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The Normal-Generalised Gamma-Pareto
Process: A Novel Pure-Jump Lévy Process with

Flexible Tail and Jump-Activity Properties

Fadhel Ayed∗, Juho Lee†, and François Caron‡

Abstract. We propose a novel family of self-decomposable Lévy processes where
one can control separately the tail behavior and the jump activity of the process,
via two different parameters. Crucially, we show that one can sample exactly
increments of this process, at any time scale; this allows the implementation of
likelihood-free Markov chain Monte Carlo algorithms for (asymptotically) exact
posterior inference. We use this novel process in Lévy-based stochastic volatility
models to predict the returns of stock market data, and show that the proposed
class of models leads to superior predictive performances compared to classical
alternatives.
Keywords: stochastic volatility models, power-law, regular variation,
Ornstein-Uhlenbeck, Bayesian inference, pseudo-marginal Markov chain Monte
Carlo.

1 Introduction
Pure-jump Lévy processes are a flexible class of stochastic processes that have found
a wide range of applications, including scalable Markov chain Monte Carlo (ŞimŠekli,
2017), tracking (Zhang and Paisley, 2018) or the analysis of phylogenetic traits (Landis,
Schraiber and Liang, 2012; Landis and Schraiber, 2017). Finance is probably the main
domain of application, as it is widely accepted that asset prices contain jumps, and
such models have been used as building blocks of complex dynamic models of asset or
option prices (Madan, Carr and Chang, 1998; Barndorff-Nielsen and Shephard, 2001;
Carr et al., 2002; Cont and Tankov, 2004; Huang and Wu, 2004; Jing, Kong and Liu,
2012).

Let (Xt)t≥0 be a real-valued pure-jump Lévy process. The process is said to have
heavy, power-law tails if, for any t,Δ > 0,

Pr(|Xt+Δ −Xt| > x) x→∞∼ ΔC1x
−2τ (1)

for some power-law exponent τ > 0 and some constant C1 > 0. That is, for large x, the
survival function of the increments approximately behaves as a power function.

Many financial time series, such as historical asset returns, exhibit heavy-tails. Em-
pirical evidence seems to indicate that the returns have nonetheless finite variance, hence
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corresponding to a power-law exponent τ > 1 (Cont and Tankov, 2004, Section 7.3).
Starting from the early work of Mandelbrot (1963) with the stable distribution, various
infinite-divisible distributions, closely related to Lévy processes, have been proposed to
capture power-law tails. Examples include the student t (Blattberg and Gonedes, 1974)
or Pareto (Champagnat et al., 2013) distributions; other models with (non power-law)
semi-heavy tails such as the normal inverse Gaussian (Barndorff-Nielsen, 1997), gen-
eralized hyperbolic (Eberlein, Keller and Prause, 1998) and tempered stable distribu-
tions (Cont, Potters and Bouchaud, 1997; Carr et al., 2002) have also been proposed;
see (Cont and Tankov, 2004, Section 7.3) for a review.

Another quantity of interest of the Lévy process is the Blumenthal-Getoor (BG)
index β ∈ [0, 2], also known as fractional order. It is defined by

β = inf

⎧⎨⎩r > 0 |
∑
i≥1

|Ji|r1θi≤1 < ∞

⎫⎬⎭ (2)

where (Ji, θi)i≥1 is the set of jump sizes and jump times. The BG index measures
the level of activity of the jumps: as the value of β increases, small jumps tend to
become more and more frequent. It is also related to the smoothness properties of the
time series (Cont and Tankov, 2004, Section 7.3) and therefore provides interpretable
information on the process and its properties. A number of papers have proposed and
analysed (model-free) estimators of this index (Aït-Sahalia and Jacod, 2009; Belomestny,
2010; Woerner, 2011; Belomestny and Panov, 2013). Some Lévy processes, such as the
normal-tempered stable or tempered stable processes, can capture the whole range [0, 2)
via a tuning parameter; other processes, such as the variance gamma (β = 0), normal-
inverse Gaussian, student t or generalised hyperbolic (β = 1), have a fixed BG index.

For a pure-jump Lévy process, a typical way to obtain a given power-law exponent
and BG index is to assume the regular variation of the tail intensity of the Lévy measure
ν characterising the Lévy process, such that∫

|s|≥x

ν(ds) x→∞∼ x−2τC1 and
∫
|s|≥x

ν(ds) x→0∼ x−β�(1/x)

for some slowly varying function �, that is such that limt→∞ �(ct)/�(t) = 1 for all c > 0.
While many Lévy measures have been proposed in the literature, no tractable model is
able to capture both the whole range of power-law exponent τ > 0 and BG index β ∈
[0, 2). Normal-tempered stable process for example (which includes as special case the
variance-gamma and normal-inverse Gaussian) capture the whole range of the β index
but have light tails. The class of generalised hyperbolic processes can capture heavy
tails, but has a fixed BG index equal to 1. The normal-stable process can capture both
heavy tails and different BG indices, but the same parameter controls both properties,
and the process has infinite variance.

In this paper, we introduce a novel four-parameter pure-jump Lévy process, called
normal generalised gamma-Pareto (NGGP) process, with the following properties.

• The model can capture power-law, heavy tails with a single parameter τ > 0; for
τ > 1, the process has finite variance;
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• Another parameter σ ∈ (−∞, 1) controls the BG index and therefore the activity
of the jumps, with β = max(0, 2σ). The process is finite-activity for σ < 0; it is
infinite-activity for σ ≥ 0; it is of bounded variation if σ < 1/2 and of unbounded
variation if σ ∈ [1/2, 1);

• The other two parameters respectively are inverse scale and time scale parameters.
More details on the interpretability of the parameters can be found in Section 2.2;

• One can sample exactly from the distribution of the increments, at any time
scale; this enables the use of likelihood-free Markov chain Monte Carlo methods
for inference;

• The distribution of the increments of the Lévy process is self-decomposable.

The NGGP process is obtained via Brownian subordination, using the subordinator
introduced by Ayed, Lee and Caron (2019) for modeling power-law properties of text
data. We derive a number of properties of the NGGP process and use the proposed
model to predict the stock prices of some financial assets. We consider two Lévy based
stochastic volatility models: an exponential Lévy model, and an Ornstein-Uhlenbeck
based model Lévy-driven stochastic volatility model (Barndorff-Nielsen and Shephard,
2001). We show that, compared to other Lévy processes, the proposed model is both
able to capture the heavy-tail and small-jump behaviours.

The article is organised as follows. In Section 2, we introduce the generalised gamma-
Pareto subordinator, its properties, and the associated subordinated Brownian process.
In Section 3 we describe two Lévy process based stochastic volatility models, and de-
scribe how to perform asymptotically exact posterior inference under our Lévy process
with both models. In Section 4 we present experimental results on the modelling of
stock prices and show that our model provides a very good fit to the data and good
predictive performances compared to classical alternatives.

Notations We use the notation an
n→∞∼ bn for limn→∞ an/bn = 1. For a random

variable X, the notation X ∼ F indicates that X has distribution F . Gamma(a, b)
denotes the gamma distribution with shape parameter a and inverse scale parameter b.
Poisson(λ) denotes the standard Poisson distribution with rate λ.

