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A Bayesian Analysis of Two-Stage Randomized
Experiments in the Presence of Interference,

Treatment Nonadherence, and Missing
Outcomes

Yuki Ohnishi∗ and Arman Sabbaghi†

Abstract. Three critical issues for causal inference that often occur in modern,
complicated experiments are interference, treatment nonadherence, and missing
outcomes. A great deal of research efforts has been dedicated to developing causal
inferential methodologies that address these issues separately. However, method-
ologies that can address these issues simultaneously are lacking. We propose a
Bayesian causal inference methodology to address this gap. Our methodology ex-
tends existing causal frameworks and methods, specifically, two-staged random-
ized experiments and the principal stratification framework. In contrast to exist-
ing methods that invoke strong structural assumptions to identify principal causal
effects, our Bayesian approach uses flexible distributional models that can accom-
modate the complexities of interference and missing outcomes, and that ensure
that principal causal effects are weakly identifiable. We illustrate our methodol-
ogy via simulation studies and a re-analysis of real-life data from an evaluation
of India’s National Health Insurance Program. Our methodology enables us to
identify new active causal effects that were not identified in past analyses. Ulti-
mately, our simulation studies and case study demonstrate how our methodology
can yield more informative analyses in modern experiments with interference,
treatment nonadherence, missing outcomes, and complicated outcome generation
mechanisms.
Keywords: Bayesian causal inference, noncompliance, principal stratification,
Rubin causal model, two-stage randomized design, missing not at random.

1 Introduction
Causal inference is a fundamental consideration across a wide range of domains in sci-
ence, technology, engineering, and medicine (Pearl, 2009; Imbens and Rubin, 2015). A
traditional gold standard for performing causal inference is the classical randomized
experiment (Rubin, 2008; Imbens and Rubin, 2015). In this type of experiment, a great
deal of control and precautions can be taken so as to eliminate events that would intro-
duce instabilities and biases in causal inferences. However, modern experiments, e.g.,
social experiments, can become so complicated that it may be difficult to institute such
control and precautions. Three significant sources of complications that are increasingly
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of interest are interference among experimental units, nonadherence/noncompliance of
experimental units to their assigned treatments, and unintended missing outcomes of
experimental units. Interference exists if the outcome of an experimental unit depends
not only on its assigned treatment, but also on the assigned treatments for other units.
It arises when limited controls are placed on the interactions of experimental units with
one another, or when competition for a limited set of resources exists, during the course
of an experiment. Treatment nonadherence frequently occurs in human subject exper-
iments, as it can be unethical to force an individual to take their assigned treatment.
Clinical trials in particular typically have subjects that do not adhere to their assigned
treatments due to adverse side effects or intercurrent events (Little et al., 2012). Missing
outcomes commonly occur in human studies. For example, respondents may refuse to
report sensitive outcomes (e.g., income) after receiving a treatment in a study (Little
and Rubin, 2002, p. 3). Failing to account for interference, nonadherence, and missing
outcomes in modern experiments will generally yield unstable and biased inferences on
treatment effects.

A great deal of research efforts has been dedicated over the past three decades to
developing causal inferential methodologies that address the first two issues separately.
Hudgens and Halloran (2008) first introduced the concept of the two-stage random-
ized design for performing causal inference in the presence of interference when all
experimental units adhere to their assigned treatments. In this design, experimental
units belong to clusters, and randomizations are performed at both the cluster-level
and experimental unit-level. Specifically, the clusters are first randomly assigned dif-
ferent probabilities for treatment assignment of their constituent experimental units,
and then treatments are randomly assigned to the units within the clusters (with treat-
ment assignment performed independently across clusters) based on the cluster-specific
assignment probabilities. For example, in our case study, villages correspond to the clus-
ters, and each household within a village corresponds to an experimental unit. In this
manner, we can analyze the effectiveness of an insurance plan implemented in India
under the two-stage randomized design. Hudgens and Halloran (2008) demonstrated
how both direct treatment effects and indirect treatment effects (i.e., those effects that
can be attributed to the treatments received by other units) can be inferred under this
design in the presence of interference. This design and the corresponding causal infer-
ence methods that can be performed under it have been further studied by VanderWeele
and Tchetgen (2011), Tchetgen and Vanderweele (2012), Liu and Hudgens (2014), and
Basse and Feller (2018). For experiments that have treatment nonadherence but not
interference, one standard methodology that has been considered for their analyses is
the intention-to-treat (ITT) method. Under this approach, the treatment received by
an experimental unit is ignored, and instead only the treatment assigned is considered.
This method follows the traditional principle of analyzing an experiment according to
its physical randomization (Cox and Reid, 2000, p. 14) mechanism, and can yield valid
causal inferences on the effects of treatment assigned in certain situations. However, the
ITT method will generally yield biased inferences on the effects of treatment received
because it does not account for the latent stratification of experimental units defined
according to their adherence behaviors to the different treatment assignments, and
consequently does not provide inferences for the target stratum of compliers. Angrist
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et al. (1996) and Imbens and Rubin (1997) developed a framework to provide a more
principled approach for the analyses of experiments with nonadherence, and Frangakis
and Rubin (2002) extended those frameworks to develop the more general principal
stratification framework. This framework has been applied to a wide variety of real-life
problems involving complications such as censoring or truncation due to death (Zhang
and Rubin, 2003) and the occurrence of intermediate variables that are thought to me-
diate the effects of treatments on the outcome (Gallop et al., 2009). VanderWeele (2011)
provides a detailed review of principal stratification.

Recently, methodologies have been developed to address combinations of interfer-
ence, nonadherence, and missing outcomes, but not all of these issues simultaneously.
Under the assumption of fully observed outcomes, Imai et al. (2021) presented a non-
parametric identification of the complier average direct and indirect effects, and pro-
posed consistent estimators for them under the two-stage randomized design in the
presence of interference and nonadherence. They derived large-sample nonparametric
bounds for the causal effects, but their results are not necessarily valid for the finite-
sample regime. In addition, the estimators of Imai et al. (2021) are sensitive to outliers.
Vazquez-Bare (2022) built on the work of Imai et al. (2021) and analyzed spillover effects
using instrumental variables in the two-stage randomized experiment with fully observed
outcomes. They considered the identification of causal direct and spillover effects under
one-sided noncompliance and demonstrated that these effects can be estimated using
two-stage least squares (2SLS). However, their methods do not work in general under
two-sided noncompliance or when units have multiple peers without a strong struc-
tural assumption about peers’ compliance types. Kang and Imbens (2016) considered
the peer encouragement design to study network treatment effects when treatment ran-
domization cannot feasibly be forced on experimental units, and presented identification
results only for the case of one-sided noncompliance. Forastiere et al. (2016) developed
a Bayesian principal stratification method for causal inference in clustered encourage-
ment designs (CEDs), where the assignment of treatment encouragement is performed
at the cluster level. The CED is effectively a special case of the two-stage random-
ized experiment with no randomization within clusters, i.e., with treatment assignment
probability for units within clusters being either zero or one. As there is no random-
ization performed at the unit level within clusters, their methodology cannot capture
the complexity of adherence behaviors in the two-stage experiments, where units could
possibly change their adherence behaviors depending on what assignment probabilities
their clusters are assigned to. It is important to note that none of the above methods can
easily accommodate missing outcomes in the presence of interference and nonadherence.
Experiments with treatment nonadherence and missing outcomes have been analyzed
by Frangakis and Rubin (1999), Mattei and Mealli (2007), Frumento et al. (2012), and
Mattei et al. (2014), but none of these studies involved interference.

We develop a new Bayesian causal inferential methodology for two-stage randomized
experiments with interference, noncompliance, and missing outcomes. Our methodology
utilizes the principal stratification framework to address the identification issues arising
from treatment nonadherence and missing outcomes in the presence of interference. To
the best of our knowledge, none of the existing causal inference methods have applied
Bayesian principal stratification to two-stage randomized designs and addressed these
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issues simultaneously as our method does. Not only does our Bayesian approach provide
a principled framework to analyze two-stage randomized experiments in the presence of
all of these complications, but it clarifies what can be learned when causal estimands are
not identifiable but are instead weakly identifiable (i.e., when the likelihood functions
of parameters and causal estimands have substantial regions of flatness). It is impor-
tant to recognize that issues of identifiability under the Bayesian paradigm are distinct
from those under the frequentist paradigm because the specification of proper prior
distributions always yields proper posterior distributions (Imbens and Rubin, 1997).
In particular, our Bayesian method enables us to infer principal causal effects under
two-sided nonadherence without the need for strong structural assumptions, and de-
fine new types of interpretable and informative causal estimands (such as the complier
spillover and overall treatment effects) that would be of great interest to policy makers.
Furthermore, our methodology highlights new assumptions on compliance types and
missingness mechanisms for making causal inferences more efficient and stable in such
complicated experiments. The use of Bayesian models in our methodology enables us
to naturally accommodate complicated outcome generation mechanisms that frequently
occur in modern experiments, such as heavy-tailed, skewed, zero-inflated, and/or multi-
modal outcome distributions.

We proceed in Section 2 to review the Rubin Causal Model (Rubin, 1974; Holland,
1986), the principal stratification framework, and relevant assumptions and causal es-
timands for the two-stage randomized experiment. Section 3 introduces the models
and computational algorithms involved in our Bayesian methodology. In Section 4 we
perform extensive simulation studies to investigate the frequentist performance of our
Bayesian method for a heavy-tailed distribution with an excess of zero outcomes. These
simulation studies effectively validate our methodology in a situation where the exist-
ing frequentist approach (Imai et al., 2021) performs poorly in terms of bias and mean
squared error (MSE). Finally, in Section 5 we apply our methodology to the real-life
data from the evaluation of India’s National Health Insurance Program (RSBY) (Nandi
et al., 2015). In our analysis of this case study we are able to uncover more definitive
evidence of causal effects that were previously found to be insignificant in past analyses.
Our concluding remarks are in Section 6.

