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Bayesian Estimation of Topological Features of
Persistence Diagrams∗

Asael Fabian Mart́ınez†

Abstract. Persistent homology is a common technique in topological data anal-
ysis providing geometrical and topological information about the sample space.
All this information, known as topological features, is summarized in persistence
diagrams, and the main interest is in identifying the most persisting ones since
they correspond to the Betti number values. Given the randomness inherent in
the sampling process, and the complex structure of the space where persistence
diagrams take values, estimation of Betti numbers is not straightforward. The
approach followed in this work makes use of features’ lifetimes and provides a full
Bayesian clustering model, based on random partitions, in order to estimate Betti
numbers. A simulation study is also presented.
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1 Introduction

Geometrical and topological methods are modern tools for analyzing highly complex
data (Carlsson, 2009; Chazal et al., 2011; Boissonnat et al., 2018). While geometrical
techniques capture quantitative information in data, topology reveals qualitative infor-
mation. Both are useful to uncover patterns and relationships in data and, together
with statistical and computational concepts and tools, sometimes complementary, form
a powerful set of methods for analyzing modern data.

In particular, topological data analysis (TDA) is a modern field of applied math-
ematics with considerable interest and activity during the last two decades. It is a
collection of tools in the field of data analysis that lies at the intersection of Algebraic
Topology, Computational Geometry, Computer Science and Statistics. The main goal
of TDA is to use ideas and results from Geometry and Topology to develop tools for
revealing and describing relevant features of data objects with an intrinsic and complex
structure. Given a cloud point data (dataset, in the terminology in this field), TDA
methodologies are useful to understand their underlying space, so we can infer about
its shape regardless of the choice of coordinates, deformations or presentations. This
is done by estimating topological invariants related to the space, which capture the
intrinsic clusters and connections among the clusters present in the cloud point data as
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2 Bayesian Estimation of Topological Features

well as other connectivity information, including the classification of loops and higher
dimensional surfaces within the space.

Since TDA is in its core an issue in inference, to discover an unknown structure
feature based on sampled cloud point data, some natural questions arise for statisticians.
One is how it differs from classical cluster analysis. As pointed out by Carlsson, “TDA
uses cluster analysis in building its networks, and builds on cluster analysis to provide
additional precision in the taxonomies that are created” (Carlsson, 2016).

There are several TDA methodologies. One of the most common focuses on what
is called persistent homology, which makes use of algebraic tools in order to discover
topological features of data, where the so-called Betti numbers codify the number of k-
dimensional holes present in the underlying space for different values of k. The method
was introduced by Edelsbrunner et al. (2002) and its theory has been further considered
in, for example, Carlsson (2009), Edelsbrunner and Harer (2010), Ghrist (2008), Oudot
(2015), Zomorodian and Carlsson (2005) and Zomorodian (2005). Furthermore, persis-
tent homology has been applied in a variety of fields including interconnectedness in the
banking system (de la Concha et al., 2018), manufacturing systems (Guoa and Banerjee,
2017) and computational biology with industrial and medical engineering applications
(Gameiro et al., 2014; Xia and Wei, 2014). Other notable applications have been in data
analysis (Bastian et al., 2012; Carlsson, 2009; Lesnick, 2013; Niyogi et al., 2011; Wang
et al., 2011; Xu et al., 2012), image analysis (Carlsson et al., 2008; Frosini and Landi,
2013; Singh et al., 2008), detection of subtypes of cancer (Arsuaga et al., 2015; Nicolau
et al., 2011), analysis of brain artery trees (Bendich et al., 2016), virus evolution (Chan
et al., 2013; Ibekwe et al., 2014; Parida et al., 2015), complex networks (Horak et al.,
2009), language processing (Zhu, 2013), sensor networks (de Silva and Ghrist, 2007),
spectroscopy (Offroy and Duponchel, 2016), and soil science (Savica et al., 2017), among
others.

