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A Bayesian Computer Model Analysis of
Robust Bayesian Analyses

Ian Vernon∗ and John Paul Gosling†

Abstract. We harness the power of Bayesian emulation techniques, designed to
aid the analysis of complex computer models, to examine the structure of com-
plex Bayesian analyses themselves. These techniques facilitate robust Bayesian
analyses and/or sensitivity analyses of complex problems, and hence allow global
exploration of the impacts of choices made in both the likelihood and prior specifi-
cation. We show how previously intractable problems in robustness studies can be
overcome using emulation techniques, and how these methods allow other scien-
tists to quickly extract approximations to posterior results corresponding to their
own particular subjective specification. The utility and flexibility of our method is
demonstrated on a reanalysis of a real application where Bayesian methods were
employed to capture beliefs about river flow. We discuss the obvious extensions
and directions of future research that such an approach opens up.

Keywords: emulation, Gaussian process, sensitivity analysis.

1 Introduction

Bayesian methodology is now widely employed across many scientific areas (for exam-
ple, over 490 articles have been published in Nature containing the word “Bayesian”;
Springer Nature, 2022). The uptake of Bayesian methods is due both to progress in
Bayesian theory and to advances in computing power combined with the development
of powerful numerical algorithms, such as Markov Chain Monte Carlo (MCMC). How-
ever, many Bayesian analyses of real world problems are both complex and computa-
tionally time-consuming. They often involve complex hierarchical models that require
large numbers of structural and distributional assumptions both in the likelihood and
prior (along with other choices covering the numerical implementation). Due to the long
run times and the need to tune such algorithms, it is common for little or no rigorous
sensitivity analysis to be performed, therefore it is often unclear as to what extent the
Bayesian posterior and the subsequent decisions it informs have been affected by these
numerous assumptions. For any serious scientific analysis, a solid understanding of the
inferential process and its response to changes in the underlying judgements and as-
sumptions is absolutely vital. Any Bayesian analyses that cannot do this is of limited
use and, we would assert, has questionable worth to the scientific community.

Much work has been done to address the issues of robustness and sensitivity anal-
ysis of Bayesian analyses, with many elegant results derived (see for example Box and

∗Department of Mathematical Sciences, Durham University, Stockton Road, Durham, DH1 3LE,
UK, i.r.vernon@durham.ac.uk

†Department of Mathematical Sciences, Durham University, Stockton Road, Durham, DH1 3LE,
UK, john-paul.gosling@durham.ac.uk

c© 2023 International Society for Bayesian Analysis https://doi.org/10.1214/22-BA1340

https://bayesian.org/resources/bayesian-analysis/
mailto:i.r.vernon@durham.ac.uk
mailto:john-paul.gosling@durham.ac.uk
https://doi.org/10.1214/22-BA1340


1368 A Bayesian Computer Model Analysis of Robust Bayesian Analyses

Tiao, 1962; Berger, 1994; Berger et al., 2000; Roos et al., 2015). However, progress in
this area has greatly slowed over the past fifteen years due in part to the intractability
of analysing even fairly basic Bayesian models. In particular, although aspects of prior
sensitivity were explored (see e.g. Berger, 1994; Moreno, 2000; Fan and Berger, 2000)
and loss sensitivity (Dey and Micheas, 2000), perturbations to the likelihood proved far
more challenging to deal with analytically (Shyamalkumar, 2000). Two broad robust
Bayesian strategies can be distinguished, the first of these being the global approach,
whereby whole classes of priors and/or likelihoods are considered, and their effects on
the posterior analysed. While there was much early success in this direction (see for ex-
ample Berger and Sellke, 1987; Berger, 1994; Moreno, 2000), many of these results relied
upon appeals to monotonicity arguments which were of great use in lower dimensional
cases, but less easy to apply in more complex, higher dimensional models. Even defining
sensible prior or likelihood classes to investigate in high dimension, while avoiding vac-
uous results, becomes problematic (Insua and Ruggeri, 2000). See also Kallioinen et al.
(2021) for a power-scaling approach. Increasing attention was also directed at a second
strategy, that of the local sensitivity approach, whereby the derivatives of posterior fea-
tures of interest with respect to perturbations of various forms are analysed often using
differential calculus (Gustafson and Wasserman, 1995; Gustafson, 2000; Perez et al.,
2005; Zhu et al., 2007; Muller, 2012; Roos and Held, 2011; Giordano et al., 2018). While
far more tractable, the local approach has obvious weaknesses, in that its results may be
strongly sensitive to the original prior and likelihood specification. For many complex
Bayesian models, for which the posterior features may be highly non-linear functions of
the perturbations, such local approaches will be clearly inadequate.