2 Background
2.1 Two-Stage Randomized Experiments with Interference and

Noncompliance

Throughout this manuscript we consider two-stage randomized experiments involving
two treatments and J clusters, with Nj experimental units in cluster j = 1, . . . , J (each
experimental unit belongs to only one cluster). We let N =

∑J
j=1 Nj denote the total

number of experimental units. The assignment mechanism in the two-stage randomized
experiment is performed sequentially, with each stage involving a type of completely
randomized design. In the first stage, J1 clusters are randomly chosen to have a treat-
ment assignment probability of a1 ∈ (0, 1) for their constituent experimental units, and
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the remaining J − J1 clusters have a treatment assignment probability of a0 ∈ (0, 1)
for their units. For each j = 1, . . . , J we let Aj be the indicator for whether cluster
j was assigned a1 (Aj = 1) or a0 (Aj = 0). We let A = (A1, . . . , AJ )T, and without
loss of generality we let a1 > a0. In the second stage, the experimental units within
the clusters are randomly assigned treatment and control according to the treatment
assignment probabilities assigned to their clusters, with the treatment assignment per-
formed independently across clusters. For each cluster j with Aj = 1, Nja1 of their
experimental units are randomly assigned treatment and the remaining Nj(1 − a1) are
assigned control. Similarly, for each cluster j′ with Aj′ = 0, Nj′a0 of their experimen-
tal units are randomly assigned treatment and the remaining Nj′(1 − a0) are assigned
control. We assume that Nja1 and Nja0 are integers for all j = 1, . . . , J . We let Zi,j

denote the treatment assignment indicator for unit i in cluster j, with Zi,j = 1 if it is
assigned treatment and Zi,j = 0 otherwise. We let Zj = (Z1,j , . . . , ZNj ,j)T denote the
vector of treatment assignment indicators for all units in cluster j, and Z−i,j denote the
subvector of Zj with the ith entry removed. Other assignment mechanisms for two-stage
randomized experiments are provided by VanderWeele and Tchetgen (2011), but we do
not consider them here.

As we consider two-stage randomized experiments with interference, nonadherence
and missingness under the Rubin Causal Model, we must introduce two types of poten-
tial outcomes for the treatment received by an experimental unit and the final outcome
of interest that are functions of the experimental units’ treatment assignments. We
let Di,j(z) denote the treatment received for unit i in cluster j under treatment as-
signment z ∈ {0, 1}N , Dj(z) = (D1,j(z), . . . , DNj ,j(z))T be the vector of treatments
received by the units in cluster j, and D(z) = (D1(z), . . . ,DJ(z))T. Furthermore, we
let Yi,j(z,D(z)) denote the potential outcome for unit i in cluster j under treatment as-
signment vector z and treatment received vector D(z). Although the potential outcomes
can be written solely as a function of z (because D(z) is a function of z) we include D(z)
in the notation for Yi,j(z,D(z)) to emphasize the existence of nonadherence. We let D
and Y denote the matrices containing all the potential values of treatment receipts and
outcomes, respectively, for all experimental units across all treatment assignments.

Finally, we let Mi,j(z) denote the missingness indicator for the realized outcome
of unit i in cluster j under treatment assignment z ∈ {0, 1}N , Mj(z) = (M1,j(z),
. . . ,MNj ,j(z))T be the vector of missingness indicators of the units in cluster j, and
M(z) = (M1(z), . . . ,MJ(z))T. We note that Yi,j(z,D(z)) is observed when Mi,j(z) =
0, and is missing otherwise. It is important to distinguish between missing potential
outcomes and unrealized potential outcomes. For a given treatment assignment vector
z that was realized in an experiment, the potential outcomes Yi,j(z′,D(z′)) for any other
distinct treatment assignment vector z′ are referred to as unrealized potential outcomes.
Also, for a given treatment assignment vector z that was realized in an experiment, if
Mi,j(z) = 1 then Yi,j(z,D(z)) is not observed, although the potential outcome was
realized in the experiment.

Besides the treatments, potential outcomes, and missingness indicators, we assume
covariates are measured for the experimental units. These covariates are either measured
prior to treatment assignment, or are measured afterwards but are not affected by
treatment assignment. We denote the vector of covariates for unit i in cluster j by Xi,j .
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2.2 Assumptions on the Structure of Interference
We extend the assumptions proposed by (Imai et al., 2021) for the two-stage randomized
experiment with nonadherence. We first invoke the partial interference assumption in
which units in different clusters do not interact or affect one another. This assumption
was first formulated by Hudgens and Halloran (2008), and was extended to the noncom-
pliance setting by Imai et al. (2021). Partial interference facilitates causal inference in
our setting of interest because an experimental unit i’s treatment received, missingness
indicator will only be functions of treatment assignments for other units within the
same cluster j as unit i.

Assumption 1. For all z, z′ ∈ {0, 1}N such that zj = z′j for a cluster j, then Di,j(z) =
Di,j(z′) and Mi,j(z) = Mi,j(z′) for all experimental units i in cluster j.

The next assumption that we consider is the stratified interference assumption of
Hudgens and Halloran (2008). This assumption imposes further structure on interference
by having the treatment received, the missingness indicator, and the potential outcome
for an experimental unit being a function of just the number of experimental units
assigned treatment within the same cluster. This assumption was also considered by
Forastiere et al. (2016) and Imai et al. (2021). It is important to recognize that a
great deal of work has been conducted to move beyond this condition and consider
more flexible structures of interference (Aronow, 2012; Manski, 2013; Basse and Airoldi,
2018b; Aronow and Samii, 2017; Baird et al., 2018; Basse and Airoldi, 2018a; Athey
et al., 2018; Basse et al., 2019; Leung, 2020; Forastiere et al., 2021; Sävje et al., 2021).
However, none of these works considered noncompliance and missing outcomes.

Assumption 2. For a cluster j and experimental unit i in cluster j, if z, z′ ∈ {0, 1}N
such that zi,j = z′i,j and zT

j 1 = (z′j)T1, then Di,j(z) = Di,j(z′) and Mi,j(z) = Mi,j(z′).

We invoke the same assumptions on outcomes.

Assumption 3. For all z, z′ ∈ {0, 1}N such that zj = z′j for a cluster j, then
Yi,j(z,D(z)) = Yi,j(z′,D(z′)) for all experimental units i in cluster j.

Assumption 4. For a cluster j and experimental unit i in cluster j, if z, z′ ∈ {0, 1}N
such that zi,j = z′i,j and zT

j 1 = (z′j)T1, Yi,j(z,D(z)) = Yi,j(z′,D(z′)).

Finally, we assume the exclusion restriction with interference between units in the
two-stage randomized experiment. In this case, the potential outcome of a unit i in
cluster j only depends on the treatments received by units within cluster j.

Assumption 5. For any treatment assignment vectors z, z′ ∈ {0, 1}N with Dj(z) =
Dj(z′), Yi,j(z,D(z)) = Yi,j(z′,D(z′)) for all experimental units i in cluster j.

These five assumptions imply that for two-stage randomized experiments in which
the number of treated units within any cluster is fixed by design, the potential outcomes
and missingness indicator for an experimental unit are a function of its own treatment
assignment and the treatment assignment probability for its cluster. We accordingly
slightly abuse the notation to write Di,j(z), Mi,j(z) and Yi,j(z,D(z)) as Di,j(z, a),
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Mi,j(z, a) and Yi,j(z, a), respectively, where z denotes the treatment assignment for the
experimental unit and a denotes the treatment assignment probability for the unit’s
cluster.

2.3 Principal Strata, Monotonicity, and the Exclusion Restriction
for Two-Stage Randomized Experiments

Under the principal stratification framework, we stratify the experimental units ac-
cording to their values of Di,j(z, a) under the different possible treatment assignments
z ∈ {0, 1} and treatment assignment probabilities a ∈ {a0, a1} for the clusters. There
exist four such potential values: Di,j(0, a0), Di,j(1, a0), Di,j(0, a1), and Di,j(1, a1). A
unique feature of our consideration of nonadherence for the two-stage randomized de-
sign is that, according to Assumption 2 and 4, units can have different compliance
behaviors under different assignment probabilities for their clusters. We formally de-
fine the compliance behavior of unit i in cluster j under each treatment assignment
probability a ∈ {a0, a1} for the cluster as

Gi,j(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n if Di,j(0, a) = Di,j(1, a) = 0,
c if Di,j(0, a) = 0, Di,j(1, a) = 1,
d if Di,j(0, a) = 1, Di,j(1, a) = 0,
a if Di,j(0, a) = Di,j(1, a) = 1,

where n, c, d, and a denote never-takers, compliers, defiers, and always-takers, respec-
tively. Finally, the compliance behavior for unit i in cluster j is defined according to the
pair of compliance indicators Gi,j = (Gi,j(a0), Gi,j(a1)).

A standard assumption for the compliance behavior is monotonicity.

Assumption 6. For all units i = 1, . . . , Nj in cluster j = 1, . . . , J and any a ∈ {a0, a1},
Di,j(1, a) ≥ Di,j(0, a), and strict inequality exists for at least one experimental unit.

This assumption was also considered by Imai et al. (2021) and Forastiere et al. (2016).
Monotonicity eliminates the possibility of defiers under either treatment assignment
probabilities a0 and a1. It also reduces the number of principal strata from sixteen to
nine.

In addition to this existing monotonicity assumption, we also consider the following
new assumption on compliance behaviors across the different treatment assignment
probabilities that can be assigned to the clusters.

Assumption 7. The set {n, c, a} is a partial order set. For a0 < a1, units whose clusters
have been assigned a1 would have a non-strictly lower compliance type of {n, c, a} than
the current compliance type if their clusters were assigned a0. Units whose clusters have
been assigned a0 would have a non-strictly greater compliance type of {n, c, a} than the
current compliance type if their clusters were assigned a1.

This assumption further reduces the number of principal strata. To see this, we
first recognize that there are only six possible definitions of partial orders for {n, c, a}:
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n ≤ c ≤ a, n ≤ a ≤ c, c ≤ n ≤ a, c ≤ a ≤ n, a ≤ n ≤ c, and a ≤ c ≤ n. We
adopt the partial orders n ≤ c ≤ a as well as a0 ≤ a1 throughout. These correspond
to units being more likely to take treatment if a larger proportion of their neighbors
take treatment. Alternatively, if a cluster is assigned a1 then its units are more likely
to receive treatment, no matter what the units are assigned, compared to the case if
the cluster is assigned a0. The combination of Assumptions 6 and 7 thus reduces the
number of principal strata to six: {(n, n), (c, c), (a, a), (n, c), (n, a), (c, a)}.