Roughly speaking, persistent homology can be described as follows. Consider a finite
cloud point data with pairwise distances between their points, select a scale ε > 0 and
join all points at a distance not more than 2ε. This gives an indication of a possible
topological feature in the data, in particular an initial cluster classification; however, this
depends on the scale, which could be hard to choose if the data are high-dimensional.
Persistent homology examines data over all scales. The output of this computation is
a summary called the persistence diagram, a set of pairs (birth, death). This and the
persistence barcode encode life spans of topological features from their birth to death,
from where one can choose, visually, pairs with a long persistence lifetime (death−birth).
The procedure is performed over all the dimensions of the data. Topological features
of short-scale duration are referred as topological noise, whereas the rest are called
topological signal. Thus, discriminating between these features is of great interest since
the topological signal is closely related with the Betti numbers of the underlying space.

A second natural question for statisticians is how randomness and uncertainty are
handled. Any topological feature extracted from the cloud point data has random vari-
ation that needs to be taken into consideration for meaningful topological inference,
and this is exactly the subject matter of Statistics. As referred in Otter et al. (2017),
practitioners of TDA often have backgrounds in pure topology and are not well-versed
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in statistical approaches to data analysis and there are several challenges for statistically
interpreting results in applications of persistent homology, as few statistical tools are
currently available. Conversely, TDA methodology has been slow to spread and develop
within the statistical community and literature. In the setting of Statistics, persistence
diagrams and barcodes are data summaries, or statistics based on cloud point data.
Thus, notions of probability models for data and sampling distributions apply. A statis-
tical approach to persistent topology was first considered in Bubenik and Kim (2007)
where, among other aspects, theoretical persistence barcodes for parametric probability
distributions on manifolds, as those considered in directional data, are derived, and then
persistence barcodes are estimated using statistical inference principles, like maximum
likelihood.

A general challenge for the statistical analysis of persistence diagrams is first to
consider probability distributions on the set of persistence diagrams. This set is geo-
metrically very complex, and it is difficult to consider parametric distributions for those
diagrams as to allow practical statistical inference. Moreover, persistence diagrams are
not in a vector space and therefore one cannot use basic statistical tools like means,
variance and moments, but rather Fréchet means (see Mileyko et al., 2011; Munch
et al., 2015; Turner et al., 2014). As an alternative, persistence landscapes are proposed
in Bubenik (2015). They give topological summaries belonging to a space of functions
and therefore law of large numbers and central limit theorems in function Banach spaces
can be used to perform ad-hoc, non-parametric, classical statistical inference. Under a
Bayesian framework, persistence diagrams are modeled in Maroulas et al. (2020) through
Poisson point processes for hypothesis testing in classification. On the other hand, for
potential use in Statistics, there is the probabilistic limit theorem for persistence dia-
grams, which is an area of increasing interest in the framework of stochastic topology
(Bobrowski and Mukherjee, 2015; Hiraoka et al., 2018; Kahle, 2011; Yogeshwaran and
Adler, 2015; Yogeshwaran et al., 2017; Bobrowski and Kahle, 2018).

Another role for Statistics and Probability in persistent homology lies in the prob-
lem of disentangling topological noise from topological signals in persistence diagrams.
In this direction, Fasy et al. (2014) and Chazal et al. (2018) obtained asymptotic re-
sults for the construction of confidence sets for persistence diagrams, using geometric,
statistic and probabilistic tools like kernel estimates, concentration inequalities, boot-
strap, empirical processes, distance to measure and kernel distance. Those sets show the
topological noise corresponding to all topological dimension homologies simultaneously.
The confidence sets in Chazal et al. (2018) are robust, and it is also indicated how
to construct confidence sets for particular dimension homologies, using the so-called
bottleneck bootstrap.

The methodology presented in this work focuses on this second problem of identifying
the topological signal. The interest of this topological feature lies in the fact that the
quantity of signal features corresponds to the Betti number for each fixed dimension
homology. Hence, by providing an estimate of these numbers, it will be possible to
understand the underlying space where the cloud point data live.

Our approach makes use of the topological features’ lifetime spans. For every ho-
mology level, the lifetimes computed from the persistence diagram are used to identify
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the topological noise and signal. Since, roughly speaking, the noise is of small magni-
tude when compared to the signal, and both of them inherit the randomness of the
sampled cloud point data, the disentanglement of both features can be posed as a prob-
lem of outlier detection. The number of outlier lifetimes, thus, will correspond to the
estimated Betti number. The detection of outliers is done by means of a full Bayesian
model based on random partitions. The specific support for the random partition will
allow to identify the topological signal from the groups containing the largest lifetime
values.

