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Decoupling Shrinkage and Selection in Gaussian
Linear Factor Analysis∗

Henrique Bolfarine†, Carlos M. Carvalho‡, Hedibert F. Lopes§,¶,

and Jared S. Murray‖

Abstract. Factor analysis is a popular method for modeling dependence in mul-
tivariate data. However, determining the number of factors and obtaining a sparse
orientation of the loadings are still major challenges. In this paper, we propose a
decision-theoretic approach that brings to light the relationship between model fit,
factor dimension, and sparse loadings. This relation is done through a summary
of the information contained in the multivariate posterior. A two-step strategy is
used in our method. First, given the posterior samples from the Bayesian factor
analysis model, a series of point estimates with a decreasing number of factors
and different levels of sparsity are recovered by minimizing an expected penalized
loss function. Second, the degradation in model fit between the posterior of the
full model and the recovered estimates is displayed in a summary. In this step,
a criterion is proposed for selecting the factor model with the best trade-off be-
tween fit, sparseness, and factor dimension. The findings are illustrated through a
simulation study and an application to personality data. We used different prior
choices to show the flexibility of the proposed method.

Keywords: Bayesian factor analysis, model selection, sparse loadings, factor
dimension, loss function.

1 Introduction
Factor analysis is an important tool for modeling the dependence structure among
variables. Over the years, factor analysis and related factor models have found their
way into applications in different fields, such as economics, finance, and genomics (see
Fruehwirth-Schnatter and Lopes, 2018, and references therein). However, selecting the
number of factors and generating a sparse and interpretable loading matrix can both
be challenging tasks (Ročková and George, 2016). In this paper, we address these chal-
lenges by introducing a unique decision-theoretic approach (Bernardo and Smith, 2009)
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that brings to light the relation between model fit, factor dimension, and a sparse rep-
resentation of the loading matrix.

Our approach has two key objectives: to summarize the information in the multi-
variate posterior and to obtain interpretable point estimates for factor loadings and
uniqueness from the decision analysis. To achieve this, we followed the procedure de-
scribed by Hahn and Carvalho (2015). This method, known as decoupling shrinkage
and selection (DSS), is a model selection strategy based on the posterior predictive dis-
tribution, which provides a meaningful scale on which to determine whether a sparse,
lower-dimensional version of the model has a sufficient fit. The DSS method, which
was originally developed for linear regression, has been successfully applied to a vari-
ety of statistical models, including seemingly unrelated regressions (Puelz et al., 2017),
graphical models (Bashir et al., 2019), functional regressions (Kowal and Bourgeois,
2020), nonlinear regressions (Woody et al., 2021), time-varying parameter models (Hu-
ber et al., 2021), nonparametric item response theory (Krantsevich et al., 2021), and
Bayesian additive regression trees (Carvalho et al., 2021).

We summarize the DSS for factor analysis (DSSFA) in two steps. First, provided
that posterior samples from the Bayesian factor analysis model are available, a series
of optimal point estimates with a decreasing number of factor dimensions and with
different levels of sparsity in the loadings are obtained through the minimization of a
penalized loss function. Second, we generate a posterior summary that encapsulates the
loss in fit between the full factor model, produced by the posterior distribution, and
the model generated by sparse lower dimension estimates. This summary is displayed
in a plot that can be visually inspected in search of the model that yields the best
fit. Nonetheless, we also propose a criterion that automatically selects the factor model
with the best trade-off between fit, sparseness, and factor dimension.

The DSSFA approach connects different strands of the factor analysis literature.
It incorporates ideas from parametric methods, where posterior samples are obtained
via well-established stochastic algorithms (Lopes and West, 2004; West, 2003; Carvalho
et al., 2008; Fruehwirth-Schnatter and Lopes, 2018), from methods that do not impose
identifying restrictions on their inference algorithms, and do not require pre-specification
of the factor dimension (Bhattacharya and Dunson, 2011; Legramanti et al., 2020),
and from methods where sparse loadings play an important role in the estimation of
the covariance matrix, resulting in parsimonious models (Nakajima and West, 2013;
Kastner, 2019). In addition, unlike hard thresholding rules and classical information-
based approaches (Schwarz, 1978; Akaike, 1987), our method allows for simultaneous
selection of factor models with varied dimensions and loading matrices with different
levels of sparsity. To our knowledge, this is the first study, to treat model selection for
factor analysis as a decision problem and to apply ideas from the original DSS approach
to latent variable modeling. In addition, we show a substantial runtime improvement
over conventional Bayesian approaches without significant loss in fit.

This paper is organized as follows: The remainder of this section reviews the factor
analysis model. In Section 2, we introduce the framework of the DSSFA method. In Sec-
tion 3, we use the simulation design from Man and Culpepper (2022) to compare our
approach to the marginal likelihood estimate for selecting the number of factors (Lopes
and West, 2004; Newton and Raftery, 1994); and Bayes model averaging (BMA, Hoeting
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et al., 1999) for covariance matrix estimation. In Section 4, we apply our method to a
subset of the big five personality traits data and assess how our approach interacts with
over-fitted priors (Bhattacharya and Dunson, 2011; Legramanti et al., 2020), resulting
in meaningful posterior summaries and interpretable factor loadings. Finally, some con-
clusions are given in Section 5. The methods and data presented here are available at
https://github.com/hbolfarine/dssfa.

1.1 Notations for the basic factor analysis model
In the basic factor analysis model, yi = (y1i, . . . ,ypi)T is a p-dimensional vector of
observations in a random sample y = (y1, . . . ,yn)T , that relates to a k-dimensional
vector of common latent factors f i, with k ≤ p, through

yi = Bf i + εi, (1.1)

where B is a p × k factor loadings matrix, f i ∼ Nk(0, Ik), and εi is the idiosyncratic
error vector with dimension p. We assume in model (1.1) that (i) εi ∼ Np(0,Σ), with
Σ = diag(σ2

1 , . . . , σ
2
p) and σ2

j > 0, for all j = 1, . . . , p, and (ii) fr and εt are independent
for all r and t. These assumptions imply that the distribution of yi conditioned to f i

is given by Np(0,Ω), where Ω = BBT +Σ is the covariance matrix (Thurstone, 1947).