Our definition of principal strata based on Assumptions 6 and 7 is more general
than existing definitions. For example, Imai et al. (2021) considered the monotonicity
assumption with respect to the treatment assignment probability. Their assumption
corresponds to the partial order n ≤ c ≤ a but can not express other orderings of mono-
tonicity, e.g., a ≤ c ≤ n. Forastiere et al. (2016) only defined three principal strata based
on the treatment uptake status, excluding defiers. Also, Vazquez-Bare (2022) defined
five principal strata by posing monotonicity directly on treatment received, which led
to the removal of strata (n, a) from consideration. These distinctions exist because we
consider the two-stage randomized design, and we define the monotonicity assumptions
on the compliance behaviors with respect to the treatment probabilities for clusters.
Forastiere et al. (2016) considered clustered encouragement designs (CEDs) in which
encouragement is randomized at the level of clusters but with no randomization carried
out within clusters. In contrast, the two-stage randomized design has encouragement
randomized at the level of units within clusters, with clusters assigned a treatment
probability that governs the proportion of treated units within the cluster. The latter
design generates more complicated structures for the units’ compliance behaviors be-
cause some units might behave differently based on the treatment probabilities assigned
to their clusters. This distinction is critical because of our need to capture behavioral
shifts of units between such treatment probabilities, and because of the direct and
spillover causal estimands of interest that are defined in Section 2.4. Our definitions of
the monotonicity assumptions provide more flexible orderings of compliance behaviors
than that of Vazquez-Bare (2022) because we permit more relevant orderings.

In addition to monotonicity, we also consider the exclusion restriction for certain
principal strata in the case of nonadherence.

Assumption 8. For any unit i = 1, . . . , Nj in cluster j = 1, . . . , J :

• if Gi,j ∈ {(a, a), (n, n), (n, a)}, then Yi,j(0, a) = Yi,j(1, a) for a ∈ {a0, a1},

• if Gi,j = (c, a), Yi,j(0, a1) = Yi,j(1, a1), and

• if Gi,j = (n, c), Yi,j(0, a0) = Yi,j(1, a0).

This assumption captures the idea that treatment assignment has no effect on the
outcome if the unit is either an always-taker or a never-taker under each treatment
assignment probability. It also corresponds to Assumption 5, from which the outcome of
an experimental unit is determined only through the treatment received by units within
the same cluster. This assumption is equivalent to a modified form of the restricted
interference assumption of Imai et al. (2021) that is stated in terms of principal strata.
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2.4 Direct, Spillover, and Overall Causal Estimands
We consider the finite-population framework for causal estimands under the Rubin
Causal Model. In this case, estimands are defined in terms of comparisons of potential
outcomes for the N experimental units. Our approach for defining direct, spillover, and
overall causal estimands in two-stage randomized experiments with interference and
nonadherence follows that of Hudgens and Halloran (2008) and Imai et al. (2021).

To simplify our expressions of the causal estimands, we first write the treatment
received and potential outcome for unit i in cluster j under treatment assignment z
as Di,j(z) and Yi,j(z,D(z)), respectively. We let Kj(a) denote the number of treated
units in cluster j under treatment assignment probability a ∈ {a0, a1}, and Z−i,j de-
note the set of all subvectors of zj ∈ {0, 1}Nj with the ith element removed such
that

∑Nj

i=1 zi,j = Kj(a). Under Assumptions 1 - 4, we recognize that D̄i,j(z, a) =∑
z−i,j∈Z−i,j

Di,j(z)p(Z−i,j = z−i,j | Zi,j = z,Aj = a) = Di,j(z, a) and Ȳi,j(z, a) =∑
z−i,j∈Z−i,j

Yi,j(z,D(z))p(Z−i,j = z−i,j | Zi,j = z,Aj = a) = Yi,j(z, a).

One set of causal estimands that we consider are the unit-level direct intention-
to-treat (ITT) effects of treatment assignment on treatment received and the final
outcome under treatment assignment probability a ∈ {a0, a1}, i.e., ITTD,i,j(a) =
D̄i,j(1, a) − D̄i,j(0, a) and ITTY,i,j(a) = Ȳi,j(1, a) − Ȳi,j(0, a), respectively. These es-
timands capture the adherence behavior and changes in the final outcome under the
same treatment assignment probability a when unit i in cluster j is assigned treat-
ment as opposed to control. We average the unit-level effects to define the cluster-
level and finite population-level ITT effects as ITTD,·,j(a) =

∑Nj

i=1 ITTD,i,j(a)/Nj ,
ITTD,·,·(a) =

∑J
j=1 NjITTD,·,j(a)/N , ITTY,·,j(a)

∑Nj

i=1 ITTY,i,j(a)/Nj , ITTY,·,·(a) =∑J
j=1 NjITTY,·,j(a)/N .

Another causal estimand of interest in the presence of interference is the spillover
(indirect) effect of treatments assigned to other units on the potential outcomes for a
particular experimental unit. Following Imai et al. (2021) we define unit-level spillover
effects on treatment receipt and outcome as SD,i,j(z) = D̄i,j(z, a1) − D̄i,j(z, a0) and
SY,i,j(z) = Ȳi,j(z, a1) − Ȳi,j(z, a0). In these two estimands, we consider the average po-
tential outcomes corresponding to the two different treatment assignment probabilities
a0 and a1 for cluster j but the same treatment assignment z for unit i in cluster j.
These estimands quantify the intuition that, if differences exist in potential outcomes
under the same treatment assignment z, then they can be attributed to the first stage
of the experiment that governs the proportion of treated units in each cluster. This
is because under Assumption 2 and 4 the treated units in a particular unit i’s cluster
are the only factor besides the assigned treatment that can affect unit i’s outcomes,
and so the SD,i,j(z) and SY,i,j(z) can be reasonably regarded as spillover effects. We
define cluster-level and population-level spillover effects by averaging the SD,i,j(z) and
SY,i,j(z) across i and j, respectively.

The final estimand that we consider is the overall effect of the first stage of the
experiment, i.e., the effect of having treatment assignment probability a1 versus a0
for a cluster. This effect is usually of greatest interest for policy makers. For exam-
ple, infectious disease experts may be interested in comparing infection rates under
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two different vaccine allocation plans (e.g., 40% and 80%) within each cluster. We
define unit-level overall effects of the first stage on treatment receipt and outcome
as OD,i,j = D̄i,j(a1) − D̄i,j(a0) and OY,i,j = Ȳi,j(a1) − Ȳi,j(a0), respectively, where
Ȳi,j(a) =

∑
zj∈Zj

Yi,j(z)p(Zj = zj | Aj = a) and Zj is a set of all possible assign-
ment vectors zj . We have that Ȳi,j(a) is effectively the average value of the individual’s
outcome under the treatment assignment probability a ∈ {a0, a1}. It is decomposed into

Ȳi,j(a) =
(
Kj(a)
Nj

)
Ȳi,j(1, a) +

(
Nj −Kj(a)

Nj

)
Ȳi,j(0, a). (2.1)

The proof of equation (2.1) is provided in the supplementary material (Ohnishi and Sab-
baghi, 2022). Plugging this into OY,i,j , we have OY,i,j = {Kj(a1)/Nj} ITTY,i,j(a1) −
{Kj(a0)/Nj} ITTY,i,j(a0)+SY,i,j(0). We average the OY,i,j to define the cluster-level and
population-level overall effects as OY,·,j =

∑Nj

i=1 OY,i,j/Nj and OY,·,· =
∑J

j=1 NjOY,·,j/N ,
respectively. VanderWeele and Tchetgen (2011) provided the same decomposition but
with a slightly different proof. The overall effect is expressed as the sum of the spillover
effect and the contrast of two ITT effects under the treatment assignment probability
a1 and under the treatment assignment probability a0, each of which are multiplied by
the proportion of treated units under that assignment probability.

2.5 Principal Causal Estimands

In addition to defining direct, spillover, and overall causal estimands, we define new
principal causal estimands. These estimands extend those in Section 2.4 to account for
compliers under the different treatment probabilities a0 and a1 that can be assigned to
clusters.

Imai et al. (2021) used Assumption 2 and 4 to define the complier average direct
effect under treatment probability a ∈ {a0, a1} as

⎡
⎣ J∑
j=1

Nj∑
i=1

{Yi,j(1, a) − Yi,j(0, a)}1(Gi,j(a) = c)

⎤
⎦
/ J∑

j=1

Nj∑
i=1

1(Gi,j(a) = c). (2.2)

where 1(·) denotes the indicator for an event. We define a new complier average direct
effect by generalizing the estimand in equation (2.2) to account for how experimental
units comply under the different treatment probabilities assigned to clusters. This new
definition is motivated by the practical interest in modifying the effect of a1 to account
for the units who would comply under a0, and vice versa. To define this new complier
average direct effect, we introduce the notions of the “base cluster assignment” as the
treatment probability for a cluster under which compliers are defined, and the “target
cluster assignment” as the treatment probability for a cluster under which causal effects
are considered. It is important to separate the base from the target cluster assignments
because the treatments received by units are influenced by the treatments assigned to
other units, and because compliance behaviors vary with the treatment probabilities
a0 and a1. For a target cluster assignment a and base cluster assignment a′, our new
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population-level complier average direct effect is defined as

CADE(a, a′)=

⎡
⎣ J∑
j=1

Nj∑
i=1

{Yi,j(1, a)−Yi,j(0, a)}1(Gi,j(a′)=c)

⎤
⎦
/ J∑

j=1

Nj∑
i=1

1(Gi,j(a′) = c).

(2.3)
Equation (2.2) is a special case of equation (2.3) with a = a′.