The paper is organized as follows. Section 2 briefly explains persistent homology
and how it is related to clustering and provides more information about the underlying
sample space. Section 3 presents the proposed Bayesian model for estimating the Betti
numbers via outlier detection. A simulation study is also performed in Section 4, and
Section 5 contains some final remarks and future work.

2 Topological data analysis in a nutshell

TDA and Statistics, at first glance, tackle the same problem of clustering, as already
mentioned. This makes it a good starting point to better understand where TDA, in
particular persistent homology, differs; we can also have a clear picture of its potential.
For a more comprehensive treatment of TDA methods, we refer the reader to Nanda and
Sazdanović (2014), Ferri (2017), and Wasserman (2018), among others. A theoretical
treatment can be found, for example, in Zomorodian (2005). Also, the work Otter et al.
(2017) overviews and compares the various methods available for computing persistent
homology.

Cluster analysis aims to gather a set of items according to some similarity conditions.
This set is partitioned into non-empty subsets, called groups or clusters, in such a way
that all items in the same group are more similar among them than those in any other
group. The degree of similarity is usually quantified according to some probability model
or a specific distance function. Under the distance-based approach, a common method
is the agglomerative hierarchical clustering with single linkage. Suppose we use the
Euclidean distance, d. Given a cloud point data, we can build a graph using these
points as vertices and its edges defined as follows: for a fixed ε ≥ 0, an edge xy is
added if and only if d(x, y) ≤ 2ε for any two different vertices x, and y. Clusters are
obtained from the connected components of the resulting graph. Figure 1a illustrate this
procedure. The challenging part is to choose an appropriate cut-off value for ε, since
when ε = 0, there will be as many clusters as observations, and when ε is large enough,
there will be a single cluster containing all the observations.

Regarding the cut-off value, the persistent homology approach consists on keeping
track of the evolution of the number of connected components as the value of parameter
ε increases; it is stored in a topological summary, formally called persistence diagram.
Those connected components persisting for more time are the more meaningful, so they
will determine the clustering structure for the given cloud point data (see Figure 1c).
The 0th persistence diagram, T 0, is a multiset of (birth, death) points, (bi, di), in R

2
+, i.e.
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Figure 1: Illustration of hierarchical clustering, Panels (a) and (b), and its corresponding
persistence diagram, Panel (c). Horizontal dashed lines in the dendrogram correspond
to some values of ε.

the first entry indicates the time (value of ε) where a connected component is created,
and the second one is its death time; so we can define this summary as

T 0 = {(bi, di) ∈ R
2
+ : bi ≤ di, i = 1, . . . , n},

for n the sample size. Black dots in Figure 1c are a graphical representation of this set
for the cloud point data on Figure 1a.

This described clustering procedure, actually, corresponds to the computation of the
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Figure 2: Illustration of one-dimensional holes for cloud point data over different mani-
folds: (a) a ring, and (b) a disc.

0-homology under the TDA terminology. However, persistent homology is able to model
higher dimensional relationships among data points. For example, Figure 2 shows two
cloud point data sets, each one formed by a single cluster, but they do not have the
same shape. This additional information cannot be obtained from traditional clustering
procedures, but it is indeed useful to, for example, define a more adequate probabilistic
model in each case. Higher levels of homology, h-homology for h ≥ 1, are also captured
during the computation of the persistent homology, and stored in the corresponding hth
persistence diagram Th. In the examples of Figure 2, both persistence diagrams, T 0 and
T 1, are plotted together, represented by the black circles and red triangles respectively.
This is one of the advantages of TDA methodologies. Using all this information together,
one can have a more complete picture of the shape where data live.

Another application of TDA is related to dimensionality reduction. There are situ-
ations where each observation in a cloud point data takes values in an s-dimensional
space, for example R

s, but the meaningful features, or their intrinsic shape, say M, is
embedded in such a space, so s′ = dim(M) < s. Persistence homology will only detect
topological features until dimension homology s′, even though it is computed from the
bigger space of dimension s.