2 The NGGP process
2.1 Generalised gamma subordinator

A generalised gamma (GG) subordinator (almost surely increasing Lévy process) (Yt)t≥0
has Lévy intensity (Hougaard, 1986; Aalen, 1992; Brix, 1999)

ρGG(w; η, σ, c) = η

Γ(1 − σ)w
−1−σe−cw, w > 0 (3)

where η > 0 and σ ∈ (−∞, 1), c > 0 or c = 0, σ ∈ (0, 1). The subordinator is finite-
activity for σ < 0 and infinite-activity if σ ∈ [0, 1). It admits as special cases the gamma
process (σ = 0), inverse-Gaussian process (σ = 1/2) and stable process (c = 0). When
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σ > 0, the process belongs to the general family of tempered stable processes introduced
by Rosiński (2007) and some authors referred to this process simply as a tempered stable
process (Barndorff-Nielsen and Shephard, 2002; Liang and Li, 2015). Ignoring the drift
term, Yt has Laplace transform

E[e−ϑYt ] = exp (−tψGG(ϑ; η, σ, c)) (4)

where the Laplace exponent is given by

ψGG(ϑ; η, σ, c) =
{

η
σ [(ϑ + c)σ − cσ] σ �= 0
η log(1 + ϑ/c) σ = 0. (5)

Yt is said to have the generalised gamma distribution with parameters (ηt, σ, c), and
we write Yt ∼ GG(tη, σ, c). For σ = 0, Yt ∼ Gamma(ηt, c), while for σ < 0, Yt is a
compound Poisson-gamma distribution with

Yt
d=

Kt∑
k=1

Yt,k

where Kt ∼ Poisson(ηt cσ

−σ ) and Yt,k ∼ Gamma(−σ, c) for k = 1, . . . ,Kt. For σ > 0, Yt is
an exponentially tilted stable random variable, for which exact samplers exist (Devroye,
2009; Hofert, 2011).

2.2 Generalised gamma-Pareto subordinator
Definition

Let Z = (Zt)t≥0 be a subordinator with no drift and Lévy intensity

ρ(w) = η

cτΓ(1 − σ)w
−1−τ

[
γ(τ − σ + 1, cw) + (cw)τ−σe−cw

]
, w > 0 (6)

where η > 0, c > 0, σ ∈ (−∞, 1), τ > 0 and γ(s, x) =
∫ x

0 ts−1e−tdt is the lower
incomplete gamma function. For τ > σ, using the identity (43) in Section A of the
supplementary material, the Lévy intensity takes the simpler form

ρ(w) = η(τ − σ)
cτΓ(1 − σ)w

−1−τγ(τ − σ, cw) (7)

which is the form in which Ayed, Lee and Caron (2019) introduced the process, with a
slightly different parameterisation. The Lévy intensity admits the following representa-
tion as a mixture of generalised gamma process

ρ(w) =
∫ ∞

0
u−1ρGG

(
w

u
; η(τ − σ)

τcσ
, σ, c

)
fU (u)du (8)

where fU (u) = τu−1−τ1u≥1 is the probability density function of a Pareto random
variable Pareto(τ, 1) with support [1,∞) and power-law exponent τ > 0, and ρGG is the
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Lévy intensity of a GG subordinator, defined in Equation (3). We will thereafter refer
to the subordinator with intensity (6) as a Generalised Gamma-Pareto (GGP) process.
For x > 0, let

ρ̄(x) =
∫ ∞

x

ρ(w)dw (9)

be the tail Lévy intensity. For t > 0, we denote FZt the cumulative distribution function
of the random variable Zt, with Laplace transform E[e−ϑZt ] = e−tψ(ϑ), where ψ is the
Laplace exponent which is given by, noting that γ(τ−σ+1, cw)=wτ−σ+1 ∫ c

0 uτ−σe−wudu,

ψ(ϑ)=
∫ ∞

0
(1 − e−wϑ)ρ(w)dw = η

cτ

[
cτ

τ
−
∫ c

0
(u+ϑ)σ−1uτ−σdu + cτ−σ

σ
((ϑ + c)σ − cσ)

]
.

(10)

Zt is said to have GGP(tη, σ, τ, c) distribution.

Properties

We derive here a number of properties of the Lévy process Z and of the GGP distribu-
tion.

Positive stable process The positive stable process with Lévy intensity η
Γ(1−σ)w

−1−σ

is obtained as a special case when c = 1, σ = τ ∈ (0, 1).

Scaled GG process Let
Yt =

∑
i≥1

Wi1θi≤t

where {(Wi, θi)}i≥1 are the jump sizes and times of a GG subordinator. Then, for τ > σ,
the representation (8) implies that

Zt
d=
∑
i≥1

WiUi1θi≤t

where Ui ∼ Pareto(τ, 1). The jump sizes of the GGP subordinator are obtained by
scaling the jumps of a GG subordinator with independent Pareto random variables.

Moments and cumulants We have E[Zm
t ] < ∞ for m < τ and E[Zm

t ] = ∞ otherwise.
For 1 ≤ m < τ , the mth cumulant is given by

κm(Zt) = t

∫ ∞

0
wmρ(w)dw = tη(τ − σ)Γ(m− σ)

cm(τ −m)Γ(1 − σ) .

In particular,

E[Zt] = tη(τ − σ)
c(τ − 1) , var(Zt) = tη(τ − σ)(1 − σ)

c2(τ − 2) .

where the expectation exists for τ > 1 and the variance for τ > 2.
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Inverse scale parameter If the intensity ρ is of the form (6) for some parameters
(η, σ, τ, c), then ρ(w/c)/c is also of the form (6) with parameters (η, σ, τ, 1). c is therefore
an inverse scale parameter, and if Zt ∼ GGP(tη, σ, τ, c) then cZt ∼ GGP(tη, σ, τ, 1).

Activity of the jumps and BG index The Lévy intensity (6) satisfies
∫∞
0 ρ(w)dw = ∞

if σ ≥ 0 and the subordinator is therefore infinite-activity. If σ < 0,
∫∞
0 ρ(w)dw < ∞

and it is finite-activity. More precisely, as noted by Ayed, Lee and Caron (2019), the
tail Lévy intensity is regularly varying at 0

ρ̄(x) x→0∼ �(1/x)x−α (11)

where α = max(0, σ) is the BG index, and the slowly varying function � is defined by

�(t) =

⎧⎪⎨⎪⎩
η

cσσΓ(1−σ) σ > 0
η log(t) σ = 0
η(τ−σ)
−στ σ < 0.

(12)

For any x > 0 and t ≥ 0, notice that ρ̄(x) = E

[∑
i≥1 1Ji≥x1θi∈[t,t+1]

]
, where

{(Ji, θi)}i≥1 are the jump sizes and times of the GGP subordinator. Hence the BG
index α controls the number of jumps above a certain threshold x > 0 per time unit.
It also tunes a number of asymptotic properties of the Laplace exponent of the Lévy
measure and of the cumulative distribution function and small time distribution of the
increments, as described below.

It follows from the Abelian theorem (Gnedin, Hansen and Pitman, 2007, Proposition
17) that the Laplace exponent satisfies

ψ(ϑ) ϑ→∞∼ Γ(1 − α)ϑα�(ϑ). (13)

For σ = α ∈ (0, 1), the cumulative distribution function FZt satisfies (Bingham, Goldie
and Teugels, 1989, Theorem 8.2.2. p. 341)

− logFZt(z)
z→0∼ (1 − α)αα/(1−α)

(
ηt

cαα

)1/(1−α)

z−α/(1−α). (14)

Additionally, using (13), for small increments, we have, for all ϑ ≥ 0

E[e−ϑ
cZt

(ηt/α)1/α ] t→0→ e−ϑα

hence cZt

(ηt/α)1/α tends in distribution to a positive stable random variable with parameter
α ∈ (0, 1) as t → 0. For σ < 0, the cdf has a discontinuity at 0 with

FZt(0) − FZt(0−) = Pr(Zt = 0) = e−t η(τ−σ)
−στ .
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Heavy tails and power-law behaviour As noted by Ayed, Lee and Caron (2019), the
tail Lévy intensity is regularly varying at infinity, with power-law exponent τ . We have

ρ̄(x) x→∞∼ ηΓ(τ − σ + 1)
τcτΓ(1 − σ) x−τ . (15)

It follows from (Bingham, Goldie and Teugels, 1989, Theorem 8.2.1. page 341) that
the survival function 1 − FZt(z) = Pr(Zt > z) satisfies

1 − FZt(z)
z→∞∼ ηtΓ(τ − σ + 1)

τcτΓ(1 − σ) z−τ (16)

and the increments have heavy, power-law tails with exponent τ > 0.