The complier average spillover effect for treatment z defined by Imai et al. (2021)
is the ratio of

[∑J
j=1

∑Nj

i=1 {Yi,j(z, a1) − Yi,j(z, a0)} 1(Di,j(z, a1) = 1, Di,j(z, a0) = 0)
]

and
∑J

j=1
∑Nj

i=1 1(Di,j(z, a1) = 1, Di,j(z, a0) = 0), which is equivalent to⎡
⎣ J∑
j=1

Nj∑
i=1

{Yi,j(z, a1)−Yi,j(z, a0)}1(Gi,j ∈{(c, a), (n, a)})

⎤
⎦
/ J∑

j=1

Nj∑
i=1

1(Gi,j ∈{(c, a), (n, a)}).

(2.4)

The estimand in equation (2.4) is interpreted as a local average treatment effect for units
who comply with the treatment probability assigned to the cluster. These estimands
are not clearly interpretable as complier spillover effects because the compliance is de-
fined for the compliance behaviors with respect to treatment probability, not the actual
treatment assignment. We define a new complier average spillover effect using base and
target cluster assignments. For treatment z and base cluster assignment a′, we define
CASE(z, a′) as the ratio of

[∑J
j=1

∑Nj

i=1 {Yi,j(z, a1) − Yi,j(z, a0)} 1(Gi,j(a′) = c)
]

and∑J
j=1

∑Nj

i=1 1(Gi,j(a′) = c). Similar to the population-level spillover effect on outcome
defined in Section 2.4, CASE(z, a′) captures the compliers’ local average spillover effect
by comparing the two sets of potential outcomes under the two cluster assignments a0
and a1 and treatment z. In this estimand, the compliers are defined under the base
cluster assignment a′, and it is interpretable as an average effect for the compliers of
the treatment received by others in the same cluster.

We finally define the finite-population complier average overall effect by combining
equation (2.1) with the unit-level complier average overall effect under the base cluster
assignment a′, {Ȳi,j(a1)− Ȳij(a0)}1(Gi,j(a′) = c), and decomposing the effect according
to the sum of the unit-level complier average direct and spillover effects. Specifically,
we have

CAOEi,j(a′) =
{
Kj(a1)
Nj

}
{Yi,j(1, a1) − Yi,j(0, a1)} 1(Gi,j(a′) = c)

−
{
Kj(a0)
Nj

}
{Yi,j(1, a0) − Yi,j(0, a0)} 1(Gi,j(a′) = c)

+ {Yi,j(0, a1) − Yi,j(0, a0)} 1(Gi,j(a′) = c). (2.5)
The population-level effect is then the average of the unit-level effects in equation (2.5)
over compliers under the base cluster assignment a′, i.e.,

CAOE(a′) =
J∑

j=1

Nj∑
i=1

CAOEi,j(a′)
/ J∑

j=1

Nj∑
i=1

1(Gi,j(a′) = c) (2.6)
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ITTY Direct effect on the outcome
ITTD Direct effect on the treatment receipt
SY Spillover effect on the outcome
SD Spillover effect on the treatment receipt
OY Overall effect on the outcome
OD Overall effect on the treatment receipt
CADE Complier average direct effect on the outcome
CASE Complier average spillover effect on the outcome
CAOE Complier average overall effect on the outcome

Table 1: Causal estimands defined in Sections 2.4 and 2.5.

To facilitate references to causal estimands in this manuscript, Table 1 summarizes the
estimands that we defined in Sections 2.4 and 2.5.

3 Bayesian Model and Inferential Approach
3.1 Overview of Methodology
Our Bayesian methodology for performing causal inferences on two-stage randomized
experiments with interference, nonadherence, and missing outcomes is based on model-
based imputation of missing and unrealized potential outcomes to derive the posterior
distributions of the finite-population causal estimands. To describe this more formally,
we let τ denote one of the causal estimands from Sections 2.4 and 2.5, X the N × P
matrix of covariates for all experimental units, Ao the N × 1 vector of treatment prob-
abilities that were assigned to the clusters in the experiment, Zo the N × 1 vector of
treatments that were assigned to the units in the experiment, Do the N × 1 vector of
treatments that were received by the units in the realized experiment, Mo the N×1 vec-
tor of missingness indicators for the outcomes in the realized experiment, and Yobs the
vector of observed outcomes in the realized experiment. Then the Bayesian methodol-
ogy calculates the distribution p

(
τ | X,Ao,Zo,Do,Mo,Yobs). As causal estimands are

functions of observed, missing, and unrealized potential outcomes, we calculate the pos-
terior distribution above by integrating over the unrealized treatments received, which
we denote by Du, and both the missing and unrealized potential outcomes, which we
denote by Ymis and Yu respectively, according to

p
(
τ | X,Ao,Zo,Mo,Do,Yobs) = p (τ | O)

=
∫

p
(
τ | O,Du,Ymis,Yu) p (Du,Ymis,Yu | O

)
dDudYmisdYu

=
∫

p
(
τ | O,G,Ymis,Yu) p (G,Ymis,Yu | O

)
dGdYmisdYu,

where O = (X,Ao,Zo,Mo,Do,Yobs) and G is an N × 1 vector of (latent) principal
strata memberships for the experimental units. This motivates our Bayesian methodol-
ogy of first deriving a Monte Carlo approximation for the posterior predictive distribu-
tion of the missing principal strata and outcomes conditional on the observed data, and
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then using that posterior predictive distribution to derive a Monte Carlo approximation
for the posterior distribution of τ . Our methodology is distinct from existing methods
for two-stage randomized experiments in that we impute missing principal strata mem-
berships and at most four missing/unrealized potential outcomes for each experimental
unit according to the assumptions in Section 2.

Our imputation approach, and the latent ignorability assumption that underlies it,
is in Section 3.2. In Section 3.3 we provide additional details on our Bayesian modeling
approach and the unconfoundedness condition underlying it, which is justified by the
design of the two-stage randomized experiment. The Gibbs sampling algorithm that we
use to derive a Monte Carlo approximation to the posterior distribution of the causal
estimand is in Section 3.4. We provide a justification of exchangeability in our Bayesian
methodology in the appendix.

3.2 Imputation of Missing Values

By virtue of Assumptions 6 and 7, any experimental unit in the two-stage randomized
experiment belongs to one of six principal strata. Table 2 illustrates the correspondence
between the possible values of Ao

j , Z
o
i,j , and Do

i,j and the principal strata memberships,
along with the missingness rates for the outcomes in the RSBY study that we analyze
in Section 5. We let G(a, z, d) denote a set of possible principal strata for units with
(Ao

j , Z
o
i,j , D

o
i,j) = (a, z, d). Assumption 7 in particular helps to narrow down the possible

strata that a unit could belong to based on the observed data. For example, if an experi-
mental unit i in cluster j has Ao

j = a0, Z
o
i,j = 0, and Do

i,j = 1, then G(a0, 0, 1) = {(a, a)},
and so Gi,j = (a, a). Once Gi,j is fixed, we can immediately impute all unrealized Du

i,j .

We also observe in Table 2 that different strata, e.g., (a, a) and (n, n), exhibit dif-
ferent missingness rates. This corresponds to more general phenomenon in modern ex-
periments in which different strata have different missing data mechanisms for the final
outcomes. This phenomenon is intuitive for certain strata. For example, those units
in the (n, n) strata may be more reluctant to take any actions compared to units in
other strata, and thus their outcomes are more likely to be missing. As the missingness
mechanism depends on the latent strata, the traditional missing completely at random
(MCAR) and missing at random (MAR) assumptions may not be appropriate. In con-
trast to other methods, our Bayesian methodology accommodates a class of missing not
at random (MNAR) mechanisms (Little and Rubin, 2002, p. 351) that correspond to
the following latent ignorability (Frangakis and Rubin, 1999, LI) assumption.

Assumption 9 (Latent Ignorability of Missing Data). For any unit i = 1, . . . , Nj in
cluster j = 1, . . . , J ,

p(Mi,j | Di,j ,Yi,j , Xi,j)
= p(Mi,j | Di,j , Xi,j), p(Mi,j | Gi,j ,Yi,j , Xi,j) = p(Mi,j | Gi,j , Xi,j),

where Di,j = (Di,j(0, a0), Di,j(0, a1), Di,j(1, a0), Di,j(1, a1)), Mi,j = (Mi,j(0, a0),
Mi,j(0, a1), Mi,j(1, a0), Mi,j(1, a1)), and Yi,j = (Yi,j(0, a0), Yi,j(0, a1), Yi,j(1, a0),
Yi,j(1, a1)).
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Ao
j Zo

i,j Do
i,j G(Ao

j , Z
o
i,j , D

o
i,j) Number of units Missing rates

a0 0 0 (c, c), (n, n), (c, a), (n, c), (n, a) 2258 0.095
a0 1 0 (n, n), (n, c), (n, a) 545 0.119
a0 0 1 (a, a) 911 0.043
a0 1 1 (c, c), (a, a), (c, a) 1554 0.062
a1 0 0 (c, c), (n, n), (n, c) 779 0.105
a1 1 0 (n, n) 1028 0.135
a1 0 1 (a, a), (c, a), (n, a) 350 0.031
a1 1 1 (c, c), (a, a), (c, a), (n, c), (n, a) 3454 0.059

Table 2: Illustration of the possible principal strata that an experimental unit can belong
to under different combinations of Ao

j , Z
o
i,j , and Do

i,j . We provide examples of the number
of units and the missingness rates of the outcomes for these different sets of principal
strata based on data from the RSBY study in Section 5.

We formulate LI to mean that if we knew the latent strata Gi,j of each unit, the
missingness mechanism would be ignorable. Assumptions 8 and 9 facilitate and unify our
imputations of missing and unrealized potential outcomes. For those units with Mo

i,j = 0,
as one of their potential outcomes is observed we need to impute at most three unrealized
potential outcomes for each of them. In the case of a unit whose principal stratum is
(c, c), we need to impute three unrealized potential outcomes based on our Bayesian
model. For another unit whose principal stratum is (a, a), we only need to impute
one unrealized potential outcome, as the potential outcomes are restricted according
to Assumption 8 for this stratum. For a unit with Mo

i,j = 1, we impute at most four
potential outcomes based on their imputed principal strata Gi,j .