Despite the efforts of the robust community, it must be conceded that the huge
advances in MCMC and comparable numerical methods, which allow the use of more and
more complex Bayesian models, have left robust Bayesian analysis techniques far behind
(Watson and Holmes, 2016; Robert and Rousseau, 2016). As complex Bayesian models
along with MCMC algorithms are now widely used in areas of real world importance,
and as our Bayesian community will be judged upon the results of these algorithms, the
need for powerful, general robust methods applicable to a wide class of perturbations is
increasingly urgent. This article suggests a framework for the solution to this problem.
We propose to treat a complex and computationally demanding Bayesian analysis as
an expensive computer model. We utilise Bayesian emulation technology developed for
complex computer models (as described in O’Hagan, 2006, for example) to explore
the structure of the Bayesian analysis itself, and, specifically, its response to various
changes in both the prior and likelihood specification. This allows for a more general
sensitivity and robustness analysis that would be otherwise unattainable, because we do
not require analytic solutions. This methodology is very flexible, provides both local and
global results, is straightforward to implement in its basic form using currently available
emulation software packages, and can deal with a wide class of statistical analyses.

In more detail, a typical Bayesian analysis involves many judgements and assump-
tions, both in relation to modelling choices that feed into the likelihood and in terms of
the representation of prior beliefs. Often, pragmatism leads to assumptions being made
that are based either entirely or in part on mathematical convenience. For example,
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conjugate analyses whereby convenient mathematical forms are chosen in both the like-
lihood and prior. Aside from modelling choices, expressing judgements in probabilistic
form can be time consuming and difficult, so in many cases tractable representations
followed by simple assessments are made that only approximately represent the beliefs
of the expert. At the other extreme, so-called objective priors are used either due to
their reported properties, or because any relevant subjective beliefs are thought to be
too weak to alter the analysis to any noticeable degree. All of the above compromises are
defensible only if it can be shown that the posterior attributes of interest are relatively
insensitive to small changes in the prior and modelling specifications. Our approach is
to explore the concerns regarding the specific choices and assumptions used to form the
prior and modelling specifications by embedding the current Bayesian analysis within a
larger structure, constructed by parameterising the major set of choices made, following
the robust Bayesian paradigm. This larger structure is then subjected to Bayesian com-
puter model techniques (which, as discussed below, implies a second layer of Bayesian
analysis is being used). While not all choices can be parameterised directly, as we will
discuss, often the major sources of concern can be addressed in this way. We note that
Peruggia et al. (2004) employed GPs to explore prior robustness issues, but were lim-
ited to a small number of prior quantities. Here, we argue for a general analysis which
examines both prior and (the more analytically challenging) likelihood quantities, and
their various interactions, simultaneously in a comprehensive global approach.

Our approach also addresses another major concern: that of multiple subject area
experts, who each may possess different beliefs regarding the prior and likelihood struc-
tures. Even when a thorough Bayesian analysis, possibly using MCMC, is performed and
published, its results are usually based on the judgements of a single expert (or small
group of experts). It is therefore difficult for other experts in the area to know how
to interpret these results: what they really require is for the MCMC to be rerun with
their beliefs inserted instead. Therefore, at the very least, the statistician should facili-
tate the analysis of a class of prior or likelihood statements, approximately representing
the differing views held across the relevant scientific community (Aczel et al., 2020).
Unfortunately this is not provided in the vast majority of Bayesian analyses, albeit
due to understandable constraints on time and computational resources. However, our
analysis will enable experts to quickly extract approximations to their posterior results
corresponding to their own specification, along with associated uncertainty statements.
Importantly, this is straightforward to implement, and only requires the off-line running
of existing MCMC code with minor adaptations, in embarrassingly parallel fashion, lead-
ing to minimal increase in wall-clock time when cluster or cloud resources are available.
This approach therefore provides what many scientific fields require: complex Bayesian
analyses that are simultaneously applicable to a range of scientific specifications.

