0.967 0.940 1.000 0.948 0.74 0.186
EBLasso 0.828 0.867 0.995 0.811 0.41 0.235

Lasso 0.267 1.000 0.957 0.486 0.01 0.190
SCAD 0.225 1.000 0.956 0.453 0.00 0.184
MCP 0.520 1.000 0.987 0.700 0.10 0.181

Setting 3

H-pMOM 0.991 1.000 1.000 0.995 0.97 0.110
pMOM 0.998 1.000 1.000 0.999 0.99 0.110
piMOM 0.969 1.000 1.000 0.983 0.89 0.110

SS 0.902 1.000 0.999 0.946 0.66 0.109
EBLasso 0.562 1.000 0.990 0.738 0.06 0.269

Lasso 0.129 1.000 0.912 0.335 0.00 0.128
SCAD 0.268 1.000 0.967 0.501 0.00 0.115
MCP 0.601 1.000 0.991 0.759 0.14 0.113

Table 3: The summary statistics for Case 1 (isotropic design) when p = 300.

Precision Sensitivity Specificity MCC P (k̂ = t) MSPE

Setting 1

H-pMOM 0.967 0.340 1.000 0.568 0.00 0.232
pMOM 0.980 0.327 1.000 0.564 0.00 0.232
piMOM 0.953 0.383 1.000 0.566 0.00 0.231

SS 0.954 0.520 1.000 0.670 0.09 0.233
EBLasso 0.720 0.520 0.994 0.564 0.01 0.242

Lasso 0.378 0.883 0.970 0.526 0.03 0.226
SCAD 0.382 0.873 0.972 0.530 0.03 0.226
MCP 0.588 0.727 0.989 0.606 0.05 0.227

Setting 2

H-pMOM 0.963 0.753 0.999 0.830 0.39 0.171
pMOM 0.998 0.630 1.000 0.776 0.20 0.178
piMOM 0.953 0.903 0.999 0.919 0.60 0.158

SS 0.948 0.913 0.999 0.923 0.62 0.169
EBLasso 0.755 0.900 0.994 0.792 0.26 0.228

Lasso 0.276 1.000 0.956 0.493 0.00 0.164
SCAD 0.285 1.000 0.965 0.510 0.00 0.162
MCP 0.557 1.000 0.988 0.725 0.14 0.160

Setting 3

H-pMOM 0.985 1.000 0.999 0.991 0.97 0.093
pMOM 0.995 1.000 1.000 0.997 0.98 0.091
piMOM 0.966 1.000 0.999 0.981 0.88 0.092

SS 0.854 1.000 0.998 0.919 0.51 0.091
EBLasso 0.692 0.993 0.994 0.816 0.23 0.240

Lasso 0.151 1.000 0.923 0.361 0.00 0.107
SCAD 0.205 1.000 0.955 0.437 0.00 0.099
MCP 0.478 1.000 0.985 0.673 0.06 0.097

Table 4: The summary statistics for Case 2 (correlated design) when p = 300.

1 and 2), while the pMOM tends to show slightly better MCC, P (k̂ = t) and MSPE for
strong signal setting (Setting 3).

Although we only report the results of hyper-pMOM and pMOM priors with adap-
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Precision Sensitivity Specificity MCC P (k̂ = t) MSPE

Setting 1

H-pMOM 0.807 0.287 1.000 0.477 0.00 0.246
pMOM 0.810 0.280 1.000 0.473 0.00 0.246
piMOM 0.971 0.203 1.000 0.289 0.01 0.245

SS 0.938 0.250 1.000 0.369 0.00 0.247
EBLasso 0.533 0.477 0.992 0.441 0.01 0.250

Lasso 0.433 0.667 0.982 0.389 0.01 0.240
SCAD 0.424 0.667 0.981 0.383 0.01 0.240
MCP 0.571 0.573 0.992 0.416 0.01 0.239

Setting 2

H-pMOM 0.945 0.903 0.999 0.912 0.63 0.183
pMOM 0.994 0.750 1.000 0.845 0.49 0.193
piMOM 0.956 0.980 1.000 0.960 0.80 0.174