3.3 Bayesian Model Building

Following the Bayesian paradigm of Imbens and Rubin (2015) and Gelman et al. (2013),
five inputs are necessary for deriving the posterior distributions of the causal estimands.
The first input is knowledge of the assignment mechanisms as encoded in the proba-
bility mass functions p (A | X) and p (Z | X,A). These two probability mass functions
are obtained immediately by virtue of the known design of the two-stage randomized
experiment. In addition, these two probability mass functions are independent of the ex-
perimental units’ covariates X, so that p (A | X) = p (A) and p (Z | X,A) = p (Z | A).
The second input is the model for treatment received conditional on X,A,Z. We denote
this input by the probability mass function p (D | X,A,Z,ψ) with parameter vector ψ.
An equivalent input is the model for principal strata memberships of all experimen-
tal units, G, conditional on X,A,Z, because there is a one-to-one mapping between
G and D. To simplify our notation we denote this input as p (G | X,A,Z,ψ) with
the understanding that ψ is generic notation for the parameter vector associated with
either of these two models. The third input is the model for the potential outcomes
conditional on X,A,Z,D. We denote this model via a probability density/mass func-
tion p (Y | X,A,Z,D,θ) with parameter vector θ. This model can also be equivalently
formulated using G as p (Y | X,A,Z,G,θ). The fourth input is the model for the miss-
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ingness indicators M conditional on X,A,Z,D, Y, denoted by p (M | X,A,Z,D,Y,φ)
with parameter vector φ. Under the LI assumption, this model will not involve Y con-
ditional on the other variables. The final input is the joint prior distribution for ψ, φ,
and θ, denoted by p (ψ,φ,θ). We assume throughout that ψ, φ, and θ are distinct and
do not share any common parameters.

Specifying the second and third inputs is facilitated by the fact that the two-stage
randomized experiment has an unconfounded assignment mechanism at both cluster
and individual experimental unit levels. Unconfoundedness is formally expressed via
the following assumption.

Assumption 10. For experimental unit i=1, . . . , Nj in cluster j = 1, . . . , J , p(Aj , Zi,j |
Xi,j ,Di,j) = p(Aj , Zi,j | Xi,j), p(Aj , Zi,j | Xi,j ,Yi,j ,Di,j) = p(Aj , Zi,j | Xi,j ,Di,j),
p(Aj , Zi,j | Xi,j ,Yi,j , Gi,j) = p(Aj , Zi,j | Xi,j , Gi,j) and p(Aj , Zi,j ,Mi,j | Xi,j ,Di,j ,
Yi,j) = p(Aj , Zi,j | Xi,j ,Di,j ,Yi,j)p(Mi,j | Xi,j ,Di,j ,Yi,j).

Assumption 10 implies that the treatment assignment mechanism is ignorable. In
addition, unit exchangeability implies by de Finetti’s Theorem that we can specify
parametric models on the level of the individual experimental units for the principal
strata memberships Gi,j , the potential outcomes, and the missingness indicators to
derive the joint model for G, M, and Y. A justification of unit exchangeability in the
two-stage randomized experiment is in the appendix. Hence we have that

p (Y,D,M | X,ψ,θ,φ)

=
∏
i,j

p(Di,j | Xi,j ,ψ)p(Yi,j | Xi,j ,Di,j ,θ)p(Mi,j | Xi,j ,Di,j ,Yi,j ,φ)

=
∏
i,j

p(Di,j | Xi,j ,ψ)p(Yi,j | Xi,j ,Di,j ,θ)p(Mi,j | Xi,j ,Di,j ,φ).

(3.1)

The last line in equation (3.1) follows from Assumption 9. The posterior distribution
p
(
ψ,φ,θ | X,Ao,Zo,Do,Mo,Yobs) is proportional to

p
(
ψ,φ,θ | X,Ao,Zo,Do,Mo,Yobs)

∝p(ψ,φ,θ)
∫ ∏

i,j

p(Di,j |Xi,j ,ψ)p(Yi,j |Xi,j ,Di,j ,θ)p(Mo
i,j |Xi,j ,Di,j ,θ)dDudYmisdYu

=p(ψ,φ,θ)
∫ ∏

i,j

p(Gi,j |Xi,j ,ψ)p(Yi,j |Xi,j ,Gi,j ,θ)p(Mo
i,j |Xi,j ,Gi,j ,θ)dGdYmisdYu

To express the posterior distribution of the model parameters, let O(a, z, d,m) de-
note the set of experimental units whose realized values of Ao

j , Z
o
i,j , D

o
i,j , and Mo

i,j

are a, z, d, and m, respectively. For each unit i in cluster j and each principal strata
g, define w

(g)
i,j = Pr (Gi,j = g | Xi,j ,ψ), ρ

(g,a,z)
i,j = Pr(Mi,j = 1 | Gi,j = g,Aj =

a, Zi,j = z,Xi,j ,φ), and f
(g,a,z)
i,j be the probability mass/density function of Yi,j(z, a)

for g ∈ {(n, n), (c, c), (a, a), (n, c), (n, a), (c, a)}. Under Assumptions 6 - 8, the posterior



220 A Bayesian Analysis of Two-Stage Randomized Experiments

distribution of ψ, φ, and θ can be written as

p
(
ψ,φ,θ | X,Ao,Zo,Do,Mo,Yobs) ∝ p(ψ,φ,θ)

×
∏

a∈{a0,a1}

∏
z∈{0,1}

∏
d∈{0,1}

∏
(i,j)∈O(a,z,d,0)

∑
g∈G(a,z,d)

(1 − ρg,z,di,j )wg
i,jf

g,z,d
i,j

×
∏

a∈{a0,a1}

∏
z∈{0,1}

∏
d∈{0,1}

∏
(i,j)∈O(a,z,d,1)

∑
g∈G(a,z,d)

ρg,z,di,j wg
i,jf

g,z,d
i,j .

(3.2)

Our model-based Bayesian method ultimately utilizes the above mixture model that
requires the specification of w

(g)
i,j , ρ

(g,a,z)
i,j and f

(g,a,z)
i,j . Specific models and prior dis-

tributions are provided in our simulation studies in Section 4 and our case study in
Section 5. Our Bayesian methodology also enables us to infer principal causal effects
under two-sided noncompliance, whereas existing methods require additional strict as-
sumptions to perform inferences for principal causal effects under two-sided noncompli-
ance including always-takers and social-interaction compliers (i.e., the strata (a, a) and
(c, a)) (Vazquez-Bare, 2022).

3.4 Gibbs Sampling Algorithm
We utilize the Gibbs sampling algorithm (Geman and Geman, 1984; Gelfand and Smith,
1990; Imbens and Rubin, 1997) to obtain the posterior predictive distributions of Ymis

and Yu given the observed data, so as to impute all missing and unrealized outcomes
and derive the posterior distributions for the causal estimands. Specifically, we iterate
between drawing from the conditional distributions of (ψ,φ,θ) and G given the other
variables, respectively. Then for each iteration we impute Ymis and Yu, and calculate
the causal estimands of interest to effectively get a draw from their respective posterior
distributions. The essential algorithm is outlined below.

1. Initialize parameters ψ(0), φ(0), θ(0).

2. For t = 0, 1, . . .:

(a) Draw G(t+1) ∼ p
(
G | X,Ao,Zo,Do,Mo,Yobs,ψ(t),φ(t),θ(t)

)
.

(b) Draw (Ymis,(t+1),Yu,(t+1)) ∼ p
(
Ymis,Yu | X,Ao,Zo,Mo,Yobs,G(t+1),

ψ(t),φ(t),θ(t)
)
.

(c) Calculate the causal estimand based on the observed and imputed data.

(d) Draw
(
ψ(t+1),φ(t+1),θ(t+1)

)
∼ p

(
ψ,φ,θ | X,Ao,Zo,Mo,Yobs,G(t+1)).

(e) Repeat steps 2(a)–2(e).

This Gibbs sampler enables us to obtain posterior draws of all the unobserved po-
tential outcomes and principal strata for all units. We then perform causal inferences
by means of the posterior distributions. For example, points estimates of the estimands
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can be obtained via their posterior means or medians, and intervals for the estimands
can be obtained via the central credible intervals. Detailed derivations for each step of
the Gibbs sampler are provided in the supplementary material (Ohnishi and Sabbaghi,
2022).

4 Simulation Studies
4.1 Evaluation Metrics and Data Generating Mechanisms
We evaluate the frequentist properties of our Bayesian methodology with respect to
those of the method of Imai et al. (2021), which we implement using its R package
experiment (Imai et al., 2019). Imai et al. (2021) implicitly assumed MCAR data in
their analyses, and so removed rows with missing outcomes from their analyses because
their methodology does not accommodate missing outcomes. Therefore, to ensure fair
comparisons, in our first simulation studies we have either no missing data or MCAR
data. Our Bayesian methodology easily accommodates the MCAR mechanism without
major modifications, as this would just entail removing units that have missing outcomes
and ignoring the missing data mechanism model in the derivations of the likelihood
functions and posteriors.

The evaluation metrics that we consider are bias and mean square error (MSE) in
estimating a causal estimand, coverage of an interval estimator for a causal estimand,
and the interval length. Bias and MSE are generally defined as

∑M
m=1 (τ − τ̂m) /M and∑M

m=1 (τ − τ̂m)2 /M respectively, where M denotes the number of simulated datasets,
τ denotes the true causal estimand, and τ̂m denotes the estimate of the causal estimand
in dataset m = 1, . . . ,M . For our Bayesian method, the point estimator is the median
of the posterior distribution of a causal estimand, and the interval estimator is the 95%
central credible interval. Our summary of the interval length is the median of the lengths
of the credible intervals computed from M simulated datasets. The median is desirable
as it is more robust for the chosen data generating mechanism. The data generating
mechanisms that we consider in our study are specified to simulate data resembling
those in our case study in Section 5.