Simulation of the increments First note that if σ < 0, the subordinator is a compound
Poisson process with jump rate η(τ−σ)

−στ and jumps being GBFRY distributed (see Section
B in the supplementary material) with parameters (−σ, τ, c). We therefore have

Zt
d=

Kt∑
j=1

Gt,jUt,j

where Kt ∼ Poisson(tη(τ−σ)
−στ ), Gt,j ∼ Gamma(−σ, c) and Ut,j ∼ Pareto(τ, 1), j =

1, . . . ,Kn are independent random variables. Consider now the case σ ≥ 0. The Lévy
measure admits the two-components mixture representation

ρ(w) = ηc−σ

Γ(1 − σ)w
−1−σe−cw + η

cτΓ(1 − σ)w
−1−τγ(τ + 1 − σ, cw) (17)

= ηc−σ

Γ(1 − σ)w
−1−σe−cw + η(τ − (σ − 1))(1 − σ)

cτΓ(1 − (σ − 1))(τ − (σ − 1))w
−1−τγ(τ − (σ − 1), cw)

The first component of the mixture representation (17) is the Lévy intensity of a
GG subordinator with parameters (η1 = η/cσ, σ1 = σ, c1 = c). The second component
is the intensity of a GGP subordinator with parameters (η2 = η(1−σ)/(τ +1−σ), σ2 =
σ− 1, τ2 = τ, c2 = c); as σ2 = σ− 1 < 0, this subordinator is a finite-activity compound
Poisson process, and one can sample its increments as described above. We can therefore
write

Zt
d= Zt,1 + Zt,2 (18)

where Zt,1 ∼ GG( ηt
cσ , σ, c) is an exponentially tilted stable random variable for which

exact samplers exist (Devroye, 2009; Hofert, 2011), and

Zt,2
d=

K̃t∑
j=1

G̃t,jŨt,j

where K̃t ∼ Poisson(ηtτ ), G̃t,j ∼ Gamma(1 − σ, c) and Ũt,j ∼ Pareto(τ, 1).
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Self-decomposability Self-decomposable distributions, a subclass of infinitely-divisible
distributions, are closely related to stationary processes of Ornstein-Uhlenbeck type.
Such models, described in Section 3.2, have been extensively used for the modeling of
financial times series, see e.g. Barndorff-Nielsen and Shephard (2001).
Proposition 1. The random variable Zt GGP(tη, σ, τ, c) is self-decomposable if σ ≥ 0.
That is, for any a ∈ (0, 1), there is Z

(a)
t independent of Zt such that

Zt
d= aZt + Z

(a)
t .

Proof. Let k(w) = wρ(w). Consider first that τ > σ ≥ 0. From equation (7), we have
k(w) ∝ w−σ

∫ c

0 uτ−σ−1e−wudu which is non-increasing. Consider that 0 < τ ≤ σ. From
Equation (6), k takes the form k(w) ∝ w−τg(w) where

g(w) = γ(τ − σ + 1, cw) + (cw)τ−σe−cw.

As g′(w) = (τ −σ)c(cw)τ−σ−1e−cw ≤ 0, it follows that k is monotone decreasing. Hence
for all σ ≥ 0, k is monotone decreasing; using Proposition 15.3 p.485 in (Cont and
Tankov, 2004), we conclude that the process is therefore self-decomposable.

The self-decomposable random variable Z1 admits the representation (Jurek, 2001)

Z1
d=
∫ ∞

0
e−sdZ̃s (19)

where (Z̃s)s≥0 is termed the background driving Lévy process corresponding to the
self-decomposable random variable Z1 (Barndorff-Nielsen and Shephard, 2001, Section
2.2). Z̃t has Lévy intensity

ρ̃(w) = −ρ(w) − wρ′(w) = ησ

cσΓ(1 − σ)w
−1−σe−cw + ητ

cτΓ(1 − σ)w
−1−τγ(τ − σ + 1, cw).

(20)

Importantly, for σ = 0, the background Lévy process is a finite-activity GGP process
with intensity

ρ̃(w) = ητ

cτ
w−1−τγ(τ + 1, cw). (21)

Interpretability of the parameters In summary, each of the four parameters governs
a different property of the GGP process.

• η > 0 is a time-scaling parameter: if (Zt)t≥0 is a GGP process with parameters
(1, σ, τ, c), then (Zηt)t≥0 is a GGP process with parameters (η, σ, τ, c);

• c > 0 is an inverse-scale parameter: if (Zt) is a GGP process with parameters
(η, σ, τ, 1), then (Zt/c) is a GGP process with parameters (η, σ, τ, c);

• σ ∈ (−∞, 1) tunes the activity of the jumps; the process is finite-activity if σ < 0
and infinite-activity otherwise, with corresponding BG index β = max(σ, 0);

• τ is the power-law exponent, controlling the tails of the distribution, with Pr(Zt >

z) z→∞∼ Cz−τ for some constant C.
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2.3 Normal GGP process
Definition

Let Z = (Zt)t≥0 be a GGP subordinator with no drift and Lévy intensity given by (6).
Let B = (Bt)t≥0 be a Brownian motion on R, independent from Z. The normal gener-
alised gamma Pareto (NGGP) Lévy process, taking values in R, is defined via Brownian
subordination by

Xt = BZt .

For any t > 0, Let FXt denote the cumulative distribution function of the random
variable Xt, with characteristic function (Cont and Tankov, 2004, Section 4.2)

E[eiλXt ] = etΨ(λ)

where the characteristic exponent is given by (Cont and Tankov, 2004, Theorem 4.2)

Ψ(ϑ) = −ψ(ϑ2/2) =
∫
R

(eiϑx − 1)ν(x)dx (22)

where ψ is defined in Equation (10) and ν is a Lévy intensity on R defined by

ν(x) =
∫ ∞

0

1√
2πw

e−
x2
2w ρ(w)dw.

For any x > 0, let
ν(x) =

∫
|s|>x

ν(s)ds

denote the expected number of jumps of absolute value larger than x in an unit-length
interval. We also write Xt ∼ NGGP(ηt, σ, τ, c).

Properties

Most of the properties here follow from the properties of the subordinator. By construc-
tion, we have, for all t

Xt
d=
√
Ztεt (23)

where εt∼N (0, 1).
√
c is therefore an inverse scale parameter, and if Xt∼NGGP(ηt, σ,

τ, c) then
√
cXt ∼ NGGP(ηt, σ, τ, 1).

Moments and cumulants Let 1 ≤ m < 2τ . For m odd, the m’th raw moment and
cumulant of Xt satisfy

E[Xm
t ] = κm(Xt) = 0. (24)

For 2 ≤ m < 2τ , m even,

κm(Xt) = 2
∫ ∞

0

∫ ∞

0

xm

√
2πw

e−
x2
2w ρ(w)dwdx



132 The Normal-Generalised Gamma-Pareto Process

= 2m/2
√
π

κm/2(Zt)Γ((m + 1)/2)

= tη(τ − σ)2m/2Γ((m + 1)/2)
cm/2(τ −m/2)

√
π

It follows, for τ > 1, the Lévy process has finite variance with

var(Xt) = E[Zt] = tη(τ − σ)
c(τ − 1) < ∞.

For τ > 2, the excess kurtosis is finite and given by

kurt(Xt) = κ4(Xt)
κ2(Xt)2

= 3var(Zt)
(E[Zt])2

= 3(τ − 1)2

tη(τ − 2)(τ − σ) .