In any case, the main interest of persistence diagrams is the quantification of the
most relevant features in the cloud point data, that is, determining the number of
clusters, cycles, voids, and in general, the number of hth dimensional holes the data
have. Indeed, this quantities correspond to the Betti numbers βh, h ≥ 0, inherent to
the sample space. In the examples of Figure 2, there is only one cluster (black circle at
the top of the plots), so β0 = 1 in both cases. However, the two cloud point data sets
are different by the presence of a one-dimensional hole, cycle, in the ring cloud point
data (indicated by the red triangle far from the rest), so we have β1 = 1, whereas for
the other one, β1 = 0.

Nevertheless, determining the value of the Betti numbers from persistence diagrams
is not a straightforward task. Each of these numbers corresponds to the quantity of
points far enough from the main diagonal in the graphical representation of its diagram;
the rest of the points can be considered as noise. Therefore, the need of some formal
method to classify these points accordingly is evident. In the following section, we
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elaborate on this issue and present a methodology able to identify the points with the
main objective of estimating the Betti numbers.

3 A methodology for modeling topological features

Randomness is an important issue that has to bear in mind when performing statistical
inference in persistent homology. Indeed, typically the cloud point data y = (y1, . . . , ym)
to be subject to topological analysis is a sample of random points in a metric space.
Consequently, any topological feature extracted from it has random variations that need
to be taken into consideration for meaningful inferences.

More specifically, two of the common cloud point data generating mechanisms are the
following. Under the first scenario, each point yi, i = 1, . . . ,m, is independently drawn
with the same probability distribution F , usually the uniform distribution, supported
on a manifold M embedded in R

d. Under the second one, each point yi, i = 1, . . . ,m,
has the form yi = ui + zi, where ui is independently drawn with the same probability
distribution F supported on M, as in the first setting, and zi is an independent and
identically distributed (iid) random perturbation drawn from some distributionG on R

d.
For example, G can be a d-variate Gaussian distribution with zero mean and covariance
matrix σ2I, with I the identity matrix, and the dispersion σ2 > 0 is typically small.
Another possibility is to assume that zi is randomly drawn in such a way that it is
perpendicular to the tangent space of the manifold M at the point ui. Notice that in
these last two cases the cloud point data does not lie exactly over the manifold M but
close to it.

In this framework, the main purpose of TDA is to infer topological features of
the underlying manifold M from the given random cloud point data. In particular,
as already mentioned, persistent homology keeps track of the evolution of topological
features when varying a filtration parameter, in order to characterize the shape of the
manifold through the evolution of its homological groups. However, this endeavor faces
the difficulty that, due to the discrete nature and sampling variability of the cloud
point data, topological features of short duration over the filtration emerge which are
irrelevant regarding the true topology of the underlying manifold of interest M. In Fasy
et al. (2014) and Chazal et al. (2018), these features of random short lifetimes, which
can be explained just by sampling variability, are termed topological noise, in contrast
to the topological signal corresponding to persistent features.

Thus, discriminating between topological noise and topological signal is a crucial
problem in TDA. For this, in Fasy et al. (2014) and Chazal et al. (2018), bootstrap
confidence bands around the diagonal of persistence diagrams are introduced, and points
(birth, death) inside the band are disregarded as due to topological noise. The so called
Vietoris-Rips filtration is used to compute the persistent homology, see Edelsbrunner
and Harer (2010). As described in Section 2, for each homology level h, the persistence
diagram is represented by the multiset:

Th = {(bhi , dhi ) ∈ R
2
+ : bhi ≤ dhi , i = 1, . . . , nh},
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for some nh < ∞. The lifetimes of the homology classes in the persistence diagram are
given by

lhi = dhi − bhi , i = 1, . . . , nh.

Randomness of the cloud point data leads to randomness of these lifetimes. Assume
that M is a smooth manifold composed by a finite number of closed connected com-
ponents, as it is common in practice. Also assume that the size m of the cloud point
data is large in comparison with such number of connected components, as well as with
the number of holes and other Betti numbers in M. Then, most of the lifetimes lhi ,
i = 1, . . . , nh, except for a few, will be the result of birth and death of homological
classes due to topological noise in sampling the manifold through the cloud point data.

With all these elements explained, a general statistical modelling approach for life-
times associated with topological noise is introduced next. This provides, as a byprod-
uct, a statistical tool for disentangling topological noise from topological signal, without
requiring intensive computations involved in bootstrapping persistence diagrams.