For the two-stage randomized experiments in our simulation study, the clusters have
equal numbers of units (i.e., Nj = N/J), and we specify p(Aj = a0) = p(Aj = a1) =
0.5, p(Zi,j = 1 | Aj = a0) = 0.4, and p(Zi,j = 1 | Aj = a1) = 0.8 for any experimental
unit i = 1, . . . , Nj in cluster j = 1, . . . , J . Each experimental unit belongs to just one of
the latent principal strata {(n, n), (c, c), (a, a), (n, c), (n, a), (c, a)}. The principal strata
memberships are generated according to Gi,j ∼ Multinomial(π(n,n), π(c,c), π(a,a), π(n,c),
π(n,a), π(c,a)). Evaluation for different values of J is presented in the appendix.

The potential outcomes in our simulation study are continuous and are generated to
have a right-skewed distribution with an excess of zeros. The specific generation mecha-
nism that we implement is a zero-inflated Log-Normal distribution, with the parameters
of the underlying Bernoulli and Log-Normal random variables (representing the excess
zeros and heavy tail of the outcomes, respectively) specified to be distinct for each strata
and treatment. More formally, for a ∈ {a0, a1} and z ∈ {0, 1}, the potential outcomes for
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unit i in cluster j are generated by first sampling Wi,j(z, a) ∼ Bernoulli(pz,a,Gi,j ), then
sampling Ỹi,j(z, a) ∼ Log-Normal (μz,a,Gi,j , σ

2
z,a,Gi,j

), and finally generating Yi,j(z, a) =
{1 −Wi,j(z, a)} Ỹi,j(z, a). For this simulation study, we assume that potential outcomes
are generated independently of one another. In addition, Assumption 8 applies through-
out the data generating mechanism, including for Wi,j(z, a) and Ỹi,j(z, a). The gen-
erated Wi,j(z, a) and Ỹi,j(z, a) are not recorded as data. Finally, we use conjugate
prior distributions for all parameters, that is,

(
π(n,n), π(c,c), π(a,a), π(n,c), π(n,a), π(c,a)

)
∼

Dirichlet(2, 2, 2, 2, 2, 2), pz,a,Gi,j ∼ Beta(1, 1), μz,a,Gi,j ∼ Normal(0, 102) and σ2
z,a,Gi,j

∼
InverseGamma(1, 1). Detailed algorithms for the Gibbs sampler are provided in the ap-
pendix. We simulate 500 datasets for each N = 5000, 10000, 50000 with a fixed cluster
size of J = 100. In the appendix we provide all parameter values that are utilized in
our simulation study the frequentist evaluations for the super-population versions of the
causal estimands, and an additional simulation study using the Gamma distribution for
the outcome model.

4.2 Results
Table 3 summarizes the results of our simulation study in the case of the Log-Normal
distribution. The method of Imai et al. (2021) is abbreviated as “IJM” in this table.
We observe that both methods perform well with respect to coverage and bias, with the
IJM method exhibiting less bias than our Bayesian method for small sample sizes. This
difference in bias can be attributed to the effect of the prior distributions, which is not
negligible for small N . In addition, the posterior median is not an unbiased estimator of
the mean of the Log-Normal distribution, although it is arguably a desirable estimator
as it should be more robust for the chosen data generating mechanism. This difference
in bias should also be expected as the emphasis of the Bayesian approach is on the
posterior distribution and whether it is well-calibrated. Finally, we recognize that our
Bayesian methodology outperforms the IJM method with respect to MSE under all
conditions. The differences in MSE imply that the Bayesian point estimator is less likely
to deviate from the true causal effect over multiple experiments as compared to the IJM
method, that the Bayesian estimator has less variability, and that the Bayesian intervals
have smaller widths. Ultimately, the Bayesian methodology yields more precise causal
inferences. The IJM method is sensitive to the shape of the distribution and exhibits
greater variability and MSEs as it attempts to accommodate outliers.

4.3 Evaluation under Misspecification
We evaluate our Bayesian methodology under model misspecification. To generate data
that resemble those in our case study, we consider heavy-tailed distributions for the
data-generating process. We use the Half-Student-t distribution with different values of
the degrees of freedom, ν = 1.5, 2.0, 3.0, 5.0 to evaluate how the outliers and skewness of
the distribution influence our results. We did not choose ν = 1 because that corresponds
to the Cauchy distribution, which does not have a finite first moment. The outcomes
are generated by Ỹi,j(z, a) ∼ Cz,a,Gi,j× Half-t (ν), where Cz,a,Gi,j is a scaling constant.
We fit the Log-Normal model described in the previous section to the generated data.
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Coverage Bias MSE Interval Width
N IJM Bayes IJM Bayes IJM Bayes IJM Bayes

5000 96% 99% 4.43E+02 5.02E+02 3.60E+07 4.57E+06 1.91E+04 9.11E+03
CADE(0, a0) 10000 96% 98% −2.52E+02 2.99E+02 1.39E+07 1.94E+06 1.36E+04 5.41E+03

50000 94% 95% −1.22E+02 1.59E+02 3.58E+06 2.71E+05 6.61E+04 2.09E+03
5000 92% 97% −1.05E+03 1.20E+03 2.28E+08 5.97E+06 4.52E+04 1.67E+04

CADE(1, a1) 10000 93% 97% 2.12E+02 8.92E+02 1.29E+08 3.61E+06 3.38E+04 1.13E+04
50000 94% 97% 4.81E+02 2.98E+02 2.18E+07 7.75E+05 1.68E+05 4.81E+03
5000 96% 98% 1.68E+02 2.46E+02 9.11E+06 1.20E+06 9.63E+03 4.68E+03

ITTY,·,·(a0) 10000 96% 98% −1.21E+02 1.46E+02 3.49E+06 4.86E+05 6.86E+03 2.80E+03
50000 93% 96% −5.61E+01 8.06E+01 9.08E+05 7.39E+04 3.32E+04 1.08E+03
5000 92% 97% −4.54E+02 6.00E+02 4.62E+07 1.42E+06 2.03E+04 7.76E+03

ITTY,·,·(a1) 10000 94% 97% 1.18E+02 4.41E+02 2.64E+07 8.34E+05 1.52E+04 5.30E+03
50000 94% 97% 2.31E+02 1.42E+02 4.45E+06 1.69E+05 7.54E+04 2.23E+03
5000 87% 95% −1.56E-02 2.60E-03 5.63E-04 2.22E-04 6.96E-02 5.70E-02

ITTD,·,·(a0) 10000 93% 94% −2.26E-04 −1.47E-03 1.74E-04 1.21E-04 4.92E-02 4.06E-02
50000 94% 95% −6.52E-04 −1.52E-04 3.31E-05 2.20E-05 2.20E-02 1.83E-02
5000 94% 94% −7.57E-03 4.87E-03 5.34E-04 4.10E-04 9.06E-02 7.64E-02

ITTD,·,·(a1) 10000 93% 93% −2.34E-03 3.76E-03 2.85E-04 2.24E-04 6.40E-02 5.51E-02
50000 94% 96% −2.36E-03 4.44E-04 5.29E-05 3.70E-05 2.86E-02 2.53E-02

Table 3: Evaluation metrics for our Bayesian methodology versus the method of Imai
et al. (2021) (abbreviated as “IJM”) under the Log-Normal data-generating process and
the finite-population perspective.

We fix the number of units and the number of clusters at N = 10000 and J = 100
respectively. The additional parameters Cz,a,Gi,j are provided in the supplementary
material (Ohnishi and Sabbaghi, 2022).

Table 4 summarizes the results of the simulation study in the case of model misspec-
ification. Our Bayesian model outperforms the IJM method for the skewed distribution,
ν = 1.5. It also exhibits smaller MSE and slightly larger bias for ν = 2.0, 3.0 for the case
of the CADE and ITTY estimands. The larger bias is attributable to the same reasons
as those outlined in the explanation of the results for the first simulation study (Sec-
tion 4.2). When the data distribution is less skewed and less heavy-tailed, i.e., when
ν = 5.0, the IJM method performs well. This results suggest that one should adopt
more appropriate outcome models for less skewed data. On the other hand, our model
is assumed to be more appropriate for the data in the case study that is considered in
Section 5, as those data are heavily skewed and exhibit substantial outliers on the tail.

4.4 Evaluation under MNAR

Table 5 presents the simulation results under MNAR. The underlying parametrizations
are the same as the Log-normal mechanism in Section 4.1, except that the outcome is
missing with probabilities given in the supplementary material (Ohnishi and Sabbaghi,
2022). It is important to recognize that the IJM method is evaluated after applying
listwise deletion of the rows with missing outcome. We see that for N = 5000 the
interval lengths of the Bayesian method are a bit larger than those in Table 3. This is
due to incorporating the missingness mechanism into our model. For sufficiently large
data (i.e., N = 10000, 50000), the results are similar to those in Table 3.
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Coverage Bias MSE Interval Width
ν IJM Bayes IJM Bayes IJM Bayes IJM Bayes

1.5 94% 92% 8.38E-01 4.43E-01 3.52E+02 2.78E+01 2.08E+01 2.19E+01
CADE(0, a0) 2.0 92% 93% −7.55E-02 −4.02E-01 7.21E+00 3.70E+00 7.77E+00 8.39E+00

3.0 95% 96% −5.92E-02 2.51E-02 1.11E+00 8.78E-01 4.01E+00 4.10E+00
5.0 93% 84% −4.01E-02 5.29E-01 5.65E-01 8.85E-01 2.84E+00 2.88E+00
1.5 97% 90% 2.01E+00 −1.64E+00 7.36E+02 1.43E+02 2.58E+01 2.61E+01

CADE(1, a1) 2.0 98% 96% −6.03E-02 −4.60E-01 1.24E+01 7.57E+00 1.07E+01 1.08E+01
3.0 96% 98% 3.72E-02 −1.43E-01 2.10E+00 1.50E+00 5.42E+00 5.96E+00
5.0 96% 93% −1.41E-01 −6.70E-01 9.33E-01 1.62E+00 3.83E+00 4.39E+00
1.5 94% 92% 3.60E-01 1.61E-01 6.37E+01 5.02E+00 8.99E+00 9.50E+00

ITTY,·,·(a0) 2.0 93% 94% −2.74E-02 −1.94E-01 1.34E+00 6.90E-01 3.37E+00 3.54E+00
3.0 96% 97% −1.92E-02 −1.10E-02 2.11E-01 1.61E-01 1.74E+00 1.75E+00
5.0 93% 86% −1.21E-02 2.02E-01 1.07E-01 1.50E-01 1.23E+00 1.21E+00
1.5 96% 89% 9.11E-01 −7.06E-01 1.14E+02 2.15E+01 1.03E+01 9.90E+00