The article is organised as follows. In Section 2 we recast the problem of a robust
Bayesian analysis into that of a complex computer model, describe computer model
emulation methodology, and then apply it to an example Bayesian model. In Section 3
the utility and flexibility of our method is demonstrated on a reanalysis of a real ap-
plication concerning river flow. We discuss the various choices one faces in this kind
of analysis, and outline several areas of future research in Section 4, before concluding
in Section 5. Code for reproducing the example Bayesian model featured throughout



1370 A Bayesian Computer Model Analysis of Robust Bayesian Analyses

Section 2 and the supplementary material (Vernon and Gosling, 2022), is provided at
https://github.com/ivernon/BARBA.git.

2 Bayesian analysis as a complex computer model

Our set-up is similar in structure to that of a robust Bayesian analysis; however, we
utilise a computer model representation and notation (see for example Craig et al.,
1997; Kennedy and O’Hagan, 2001; Higdon et al., 2004; Vernon et al., 2010a). Let us
assume that interest lies in a vector of random quantities θ, beliefs about which will be
updated in the light of a vector of data z. The prior π(θ|xp) and likelihood l(z|θ, xl) are
both conditioned on some specific list of choices and modelling assumptions represented
by parameters xp and xl respectively, an example of which would be hyper-parameters
that have been kept constant. We wish to explore features of interest of the posterior
π(θ|z, xp, xl) such as the mean, variance, quantiles, etc. chosen due to their relevance
to the downstream application or decision process. We map the posterior to this vector
of attributes using the functional g(.) and, hence, define the overall function f(x) as:

f(x) = f(xp, xl) = g(π(θ|z, xp, xl)) (1)

where x = (xp, xl) is the combined vector of inputs that parameterise the specific choices
and assumptions made in the prior and likelihood specifications, and f(x) is the vector
of all posterior features and summaries of interest, where the dependence on the data
z is now implicit. Note that it would also be simple to extend equation (1) to include a
loss function, corresponding inputs to the loss, and various decision end points (Oakley,
2009). An example of f(x) that we use in Section 2.2, where the posterior mean and
standard deviation are of primary interest is:

f(x) = (E[θ|z, x], SD[θ|z, x]) . (2)

For most Bayesian analyses, in order to evaluate the posterior, we require a possibly
expensive sampling algorithm such as MCMC, which may take hours, days or even
weeks for one evaluation for a particular choice of inputs x. Hence, we can view the
implementation of the Bayesian analysis as an expensive computer model f(x), that
maps a possibly high dimensional input vector x to a vector of outputs f of primary
interest to the modeller. Note that we would be free to view the MCMC algorithm
itself as a stochastic computer model, in which case we could add any algorithm inputs
xMCMC such as parameters governing the adaptive regime, burn-in and so on to the
input vector x, and include additional diagnostic outputs into the vector f such as the
MCMC acceptance rates. However, we leave such complications to future work, as here,
we are primarily interested in the key features f(x) of the underlying Bayesian analysis
itself, which the MCMC output only approximates. The precise representation of the
link between the MCMC output and f(x) will be given in Section 2.1.

We then seek to explore the behaviour of the posterior features of interest f(x) as a
function of the inputs x across a wide class of Bayesian analyses defined as

F = {f(x) : x ∈ X} (3)

https://github.com/ivernon/BARBA.git
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where X governs the extent of our robust-Bayesian analysis and allows us to explore
simultaneous changes in the prior and likelihood specifications. Note that in general, for
a high dimensional and large enough X , we would expect both the location and shape of
the posterior π(θ|z, x) to vary substantially over X , and hence that standard techniques
based around re-sampling an individual MCMC sample (see for example Smith and
Gelfand, 1992; Geweke, 1999), or importance sampling (see for example Geyer, 1994;
Fan and Berger, 2000; Sinharay and Stern, 2002), may not be effective. See Sup. Mat.
section 2.3, for further discussion and an illustrative comparison.