To complete the Bayesian specification of model (1.1), we assume the prior distribu-
tions for the loadings and uniqueness are independent, p(B,Σ) = p(B)p(Σ). A typical
choice for p(B) is the to use truncated normal priors for the diagonal components of the
loading matrix and normal priors for the remaining lower triangular values. This setup
is refereed to as positive lower triangular constraint (PLT, Geweke and Zhou, 1996;
Lopes and West, 2004). Additionally, inverse-gamma priors are used for the uniqueness.
Both of these choices are useful since they provide conjugate forms that are easy to
compute using the Gibbs sampler (Gamerman and Lopes, 2006).

The goal of the PLT constrain is to address the problem of posterior identifiability of
B, in which one can obtain the same covariance matrix Ω, defined by (1.1), by multiply-
ing B by an orthonormal matrix P where PP T = Ik (see Geweke and Zhou, 1996). An
analysis of recent approaches to prior choices on the problem of posterior identifiability
can be seen in Man and Culpepper (2022) and Papastamoulis and Ntzoufras (2022).

One of the most important aspects of our method, as will be discussed further in
this study, is that no prior modeling assumptions are made as long as samples from the
posterior marginal distributions, p(B|y), and p(Σ|y) are available. Our technique simply
requires knowledge of the factor dimension of the posterior loadings, k. Throughout the
rest of this paper, we will refer to the full model posterior, or full factor model, as the
posterior on B with p× k dimensions.

2 Decoupling shrinkage and selection in factor analysis
In this section, we present the essential features of the DSSFA approach. First, we
present how the sparse factor analysis estimates are obtained using the proposed decision
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framework. Second, we present the posterior summary, which exposes the loss in fit
between the full factor model and the sparse estimates, as well as a model selection
criterion. This section concludes with an overview of our technique and its application
to a toy example.

2.1 DSSFA estimates

As it is well known, one of the main challenges in decision analysis is to select a proper
loss function (Bernardo and Smith, 2009; Berger, 2013). In our famework, we opted
for the negative loglikelihood of the multivariate normal distribution since this func-
tion depends uniquely on the covariance matrix and thus relates directly to model
(1.1). Furthermore, Stein’s loss and the Kullback-Leibler divergence between two nor-
mal distributions are also strongly associated with this loss (Dey and Srinivasan, 1985;
Kullback, 1997). Other use of a similar loss function may be seen in Bashir et al. (2019),
where it was applied to recover sparse estimates from a Gaussian graphical models.

To highlight the trade-off between fit and model simplicity, we add a complexity
penalty, P (·), to the proposed loss, yielding

Lλ(Ω, Ω̃) = log |Ω̃| + tr
(
Ω̃−1Ω

)
+ λP (Ω̃), (2.1)

where Ω̃ is a p × p positive definite symmetric matrix, Ω is a p × p covariance matrix
defined by the assumptions presented in Section 1.1, tr(A) is the trace, and |A| is the
determinant of matrix A. In this setup, the complexity parameter λ > 0 controls the
trade-off between model fit and parsimony (Hahn and Carvalho, 2015).

It is important to reiterate the distinction between Ω̃ and the covariance matrix Ω
in (2.1). As seen in Section 1.1, we have that both B and Σ, and consequently Ω are
parameters of the Bayesian factor analysis model and thus are associated with the prior
distribution. By comparison, it is not coherent to place a prior on Ω̃ and λ as they
define an action and a penalty, respectively, in the proposed framework.

Usually, in the DSS framework, the posterior predictive distribution is used to obtain
the best accuracy in prediction given future observations (Hahn and Carvalho, 2015;
Woody et al., 2021; Kowal, 2021). In this paper, however, we focus largely on parameter
rather than the predictive distribution since we were interested in model fit rather than
predictions. Thus, by minimizing the posterior expectation of (2.1), over the posterior
distribution of the factor analysis model results in

Ω̂λ ≡ argmin
Ω̃

Eθ|y
[
Lλ(Ω, Ω̃)

]
, (2.2)

where Ω̂λ is the optimal point estimate, and θ = (B,Σ).

We simplify the expectation in expression (2.2), as follows

Eθ|y
[
Lλ(Ω, Ω̃)

]
= Eθ|y

[
log |Ω̃| + tr

(
Ω̃−1Ω

)]
+ λP (Ω̃)
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= log |Ω̃| + tr
(
Ω̃−1Ω

)
+ λP (Ω̃), (2.3)

where Ω = Eθ|y[Ω] is the posterior mean of the covariance matrix. By integrating over
the marginal posterior distributions of the Bayesian factor analysis model, p(B|y), and
p(Σ|y), we have Ω = BBT + Σ, where BBT = EB|y

[
BBT

]
, and Σ = EΣ|y [Σ] are

the expected posterior values.

We make some observations on equation (2.3): (i) The expected loss function depends
uniquely on the posterior mean of the covariance matrix Ω, so it can be applied in
conjunction with different prior choices, (ii) Ω is robust to factor rotation, so the factor
analysis model’s identifiability on prior choice is not an immediate concern.

Since our interest lies in optimal decisions for the factor analysis model, with a
special interest in the structure of the loadings matrix B, we assume Ω̃ = B̃B̃

T + Σ̃,
with B̃ is a p × k̃ matrix, Σ̃ is a p × p diagonal matrix, with positive entries, and
k̃ ∈ {1, 2, . . . }, which are all elements of the decision analysis. Notably, k̃ is a choice of
the dimension on the resulting loadings estimates. For instance, for smaller values of
k̃, the resulting optimal estimates have lower dimensions, and when k̃ = k, results in
an estimate with the dimension of the full model posterior. In this paper, no further
restrictions are imposed on the identifiability of B̃, although a k̃× k̃ symmetric matrix
Φ̃ could be introduced to the decomposition of Ω̃ = B̃Φ̃B̃

T + Σ̃, resulting in a decision
analysis for the oblique factor model (Thurstone, 1947).