ITTY,·,·(a1) 2.0 98% 96% −3.04E-02 −2.30E-01 2.01E+00 1.16E+00 4.24E+00 4.28E+00
3.0 95% 98% 1.23E-02 −1.10E-01 3.37E-01 2.36E-01 2.20E+00 2.30E+00
5.0 96% 87% −5.61E-02 −3.10E-01 1.58E-01 2.79E-01 1.55E+00 1.64E+00
1.5 95% 93% 1.57E-03 −4.14E-03 1.51E-04 1.97E-04 5.09E-02 4.70E-02

ITTD,·,·(a0) 2.0 95% 85% 1.57E-03 −5.87E-03 1.51E-04 2.45E-04 5.09E-02 4.66E-02
3.0 95% 77% 1.57E-03 −6.43E-03 1.51E-04 3.46E-04 5.09E-02 4.60E+00
5.0 95% 67% 1.57E-03 −7.54E-03 1.51E-04 4.85E-04 5.09E-02 4.46E-02
1.5 95% 76% −1.24E-03 −1.27E-03 2.78E-04 6.22E-04 6.52E-02 5.90E-02

ITTD,·,·(a1) 2.0 95% 69% −1.24E-03 −1.53E-02 2.78E-04 7.32E-04 6.52E-02 5.75E-02
3.0 95% 59% −1.24E-03 −1.77E-02 2.78E-04 1.00E-03 6.52E-02 5.55E-02
5.0 95% 47% −1.24E-03 2.43E-02 2.78E-04 1.53E-03 6.52E-02 5.29E-02

Table 4: Evaluation metrics for our Bayesian methodology versus the IJM method under
model misspecification.

The performance of the IJM method in Table 5 is worse in all metrics compared
to the IJM results in Table 3. This is due to the bias resulting from applying listwise
deletion of rows under the assumption of an MCAR mechanism when the actual missing
data mechanism is MNAR. The bias becomes more severe when the missingness prob-
abilities are significantly large. We present additional simulations with larger missing
probabilities in the appendix.

5 Case Study: The Rashtriya Swasthya Bima Yojana
Health Insurance Dataset

5.1 Description of Experiment and Data

Approximately 63 million people in India are below the poverty line due to health care
expenditures. In 2008 a large-scale national hospital insurance plan for the poor was
launched. This plan is known as the Rashtriya Swasthya Bima Yojana (RSBY). It is a
large-scale national hospital insurance plan that households below the poverty line can
join with a nominal co-payment. Under RSBY, these households can be covered for up
to five people and more than 700 medical treatments and procedures, with the price set
by the government. Medical services are provided nationwide by government-contracted
public and private hospitals. Beneficiaries use their RSBY biometric ID cards, elimi-
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Coverage Bias MSE Interval Width
N IJM Bayes IJM Bayes IJM Bayes IJM Bayes

5000 96% 98% 6.12E+02 4.65E+02 3.88E+07 4.77E+06 2.06E+04 3.24E+04
CADE(0, a0) 10000 98% 98% −2.52E+02 2.02E+02 1.58E+07 1.12E+06 1.48E+04 1.41E+04

50000 94% 96% −3.25E+02 1.22E+02 3.97E+06 5.21E+05 7.07E+03 2.87E+03
5000 92% 96% −1.27E+03 1.84E+03 2.82E+08 9.11E+06 4.91E+04 5.43E+04

CADE(1, a1) 10000 93% 97% 6.10E+02 1.25E+03 1.47E+08 6.07E+06 3.71E+04 3.92E+04
50000 96% 98% 3.65E+02 5.31E+03 2.56E+07 5.93E+06 1.84E+04 1.26E+04
5000 96% 98% 3.34E+02 2.22E+02 9.50E+06 1.26E+06 1.00E+04 1.60E+04

ITTY,·,·(a0) 10000 97% 98% 1.94E+02 9.60E+01 3.83E+06 3.02E+05 7.30E+03 7.06E+03
50000 93% 96% −2.14E+02 6.24E+01 9.86E+05 1.38E+05 3.47E+03 1.45E+03
5000 92% 95% −4.79E+02 9.28E+02 5.51E+07 2.25E+06 2.20E+04 2.50E+04

ITTY,·,·(a1) 10000 93% 97% 2.66E+02 6.20E+02 2.83E+07 1.40E+06 1.63E+04 1.80E+04
50000 96% 98% 1.30E+02 2.49E+02 5.03E+06 1.22E+06 8.17E+03 5.77E+03
5000 94% 91% 1.89E-03 4.81E-03 3.43E-04 3.33E-04 7.10E-02 5.94E-02

ITTD,·,·(a0) 10000 72% 92% −1.71E-02 −2.36E-03 4.72E-04 1.62E-04 5.04E-02 4.23E-02
50000 47% 93% −1.13E-02 −2.22E-04 1.62E-04 2.50E-05 2.24E-02 1.86E-02
5000 96% 91% 8.62E-04 9.62E-03 5.47E-04 5.09E-04 9.83E-02 7.29E-02

ITTD,·,·(a1) 10000 89% 91% −1.09E-02 5.62E-03 4.42E-04 2.50E-04 6.90E-02 5.43E-02
50000 89% 95% −6.75E-03 7.27E-04 1.00E-04 3.80E-05 3.08E-02 2.49E-02

Table 5: Evaluation for our Bayesian methodology under MNAR. The IJM method is
evaluated after applying listwise deletion of rows with missingness.

nating the need for cash transactions and insurance claims. Additional information and
references for RSBY are provided by Nandi et al. (2015).

Imai et al. (2021) conducted a two-stage randomized experiment to determine
whether access to the national insurance plan provided by RSBY increases access to
hospitals and reduces impoverishment due to high medical expenses. This experiment
consisted of N = 10, 072 households after Imai et al. (2021) applied listwise deletion for
missing outcomes, with the households residing in J = 435 villages. Of these villages,
J1 = 219 were assigned treatment probability a1 = 0.8 and the remaining 216 villages
were assigned treatment probability a0 = 0.4. One concern in this experiment was the
spillover effects between households, because one household’s enrollment in RSBY may
depend on the treatments assigned to other households. Another concern is that some
households assigned treatment may decide to not enroll in RSBY, and some households
assigned control may ultimately manage to enroll in RSBY.

5.2 Bayesian Analyses of the Experiment

We utilize our Bayesian methodology to infer the direct and spillover effects accounting
for interference, treatment nonadherence, and missing outcomes on the annual household
hospital expenditure outcome (which ranges from 0 to INR 500, 000). We first consider
the case of Imai et al. (2021) in which the outcomes are assumed to be MCAR. In this
case, listwise deletion of rows with missingness is performed. We use the same mixture
model as in Section 4.1 to analyze the data. The model for principal strata memberships
is the Multinomial distribution, Gi,j ∼ Multinomial

(
π(n,n), π(c,c), π(a,a), π(n,c), π(n,a),

π(c,a)
)
. For the potential outcomes we specify a zero-inflated Log-Normal distribution for

each principal stratum, that is, for a ∈ {a0, a1} and z ∈ {0, 1}, the potential outcomes
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Mean SD Median 95% interval IJM Est. IJM SD
CADE(a1, a1) −2041 7247 −1813 (−3782,−256) −1649 1061
CADE(a0, a0) 298 3912 158 (−1356, 1982) 1984 1215
ITTY,·,·(a1) −853 3040 −759 (−1586,−106) −795 514
ITTY,·,·(a0) 139 1811 74 (−632, 913) 875 530
ITTD,·,·(a1) 0.418 0.010 0.418 (0.397, 0.438) 0.482 0.023
ITTD,·,·(a0) 0.465 0.009 0.465 (0.446, 0.483) 0.441 0.021
SY,·,·(1) −1129 1795 −1071 (−1741,−459) −1374 823
SY,·,·(0) −136 3044 −222 (−1003, 666) 297 858
SD,·,·(1) 0.030 0.007 0.029 (0.018, 0.047) 0.086 0.053
SD,·,·(0) 0.077 0.009 0.077 (0.060, 0.095) 0.045 0.028

Table 6: Comparisons of the causal inferences obtained from our Bayesian methodology
with those obtained from the method of IJM.

for unit i in cluster j are determined by Yi,j(z, a) = {1 −Wi,j(z, a)} Ỹi,j(z, a) where
Wi,j(z, a) ∼ Bernoulli(pz,a,Gi,j ) and Ỹi,j(z, a) ∼ Log-Normal (μz,a,Gi,j , σ

2
z,a,Gi,j

). Fi-
nally, we use conjugate prior distributions for all parameters.

(
π(n,n), π(c,c), π(a,a), π(n,c),

π(n,a), π(c,a)
)
∼ Dirichlet(α(n,n), α(c,c), α(a,a), α(n,c), α(n,a), α(c,a)), pz,a,Gi,j ∼ Beta(a0, b0),

μz,a,Gi,j ∼ Normal(μ0, σ
2
0) and σ2

z,a,Gi,j
∼ InverseGamma(k0, θ0) where θ0 is a scale pa-

rameter. For the hyperparameters we choose α(n,n) = α(c,c) = α(a,a) = α(n,c) = α(n,a) =
α(c,a) = 1, a0 = b0 = 1, μ0 = 0, σ2

0 = 5, k0 = 0.1 and θ0 = 1. Note that σ2
0 = 5

is sufficiently large on a log scale. Our MCMC algorithm was performed for 100, 000
iterations with a burn-in of 50, 000 draws.

We consider the finite-population inference as was done by Imai et al. (2021). One
advantage of the alternative, super-population inference is that the estimands are free
of the parameters governing the associations between potential outcomes. This is an
advantage because the data are not informative about the associations between potential
outcomes as all potential outcomes can never be jointly observed simultaneously for an
experimental unit. Ding and Li (2018) suggested isolating the parameters that govern
the marginal distributions from the parameters that govern the associations between
potential outcomes, and performing sensitivity analyses for the association parameters.
We omit the sensitivity analysis for these parameters and instead perform a sensitivity
analysis for the prior distributions.