We envisage that the need to explore a class of Bayesian analyses may arise for several
reasons: for example, we may wish to perform a global robust Bayesian analysis over
X due to a possibly imprecise specification or to perform a local sensitivity analysis.
Alternatively, we may be dealing with a collection of experts whose opinions on the
prior and likelihood differ, but which are all contained within X . Therefore, we depart
somewhat from the goal of a typical robust analysis in that we are primarily interested
in the entire behaviour of f(x) over the set X , and not just in the extrema of f(x).
This is because we want our results to be applicable for any user that has a precise or
imprecise specification contained within X , and because we may also wish to understand
and identify any sensitive regions where f(x) rapidly changes as a function of x. Unlike
in many computer model analyses, we therefore do not view x as being uncertain: if this
was the case we would simply build an additional layer of prior structure over x into
our Bayesian hierarchical model (which, incidentally our techniques would facilitate).
Instead, we seek to efficiently represent, using an emulator, the behaviour of f(x) for
any value of x ∈ X . If an expert subsequently came with their own specification xe, they
would instantly be able to read off the likely values of the posterior features of interest
f(xe) corresponding to their own particular beliefs. Additionally, the results of our
analysis should provide approximate answers to any local robustness, global robustness
or sensitivity analysis question regarding f(x), critically, with an attached statement of
uncertainty. The emulator structure that incorporates this uncertainty can also guide
future evaluations of the sampling algorithm designed to resolve key uncertainties of
most interest to the expert(s). As we attempt to represent a large class of inputs and
outputs, our approach is more general than a perfunctory robust Bayesian analysis, and
should be widely applicable. We now go on to describe the emulation process, and how
to adapt it for application to the analysis of Bayesian analyses.

2.1 Computer model emulation

Here we give a brief overview of computer model emulation: see the Sup. Mat. for a more
detailed introduction, including a list of suitable emulation packages. Gaussian process
emulation is a powerful technique for modelling and subsequently analysing expensive
computer models that may possess high dimensional input and output spaces (see for
example Craig et al., 1997; Kennedy and O’Hagan, 2001; Heitmann et al., 2009; Vernon
et al., 2010a,b; Andrianakis et al., 2015; Gu and Berger, 2016; Edwards et al., 2021).
The computer model is viewed as an expensive function that maps a vector of inputs
x to a vector of outputs f(x). Beliefs about the value of the uncertain function f(x) at
an untried input x are represented by a Gaussian process prior over f(x), also termed
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an emulator,
f(.)|m(.), c(., .) ∼ GP (m(.), c(., .)), (4)

with a mean function m(.) capturing global behaviour, and a covariance function c(., .)
representing the local smoothness of f(x), taking, for example, Gaussian form

c(x, x′) = σ2
em exp{−||x− x′||2/θ2em}, (5)

where σ2
em and θem are emulation parameters that need to be specified. Other forms for

c(., .) including the much used Matern function, are of course available (Santner et al.,

2003). A design of runs is performed at n input locations xD = {x(1)
D , . . . , x

(n)
D } over

the d-dimensional input space X giving a vector of outputs f(xD). The precise number
n of runs required will depend upon the nature of the model and the desired emulator
accuracy, but a rough guide is to use at least 10d runs, as argued by Loeppky et al.
(2009), in a space-filling design, as discussed in Santner et al. (2003). The emulator is
then updated by f(xD), and the posterior mean and covariance function obtained

f(.)|f(xD),m(.), c(., .) ∼ GP (m∗(.), c∗(., .)), (6)

m∗(x) = m(x) + Cov [f(x), f(xD)] Var[f(xD)]−1(f(xD)− E[f(xD)]), (7)

c∗(x, x′) = c(x, x′)− Cov [f(x), f(xD)] Var[f(xD)]−1Cov [f(xD), f(x′)] . (8)