We reiterate that B̃, Σ̃ and k̃ are actions in the decision analysis, and thus are not
subject to the prior specification of the Bayesian factor analysis model. By compari-
son, a prior on B may indicate our preference for sparse loadings, although it does not
guarantee sparsity in the posterior (West, 2003; Carvalho et al., 2008). In contrast, we
can use our framework to extend the complexity penalty P (·) to include B̃, allowing
for a sparse representation of the estimates regardless of prior choice. Many choices of
complexity penalty are available, but to shrink the factor loadings to zero, we consider
sparsity-inducing penalties such as �1-penalty, which are commonly used for model se-
lection in regression settings (Tibshirani, 1996). Thus, we update the complexity penalty
as P (Ω̃) = ‖B̃‖1, where ‖A‖1 =

∑p
j=1

∑k
q=1 |ajq|, for ajq ∈ A. This penalty not only re-

sults in sparse loadings estimates, but also can be used to prevent the non-identifiability
of the loadings matrix (Scharf and Nestler, 2019).

Finally, by minimizing the loss function (2.3) as

(B̂k̃,λ, Σ̂k̃,λ) ≡ argmin
B̃,Σ̃

{
log |Ω̃| + tr

(
Ω̃−1Ω

)
+ λ‖B̃‖1

}
, (2.4)

subject to Ω̃ = B̃B̃
T + Σ̃, to different values of k̃ and a given complexity parameter

λ we obtain the optimal estimates B̂k̃ and Σ̂k̃,λ, referred as DSSFA estimates, for the
factor loadings and uniqueness, respectively.

A direct result from (2.4) implies that the posterior covariance matrix Ω is the
optimal solution when k̃ = k, and λ = 0. If there is an interest solely in the number of
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factors the optimization can be done with λ = 0 for different values of k. In this paper,
the maximum value for k̃ was chosen as the dimension of the full model posterior, k.

There is an efficient off-the-shelf procedure for solving (2.4) when λ > 0. We used the
fanc package (Hirose and Yamamoto, 2015; Kei Hirose, 2016) from R (R Core Team,
2020) in which we replace the sample covariance by Ω in the package’s main function
(fanc) to perform the optimization. This function use the MC+ penalty (Zhang et al.,
2010) as default, which is a non-convex function indexed by rho > 0. To obtain the soft
threshold, we let rho → ∞ in the arguments of the function. Other possible methods
to solve (2.4) can be seen in Scharf and Nestler (2019).

The selected optimization method is capable of handling models with p in the thou-
sands (see Hirose and Yamamoto, 2015). In our experience, the method performs well
when the number of factors is small in comparison to the number of variables and when
there is no regularization on the loadings. In Section 3, there are runtimes from differ-
ent simulation settings using this optimization method compared to standard Bayesian
methods.

2.2 Posterior summary
As seen in Section 2.1, we can assess the information contained in the multivariate
posterior of the factor analysis model by using the loss function (2.1). Here, we use the
same loss function to generate a posterior summary that measures the trade-off between
the entire model and its lower-dimensional representation.

First, we replace the action Ω̃ in the loss function (2.1) by the DSSFA covariance
estimate,

Ω̂k̃,λ = B̂k̃,λB̂
T

k̃,λ + Σ̂k̃,λ, (2.5)

where B̂k̃,λ and Σ̂k̃,λ are the optimal estimates obtained from (2.4). In doing so, we
generate a sequence of loss functions, Lk̃,λ(Ω, Ω̂k̃,λ), see Step 2 of Section 2.3, indexed
by the factor dimension k̃ and the complexity parameter λ. This sequence enables us
to switch from a complete model with k̃ = k and λ = 0 to a sparse low-dimensional
representation, in which we may more clearly assess the effect of the deterioration in
fit. Second, we summarize these changes in a grid, which can be visually inspected in a
plot, exposing the trade-off between fit, factor dimension, and sparseness. Importantly,
models generated by estimates B̂k̃,λ, whose columns are zeroed by the optimization
procedure, are discarded from the summary.

We also propose a criterion that simultaneously selects the model with the lowest
factor dimension and the sparsest loadings matrix while maintaining the full model’s
fit. We consider the model that generates the greatest expected posterior loss,

Eθ|y[Lk̃,λ(Ω, Ω̂k̃,λ)] = log |Ω̂k̃,λ| + tr
(
Ω̂

−1
k̃,λΩ

)
, (2.6)

that is within a quantile of the full model’s loss, Lk,0(Ω, Ω̂k,0). This in turn provides
the maximum acceptable trade-off between the full model produced by the posterior
distribution and the DSSFA estimates.
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We refer to the factor dimension and complexity parameter selected by this criterion
as k∗, and λ∗, respectively. By using this criterion, we are able to select a simple factor
analysis model. Moreover, it enables the factor model to be chosen automatically without
the need for a visual inspection of the summary plot. In this paper, we consider quantiles
between 95% and 99% of the loss function of the full model. This criterion was applied
to a toy example in Section 2.4, numerical examples in Section 3, and an empirical
application in Section 4.

2.3 Method overview

Before illustrating the proposed approach with an example, we present an overview of
the DSSFA method summarized in two steps.

We initiate our procedure by obtaining the expected posterior covariance matrix,
Ω = BBT +Σ, from the posterior distributions, p(B|y), and p(Σ|y), with factor dimen-
sion set as k. We approximate BBT ≈ 1

M

∑M
m=1 B(m)B

T
(m) and Σ ≈ 1

M

∑M
m=1 Σ(m)

where B(m) and Σ(m) are the posterior samples with m = 1, 2, . . . ,M .

Step 1 DSSFA estimates: Apply the posterior mean of the covariance matrix Ω, to the
optimization procedure in the package fanc to solve (2.4). Obtain a sequence
of sparse loadings and uniqueness, (B̂k̃,λ, Σ̂k̃,λ), for k̃ = 1, . . . , k, indexed by
λ = λ0, λ1, . . . , λl, where λ0 = 0 and λl is determined by the optimization method
(fanc) given a choice for the length of the sequence l ∈ {1, 2, . . . }.