Activity of the jumps and BG index The Lévy process X is infinite-activity if σ ≥ 0
and finite-activity otherwise. Using Proposition 2 in the supplentary material C, the
regular variation of ρ at 0 in Equation (11) implies the regular variation of ν at 0

ν̄(x) x→0∼ 2α+1Γ(α + 1/2)√
π

�(1/x2)x−2α. (25)

The BG index of X is therefore equal to 2α = 2 max(0, σ) ∈ [0, 2). When σ = α > 0,
combining (22) with (13), we obtain the small time limit

E

[
exp

(
iϑ

Xt

√
2c

(ηt)1/(2α)

)]
t→0→ e−|ϑ|2α

hence Xt

√
2c

(ηt)1/(2α) tends in distribution to a symmetric stable distribution with parameter
2α ∈ (0, 2) when t tends to 0.

Heavy tails and power-law behaviour Using Proposition 2 in the Supplementary ma-
terial (Ayed, Lee and Caron (2022)), the regular variation of ρ at infinity in Equa-
tion (15) implies the regular variation of ν at infinity

ν̄(x) x→∞∼ C1x
−2τ (26)

where

C1 = 2τ+1Γ(τ + 1/2)√
π

ηΓ(τ − σ + 1)
τcτΓ(1 − σ) . (27)

Additionally, we have

Pr(|Xt| > x) x→∞∼ C1tx
−2τ . (28)

The increments have therefore heavy tails with power-law exponent 2τ .
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Simulation of the increments As Xt
d=
√
Ztεt one can simulate increments exactly by

sampling Zt from (18) and εt ∼ N (0, 1).

Self-decomposability The self-decomposability of X follows from the self-decompos-
ability of the subordinator Z (Sato, 2001, Theorem 1).

Interpretability of the parameters In summary, each of the four parameters governs
a different property of the NGGP process.

• η > 0 is a time-scaling parameter: if (Xt)t≥0 is a NGGP process with parameters
(1, σ, τ, c), then (Xηt)t≥0 is a NGGP process with parameters (η, σ, τ, c);

• √
c > 0 is an inverse-scale parameter: if (Xt) is a NGGP process with parameters

(η, σ, τ, 1), then (Zt/
√
c) is a NGGP process with parameters (η, σ, τ, c);

• σ ∈ (−∞, 1) tunes the activity of the jumps; the process is finite-activity if σ < 0
and infinite-activity otherwise, with corresponding BG index β = max(2σ, 0);

• 2τ is the power-law exponent, controlling the tails of the distribution, with Pr(Xt>

z) z→∞∼ tC1z
−2τ for some constant C1.

2.4 Generalisations
More general subordinators

One could consider more generally a Lévy intensity of the form

ρ(w) = η

cσΓ(1 − σ)w
−1−σ

(
wc

∫ 1

0
u1−σh(u)e−ucwdu + h(1)e−cw

)
(29)

where h : (0, 1] → (0,∞) is a differentiable function which satisfies∫ 1

0
h(u)du < ∞ and h(u) u→0∼ uτ−1. (30)

For τ > σ, we have u1−σh(u) → 0 and (29) takes the alternative form

ρ(w) = η

cσΓ(1 − σ)w
−1−σ

∫ 1

0
(u1−σh(u))′e−uwcdu. (31)

The proposed subordinator (6) is obtained as a special case when h(u) = uτ−1.

The Lévy process is finite activity for σ < 0 and infinite-activity for σ ≥ 0. Using
Karamata’s theorem for regularly varying functions, the tail Lévy intensity ρ of the Lévy
intensity is regularly varying at 0 with BG index α = max(0, σ) and at infinity with
tail index τ . The Lévy intensity (29) takes the form of a sum of a compound Poisson
intensity and a generalised gamma intensity. The compound Poisson intensity can be
written as

ρ1(w) = η

cσ−1Γ(1 − σ)

∫ 1

0
h(u)u(uw)−σe−uwdu
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=
η(1 − σ)

∫ 1
0 h(u)du

cσ−1

∫ 1

0

h(u)∫ 1
0 h(v)dv

uρGG(uw;σ − 1, c)du

which is a mixture of (finite-activity) generalised gamma processes. It follows that if
Z is a subordinator with Lévy intensity (29), we have Zt

d= Zt,1 + Zt,2 where Zt,1 ∼
GG( tηh(1)

cσ , σ, c) is an exponentially tilted stable random variable and

Zt,2
d=

K̃t∑
j=1

G̃t,jŨt,j

where K̃t ∼ Poisson(ηt
∫ 1
0 h(u)du), G̃t,j ∼ Gamma(1−σ, c) and 1/Ũt,j have probability

density function h(u)∫ 1
0 h(v)dv . Finally, if u1−σh(u) is monotone increasing, with τ > σ, then

Equation (31) implies that the Lévy process is a tempered stable process if σ > 0, and
a generalised gamma convolution if σ = 0; it is therefore self-decomposable.

Subordinated fractional Brownian motion

Many of the properties of the GGP process extend to the NGGP due to the self-similarity
properties of Brownian motion. A stochastic process (Xt)t≥0 with X0 = 0 almost surely
is self-similar if there exists an index H > 0 such that for all a > 0,

(Xat)t≥0
d= (aHXt)t≥0.

The Brownian motion is self-similar with index H = 1/2. Another popular class of
self-similar processes are fractional Brownian motions. A fractional Brownian motion
(Ft)t≥0 is a zero-mean Gaussian process with covariance

R(t, s) := E[FtFs] = 1
2(t2H + s2H − |t− s|2H)

Brownian motion is obtained as a special case for H = 1/2. The process is self-similar
with index H and has stationary Gaussian increments. The increments are negatively
correlated if H < 1/2, are independent if H = 1/2 and positively correlated if H > 1/2.

Most of the properties described in Section 2.3 can be similarly derived in the more
general case where the Brownian motion is replaced by a fractional Brownian motion.
Let (Zt) be a GGP process with parameters (η, σ, τ, c) and (Ft) a fractional Brownian
motion with index H > max(0, σ)/2. The subordinated fractional Brownian process

Xt = FZt

satisfies the self-similar property
Xt

d= ZH
t εt

where εt ∼ N (0, 1). It follows that

Pr(|Xt| > x) x→∞∼ C1tx
−τ/H (32)
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where the constant C1 is defined in Equation (27). Increments of the process at times
t1, . . . , tn can be simulated exactly by first simulating Ztk −Ztk−1

d= Ztk−tk−1 using (18),
for k = 1, . . . , n then, conditional on (Zt1 , . . . , Ztn) simulate

X1, . . . , Xn|Zt1 , . . . , Ztn ∼ N (0, (R(Zti , Ztj ))1≤i,j≤n).

2.5 Comparison to other models and discussion

Comparison to Ayed et al. The (normalised) GGP process was introduced by Ayed,
Lee and Caron (2019) as a prior for random probability measures with power-law prop-
erties, and applied to the modeling of word frequencies. Ayed, Lee and Caron (2019)
introduced the form (7) which is only valid for τ > σ. The alternative form (6) we
introduce here allows to deal with the case 0 < τ ≤ σ as well; in particular, one obtains
the stable process as a particular case. Ayed, Lee and Caron (2019) showed that the
tail Lévy intensity of the GGP is regularly varying at 0 and infinity and deduced the
asymptotic behaviour of large and small jumps. Here we derive a number of additional
important properties of the process and of the distribution of the increments. We show
that it is decomposable, and crucially, that one can sample exactly the increments at
any time scale. Ayed, Lee and Caron (2019) used the name GBFRY process for the pro-
cess, due to its form similar to the form of the GBFRY distribution (see Section B in
the Supplementary material Ayed, Lee and Caron (2022)); however, as it is customary
to give the same name to the process and to the distribution of the increments, which
are not GBFRY distributed, we prefer here to use the name generalised gamma-Pareto.

Tempered stable process and generalised gamma convolutions If τ > σ > 0, the sub-
ordinator falls in the general class of tempered stable processes, introduced by Rosiński
(2007). Noting that γ(τ − σ, cw) = wτ−σ+1 ∫ c

0 uτ−σe−wudu, the model (6) is indeed of
the form w−1−σq(w) where the so-called tempering function q is given by

q(w) = η(τ − σ)
cτΓ(1 − σ)

∫ c

0
uτ−σ−1e−wudu. (33)

By Bernstein’s theorem, the function q is completely monotone.