Evaluation of the emulator, in terms of its mean and variance, for different values of x,
is usually several orders of magnitude faster that the original computer model, hence
the behaviour of f(x) can be investigated far more thoroughly, and sensitivity analysis,
history matching, calibration and many other powerful techniques can be performed
(Oakley and O’Hagan, 2004; Kennedy and O’Hagan, 2001; Vernon et al., 2010a,b).
More advanced forms of the emulator are of course possible, possessing a more struc-
tured mean function and exploiting the concept of active inputs, which helps combat the
problems associated with high input dimension (Vernon et al., 2010a,b). Another useful
feature of Gaussian process emulation is its representation of derivatives. If the com-
puter model function f(x) is a Gaussian process, then the partial derivatives ∂f(x)/∂xi

also form Gaussian processes, with covariance function naturally constructed by taking
the partial derivatives of c(., .) (O’Hagan, 1992), a feature that we will exploit. Although
Gaussian processes are perhaps the most popular tool for emulation, several other ap-
proaches are available e.g. the related Bayes linear version (Craig et al., 1997; Vernon
et al., 2010a), BART methods (Chipman et al., 2012), BMARS (Francom et al., 2018),
Neural Networks (Grzeszczuk et al., 1998) and dynamic models (Liu and West, 2009).

Various diagnostics are available to check emulator performance(Bastos and O’Hagan,
2008). Once a satisfactory emulator has been constructed, Variance-based sensitivity in-
dices (Saltelli et al., 2000) can be calculated efficiently using the probabilistic sensitivity
analysis techniques described in Oakley and O’Hagan (2004). The sensitivity indices can
be used to give an indication of which model inputs are responsible for most variation
in the model outputs (given the range of plausible values for the inputs): the main-effect
indices give the proportion of variance in the output explained by a input acting on its
own and the total-effect indices give the proportion of variance in the output explained
by a input on its own and in conjunction with other inputs. See also Francom et al.
(2018) where Bayesian MARS emulators are used, which helpfully allow for analytic
sensitivity analysis calculations.
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Adapting emulation for application to a Bayesian analysis

All of the above emulation methodology can, with slight modification, be applied to the
outputs of an MCMC algorithm as part of a robust Bayesian analysis, as represented
by f(x) with x ∈ X , or indeed to any statistical analysis that is expensive to perform
and for which one requires a sensitivity analysis.

We would start by designing a space filling batch of n runs xD = {x(1)
D , . . . , x

(n)
D }

over the d-dimensional input space X . The MCMC algorithm would then be run at each
of the design points, and the usual convergence tests and examination of mixing plots
would be performed. Note that our framework can of course incorporate information
from alternative MCMC algorithms, as we discuss in Section 4.2, however convergence
issues may favour the approach described here. Due to the large number of burn in steps
required for MCMC convergence, a suitable design would most likely favour a smaller
number of design points with a large number of posterior samples drawn at each point:
a classic computer model set up. Here, we use space filling designs (see for example,
Morris and Mitchell, 1995), with large numbers of posterior samples, and leave a more
detailed treatment of such design questions to future work.

An important difference from the standard deterministic computer model emulation
setup is that, as the MCMC algorithm only returns draws from the posterior, it should
be viewed as a stochastic computer model, and hence allowance made for the fact that
we only see, for example, sample means and sample variances and not the true posterior
values. There are many approaches to the emulation of stochastic computer models of
varying complexity (see for example Johnson et al., 2011; Andrianakis et al., 2017;
Vernon and Goldstein, 2022). Here, we generate large MCMC samples and treat the
resulting low level of stochasticity via a simple nugget representation. Although simple,
we make the connection between the true posterior quantities and their MCMC sample
counterparts explicit to facilitate a later discussion of the partial derivatives of f(x),
of use in a local sensitivity analysis. Representing the Bayesian posterior features of
interest as f(x) and the corresponding sample quantities obtained from the MCMC
algorithm as f (s)(x), we model the link between the two for output i as:

f
(s)
i (x) = fi(x) + ηi(x) (9)

where ηi(x) is an uncorrelated nugget term possessing zero mean and constant variance
across the input space, usually estimated from the MCMC run data (Andrianakis et al.,
2015). Note that as the effective sample size of the MCMC runs will be large, the variance
of ηi(x) will be far smaller than other uncertainties, and more detailed modelling will
be in many cases unwarranted.