Table 6 compares the results obtained from our Bayesian methodology with those
obtained by the method of Imai et al. (2021) in the case of MCAR outcomes. We do
not consider the complier average spillover effects because we defined these estimands
differently from Imai et al. (2021), and because Imai et al. (2021) mentioned that these
estimands were imprecisely estimated in their analyses. We observe in Table 6 that our
results are generally consistent with those of Imai et al. (2021). However, differences ex-
ist because our Bayesian method is able to detect significance effects in CADE(a1, a1),
ITTY,·,·(a1), and SY,·,·(1). The negative spillover effects that our method detects in-
dicate that treated households are more likely to be negatively affected by the shift
from a0 to a1. Alternatively, assigning a greater proportion of households to treatment
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Post. Mean Post. Median 95% Credible Interval
OY,·,· −731 −739 (−1280,−181)
CAOE(a0) −1242 −1154 (−2334,−30)
CAOE(a1) −1234 −1328 (−2600,−75)
CADE(a1, a0) −1647 −1626 (−3329,−230)
CADE(a0, a1) 259 237 (−1444, 2162)
CASE(0, a0) −33 −64 (−1691, 1797)
CASE(1, a0) −2004 −1870 (−3484,−548)
CASE(0, a1) 128 −76 (−1903, 1981)
CASE(1, a1) −2172 −2160 (−3831,−694)

Table 7: Additional causal estimands and their estimates for the RSBY data.

will cause another treated household in the same village to spend less. We also observe
large posterior standard deviations, and that the posterior intervals always have smaller
widths than IJM’s confidence intervals. The new effects that our methodology detects
can be attributed to the greater precision (hence power) that follows from the use of the
Bayesian model. Furthermore, our Bayesian methodology’s ability to consider a point
estimator based on the median, and a model that accommodates both an abundance
of zeros and heavy tails, is advantageous for analyzing the data as the inferences would
be robust to outlying observations. In particular, there are 36 observations greater than
INR 100, 000, with the two largest ones being INR 403, 000 and 500, 000. For compari-
son, the median in the dataset is INR 1, 000.

Table 7 summarizes the results for the other causal estimands in the case of MCAR
outcomes. Interestingly, the credible intervals of the overall effects for all units, as well
as for compliers, lie below zero. The overall effect is of greatest interest to policy makers
as it captures a pure impact of the intervention on all units. Our inferences on compliers
imply that the overall effects are negative for units who comply with the assignment
regardless of which treatment probability a0 or a1 is assigned to their respective cluster.
We can also conclude from both Tables 6 and 7 that the direct effect of the treatment
assignment under treatment probability a1 is negative for compliers, regardless of their
base cluster assignment. Finally, we can conclude that the spillover effects for compliers
are negative when all units are assigned to treatment, regardless of whether they are
compliers under a0 or a1. Combined with our inferences on SY,·,·(1), the spillover effect
of treatment assignment on units is negative, regardless of their principal strata.

Table 8 presents the results in the case of MNAR outcomes. As the overall missing-
ness rate is small (7.8%), we do not observe significant changes from the results under
the MCAR mechanism in Table 6 and 7. This observation implies that assuming the
MCAR mechanism would not hurt the final estimates for our analyses. Our Bayesian
methodology enables us to explicitly assess the plausibility of missingness assumptions.
This is another advantage of our methodology over the previous works (Imai et al.,
2021; Forastiere et al., 2016; Vazquez-Bare, 2022).
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Post. Mean Post. Median 95% Credible Interval
CADE(a1, a1) −1951 −1871 (−3808,−361)
CADE(a0, a0) 127 78 (−1473, 1854)
ITTY,·,·(a1) −814 −783 (−1597,−149)
ITTY,·,·(a0) 58 34 (−674, 838)
ITTD,·,·(a1) 0.417 0.417 (0.395, 0.436)
ITTD,·,·(a0) 0.456 0.456 (0.437, 0.474)
SY,·,·(1) −1069 −1038 (−1726,−465)
SY,·,·(0) −196 −209 (−1011, 700)
SD,·,·(1) 0.036 0.036 (0.024, 0.051)
SD,·,·(0) 0.075 0.075 (0.059, 0.092)
OY,·,· −729 −714 (−1284,−217)
CAOE(a0) −1106 −1067 (−2291,−18)
CAOE(a1) −1222 −1213 (−2455,−37)
CADE(a1, a0) −1773 −1710 (−3456,−328)
CADE(a0, a1) 143 151 (−1565, 1965)
CASE(0, a0) 54 37 (−1595, 1939)
CASE(1, a0) −1846 −1750 (−3390,−451)
CASE(0, a1) 50 26 (−1778, 2097)
CASE(1, a1) −2044 −1990 (−3657,−596)

Table 8: Results in the case of MNAR outcomes.

5.3 Sensitivity Analysis to Prior Specifications

When performing Bayesian analyses with weakly identifiable models it is important
to investigate the robustness of the results with respect to the prior specifications,
so as to make inferences more reliable. The results in this section are derived using
proper prior distributions. In particular, we use μz,a,Gi,j ∼ Normal(0, σ2

0), σ2
z,a,Gi,j

∼
InverseGamma(a0, b0), (π(n,n), π(c,c), π(a,a), π(n,c), π(n,a), π(c,a)) ∼ Dirichlet(φ(c,c), φ(a,a),
φ(n,n), φ(n,c), φ(n,a), φ(c,a)), and pz,a,Gi,j ∼ Beta(α0, β0) for the prior specifications. Ta-
ble 10 presents the specifications of hyperparameters. Note that σ2

0 = 3 is substantially
different from σ2

0 = 5 and σ2
0 = 7 on a log scale. Table 9 reports the results for CADE. we

observe that the extreme cases for p, specifically, Cases 10 and 11, lead to slight changes
in the intervals, and that the other cases only exhibit minor changes in the results. How-
ever, the extreme values of p indicate strong prior beliefs about whether the outcome
is zero or not for each principle strata. In our case study, as we lack knowledge about
the unobservable strata, we believe that such strong priors about these parameters are
unreasonable.

6 Concluding Remarks
We presented a Bayesian model-based methodology to simultaneously address interfer-
ence, treatment nonadherence, and missing outcomes in two-stage randomized experi-
ments. These three complications are significant drivers of unstable and biased causal
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CADE(a0, a0) CADE(a1, a0) CADE(a0, a1) CADE(a1, a1)
Percentile 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
Case 1 −1346 125 1773 −3329 −1593 −161 −1423 210 2034 −3691 −1770 −181
Case 2 −1356 158 1982 −3328 −1626 −229 −1444 236 2162 −3782 −1813 −256
Case 3 −1265 165 2134 −3431 −1679 −170 −1357 212 2084 −3845 −1873 −241
Case 4 −1313 192 1944 −3322 −1579 −179 −1399 262 2094 −3742 −1764 −205
Case 5 −1351 143 2013 −3458 −1682 −308 −1458 190 2120 −3905 −1881 −353
Case 6 −1388 141 1783 −3326 −1610 −192 −1463 233 2055 −3718 −1782 −218
Case 7 −1194 259 1884 −3797 −2034 −576 −1238 261 1938 −3888 −2081 −596
Case 8 −1323 168 2004 −3447 −1652 −288 −1442 230 2115 −3874 −1853 −326
Case 9 −1335 176 2052 −3341 −1639 −195 −1387 255 2147 −3759 −1813 −239
Case 10 −902 484 2128 −3354 −1734 −326 −990 525 2326 −3627 −1881 −355
Case 11 −1411 −10 1629 −3447 −1762 −447 −1521 21 1770 −3796 −1928 −490
Case 12 −1384 136 1857 −3298 −1660 −219 −1445 223 2131 −3632 −1813 −239

Table 9: Sensitivity analysis to prior specifications. We present the posterior medians
and 95% central credible intervals of the causal estimands.

Log-Normal Principal Strata Excess Zeros
σ2

0 a0 b0 φ(c,c) φ(a,a) φ(n,n) φ(n,c) φ(n,a) φ(c,a) α0 β0
Case 1 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Case 2 5.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Case 3 7.0 0.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Case 4 5.0 0.1 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0
Case 5 5.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0
Case 6 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Case 7 3.0 0.1 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Case 8 3.0 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 1.0 1.0
Case 9 3.0 1.0 1.0 10.0 10.0 10.0 10.0 10.0 10.0 1.0 1.0
Case 10 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.1
Case 11 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0
Case 12 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5

Table 10: Parameter specifications for sensitivity analysis.

inferences in modern experiments. Existing methodologies are lacking in their abili-
ties to address all these issues simultaneously. There are three novel contributions of
our Bayesian methodology. First, it provides a set of assumptions for performing valid
causal inference in two-stage randomized experiments in the presence of these compli-
cations. We extended existing assumptions on the structure of interference to handle
missing outcomes and also clarified and formalized assumptions about adherence behav-
iors within and across clusters. Second, it defines new causal estimands, including the
overall effects of intervention and interpretable spillover effects, that can be inferred by
means of our flexible Bayesian models. Our Bayesian methodologies address the issues of
identifiability under two-sided nonadherence. Finally, our methodology can enable more
precise causal inferences compared to existing methods for complex, non-standard data-
generating mechanisms. We illustrated the utility of our methodology in this respect
via simulation studies and the RSBY case study. In the latter study our methodology
was able to uncover more definitive evidence of spillover and overall effects of the in-
tervention that were not recognized in the previous analyses by Imai et al. (2021). Our
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results are further validated by sensitivity analyses to prior distribution specifications
and consideration of the case of MNAR missing outcomes.

Of great interest for future research on our Bayesian methodology is the relaxation of
the assumptions of the interference structure. In certain real-life contexts it may be too
restrictive to employ the two-stage randomized design and assume stratified interference.
A great deal of research has been conducted on inferring causal effects without using
special designs such as the two-stage randomized design or clustered encouragement
design. The work of Aronow and Samii (2017) and Sävje et al. (2021) provide one
possible path for future research based on the network structure and exposure mapping.
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