For σ = 0, the subordinator belongs to the class of generalised gamma convolu-
tions (Thorin, 1977; Bondesson, 1992; James, Roynette and Yor, 2008), of the form
w−1 ∫∞

0 ewuU(du) with Thorin measure U(du) = ητ
cτ u

τ−11u∈(0,c)du.

The subordinator, for any σ, also falls into the extended Thorin class described by
Grigelionis (2007), see also the discussion in Section 1.8 in (James, Roynette and Yor,
2008).

Comparison to other models As mentioned in the introduction, a number of different
Lévy processes have been proposed in the literature. While each process can capture
some range of the different tail and jump behaviour, none of them is flexible enough
to capture the whole range of tail and jump-activity indices. Variance gamma, normal
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Model Heavy tails Finite 2nd
moment

BG
index

Tractable ft
for any t

Exact simulation
from ft for any t

VG No Yes β = 0 Yes Yes
NIG No Yes β = 1 Yes Yes
NGG No Yes β ∈ (0, 2) No Yes
NS Yes, 2τ ∈ (0, 2) No β = 2τ ∈ (0, 2) No Yes
TS No Yes β ∈ [0, 2) No Yes
St Yes, 2τ ∈ (0,∞) Yes if 2τ > 2 β = 1 No No
GH Depends Depends β = 1 No No

NGGP Yes, 2τ ∈ (0,∞) Yes if τ > 1 β = 2 max(0, σ) ∈ [0, 2) No Yes

Table 1: Comparison between different Lévy processes. VG: Variance Gamma; NIG:
Normal inverse Gaussian; NGG: Normal generalised gamma; NS: Normal Stable; TS:
Tempered Stable; St: Student t; GH: Generalised hyperbolic.

inverse Gaussian, exponentially tilted stable and tempered stable process do not capture
heavy tails; the normal stable process has infinite variance, and the same parameter
tunes the activity of the jumps and the BG index; for generalised hyperbolic process,
the BG index is fixed to 1.

A drawback of the proposed model is that, contrary to popular models such as
the variance gamma or normal inverse Gaussian processes, the increments Xt do not
have an analytical probability density function ft. This is balanced however by the
fact that one can sample exactly from the distribution of the increments, and one can
therefore resort to likelihood-free methods for posterior inference, as described in the
next section. Table 1 summarises the properties of the different models. Note that, as
mentioned in (Cont and Tankov, 2004, Section 4.6), the generalised hyperbolic and
student t are not closed under convolution, and so there is no analytic expression for ft
at any given time t > 0, which may be an issue if data are sampled irregularly.

Some interesting connections can be drawn with other classes of stochastic processes.
If τ > σ, due to the mixture form (8), the GGP distribution arises as the marginal
distribution of a quantile clock process (see Theorem 3.1 by James and Zhang (2011))
with parameters (R,L) where R is a Pareto random variable and L a GG subordinator,

3 Lévy-driven stochastic volatility models
Let St denote the price of a financial asset, e.g. a market or a stock index, at time t.
Denote Xt = log

(
St

S0

)
. Observations are obtained at fixed discrete times t0 = 0 < t1 <

t2 < . . . tn, and we write, for k = 1, 2 . . .

Yk := log Stk

Stk−1

= Xtk −Xtk−1 (34)

the log-returns (or more shortly, called returns). Let Δk = tk − tk−1 be the inter-arrival
times between observations. We assume that

Xt = μ0t + μ1V
∗
t + BV ∗

t
(35)
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where μ0 is the drift parameter, μ1 is the risk premium, Bt is a Brownian motion,
independent of the stochastic process V ∗

t , which can be interpreted as the integrated
stochastic volatility. For k = 1, . . . , n, let

V k = V ∗
tk

− V ∗
tk−1

be the integrated stochastic volatility over the interval (tk−1, tk). The observations
(Y1, . . . , Yn) are conditionally independent given (V 1, . . . , V n), with

Yk | V k ∼ N (μ0Δk + μ1V k, V k).

We consider two different stochastic processes for the integrated volatility process
(V ∗

t ): a Lévy process and a Ornstein-Uhlenbeck based model.

3.1 Exponentiated Lévy process

Assume that (V ∗
t )t≥0 is a subordinator with no drift with Lévy intensity ρ parameterised

by a vector φ. The integrated volatilities (V 1, . . . , V n) are therefore conditionally inde-
pendent, with

V k | φ ∼ FV ∗
Δk

(36)

where FV ∗
t

denotes the distribution of V ∗
t , with Laplace transform∫ ∞

0
e−λxdFV ∗

t
(x) = e−t

∫∞
0 (1−e−λw)ρ(w)dw.

If V ∗
t is taken to be the GGP model with intensity (6), then BV ∗

t
is a NGGP Lévy

process.

3.2 Ornstein-Uhlenbeck based stochastic volatility model

We also consider a non-Gaussian Ornstein-Uhlenbeck based model (Barndorff-Nielsen
and Shephard, 2001) with

V ∗
t =

∫ t

0
Vtdt

where the instantaneous stochastic volatility process (Vt)t≥0 is stationary and satisfies

Vt = V0e
−λt +

∫ t

0
eλ(s−t)dZs

for some λ > 0 and some background driving Lévy process Zt with Lévy measure ρ̃.
Additionally, for any t > 0 the random variable Vt ∼ F is infinite-divisible and self-
decomposable with Laplace transform

E[e−ϑVt ] = e−
∫∞
0 (1−e−ϑw)ρ(w)dw
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where ρ̃ and ρ are related by the expression

ρ̃(w) = −ρ(w) − wρ′(w).

To define the model, one can either define the mean measure ρ̃ of the subordina-
tor Zt, or choose the stationary (self-decomposable) distribution F of Vt, hence ρ. In
practice, the second approach is often chosen; examples include the gamma (Roberts,
Papaspiliopoulos and Dellaportas, 2004; Griffin and Steel, 2006; Frühwirth-Schnatter
and Sögner, 2009), generalized inverse Gaussian (Gander and Stephens, 2007), and ex-
ponentially tilted stable distributions (Gander and Stephens, 2007; Andrieu, Doucet and
Holenstein, 2010) as marginals. The integrated stochastic volatilities over the interval
(tk−1, tk) are obtained, for k = 1, . . . , n, by

V k =
∫ tk

tk−1

Vtdt = λ−1 (Zλtk − Vtk −
(
Zλtk−1 − Vtk−1

))
(37)

where
( Vtk
Zλtk

)
follows a linear dynamic model with Z0 = 0, V0 ∼ F , and for k = 1, . . . , n,

(
Vtk

Zλtk

)
=
(
e−λΔkVtk−1

Zλtk−1

)
+ εk, with εk

d=
(
e−λΔk

∫Δk

0 eλtdZλt∫Δk

0 dZλt

)
. (38)

Exact simulation of (V 1, . . . , V n) from the model defined by Equations (37-38) re-
quires to be able to simulate from F and simulate the independent random variables
(ε1, . . . , εn). We describe two models where exact simulation is possible.

Model with gamma marginal distribution

A classical choice (Barndorff-Nielsen and Shephard, 2001; Roberts, Papaspiliopoulos
and Dellaportas, 2004; Griffin and Steel, 2006; Frühwirth-Schnatter and Sögner, 2009)
is to take F = Gamma(η, c) as marginal distribution for Vt. This corresponds to

ρ(w) = ηw−1e−cw, ρ̃(w) = ηce−cw. (39)

The background driving Lévy measure (Zt) is therefore finite-activity, and one can
sample exactly the state noise εk as follows.

1. Simulate Nk ∼ Poisson(ηλΔk).
2. For j = 1, . . . , N , simulate Ekj ∼ Exp(c), θkj ∼ U(0,Δk).

3. Set εk =
(e−λΔk

∑Nk
j=1 eλθkjEkj∑Nk

j=1 Ekj

)
.