We may believe that fi(x) is smooth and, hence, choose an appropriate correlation
structure for it, given say by equation (5). It follows that the correlation function for

the MCMC output f
(s)
i (x) becomes

Cov
[
f
(s)
i (x), f

(s)
i (x′)

]
= c(s)(x, x′) = σ2

em

[
(1− δem) exp{−||x− x′||2/θ2em}+ δemδx,x′

]
(10)
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where δx,x′ = 1 when x = x′ and 0 otherwise, δem controls the influence of the nugget

variance, and σ2
em now represents the prior variance of f

(s)
i (x). The covariance between

fi(x) and f
(s)
i (x) is now

Cov
[
fi(x), f

(s)
i (x′)

]
= σ2

em(1− δem) exp{−||x− x′||2/θ2em} (11)

We can construct an emulator for fi(x) as before, using the expressions for the posterior
mean and correlation given by equations (7) and (8), but now we replace all occurrences
of f(xD) by f (s)(xD) in equations (7) and (8), and use equations (10) and (11) to
evaluate the altered covariance terms.

Another benefit of this construction, where we have implicitly included the smooth-
ness of f(x) (noting that f (s)(x) is of course not smooth), is that we can also con-
struct emulators for the partial derivatives ∂f(x)/∂xj for minimal extra computational
cost. These follow the same principals, but with the correlation between the derivatives
∂f(x)/∂xj and the MCMC outputs f (s)(x) now given for output i by:

Cov

[
∂fi(x)

∂xj
, f

(s)
i (x′)

]
= − 2

θ2
σ2
em(1− δem)(xj − x′

j) exp{−||x− x′||2/θ2em} (12)

which is obtained by partially differentiating equation (11) (O’Hagan, 1992). The deriva-
tive emulators are evaluated using equations (7) and (8) as before, but now with f(x)
replaced by ∂f(x)/∂xj .

Once the emulators have been constructed, they can be used to explore the behaviour
and both the local and global sensitivity of the outputs of the Bayesian analysis f(x)
to the decisions made, as represented by the inputs x. It is worth noting that there
are now two distinct Bayesian processes at work here (as highlighted by the double
use of the word “Bayesian” in the article title): the updating of our prior beliefs about
the function f(x) via the Gaussian process emulator structure, and the update of the
original Bayesian problem that occurs at every single point in the X space, that is the
update of θ by z (conditioned on x). Using the emulators, questions of robustness can
be addressed, and various graphical methods can be employed to explore these, which
we develop in Sections 2.2 and 3.2. Many other useful computer model techniques still
have important analogies in this setting e.g. history matching, model discrepancy and
calibration, and we discuss their uses in Section 4. We now go on in the next section to
demonstrate our techniques on an example Bayesian model.

2.2 Example Bayesian model

We introduce a synthetic example of a Bayesian analysis to demonstrate the proposed
methodology. Despite the simplicity of this model, it exhibits some interesting features
in terms of the response of the posterior to the prior and likelihood specification, that
highlight the utility of our approach. We investigate a case in which we imagine there is
reasonable disagreement between experts over both prior and likelihood specifications.

Scalar data zi > 0 with i = 1 . . . 10 are observed, and we imagine that a Bayesian
analysis has initially been performed with the following conjugate specification. The
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data, given in appendix A of the supplementary material, are assumed to be independent
and identically distributed with likelihood given by

zi|θ ∼ Exp(θ), i = 1, . . . , 10 (13)

⇒ π(zi|θ) = θ e−θzi , zi ≥ 0 (14)

parameterised in terms of the rate parameter θ, which has corresponding prior

θ|μ, ν2 ∼ Ga(μ, ν2) (15)

where Ga(μ, ν2) denotes a gamma distribution that has been parameterised in terms of
its mean and variance, μ and ν2 respectively. Initially, the prior hyperparameters were
judged to be μ0 = 5 and ν0 = 1.

Given data, this Bayesian analysis would be easy to implement given that the prior
distribution is conjugate. We imagine that there is however concern amongst the experts
about the data generating process, specifically with the tails of the likelihood and its
behaviour close to zi = 0. We explore these concerns by contaminating the likelihood
with a half-normal component zi|θ ∼ HN(θ), where the impact of the contamination
is controlled by a mixing parameter ε ∈ [0, 1]. When ε = 1 the likelihood is purely
half-normal so that

zi|θ, ε=1 ∼ HN(θ), i = 1, . . . , 10 (16)