3.1 Topological signal detection through random partition modeling

Each lifetime can be identified as only one type of feature: topological noise or topolog-
ical signal, and it is expected that the quantity of lifetimes being topological noise is
much larger than those being topological signal. Focusing on the noise, they appear due
to the sampling process, so it is possible to describe them according to some probabilistic
model. In contrast, the topological signal will appear for any other reason not explained
by the noise model. However, both type of features are collected together; thus, the
topological signal becomes an outlier with respect to the topological noise. Hence, we
will be able to disentangle both of them by applying some methodology designed for
this purpose.

For the sake of completeness, given some arbitrary dataset, any observation which is
inconsistent with the remainder is called an outlier. Under a probabilistic approach, it is
assumed that n− p observations, from a total of n, arise from some model, whereas the
remaining p observations come from a different one. In general, n � p. The literature for
methods tackling the problem of outlier detection is wide and comprises computational,
probabilistic and statistical approaches; see for example, Wang et al. (2019) for a recent
review, and Quintana and Iglesias (2003); Quintana (2006); Shotwell and Slate (2011)
for some Bayesian nonparametric methodologies. In this work, a clustering approach
is followed built upon Bayesian nonparametric commonly used tools, in particular, we
make use of restricted random partitions as the methodological component, similarly to
Fuentes-Garćıa et al. (2010); Wade et al. (2014).

Random partitions are probabilistic tools suitable to perform clustering (see, e.g.
Lijoi et al., 2008; Müller et al., 2015), since their sampling space, known as set partitions,
and denoted throughout this work by P , encodes every possible arrangement of any set
of items into a number of nonempty groups, or clusters. As a simple example, consider
the set {y1, y2, y3}, then all their possible arrangements are

{{y1, y2, y3}}, {{y1}, {y2, y3}}, {{y1, y2}, {y3}}, {{y1, y3}, {y2}}, {{y1}, {y2}, {y3}},
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where, for example, {{y1, y2}, {y3}} means that there are two clusters: one formed by
observations y1 and y2, and the second one formed only by y3. Establishing some nota-
tion, a set partition π ∈ P is a partition of some set of cardinality n having k nonempty
subsets, groups or blocks, for some 1 ≤ k ≤ n, where each group is denoted by
πj , j = 1, . . . , k. Furthermore, simplifying the writing, partitions will be denoted by
π1/ · · · /πk instead of {π1, · · · , πk}.

Outlier detection, for the context at issue, can be performed by means of a specific
class of random partitions, whose support is a subset of P . Let us assume the homology
level h is fixed for the rest of the explanation. Since lifetimes are all positive numbers,
it will be assumed they are ordered, i.e. li ≤ li+1 for i = 1, . . . , n − 1, with n the
total number of lifetimes. This allows us to locate the potential topological signal as the
largest lifetime values; the rest of them will be the topological noise. Then, it is expected
that the topological signal will be grouped in a few clusters πj , all of them with a few
elements or even being singletons. By ordering lifetime values, such clusters would be
the most-right of them. However, any set partition is invariant to permutations of their
blocks (one of the reasons of the very well known problem of label-switching) and we
cannot stick to this rule.

Therefore, it is necessary to restrict the sampling space of the random partition.
This new space will only contain set partitions π ∈ P such that every block πj consists
of consecutive items and maxπj < minπj+1 for j = 1, . . . , k − 1 with k the number of
groups in π. These conditions are known as the no-gaps assumption (cf. Fuentes-Garćıa
et al., 2010; Mart́ınez and Mena, 2014; Wade et al., 2014). In the small example, the
partition {y1, y3}/{y2} does not satisfy this assumption. Let us denote by R the set of
all no-gaps set partitions.

Random partitions can be used in conjunction with a model-based approach, mean-
ing that a probabilistic model gj is assigned to each group πj . As a consequence, all
observations yi ∈ πj are distributed according to gj [iid]. Therefore, given these ele-
ments, the proposed model for outlier detection can be written hierarchically as

li|π, φ ∼ g(li|φj)1(li ∈ πj) [ind], i = 1, . . . , n, (1)

φj |π ∼ ν0 [iid],

π ∼ ρ0,

where g is some probability distribution supported over R+ with driving finite-dimen-
sional parameter φj , the distribution ν0 is the prior for each parameter φj , and π is
an R-valued random partition with prior distribution ρ0. Among the candidates for
distribution g, the log-normal distribution of parameters φj = (μj , σ