Model with GGP marginal distribution

Let τ = σ > 0 or τ > σ ≥ 0. As shown in Section 2.2, GGP(η, σ, τ, c) is self-
decomposable. If Vt has marginal F = GGP(η, σ, τ, c) distribution, this corresponds
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to ρ be defined by Equation (6), and the Lévy intensity ρ̃ of the background driving
Lévy intensity (Zt) is given by Equation (20). For σ > 0, (Zt) is infinite-activity, and
one needs to resort to numerical methods to approximately sample (εk). This could be
done by using the representation of the process as a sum of GG process and a finite
activity process as described in Section 2.2, and using a truncated series representation
for simulating the GG process.

We focus here on the case σ = 0, where ρ̃ simplifies to

ρ̃(w) = ητ

cτ
w−1−τγ(τ + 1, cw) (40)

with
∫∞
0 ρ̃(w)dw = η, and the background Lévy process (Zt) is therefore finite-activity.

We can therefore simulate εk exactly as follows.

1. Simulate Nk ∼ Poisson(ηλΔk)
2. For j = 1, . . . , N , simulate Ekj ∼ Exp(c), Ukj ∼ Pareto(τ, 1), θkj ∼ U(0,Δk)

3. Set εk =
(e−λΔk

∑Nk
j=1 eλθkjEkjUkj∑Nk

j=1 EkjUkj

)
which is similar to the model with gamma marginals, with EkjUkj in place of Ekj .

3.3 Posterior inference
Let φ denote the set of unknown parameters of both models. That is, φ includes the
drift and risk premium parameters μ0 and μ1, the parameters of the Lévy intensity
and, for the Ornstein-Uhlenbeck based model, the discounting factor λ > 0. Let π(φ)
be some prior density. We aim at approximating the posterior density π(φ | y1, . . . , yn).
The marginal likelihood takes the form

p(y1, . . . , yn | φ) =
∫
R

n
+

[
n∏

k=1

p(yk | vk, μ0, μ1)
]
dF n(v1, . . . , vn) (41)

where
F n(v1, . . . , vn) = Pr

(
V 1 ≤ v1, . . . , V n ≤ vn | φ

)
denotes the joint cumulative distribution function of the integrated variances. In the
exponentiated Lévy process, we have

F n(v1, . . . , vn) =
n∏

k=1

FVΔk
(vk).

If FVt does not admit a tractable probability density function, as it is the case for the
proposed GGP model, neither F n nor p(y1, . . . , yn | φ) are tractable, preventing the
implementation of a Metropolis-Hastings Markov chain Monte Carlo algorithm. The
same applies for the Ornstein-Uhlenbeck model.

We therefore propose to use a pseudo-marginal Markov chain Monte Carlo (MCMC)
algorithm (Beaumont, 2003; Andrieu and Roberts, 2009), which only requires to simu-
late from F n. The pseudo-marginal algorithm replaces the untractable marginal likeli-
hood (41) by an unbiased estimator, yet admitting the posterior distribution of interest
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as invariant distribution. Let q denote some proposal distribution for the parameters.
At iteration i of the algorithm, we have

1. Sample φ∗ | φ(i−1) ∼ q(·|φ(i−1))
2. Compute an unbiased estimate p̂(y1, . . . , yn | φ∗)
3. With probability

min
(

1, p̂(y1, . . . , yn | φ∗)π(φ∗)q(φ(i−1) | φ∗)
p̂(y1, . . . , yn | φ(i−1))π(φ(i−1))q(φ∗|φ(i−1))

)
set φ(i) = φ∗ and p̂(y1, . . . , yn | φ(i)) = p̂(y1, . . . , yn | φ∗).
Otherwise, set φ(i) = φ(i−1) and p̂(y1, . . . , yn | φ(i)) = p̂(y1, . . . , yn | φ(i−1)).

In the exponential Lévy model, an unbiased estimator can be obtained via Monte
Carlo approximation

p̂(y1, . . . , yn | φ) =
n∏

k=1

1
np

np∑
j=1

p(yk|v(j)
k , μ

(j)
0 , μ

(j)
1 )

where v
(j)
k ∼ FVΔk

for k = 1, . . . , n and j = 1, . . . , np, with np the number of Monte
Carlo samples (called particles thereafter).

In the Ornstein-Uhlenbeck model, the marginal likelihood can be approximated with
a (bootstrap) sequential Monte Carlo algorithm, a standard inference technique for this
class of models (Andrieu, Doucet and Holenstein, 2010; Jasra et al., 2011; Chopin, Jacob
and Papaspiliopoulos, 2013). The resulting algorithm is known in this case as a particle
marginal Metropolis-Hastings algorithm (Andrieu, Doucet and Holenstein, 2010).

4 Experiments
Priors In all the experiments, the drift μ0 and the premium μ1 parameters are set to
zero. For the GGP model, we assume that we are in the infinite-activity regime, with
σ ≥ 0, and with finite variance, hence τ > 1. The priors are set as follows:

η ∼ Gamma(0.1, 0.1), c ∼ Gamma(0.1, 0.1), (τ − 1) ∼ Gamma(1, 1), σ ∼ Unif(0, 1).

The more informative prior for τ reflects the empirical evidence that, for many financial
datasets, the power-law exponent (2τ for the NGGP) is in the range (2, 5) (Cont and
Tankov, 2004, Section 7.1). For the Ornstein-Uhlenbeck model, we additionally set λ ∼
Gamma(0.1, 0.1).

Software To fit both models, we use the Particles Library,1 which allows to perform
posterior inference in state-space models using particle MCMC algorithms. The code
and datasets can be found on the anonymous github repository2

1https://github.com/nchopin/particles
2https://github.com/OxCSML-BayesNP/NGGP

https://github.com/nchopin/particles
https://github.com/OxCSML-BayesNP/NGGP
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Figure 1: Histograms (left) and trace plots (right) of the posterior distributions of the
parameters on the simulated data experiment. The blue line represents the value of the
parameter used to generate the data. We also report the Gelman-Rubin scores to assess
convergence of the chains (the lower the better, the empirical threshold for convergence
is 1.1).

4.1 Exponentiated Lévy model
Simulated datasets

We first focus on the range of parameters that corresponds to processes with infinite
activity (σ ≥ 0) and finite variance (τ > 1) as empirical evidence indicate that this is
appropriate for financial applications (Cont and Tankov, 2004, Section 7.1). We generate
a synthetic dataset of n = 5 000 unit-spaced observations from the NGGP model, with
parameters η = 1, σ = 0.6, τ = 3 and c = 1. The priors are as described at the beginning
of this section. We run three independent MCMC chains with nmcmc = 10 000 iterations
each, of which 5 000 iterations are used for burn-in. The number of particles to compute
the marginal likelihood estimates is set to np = 4 000. In Figure 1 we report histograms
and trace plots of the posterior samples for each of the four parameters. Trace plots
suggest the convergence of the MCMC algorithm.

To give a more complete picture, we also investigate whether the parameters can be
recovered in the other three quadrants finite/infinite activity and finite/infinite variance.
We consider for this priors with support in (0,∞) for τ and (−∞, 1) for σ. The estimated
parameters and 95% credible intervals are reported in Table 2.

Further details and additional synthetic experiments, exploring the sensitivity to the
choice of the prior, are provided in Supplementary material D.

Real-world datasets

Dataset We consider a dataset composed of the time-series of the stock prices of six
large technology companies: Apple, Amazon, Facebook, Google, Microsoft and Netflix.
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Regime True values Estimated values
σ τ σ τ

finite-activity/finite-variance −1 3 −1.00 (−1.23,−0.82) 3.03 (2.01, 5.50)
finite-activity/infinite-variance −1 0.8 −1.00 (−1.22,−0.80) 0.77 (0.71, 0.84)

infinite-activity/infinite-variance 0.6 0.8 0.68 (0.40, 0.87) 0.75 (0.64, 0.87)

Table 2: Recovering the finite-activity/infinite-variance, finite-activity/finite-variance,
and infinite-activity/infinite-variance settings. Posterior mean and 95% credible regions
(in parenthesis) are reported.