Step 2 Summary plot: From the DSSFA estimates obtained in step one, generate the
sequence

Lk̃,λ(Ω, Ω̂k̃,λ) = log |Ω̂k̃,λ| + tr
(
Ω̂

−1
k̃,λΩ

)
, (2.7)

for k̃ = 1, . . . , k, and λ = λ0, λ1, . . . , λl. The posterior distribution of Ω in equation
(2.7) is approximated by the posterior samples Ω(m), with Ω(m) = B(m)B

T
(m) +

Σ(m), for m = 1, 2, . . . ,M . Select a quantile for the loss function of the full model,
and plot the expected values Eθ|y[Lk̃,λ(Ω, Ω̂k̃,λ)] of (2.7), in relation to k̃ and
λ in a graphical summary. The exception can be approximated by replacing the
posterior parameter Ω by Ω as seen in equation (2.6).

Ultimately, it is left to the end user to decide the best lower dimension representation
given the quantile of the loss generated by the full model. Otherwise, one may automate
the procedure by using the criterion provided in Section 2.1.

2.4 Toy example

In this section, we present a toy example to illustrate the DSSFA approach. We applied
our method to simulated data generated from a factor analysis model with known
loadings extracted from Harman (1976). Originally, the loadings
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Figure 1: DSSFA summary plot for the toy example, comparing the densities of
the loss functions, Lk̃,λ(Ω, Ω̂k̃,λ), the violin plots, with respective posterior means
Eθ|y[Lk̃,λ(Ω, Ω̂k̃,λ)], the dots, indexed by the number of factors k̃ = 1, 2, . . . , 5, and
the penalty parameters λ = λ0, λ1, . . . , λ10, obtained according to Step 1 and Step 2 in
the method’s overview in Section 2.3. The dashed line is the 95% quantile of the loss
function of the full model with no penalty, λ0 = 0, identified with an error bar in k̃ = 5.
From the criterion presented in Section 2.3, we consider the model that generated the
loss function (color dot-dashed density), with the greatest expected value, identified as
×, that is within the 95% quantile of the loss function of the full model. The resulted
loss represents a model with k∗ = 2 factors, and complexity parameter λ∗ = λ8, which
results in a loadings matrix, B̂2,λ8 , with 19% zeroed entries.

B0 =
(

0.879 0.919 0.890 0.858 0.238 0.183 0.135 0.250
0.272 0.210 0.182 0.246 0.900 0.792 0.729 0.684

)T

,

came from the analysis of eight physical variables from 305 individuals, where the num-
ber of factors was determined as k0 = 2.

In this example, we generated n = 100 samples from model (1.1), with B0 and the
uniqueness generated as Σ0 = diag(Ip −B0B

T
0 ), where diag(A) is the matrix formed

by the diagonal elements of the matrix A. The normal distribution N(0, η) was assigned
to the loadings of B0, with η and σj , the idiosyncratic errors in Σ0, following an Inverse
Gamma distribution (η, σj ∼ IG(1, 1)), for j = 1, 2, . . . , p. No constrains were used for
identification. We set the factor dimension as k = 5, and ran the Gibbs sampler for
10,000 iterations, discarding the first 5,000 as burn-in. The Gibbs sampler for the factor
analysis algorithm is implemented in Rcpp (Eddelbuettel and François, 2011), and is
available in the supplementary material of Man and Culpepper (2022). We obtained
the posterior mean of the covariance matrix Ω and followed the steps presented in
Section 2.3. In the optimization procedure, we let k̃ = 1, 2, . . . , 5, and with penalized
solution path of size λ = λ0, λ1, . . . , λ10, where λ0 = 0, for each factor dimension k̃.

Figure 1 displays the DSSFA posterior summary plot, where the 95% quantile of the
loss of the full model is shown (dashed line). The increasing values of the loss functions



H. Bolfarine, C. M. Carvalho, H. F. Lopes, and J. S. Murray 189

Figure 2: DSSFA estimates of the loading matrix with sparse representation B̂2,λ8 ,
Figure (b), and without regularization B̂2,λ0 , Figure (c), compared to the true loading
matrix, B0, in Figure (a).

Lk̃,λ(Ω, Ω̂k̃,λ) in relation to λ and k̃ show a deterioration in fit. From the posterior
summary, models with k̃ = 1 factors were not considered, since the expected posterior
losses, Eθ|y[Lk̃,λ(Ω, Ω̂k̃,λ)], were not within the 95% quantile of the loss function of
the full model. Models with k̃ ≥ 2 or greater, were considered since the values of the
expected posterior losses are inside the specified quantile. Furthermore, we observe a
smaller solution path generated by λ for models with k̃ ≥ 3. This behavior is caused by
the fact that the optimization procedure returns loading matrices with zeroed columns
even for small values of λ, which are discarded from the summary.

The model highlighted in Figure 1 was selected using the criterion defined in Sec-
tion 2.2, which returned the complexity coefficient λ∗ = λ8 and the factor dimension
k∗ = 2. This resulted in a loadings matrix with 19% of zeroed entries. Figure 2 displays
the recovered loadings matrices B̂2,λ8 , the penalty-free loadings, B̂2,λ0 , and B0.

3 Simulation study
In this section, we evaluate the performance of the DSSFA method in the recovery of the
true covariance matrix Ω0 = B0B

T
0 + Σ0. We compare our method with the marginal

likelihood estimate for selecting the number of factors (Lopes and West, 2004; Newton
and Raftery, 1994), and BMA (Hoeting et al., 1999) for covariance matrix estimation.

We provide evidence that DSSFA enhances factor dimension selection without sig-
nificantly impacting the estimation of Ω0, under different simulation settings. When
compared with the standard Bayesian procedure, our method also shows substantial
running time gains in scenarios with significantly large dimensions.

3.1 Simulation settings
In this study, we used three different simulation settings. In setting 1, we followed the
simulation design of Man and Culpepper (2022), in which the synthetic data was drawn
from model (1.1), with sample sizes of n = 100, 500, and 1000, with p = 15 variables and
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k0 = 3 factors. The entries of the loadings matrix B0 were independently sampled from
a standard normal distribution N(0, 1) for each replicate. The idiosyncratic matrix was
set as Σ0 = σ2Ip, with σ = 0.2, and 0.5. In setting 2, we investigated the robustness of
our approach by employing the standard multivariate t-distribution, tk0(0, Ik0 , ν) for f i,
and the scaled t-distribution tp(0,Σ0, ν) for εj , with degrees of freedom of ν = 3, and
10. Under this setup, we evaluated our method on data of size n = 100. The variance
of the idiosyncratic errors were generated as in setting 1. In setting 3, we explored our
method under the normal standard factor model of setting 1, with different dimensions
and number of factors. We selected two challenging scenarios: (i) p = 50 variables,
k0 = 5 factors, and sample size n = 100, and (ii) p = 100 variables, k0 = 10 factors,
and n = 500 samples. In this setting, the idiosyncratic errors, σ, were generated by a
uniform distribution with ranges between 0.5 and 0.8 in each interaction. In all settings
the resulting loadings were rotated to be PLT to assure identifiability.