2
j ) ∈ R × R

+ will
be used, and its conjugate for ν0 is chosen, i.e. a normal-gamma distribution of param-
eters (m, c, a, b). With respect to the prior distribution for the random partition, ρ0,
a restriction of the so-called exchangeable partition probability functions (EPPFs) is
used, see Mart́ınez and Mena (2014); Wade et al. (2014) for further details. EFFPs are a
widely used class of distributions in Bayesian nonparametric methodologies. In particu-
lar, for the EPPF derived from the Dirichlet process Ferguson (1973), its corresponding
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R-valued distribution is written as

Pr(π = π1/ · · · /πk) =

(
n

n1 · · ·nk

)
θk

k!(θ)n↑

k∏
j=1

Γ(nj), (2)

for any set partition π = π1/ . . . /πk ∈ R, and where nj = #πj is the cardinality of
block πj for j = 1 . . . , k, (x)r↑ = x(x+ 1) · · · (x+ r − 1) is the Pochhammer symbol or
rising factorial, and θ > 0 is the total mass parameter for the Dirichlet process.

In order to compute point estimates for this model, we resort to numerical proce-
dures, in particular, Markov chain Monte Carlo (MCMC) techniques. Given the data,
a sample of the posterior distribution

p(π|l1, . . . , ln) ∝ ρ0(π)L(l1, . . . , ln|π), (3)

is obtained. In Appendix A (Mart́ınez, 2022), the derivation of the complete MCMC
sampling scheme is presented. For an alternative estimation procedure based on neural
networks, see Fuentes-Garćıa et al. (2019).

3.2 Estimation of Betti numbers

Our approach classifies the topological signal as outliers with respect to the rest of
the lifetime values, the topological noise; this signal is encoded in the largest values.
Topological noise might contain some information regarding the underlying geometry
of the sampling space, whereas the topological signal is of interest since it determines
the value for the Betti numbers βh, for each homology level h ≥ 0. Therefore, if there
is some topological signal in the data, it means there will be some lifetime value ln∗

being the last element conforming the topological noise, and letting the remaining lj ,
for j = n∗ + 1, . . . , n, the signal, with n the lifetimes’ sample size. Hence, the Betti
number estimator, β̂h, corresponds to the size of the signal, that is β̂h = n− n∗.

Working under the R-valued partition approach allows us to locate the potential
topological signal as the rightmost groups of a partition π, whereas the rest of them will
contain the topological noise. Given our probabilistic framework, we need to provide
some point estimate β̂h, h ≥ 0. However, the sample space R is not an ordered set,
hindering the computation of point estimates. Being R a discrete space, a simple and
easily interpretable estimate is the mode, although some other options might be used
(c.f. Dahl, 2006; Wade and Ghahramani, 2018).

Let π̃ be the posterior modal partition. Ideally, π̃ should consist on only two groups,
say π̃(n) and π̃(s), one for each topological feature: noise and signal, respectively. This
simplification causes some lost of information, though. Model (1) resembles mixture
models (see, e.g. Müller et al., 2015; Mart́ınez, 2019, for more details), and one of their
advantages is their capability for fitting complex distributions, which is achieved by
combining several mixing components, even though the resulting distribution exhibits
a single mode. This is noteworthy to say since it might be expected that the topological
noise behaves according to some probability distribution, even though it is not bounded
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to be of the form of a single kernel function g(·|φj). A similar rationale applies for the
topological signal. As a result, the posterior modal partition π̃ can be conformed by
more than two clusters. In particular, the topological signal, may be spread over a few
blocks, so π̃(s) = π̃κ ∪ · · · ∪ π̃k, for some κ very close to k, the number of blocks in π̃.
According to the definition of outlier, we can only expect that the size of π̃(s) is very
small when compared with the sample size n. Therefore, by setting

κ = min

{
s :

k∑
j=s

#π̃j

n
≤ q

}
,

for some small q > 0, the relative proportion of expected outliers, e.g. 2% or 3%, the
Betti number βh can be estimated as

β̂h = #π̃κ + · · ·+#π̃k. (4)

For the 0-homology level, it is important to highlight that the value obtained for β̂0

should be corrected by adding one. The computation of persistence diagrams requires a
maximum radius ε, which is somehow arbitrarily fixed, and there will always be a lifetime
having such a value. Then, it is necessary to remove it before any further processing,
but it does count one connected component.