The data are sampled every minute from the 10th of July 2019 until the 22nd of January
2020, with approximately 50 000 time points. We subsample 1 500 observations as train-
ing data to estimate the parameters of each model, and use the rest of the observations
as test data.

Other models We compare the fit of the NGGP model to classical Lévy processes
on the first dataset. The models compared are the normal-GG (also known as normal-
tempered stable or normal-exponentially tilted stable model), with parameters η, σ and
c; two special cases of this model, the variance-gamma (σ = 0) and normal-inverse-
Gaussian (σ = 0.5); the generalised hyperbolic (GH) model, with four parameters, and
the student model, a special case of the GH model with two parameters. We use vague
Gamma(0.1, 0.1) priors on all parameters, except for the parameter σ in the GG model,
where a uniform prior on [0, 1] is used as for the GGP, and for the degrees of freedoms ν0
in the student t model, which tunes the power-law tail, where (ν0/2−1) ∼ Gamma(1, 1)
to reflect the prior assumptions on the tails (as for τ in the NGGP). Note that we can
compare here to the GH and student models as the observations are equally spaced.

Results We run 3 MCMC chains in parallel, with 5 000 iterations (2 500 burn-in) and
1 500 particles. The estimated parameters and 95% credible intervals for the param-
eters of the NGGP are reported in Table 3. The posterior mean for τ is around 2;
this corresponds to a power-law exponent for Xt of around 4 which is in concordance
with empirical observations (Cont and Tankov, 2004, Section 7.1). One exception is the
Amazon stock, where τ is closer to 1, indicating a heavier tail. We first compare the
models using the Kolmogorov-Smirnov (KS) statistics between the posterior predictive
distribution and the empirical distribution of the test data. Results are reported in
Table 4. The KS statistics is rather insensitive to the tail of the distribution, and the
performances are similar for most models considered. To investigate the goodness-of-fit
to the tails of the distribution, we compare the ranked empirical squared log-return to
their posterior predictive distribution. Both GH, VG and NIG, which have exponentially
decaying tails, provide similar results, and we only report the results of the GH. Results
for Apple, Amazon, Facebook in Figure 2 (results for Google, Microsoft, Netflix are in
the supplementary material section D). We can see that the NGGP model successfully
captures the behaviour of tails for the different datasets, while the GH fails to provide
accurate posterior predictive for some datasets such as Facebook. The NS model, which
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Data η σ τ c

Apple 0.51, (0.13, 1.21) 0.44, (0.21, 0.61) 1.82, (1.11, 3.51) 1.14, (0.13, 4.26)
Amazon 0.64, (0.19, 1.40) 0.39, (0.14, 0.58) 1.18, (1.15, 3.59) 1.46, (0.22, 4.61)
Facebook 0.85, (0.34, 1.46) 0.25, (0.04, 0.51) 1.97, (1.25, 3.90) 1.86, (0.38, 4.63)
Google 0.18, (0.02, 0.71) 0.64, (0.50, 0.73) 1.93, (1.08, 4.16) 0.34, (0.01, 1.98)

Microsoft 0.27, (0.05, 0.81) 0.55, (0.39, 0.66) 1.98, (1.11, 4.35) 0.56, (0.05, 2.51)
Netflix 0.21, (0.07, 0.45) 0.54, (0.44, 0.63) 2.55, (1.25, 5.14) 0.29, (0.06, 0.90)

Table 3: Posterior mean and 95% credible interval for the four parameter of the NGGP
model on the first dataset.

Data NGGP NGG GH NIG NS VG Student
Apple 0.0194 0.0196 0.0194 0.0194 0.0196 0.0218 0.0196

Amazon 0.0087 0.0087 0.0085 0.0085 0.0159 0.0145 0.0092
Facebook 0.0181 0.0182 0.0182 0.0183 0.0245 0.1413 0.0181
Google 0.0205 0.0209 0.0197 0.0193 0.0237 0.0848 0.0200

Microsoft 0.0285 0.0285 0.0287 0.0286 0.0286 0.1567 0.0289
Netflix 0.0079 0.0080 0.0080 0.0084 0.0098 0.0162 0.0079
Mean 0.0172 0.0173 0.0171 0.0171 0.0204 0.0726 0.0173

Table 4: Kolmogorov-Smirnov distance between the empirical distribution of the test
and the posterior predictive for different models on the first tech companies dataset (the
smaller the better).

has the same parameter to capture the jump-activity and the tail behaviour, under-
estimates the value of the tail exponent, and gives a poor fit. The student t model
tends to provide poor credible intervals, possibly due to the lack of flexibility of this
two-parameter model.

4.2 Ornstein-Uhlenbeck based model

We now consider the Ornstein-Uhlenbeck based stochastic volatility model with NGGP
marginal with σ = 0. As discussed in Section 3.2, in this case, the simulation of the
state noise ε can be done exactly and exact posterior inference is possible. We compare
the model with NGGP to the model with normal-gamma marginal (NG), described in
Section 3, and demonstrate that NGGP better captures the heavy-tails with minimal
computational overhead compared to NG.

Simulated dataset

We first demonstrate that our posterior sampler based on particle MCMC could suc-
cessfully recover the true parameters on a simulated dataset. We simulate data from the
Lévy-driven stochastic volatility model with NGGP marginal for n = 2 000 time-steps
and parameters η = 5, c = 1, τ = 3.0 and λ = 0.1. We run three independent par-
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Figure 2: Ranked squared increments on the tech companies dataset. From top to bottom
row: Apple, Amazon, Facebook. The line represents the ranked y2 in the test dataset;
the shaded area represent the 95% credible region.

Figure 3: Posterior samples of the parameters on simulated data from OU-basd stochas-
tic volatility model with NGGP marginal.

ticle MCMC chains with 5 000 iterations (2 500 burn-in) and 3 000 particles. Figure 3
shows that our sampler successfully recovers the parameters. Trace plots suggest the
convergence of the sampler. Figure 4 shows the posterior estimate and credible interval
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Figure 4: Posterior mean (solid red line) and 95% credible intervals (shaded area) of the
integrated volatility. True volatility is in dashed green line.

for the integrated volatility, together with the true value. Additional simulation results
are reported in the supplementary material E, for data generated with a smaller value
τ = 1.5. We also assess the sensitivity to the choice of prior, by reporting the posterior
distributions under a different prior distribution for τ .

Real-world datasets

Dataset The dataset is obtained from the Realized library.3 We collected 14 daily stock
data from 05-11-2007 to 07-10-2011 (around the time of subprime mortgage crisis), and
fitted the Lévy driven stochastic volatility models on daily log return values. The data
is accompanied with the estimates of the integrated variances vk for each day, obtained
with an estimator based on higher-frequency data; we use these values as ground-truth
of the integrated variance, and note it vtrue

k .

Evaluation metrics For k = 1, . . . , n, let V
(1)
k , . . . , V

(ns)
k denote the posterior samples

of the integrated variance over the kth interval, where ns is the number of MCMC
iterations after burn-in. For k = 1, . . . , n and any vk ≥ 0, let Ĝk(vk) = 1

ns

∑ns

i=1 1V
(i)
k ≤vk

be the Monte Carlo approximation of the posterior cumulative distribution function of
the integrated variance Gk(vk) = Pr(V k ≤ vk | y1, . . . , yn). For k = 1, . . . , n, denote

ζk = 1 − Ĝk(vtrue
k ) = 1

ns

ns∑
i=1

1
V

(i)
k ≥vtrue

k
.