We included three different priors in the study. The first is from Geweke and Zhou
(1996), which uses the standard PLT constraint on the loadings. We refer to this prior
as GZ. The second, is a novel prior presented by Man and Culpepper (2022) which
incorporates a PLT type constraint with a mode-jumping step to avoid multimodal
posteriors. This prior is referred to as MC. The third is the plain normal prior on the
loadings without constraints, which we refer as unconstrained (UN).

We ran Monte Carlo Markov Chain (MCMC) algorithms for 30,000 iterations dis-
carding the first 15,000 as burn-in in all settings. In settings 1, and 2, for each algorithm,
we generated posteriors with factor dimensions k = 1, 2, . . . , 5. For simulation setting
3, we generated posteriors with factor dimensions k = 1, 2, . . . , 10 in scenario (i), and
k = 1, 2, . . . , 15 in scenario (ii). We generated the posterior samples from priors using
algorithms from the supplementary material of Man and Culpepper (2022). We ran 300
replicates for each simulation setting on an Intel Core i5 CPU laptop computer with
7.7 GB of RAM.

Prior specifications

We followed the prior and hyperparameter specifications used in the study of Man
and Culpepper (2022). In the algorithm from Geweke and Zhou (1996) the loadings
were assigned independent normal priors bjk0|η ∼ N(0, η), with bjk ∈ B0, for j =
1, . . . , p, and k the fixed number of factors, where bjk = 0 for k > j, and bkk > 0. Man
and Culpepper (2022) relaxed the standard constraint of Geweke and Zhou (1996),
and applied the PLT constraint to any arbitrary subset of the p rows of the loadings
matrix. Hence, for a permutation set r = (r1, r2, . . . , rk) ⊂ {1, 2, . . . , p}, with rk 
= rk′ ,
and k 
= k′, the loadings were constrained as brkk′ = 0 for k′ > k, and brkk > 0.
To avoid near singular cases in the sub matrix generated by r, Man and Culpepper
(2022) used the prior distribution, p(brkk|η, γ) ∝ bγrkk exp(−b2rkk/2η), for brkk > 0,
where γ = 0.5. A sample from the non-singular restricted PLT submatrix is obtained
with a Metropolis-Hastings step, which is incorporated into the loadings matrix via
matrix decomposition (see Man and Culpepper, 2022). Lastly, an uniform prior was
assigned to the permutation set r. The normal distribution N(0, η) was assigned to the
remaining unrestricted loadings. In the Unconstrained model, the entirety of loadings
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was assigned the normal distribution N(0, η) prior. In all models, η ∼ IG(1, 1) was
chosen for the variance of the loadings, and σj ∼ IG(1, 1), for j = 1, 2, . . . , p, for the
idiosyncratic variances.

3.2 Evaluation and results
We evaluated the DSSFA method uniquely on the posterior samples generated with a
factor dimension of size k = 5 in simulation settings 1 and 2. In simulation setting 3,
we used our method on the posterior samples with factor dimensions of size k = 10
and k = 15, yielded by scenarios (i) and (ii), respectively. In the optimization step, we
generated estimates with k̃ = 1, 2, . . . , 5 factors for simulation settings 1 and 2, and
k̃ = 1, 2, . . . , 10, for scenario (i), and k̃ = 1, 2, . . . , 15 for scenario (ii) of simulation
setting 3. We set the complexity parameter as λ = 0 in all simulation settings, since we
are not interested in the sparsity of the loadings in this study. We used the criterion
described in Subsection 2.3, and let the method auto-select point estimates under 95%
and 99% quantiles of the loss of the full model. As a result, we obtained the factor
dimension k∗ and the DSSFA estimates B̂k∗ and Σ̂k∗ , from which we recovered the
covariance matrix estimate Ω̂k∗ , as seen in equation (2.5).

In contrast to our procedure, we used bridge sampling from the R package presented
in Gronau et al. (2020) to calculate the marginal likelihood estimate for each poste-
rior dimension in all simulation settings to identify the number of factors. We recall
that Lopes and West (2004) and Man and Culpepper (2022) favor bridge sampling to
other techniques like the harmonic mean and Newton-Raftery’s estimators (Newton and
Raftery, 1994). From the same marginal likelihood estimates, we obtained the weights
and recovered the BMA estimates of the covariance matrix.

In order to compare the two methodologies, we evaluated the percentage of correctly
identified factor dimensions in each simulation setting. To evaluate the recovery of the
covariance estimate, we used the root mean squared error (RMSE), which is defined as

RMSE =

√√√√ 1
p2

p∑
j=1

p∑
q=1

(Ω̂jq − Ω0jq)2, Ω0jq ∈ Ω0, Ω̂jq ∈ Ω̂, (3.1)

where Ω̂ is the recovered point estimates from the two procedures, and Ω0 is the true
covariance matrix.

Additionally, in simulation setting 3, we timed how long the studied procedures
ran. For the DSSFA method, we took into account the MCMC method’s runtimes for
the largest dimension and added the optimization runtime. For the marginal likelihood
approach, all the MCMC posterior dimensions along with the bridge sampling runtime,
were taken into account.