SS 0.944 0.960 1.000 0.947 0.72 0.186
EBLasso 0.780 0.870 0.996 0.787 0.29 0.240

Lasso 0.187 1.000 0.960 0.407 0.00 0.191
SCAD 0.160 1.000 0.961 0.383 0.00 0.185
MCP 0.394 1.000 0.988 0.611 0.02 0.181

Setting 3

H-pMOM 0.983 1.00 1.000 0.990 0.96 0.109
pMOM 0.998 1.00 1.000 0.999 0.99 0.108
piMOM 0.961 1.00 1.000 0.979 0.86 0.109

SS 0.884 1.00 0.999 0.936 0.59 0.108
EBLasso 0.529 1.00 0.993 0.716 0.05 0.271

Lasso 0.125 1.00 0.941 0.329 0.00 0.127
SCAD 0.221 1.00 0.975 0.457 0.00 0.113
MCP 0.579 1.00 0.994 0.744 0.14 0.112

Table 5: The summary statistics for Case 1 (isotropic design) when p = 500.

Precision Sensitivity Specificity MCC P (k̂ = t) MSPE

Setting 1

H-pMOM 0.990 0.347 1.000 0.582 0.01 0.227
pMOM 0.990 0.333 1.000 0.573 0.00 0.226
piMOM 0.992 0.407 1.000 0.611 0.02 0.222

SS 0.962 0.573 1.000 0.714 0.15 0.228
EBLasso 0.704 0.517 0.996 0.559 0.01 0.239

Lasso 0.356 0.873 0.979 0.503 0.01 0.221
SCAD 0.353 0.863 0.982 0.500 0.01 0.221
MCP 0.555 0.730 0.994 0.592 0.03 0.221

Setting 2

H-pMOM 0.956 0.733 0.999 0.814 0.33 0.170
pMOM 1.000 0.563 1.000 0.734 0.14 0.175
piMOM 0.965 0.893 1.000 0.921 0.61 0.154

SS 0.948 0.893 1.000 0.910 0.56 0.166
EBLasso 0.796 0.830 0.997 0.777 0.25 0.222

Lasso 0.231 1.000 0.965 0.446 0.02 0.162
SCAD 0.236 1.000 0.970 0.458 0.02 0.159
MCP 0.477 0.987 0.990 0.664 0.07 0.156

Setting 3

H-pMOM 0.979 0.993 1.000 0.984 0.92 0.090
pMOM 0.993 0.993 1.000 0.992 0.95 0.088
piMOM 0.968 1.000 1.000 0.982 0.89 0.088

SS 0.890 1.000 0.999 0.940 0.59 0.087
EBLasso 0.668 1.000 0.996 0.805 0.21 0.242

Lasso 0.126 1.000 0.945 0.334 0.00 0.103
SCAD 0.171 1.000 0.966 0.399 0.00 0.093
MCP 0.447 1.000 0.990 0.649 0.04 0.092

Table 6: The summary statistics for Case 2 (correlated design) when p = 500.

tively chosen hyperparameters in Tables 1–6, the whole simulation results for each
hyperparameter value are presented in the Supplementary Material.
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Figure 4: Manhattan plot for association between RNA-seq and asthma. The points
beyond the blue line represents the 180 selected genes with p < 10−4 based on the DEG
analysis.

6 Application to the Analysis of Differentially Expressed
Genes

Asthma has been recognized as a systemic disease consisting of networks of genes show-
ing inflammatory changes involving a broad spectrum of adaptive and innate immune
systems. Utilizing measurable characteristics of asthmatic patients, including biologic
gene expression markers, can help to identify phenotypic categories in asthma. Iden-
tification of these phenotypes may help develop strategies for preventing progression
of disease severity (Carr and Bleecker, 2016). We aim to apply the proposed variable
selection method to develop an RNA-seq-based risk score for asthma stratification.