4 Simulation study

The proposed methodology is tested under some simulated scenarios, using manifolds
having different shape and dimension. We start considering the 0th homology level using
synthetic cloud point data uniformly distributed over the circle, varying the quantity of
circles, their location, and the sample size. Additionally, a small noise is introduced in
each dataset (see Figure 3) with the purpose of better understand the robustness of the
model. For the sake of comparison, we also present the results provided by the R package
TDA (Fasy et al., 2022), which includes the bootstrap methods of Fasy et al. (2014)
and Chazal et al. (2018) providing 95% confidence bands for persistence diagrams. This
estimator will be denoted by β̄h.

First examples are taken from a manifold conformed by r circles, r = 1, 2, 3, each
of radius one; a cloud point data of size n = 600 is drawn for each case. In addition,
two levels of noise are included, as depicted in Figure 3, consisting on a Gaussian
perturbation of each point over the circle with standard deviation σ = 0.1, 0.2. For
the cases r = 2, 3, the circles are separated from their centers by 5 units, according
to Figure 3a. An MCMC run was executed for each cloud data point, taking a sample
of size 5 000 after discarding a first batch of 10 000. Hyperparameter settings are as
follows: (0, 0.5, 1.1, 0.1) for the prior distribution ν0, and (1.1, 0.1) for the total mass
parameter, θ, prior. Table 1 presents the posterior estimates for these datasets. It is
expected that the 0th Betti number corresponds to the number of circles, i.e. β0 = r.
In all cases, the value of β0 is correctly estimated by our approach, i.e. β̂0, by allowing
a q = 0.03 relative proportion of outliers at most; a similar performance is seen for
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Figure 3: Examples for the different noise levels using the same manifold. Distances,
displayed in Panel (a), dx and dy will range from 1 to 5 units.

r σ (n1, . . . , nk) prob. β̂0 β̄0

1 — (72, 207, 203, 117) 0.019 1 1
0.1 (14, 167, 311, 107) 0.017 1 1
0.2 (87, 208, 256, 48) 0.018 1 1

2 — (69, 168, 211, 150, 1) 0.019 2 2
0.1 (73, 226, 241, 58, 1) 0.017 2 2
0.2 (89, 220, 247, 42, 1) 0.017 2 2

3 — (39, 127, 204, 154, 73, 2) 0.022 3 3
0.1 (15, 137, 254, 174, 17, 2) 0.001 3 3
0.2 (40, 130, 179, 216, 32, 2) 0.010 3 3

Table 1: Posterior estimates for the firsts toy examples, consisting on r circles, with
Gaussian noise σ. Modal partition π̃ is presented in terms of block sizes (n1, . . . , nk)
together with its probability. Last columns contain the estimated Betti numbers for our
approach, β̂0, and the confidence-band based, β̄0.

r σ (n1, . . . , nk) prob. β̂0 β̄0

2 — (69, 168, 211, 150, 1) 0.019 2 2
0.1 (73, 226, 241, 58, 1) 0.017 2 2
0.2 (89, 220, 247, 42, 1) 0.017 2 2

3 — (39, 127, 204, 154, 73, 2) 0.022 3 3
0.1 (15, 137, 254, 174, 17, 2) 0.001 3 3
0.2 (40, 130, 179, 216, 32, 2) 0.010 3 3

Table 2: Posterior estimates for the second toy examples, consisting on r circles of
different radii, with Gaussian noise σ. Modal partition π̃ is presented in terms of block
sizes (n1, . . . , nk) together with its probability. Last columns contain the estimated Betti

numbers for our approach, β̂0, and the confidence-band based, β̄0.

the bootstrap-based estimator β̄0. The supplemental material, Appendix B, contains a
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Figure 4: Cloud point data and persistence diagram over a spherical-Fibonacci manifold.

more exhaustive simulation study (Mart́ınez, 2022).