Simulation results

Table 1 on page 192 shows the percentage of the models that were accurately identified
using both methods. In simulation setting 1, under the GZ prior, the bridge sampling-
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Prior GZ UN MC
Method DSSFA ML DSSFA ML DSSFA ML
Quantile 95% 99% 95% 99% 95% 99%
setting 1 (n, σ, k0)

(100, 0.2, 3) 100 100 71 100 100 100 100 100 100
(100, 0.5, 3) 100 100 80 100 100 100 100 100 100
(500, 0.2, 3) 100 100 78 100 100 100 100 100 100
(500, 0.5, 3) 100 100 86 100 100 100 100 100 100
(1000, 0.2, 3) 100 100 84 100 100 100 100 100 100
(1000, 0.5, 3) 100 100 84 100 100 100 100 100 100

setting 2 (ν, σ, k0)
(3, 0.2, 3) 70 80 40 74 82 52 64 76 44
(3, 0.5, 3) 61 74 23 68 80 32 61 72 30
(10, 0.2, 3) 100 100 80 100 100 100 100 100 100
(10, 0.5, 3) 100 100 81 100 100 100 100 100 100

setting 3 (n, p, k0)
(100, 50, 5) 88 100 89 95 100 100 77 100 100
(500, 100, 10) 93 100 67 100 100 0 100 100 100

Table 1: Percentage of correctly identified models in 300 replications for the three sim-
ulation settings. In simulation setting 1, we have the recovered proportions of a normal
factor model with n = 100, 500, and 1000, with σ = 0.2, and 0.5, p = 15, and factor
dimension of k0 = 3. In setting 2, we have the recovered proportions of a t-distributed
factor model with ν = 3, and 10, standard deviations σ = 0.2, and 0.5, with sample
size n = 100, p = 15, and factor dimension k0 = 3. In setting 3, we have the recovered
proportions of a the normal factor model with n = 100, p = 50, and k0 = 5 in scenario
(i), and n = 500, p = 100, and k0 = 10 in scenario (ii). The number of factors were
identified using the DSSFA method with 95% and 99% quantiles of the loss function of
the full model, and for the marginal likelihood estimate (ML) we used bridge sampling.
We considered the Geweke & Zhou (GZ), Unconstrained (UN) and Man & Culpepper
(MC) priors in the simulation.

based marginal likelihood estimate selected the incorrect number of factors in every
scenario. According to Man and Culpepper (2022), the posterior multimodality pro-
duced by the PLT constraint may be a major contributor to much of the uncertainty in
the marginal likelihood estimation. the DSSFA method overcomes this issue by selecting
the correct number of factors in 300 out of 300 replicates using both quantiles in all sit-
uations under this prior. Furthermore, our approach correctly identified the number of
factors for the MC and UN priors in each and every replicate for both quantiles in every
scenario of this setup. The same outcome was obtained with the marginal likelihood
estimate.

For data generated using t-distributed factors and errors with ν = 3 degrees of free-
dom in simulation setting 2, the DSSFA approach outperformed the marginal likelihood
estimate for all scenarios and priors. The 99% quantile choice makes this discrepancy
more apparent. This outcome might be caused by the fact that the resulting loss func-
tion, (2.7), reflects the noise in the data and is therefore more scattered, making a larger
interval more efficient. We also noticed that the DSSFA and marginal likelihood esti-
mates performed similarly when applied to the data generated in simulation setting 1
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Figure 3: RMSE from 300 replicates, between the true covariance matrix Ω0 and the
estimates generated by the DSSFA method, with 95% and 99% quantiles, and Bayes
model averaging (MargLike), with priors: Geweke & Zhou (GZ), Unconstrained (UN),
and Man & Culpepper (MC) in different simulation settings. Figure 1 (a), displays the
results from simulation setting 1, given a normal factor model with n = 100, 500, and
1000, σ = 0.2, and 0.5 and true factor dimension k0 = 3. Figure 2 (b), displays the
log scaled results for simulation setting 2, given a t-student factor model with standard
deviations σ = 0.2, and 0.5, with sample size n = 100, and true factor dimension k0 = 3.
Figure 2 (c), and Figure 2 (d) displays simulation setting 3 results, with estimates from
normal factor model with n = 50, p = 100, and k0 = 5 in the scenario (i), and n = 500,
p = 100, and k0 = 10 in scenario (ii), respectively.

when we increased the degrees of freedom from 3 to 10.

In simulation setting 3, scenario (i), our method performed better using the 99%
quantile than the 95%, in which the true factor dimension was selected 300 out of 300
times under all priors. The marginal likelihood estimates under the MC prior yielded a
similar outcome. In this scenario, once again, the GZ prior with marginal likelihood esti-
mate produced the incorrect number of factors. In scenario (ii), the UN prior performed
noticeably worse under marginal likelihood estimation with no correct estimation. This
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Prior Geweke & Zhou Unconstrained Man & Culpepper
Method DSSFA ML DSSFA ML DSSFA ML
setting (n, p, k0)
(i) (100, 50, 5) 30.5 385.11 32.5 462.03 25.5 423.63

(2.15) (6.74) (5.78) (35.13) (1.73) (10.87)
(ii) (500, 100, 10) 302.85 3607.78 411.10 5022.02 255.77 3028.70

(32.34) (457.62) (32.5) (462.03) (25.5) (423.63 )

Table 2: The average and (standard deviation) runtimes in seconds over 300 replicates
of the DSSFA method compared to the marginal likelihood estimate (ML) with bridge
sampling from settings (i), with n = 100, p = 50, and k0 = 5, and (ii) with n = 500,
p = 100, and k0 = 10 from simulation setting 3. The DSSFA method has the total
runtime of the optimization procedure added to the maximum dimension of the MCMC
method.

might be the result of the loadings having too many parameters for the bridge sampling
approach to converge properly (Gronau et al., 2020). With flawless model identification
in both quantiles with this prior, the DSSFA method solves this problem. This result
was repeated with MC and GZ priors when using the 99% quantile. Once more, GZ
prior with marginal likelihood estimate provided inaccurate estimations in this setting.
Additionally, we found no discernible changes in the simulation results between this
setting and the settings with homogeneous error.

Figure 3 displays the RMSE of the recovery of the true covariance matrix in the same
replicates as those used for factor dimension estimation. According to the findings, there
were no discernible fit differences between the BMA and the DSSFA estimates. Addi-
tionally, the DSSFA estimates preserved properties from the posterior distributions, as
can be seen in all cases. The DSSFA estimates recovered under the MC prior outperform
both GZ and the UN in terms of fit in all scenarios under this setting.