To construct the risk score, gene expression analysis is performed using an asthma
RNA-seq dataset GSE146046 in the Gene Expression Omnibus (GEO) database (Se-
umois et al., 2020). There are 95 individuals in the GSE146046 dataset including 51
asthmatic subjects and 44 non-asthmatic subjects. The gene expression levels of all the
95 individuals are first randomly split into 2/3 as training and 1/3 as test data while
maintaining the same ratio between asthma and control groups. Next we conduct the
analysis of differentially expressed genes (DEG) based on the training set and construct
data tables containing raw count values for approximately 20,000 unique genes, with
genes in rows and sample GEO accession numbers in columns. DESeq2 R package is
used to store the read counts and the intermediate estimated quantities during statis-
tical analysis (Love et al., 2014). We extract summary statistics including p-values for
all genes and retain a total of 180 DEGs with p-values less than 10−4 visualized in a
Manhattan plot (Figure 4). The proposed method and other contenders are applied to
the resulting dataset with p = 180. The hyperparameters for all the methods are set as
in the simulation studies.
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Figure 5: Receiver operating characteristic (ROC) curves comparison between different
methods. X-axis: false positive rate (1 - specificity). Y-axis: true positive rate (sensitiv-
ity).

Precision Sensitivity Specificity MCC MSPE

H-pMOM 0.765 0.722 0.692 0.411 0.277
pMOM 0.769 0.556 0.769 0.325 0.357
piMOM 0.667 0.333 0.769 0.111 0.374

SS 0.733 0.611 0.692 0.300 0.294
EBLasso 1 0 1 0 0.405

Lasso 0.786 0.611 0.769 0.377 0.211
SCAD 0.769 0.556 0.769 0.325 0.260
MCP 0.769 0.556 0.769 0.325 0.321

Table 7: The summary statistics for prediction performance in the testing set.

In Figure 5, we draw the ROC curves for all the methods. The results are further
summarized in Table 7 where a common cutoff value 0.5 is adopted for thresholding pre-
diction. From Table 7 and Figure 5, we can tell that the hyper-pMOM prior has overall
better prediction performance compared with other methods. Of the retained DEGs,
eight genes, namely, TRIM26, MTRNR2L6, DCLRE1B, MRPL45, PSMB8, CBLN3,
RPP21 and CSNK2B, are selected by the proposed method. These identified genes
seem plausible and have been established in the asthma GWAS catalog (Schoettler
et al., 2019; Fodil et al., 2016), which may help better understand the omics architec-
ture that drives complex diseases.
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7 Discussion
In this paper, we consider the hyper-pMOM prior and investigate asymptotic properties
of the resulting posterior distribution. The hyper-pMOM prior still has the hyperpa-
rameters, ψ1 and ψ2, so a cross-validation-based selection approach for ψ2 with a fixed
ψ1 = 1 is proposed to alleviate the hyperparameter choice problem. Although it per-
formed reasonably well in our numerical studies, studying the theoretical properties of
the posterior based on the adaptively chosen hyperparameters will be a challenging but
important task for the future work.

Furthermore, as mentioned in Section 3, deriving strong model selection consistency
in a broader class of GLMs is an interesting future research direction. Note that, in this
work, we focus on logistic regression models when proving strong model selection con-
sistency of the posterior. An extension to general GLMs might require more conditions
on the design matrix based on the current techniques used in the proof, due to more
complicated structure of the Hessian matrix for other GLMs compared with that for
the logistic regression model.

Another possible extension of our research is to adapt the approximate Laplace
approximation (ALA) (Rossell et al., 2021) to estimate the marginal likelihood (2.6).
Because the Laplace approximation is computationally expensive and does not consis-
tently estimate the marginal likelihood for models that are supersets of the true model
(Rossell and Telesca, 2017), replacing the Laplace approximation with the ALA may
improve the performance of the proposed variable selection method.

Supplementary Material
Supplementary to “Bayesian inference on hierarchical nonlocal priors in generalized
linear models” (DOI: 10.1214/22-BA1350SUPP; .pdf). We present the proofs for the
main results and other auxiliary results.
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