In order to assess the goodness-of-fit of the model, we calculate the KS statistics be-
tween the empirical distribution of (ζ1, . . . , ζn) and the distribution of a uniform random
variable on [0, 1]. We also compare the fit of the model for different loss functions. Let
L be a loss function. If L(x, y) = (x − y)2 is the �2 loss, the Bayes estimator is the
posterior mean. In case of �1,α loss defined as

L(x, y) =
{

x− y if x ≥ y
1−α
α |x− y| if x < y

,

3https://realized.oxford-man.ox.ac.uk

https://realized.oxford-man.ox.ac.uk
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the Bayes estimator is the α-quantile G−1
k (α) of Gk. We assess the fit of each model by

computing the average loss
1
n

n∑
k=1

L(vtrue
k , v̂

L

k )

where v̂
L

k is the Bayes estimator under the loss L.

Results For every stock data, we run three independent chains of particle MCMC
with 5 000 iterations (2 500 burn-in) and 1 000 particles. The estimated parameters and
credible intervals are given in Table 5 (more datasets in Supplementary material F). The
comparisons between the fits of the two models in terms of KS statistics and empirical
loss, for different loss functions, are reported in Table 6. The model with NGGP marginal
outperformed the one with NG marginal for all used metrics. Especially, since NGGP

NG NGGP

η λ c η λ c τ

AEX 1.43
(0.71, 2.50)

0.02
(0.01, 0.04)

1.41
(0.66, 2.56)

2.58
(1.17, 4.47)

0.03
(0.01, 0.05)

9.34
(3.00, 23.04)

1.49
(1.05, 2.37)

AORD 1.97
(0.92, 3.42)

0.02
(0.01, 0.03)

2.06
(0.88, 3.60)

3.62
(1.52, 6.87)

0.03
(0.01, 0.04)

11.26
(2.89, 29.19)

1.65
(1.09, 3.05)

DJI 1.28
(0.68, 2.05)

0.02
(0.01, 0.03)

1.26
(0.65, 2.10)

2.19
(1.10, 3.69)

0.03
(0.01, 0.04)

8.53
(2.30, 19.95)

1.38
(1.02, 2.25)

FTSE 1.34
(0.68, 2.22)

0.02
(0.01, 0.02)

1.46
(0.73, 2.37)

3.19
(1.35, 6.67)

0.02
(0.01, 0.04)

14.36
(3.55, 38.67)

1.36
(1.04, 2.08)

GSPTSE 1.23
(0.59, 2.13)

0.01
(0.01, 0.02)

1.28
(0.57, 2.31)

2.31
(0.92, 4.26)

0.02
(0.01, 0.03)

10.33
(2.42, 25.48)

1.42
(1.02, 2.29)

Table 5: Posterior mean and 95% credible intervals of the parameters of the NG and
NGGP marginals for the different indices.

KS((ζk), U(0, 1)) �2 �1,0.5 �1,0.95 �1,0.99
Data NG NGGP NG NGGP NG NGGP NG NGGP NG NGGP

AEX 0.237 0.200 0.920 0.950 0.398 0.396 0.127 0.113 0.074 0.053
AORD 0.531 0.511 0.688 0.680 0.465 0.453 0.117 0.101 0.065 0.047

DJI 0.371 0.341 1.859 1.677 0.476 0.456 0.162 0.138 0.107 0.077
FTSE 0.269 0.241 2.590 2.510 0.479 0.480 0.186 0.159 0.134 0.092

GSPTSE 0.450 0.432 13.993 13.656 0.615 0.612 0.277 0.259 0.226 0.198
HSI 0.351 0.335 1.081 1.056 0.426 0.411 0.133 0.126 0.086 0.072

IBEX 0.264 0.245 0.824 0.788 0.422 0.413 0.122 0.106 0.067 0.045
IXIC 0.433 0.421 0.849 0.898 0.412 0.418 0.102 0.092 0.055 0.042
KS11 0.237 0.177 1.740 1.207 0.405 0.358 0.151 0.095 0.096 0.039
MXX 0.580 0.553 1.030 1.142 0.523 0.518 0.095 0.087 0.047 0.036
N225 0.283 0.230 0.674 0.807 0.360 0.362 0.087 0.073 0.045 0.030
RUT 0.570 0.392 1.217 1.192 0.449 0.454 0.079 0.072 0.031 0.025
SPX 0.388 0.337 1.318 1.317 0.440 0.435 0.131 0.115 0.082 0.058
SSMI 0.276 0.259 1.420 1.292 0.438 0.437 0.160 0.135 0.098 0.062

Mean 0.374 0.344 2.157 2.084 0.451 0.443 0.138 0.119 0.087 0.063

Mean 0.372 0.345 2.157 2.084 0.451 0.443 0.138 0.119 0.087 0.063

Table 6: Comparison of the fit of the NG and NGGP models under different metrics.
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Figure 5: Posterior estimates (solid line) and 95% credible intervals of the integrated
volatility under the NG (left) and NGGP (right) models for the AORD index. The true
integrated volatility is represented by a green dashed line.

better captures the heavy-tails, the performance gap becomes more significant for the
metrics emphasizing the heavy-tail regime (�1,0.95, �1,0.99). This is well highlighted in
Figure 5, which gives the estimated volatility and credible intervals under both models
for the AORD stock indices. NGGP in general better captures “spikes” in the log-return
values while NG often fails to get credible interval with good coverage.

Comparison to ARMA-GARCH

We compare the OU-based stochastic volatility model to ARMA (1, 1)-GARCH (1, 1)
on data from the Oxford Realized library. For this, we used 2,000 log-return values from
the Oxford dataset, and split them into 1,100 training time steps and 900 test time
steps. We fit the OU-based model with NG and NGGP marginals with our sampler. We
report in Table 7 the marginal log-likelihood on the training data for the three models
(more datasets are left to Appendix E). NGGP outperforms NG but performs slightly
worse than ARMA-GARCH. We further compare the models in terms of prediction.
We generate one-step predictions for the 900 test time-steps, compute Value at Risk
(VaR) values for each time step prediction, and counted the fraction of actual test data
less than or equal to the negative of VaR values. This is to see whether estimated VaR
values fit the test data well by checking

Pr(−Y ≤ VaRα) = 1 − α ⇐⇒ Pr(Y > −VaRα) = 1 − α ⇐⇒ Pr(Y ≤ −VaRα) = α,

so that the fraction of test data less than or equal to −VaRα being closer to α means
better prediction. For all models, we collected posterior samples, conducted prediction
for each posterior samples using corresponding model parameters and state estimates,
computed empirical CDFs using those samples, and computed VaR values. As sum-
marised in Table 8 (more datasets are left to supplementary material, section E), the
results of the different methods are comparable.

Supplementary Material
Supplementary material for “The Normal-Generalised Gamma-Pareto process: A novel
pure-jump Lévy process with flexible tail and jump-activity properties”
(DOI: 10.1214/22-BA1343SUPP; .pdf). Complementary theoretical and empirical re-
sults.

https://doi.org/10.1214/22-BA1343SUPP
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Data NG NGGP ARMA-GARCH
AEX −1466.021 −1465.811 −1459.768

AORD −1495.441 −1494.830 −1492.148
DJI −1442.606 −1438.013 −1424.026

FTSE −1448.833 −1445.721 −1437.881
GSPTSE −1455.563 −1454.125 −1445.307

Table 7: Comparison of the marginal log-likelihood values of OU-NG, OU-NGGP and
ARMA-GARCH models on data from the Realized-library.

NG NGGP ARMA
-GARCH

NG NGGP ARMA
-GARCH

Data α = 0.95 α = 0.99
AEX 0.962 0.958 0.969 0.993 0.993 0.992

AORD 0.962 0.960 0.970 0.996 0.993 0.991
DJI 0.956 0.959 0.968 0.996 0.994 0.989

FTSE 0.956 0.953 0.950 0.994 0.993 0.983
GSPTSE 0.967 0.968 0.978 0.997 1.000 0.996

Table 8: The results of VaR test on predicted sequence. Values closer to α mean better
VaR prediction.
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