Figure 3 (a) shows that under simulation setting 1, as sample size grows, our tech-
nique effectively estimates Ω0. The log scale plot of Figure 3 (b) shows that the RMSE
significantly increased across the different priors compared to the other settings, reflect-
ing the t-distributed data used in this setting. Nevertheless, the DSSFA approach and
the marginal likelihood estimation both fit the data similarly. The RMSE under the UN
prior in Figure 3 (d) under simulation setting 3, scenario (ii), highlighted the problem
with the bridge sampling convergence as seen previously, leading to a poor fit.

The overall runtime for the methods from simulation setting 3, scenarios (i), and (ii)
are shown in Table 2 on page 194. Under all priors, we observe considerable improve-
ments over marginal likelihood utilizing bridge sampling and with the MCMC running
in all dimensions. The DSSFA method was ten to twelve times faster. This outcome is
partly attributable to the DSSFA method’s reliance on the information available in the
posterior generated uniquely by the full model, and the selected optimization technique.
Moreover, once the series of loss functions is obtained, no additional runtime is required
to generate the different models given a the chosen quantile.
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4 Real data analysis
This section aims to show the flexibility and usefulness of our method through an appli-
cation to personality traits data. We applied the DSSFA method in posterior samples
generated from over-fitted priors for factor analysis and obtained an estimate for the
number of factors. These priors start with a conservative factor dimension and remove
components by shrinking their loadings to zero. The selection of the number of factors is
subsequently made using adaptive Gibbs sampling methods. Such approaches included
in this category are the multiplicative gamma process (MGP) from Bhattacharya and
Dunson (2011), and a novel procedure that uses cumulative shrinkage priors (CUSP),
from Legramanti et al. (2020). As seen in Section 2.1, we can use our approach in
such models as the DSSFA method has no restrictions on prior choice since it depends
uniquely on the posterior distribution of the covariance matrix.

4.1 Personality traits data

For the data analysis, we followed Legramanti et al. (2020) and explored a subset of
the big five personality traits data, which is available at bfi in the R package psych
(Revelle et al., 2018). We examined the association structure among p = 25 personality
variables collected from n = 126 individuals over age 50. We also centered the data and
changed the sign of the variables 1, 9, 10, 11, 12, 22 and 25.

Prior specifications

In the MGP prior, the loadings are distributed as N(0, φ−1
jk θ

−1
k ), for j = 1, . . . , p and

k ∈ {1, 2, . . . }, with φjk ∼ Gamma(3/2, 3/2). For the global precisions θ−1
k we have

the multiplicative gamma process prior θk = ϑ1 · · ·ϑk, with ϑ1 ∼ Gamma(2.1, 1) and
ϑl ∼ Gamma(3.1, 1), for l ≥ 2 and k ∈ {1, 2, . . . }. The CUSP prior induces increasing
shrinkage via a sequence of spike-and-slab distributions that assign growing mass to the
spike as the model complexity grows. Under this prior, the factor loadings bjk ∈ B are
distributed as N(0, θk) for k ∈ {1, 2, . . . }, with θk assuming the spike and slab mixture
θk|πk ∼ (1 − πk)IG(2, 2) + πkδθ∞ , where πk =

∑k
l=1 ωl, with ωl = νl

∏l−1
m=1(1 − νm),

and νl ∼ Beta(1, 5). The spike is defined on δθ∞ , which is the point mass on θ∞,
with θ∞ = 0.05. For the two methods, we have σ2

j ∼ IG(1, 0.3), for j = 1, . . . , p, for
the idiosyncratic variances. The adaptation p(t) = exp(α0 + α1t) was allowed only af-
ter t = 500 iterations and (α0, α1) were set to (−1,−5 × 10−4), while the adaptation
threshold ε in the MGP was set as 10−4. The number of factors were initialized as
k = p for MGP, and as k = p + 1 for CUSP. The MGP method was sampled us-
ing the R package infinitefactor, and CUSP was generated from the algorithm at
https://github.com/siriolegramanti/CUSP.

Application results

We ran the MCMC algorithms for 10,000 iterations discarding the first 5,000 as burn-in
and with thinning in every five samples for both methods. At a first run, MGP obtained
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Figure 4: DSSFA posterior summary plots generated with (a) MGP, and (b) CUSP
priors, obtained according to the steps presented in Section 2.3. The plots display the
densities of the loss functions Lk̃,λ(Ω, Ω̂k̃,λ), the violin plots, with respective posterior
means Eθ|y[Lk̃,λ(Ω, Ω̂k̃,λ)], the dots, indexed by the number of factors k̃ = 1, 2, . . . , 24.
No penalty was used. The dashed line is the 95% quantile of the loss function of the
full model generated with k̃ = 24 (error bar). Following the criterion in Section 2.3, we
consider the model that generates a loss function whose expected value, identified as ×,
is within the selected quantile of the loss function of the full model. The resulted loss
function yields a model with k∗ = 3 factors, for the MGP, and for CUSP priors.

a posterior mean (95% credible interval) of 20.7 ([18,24]) for the number of factors, while
CUSP obtained 2.64 ([2,3]). From the same posterior samples generated by MGP and
CUSP, we followed the steps presented in Section 2.3, and applied the DSSFA method
with k̃ = 1, 2, . . . , (p − 1) factors for the two posterior distributions. This upper limit
is imposed by the optimization procedure (fanc). We let our method auto-select the
factor dimension under the 95% quantile of the loss function of the full model and we
set the complexity parameter as λ = 0 in both settings, since we are not interested in
the sparsity of the loadings in this study.

Figure 4 displays the posterior summary plots for the two methods. Under a 95%
quantile of the loss function of the full model, our method selected a factor model of size
k∗ = 3 for both MGP and CUSP. These results are in agreement with the analysis of
Legramanti et al. (2020), in which three main factors were identified. Further analysis,
on the posterior summary plots indicate that the MGP posterior contains information
of a three-factor model, although the posterior adaptation procedure privileges a model
with redundant factors.
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Figure 5: Absolute values of the posterior mean of the correlation matrix under the (a)
MGP, and (c) CUSP priors, compared with the absolute values of the correlation matrix
estimates produced by the DSSFA method with 95% quantile of the loss function of the
full model, under (b) MGP, and (d) CUSP priors.