A second example consists on a manifold made by spheres whose centers are points of
a spherical Fibonacci lattice. Over each sphere, a random sample of 40 points is drawn;
the manifold consists on 30 spheres, see Figure 4. The purpose of this example is testing
the estimation of higher dimensional holes, namely cycles and voids, corresponding
to β1 and β2 respectively. The MCMC specification is the same as before. Posterior
estimates are presented in Table 3. Regarding β0, one connected component is lost for
our approach, β̂0; this might be due to the data sampling process. In fact, a closer
inspection of the persistence diagram shows that there are only 28 persistent features.
For the one-dimensional holes, β1, no persistent features are detected. Finally, the study
of two-dimensional holes shows an interesting fact. Its estimate is β̂2 = 1, indicating
one void due to the Fibonacci lattice, but the second block actually indicates that the
void for each individual small sphere is also detected. These results for the homology
levels H1 and H2 are consistent with the theoretical topological features of a sphere,
i.e. β1 = 0 and β2 = 1. On the other hand, it is worth saying that for each homology
level, a different number of topological features are detected: n0 = 1199 plus the one
removed as explained, n1 = 330, and n2 = 47; except for n0 which is always the number
of observations, the rest is random.

Regarding the bootstrap-based method, it is not able to detect the small spheres
as separated connected components, only the biggest one induced by all of them, since
β̄0 = 1. No cycles are detected as expected. Finally, β̄2 = 1 meaning that only the
biggest void is detected.

5 Concluding remarks

Topological data analysis is an emerging field of applied mathematics providing useful
topological and geometrical information about the sample space. In particular, we have
described persistent homology, one of the most common methodologies in TDA, where
the main purpose is to discover topological features in such a space. The most relevant
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h (n1, . . . , nk) prob. β̂h β̄h

0 (76, 258, 468, 369, 28) 0.020 29 1

1 (72, 143, 96, 19) 0.021 0 0

2 (16, 30, 1) 0.521 1 1

Table 3: Posterior estimates for the spherical-Fibonacci manifold example, for the ho-
mology levels Hh, h = 0, 1, 2. Modal partition π̃ is presented in terms of block sizes
(n1, . . . , nk) together with its probability. Last columns contain the estimated Betti

numbers for our approach, β̂0, and the confidence-band based, β̄0.

features are summarized in the Betti numbers βh, h ≥ 0, quantifying the number of
h dimensional holes.

Under a statistical viewpoint, determining the values for the Betti numbers is an
inference problem. However, it has not been straightforward providing point estimates.
The persistence diagram, the topological summary of persistent homology, takes values
in a very complex space. Additionally, the observed cloud point data contains an inherent
randomness, which is translated to the persistence diagram, so not all recorded features
are relevant. Therefore, in any persistence diagram, topological noise and topological
signal are mixed up.

While this work aims to close the gap between TDA and Statistics practitioners,
its main contribution is to provide a statistical study of persistence diagrams by means
of lifetime’s topological features. This approach eases the disentanglement of the topo-
logical features and allows to identify and quantify the topological signal. Following a
full Bayesian framework, the topological signal identification is treated as an outlier
detection problem. The presented clustering model, based on random partitions, ag-
glomerates the most persistent lifetimes as outliers, and their number is associated with
the corresponding Betti number. Its performance is as good as the one based on confi-
dence bands, but ours seems to capture more information in the noise-feature groups.

Furthermore, the methodology is tested by an extensive simulation study and some
important remarks can be derived from it. A correct identification of the topological
signal depends on the geometry of the manifold M, that is, its relevant shape features
should be clear enough otherwise the sampling process would veil their presence. In the
circles manifold example, each component should be far from each other to be counted
correctly.

A second important remark is the sampling process. All this work was performed
by assuming the cloud point data was drawn uniformly from M, the distribution F in
Section 3. Indeed, this is a common assumption in most TDA literature and is due to
the fact we wish to identify the shape of M so a sample covering the whole manifold
is required. Clearly, affecting the sample by adding some noise or by using another
distribution F will harden this task. We explore the first case in Appendix B (Mart́ınez,
2022) and can see there are escenarios where the estimation fails. A deep study along
these results and remarks, and their applications, are part of the ongoing work.
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Supplementary Material

Supplementary Material for “Bayesian Estimation of Topological Features of Persis-
tence Diagrams”(DOI: 10.1214/22-BA1341SUPP; .pdf). The derivation of the MCMC
sampling scheme is presented, as well as an extensive simulation study is performed by
taking several configurations for the r-circle simulated examples.
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