Figure 5 displays the absolute values of the posterior mean of the correlation matrix,
from priors MGP, (a), and CUSP, (c), in comparison to the absolute values of the
correlation matrix generated by the DSSFA estimates with the 95% quantile of the loss
function of the full model under (b) MGP and (d) CUSP. We observe that the values of
the absolute correlations are similar across the different estimates, which indicates that
MGP overestimates the number of factors, further confirming the analysis of Legramanti
et al. (2020), and the results from the DSSFA posterior summary plot in Figure 4.

4.2 Interpretable loadings from overfitted factor models

In the factor analysis literature, over-fitted factor models are usually used for covariance
matrix estimation, and thus there is no need to focus on the identifiability and interpre-
tation of the resulting factor loadings structure. We went a step further in our analysis,
and used DSSFA with penalty on the loadings, and same posterior samples generated
by the CUSP prior in the previous study, to recover an sparse loadings matrix and to
prevent the non-identifiability of the loadings (see Scharf and Nestler, 2019).

We ran our method with k̃ = 1, 2, . . . , (p−1) factors, with a penalized solution path of
size λ = λ0, λ1, . . . , λ10, for each factor dimension k̃. The DSSFA posterior summary plot
can be seen in Figure 6. Under a 95% quantile of the loss of the full model, our method
selected a factor analysis model with dimension k∗ = 3, and complexity parameter
λ∗ = λ8. Models with k̃ ≤ 2 were not considered. We included in our analysis models
with k̃ = 4 and k̃ = 5 factors, since they are within the 95% quantile of the loss function
of the full model.

Figure 7 displays the selected loadings, in which we can observe a similar factor
structure across the different dimensions, although some of the entries of the penalized
models are shrunken in comparison with the entries from the models with no penalty
(λ0 = 0). As in Legramanti et al. (2020), we noticed significant correlation between
agreeableness (A) and extraversion (E) in factor F2, some correlation between consci-
entiousness (C) and neuroticism (N) in factor F1. Lastly, Openness (O) presented less
evident weights and almost no association between traits. Furthermore, the small values
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Figure 6: DSSFA summary plot for personality traits data under the CUSP prior com-
paring the densities of the loss functions Lk̃,λ(Ω, Ω̂k̃,λ), the violin plots, with respec-
tive posterior means Eθ|y[Lk̃,λ(Ω, Ω̂k̃,λ)], the dots, indexed by the number of factors
k̃ = 1, 2, . . . , 24, and the complexity parameters λ = λ0, λ1, . . . , λ10, obtained according
to Step 1 and Step 2, in the method’s overview in Section 2.3. The dashed line is the 95%
quantile of the loss function of the full model (error bar), with k̃ = 24, and with regu-
larization λ0 = 0. Following the DSSFA method criterion presented in Subsection 2.3,
we consider the model that generates the loss function (color dot-dashed density), with
the greatest expected value, identified as ×, that is within the 95% quantile of the loss
function of the full model. The resulted loss yields a model with k∗ = 3 factors, and
parsimony parameter λ∗ = λ8, which results in a loadings with 39% zeroed entries.

of the loadings in Openness may be associated with the chosen subset of the data (age
> 50), suggesting that this trait is less present in the considered age group.

5 Conclusions
In this paper, we presented the DSSFA method, which adds to the literature on fac-
tor analysis by defining posterior summarization as a decision problem. The proposed
method has two steps: optimization of a predefined loss function and a posterior sum-
mary plot. Unlike traditional information-based approaches and hard thresholding rules,
our method adds the capability of selecting the factor dimension and sparse loadings si-
multaneously. Furthermore, given that posterior samples of the Bayesian factor analysis
model are available, our method may be used in combination with any prior distribution
that is best suited for the situation.

The posterior summary plots revealed the relationship between posterior uncertainty,
sparsity and predictive degradation. From these relations, we proposed a criterion that
automates the problem of determining the number of factors and the complexity param-
eter. We performed an extensive simulation study based on this criterion that provided
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Figure 7: DSSFA estimates under CUSP prior for the personality traits data. Figures (a)
and (d) show the resulting sparse loadings B̂3,λ8 , and loadings without penalty B̂3,λ0

selected with the DSSFA procedure. We also include in our analysis models with k̃ = 4
factors with penalty λ = λ7, B̂4,λ7 in (b), and without penalty, B̂4,λ0 in (e), and models
with k̃ = 5 factors with penalty λ = λ5, B̂5,λ5 in (c), and without penalty B̂5,λ0 in (f).
The presented models are within the 95% quantile interval of the loss function of the
full model, see Figure 6. The percentage of zeroed loadings in the regularized models in
(a), (b), and (c) are 39%, 27%, and 20%, respectively.

evidence of model selection improvement and significant gains in runtime over other
widely used procedure.

The usefulness of our method was further assessed by uncovering redundant factors
in over-fitted factor models in the application. It was shown that our approach offers an
effective alternative for obtaining interpretable loading matrices from models when the
posterior samples have different factor dimensions. In this setting, the DSSFA method
contributes to recent literature that suggests avoiding the factor model identifiability
issue and obtaining point estimates of the posterior distribution either through post-
processing the MCMC chains (Papastamoulis and Ntzoufras, 2022; Poworoznek et al.,
2021) or by choosing the maximum a posteriori (Schiavon et al., 2022). However, one
downside of our approach is the overshrinkage of the loadings in the recovered sparse
models.

Future research should look into loss functions other than the negative log-likelihood.
Viable options include squared loss, and the Frobenius distance. Other criteria for model
selection can also be easily explored. In applications with a large number of variables,
such as genetic data, the optimization procedure could run increasingly and stop when
the expected loss is within the quantile of the full model’s loss. A natural extension
of this criterion would be an application to high-dimensional data. Furthermore, other
penalties could be used to circumvent the problem of overshrinkage of the loadings
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observed in the toy example and application. A possible alternative is the Bayesian
adaptive penalty presented recently by Kowal et al. (2021). Finally, we envisage the
extension of the DSSFA approach to factor regression (West, 2003), in dynamic factor
models (Nakajima and West, 2013; Kastner, 2019), and other latent variable models
(Bartholomew et al., 2011).
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