⇒ π(zi|θ, ε=1) =
2

π
θ e−θ2z2

i /π, zi ≥ 0 (17)

where we have parameterised the half-normal distribution in terms of its inverse mean
θ, such that E[zi|θ, ε=1] = 1/θ, in direct agreement with the definition of θ in the un-
contaminated exponential likelihood of equations (13) and (14). The full contaminated
likelihood for z = (z1, . . . , z10), conditioned on the contamination parameter ε, can now
be written as

π(z|θ, ε) =

10∏
i=1

(
(1− ε) θ e−θzi + ε

2

π
θ e−θ2z2

i /π

)
. (18)

where we have ensured that the property E[zi|θ, ε] = 1/θ still holds for any zi and now
any ε, consistent with the original specification. Figure 1 (left panel) shows π(z|θ, ε) as
a function of θ for various levels of ε. The contamination parameter ε represents, and is
used to investigate, the experts’ disagreement over the structure of the likelihood, and
returns it to the pure exponential form and hence to conjugacy as ε → 0. The experts
are still satisfied with a gamma prior and agree with the prior mean μ0 = 5, but not
with the prior variance ν2 = 1 for which there is a range of alternative opinions:

θ|μ0, ν
2 ∼ Ga(μ0, ν

2), 0.3 < ν < 2; (19)

hence, ν now parameterises differing levels of prior uncertainty.

The above description specifies a simple class of possible Bayesian analyses defined
over a 2-dimensional space X where

X ≡ {x = (ν, ε) : ν ∈ [0.3, 2] and ε ∈ [0, 1]} , (20)
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Figure 1: Left panel: the contaminated log-likelihood log(π(z|θ, ε)), given by equa-
tion (18), as a function of θ, with the colours labelling differing values of the con-
tamination parameter ε. Right panel: draws from the MCMC algorithm in the original
conjugate case (when ν = 1 and ε = 0), showing the theoretical posterior density
π(θ|z, ν=1, ε=0) in blue and the prior density π(θ|ν=1) in red. The prior and poste-
rior means are given as the vertical dashed lines in red and blue respectively, the later
is the first output f1(x) to be emulated. This plot therefore represents the single point
x = (1, 0) in the space of possible Bayesian analyses denoted by X .

Inputs x Type of Input Range Outputs f(x)
ν Prior standard deviation [0.3, 2] E[θ|z, ν, ε]
ε Likelihood contamination [0, 1] SD[θ|z, ν, ε]

Table 1: The inputs x and outputs f(x) of the example Bayesian model when represented
as a computer model. The classes of inputs and outputs are also given along with the
range of exploration of the inputs, defining the extent of the sensitivity analysis.

which is parameterised by the likelihood contamination and prior standard deviation
parameters, ε and ν respectively, as summarised in Table 1. We now wish to explore the
behaviour of attributes of the posterior π(θ|z, ν, ε) as a function of the inputs ν and ε,
and to investigate the corresponding robustness of these attributes and, hence, of the
original analysis. We choose here to examine the posterior mean and standard deviation
as these are usually of primary interest, but our approach could be applied to any set
of posterior attributes: see Sup. Mat. for an extension using quantiles. We define

f(x) = (E[θ|z, ν, ε], SD[θ|z, ν, ε]) (21)

as the function to be explored, as also summarised in Table 1. Note that a perfunctory
robust Bayesian analysis at this point may attempt to examine the range of possible
values of the posterior attributes of interest, in this case the mean and standard devi-
ation, that is achievable over X . We wish to go further and to efficiently represent the
posterior attributes for any choice of the inputs ν and ε. This allows any expert to be
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able to extract their own Bayesian posterior attributes directly from our results, either
corresponding to a particular specification represented as a single point in X , or to a
range of possible specifications represented by a subset of X .

As the specification is no longer in general conjugate, we construct a simple Metropolis-
Hastings MCMC algorithm to allow evaluation of the posterior at any choice of inputs
ν and ε. As such a sampling algorithm is in some sense expensive (or would be for
larger, more realistic models), we view the Bayesian updating process and its MCMC
implementation as an expensive computer model, represented as the function f(x), and
employ computer model methodology in order to emulate and analysis the behaviour
of f(x). As the parameter of interest θ is non-negative, a Metropolis-Hastings MCMC
algorithm was employed with a folded normal proposal distribution,

θ∗|θt−1, ξ
2
θ ∼ FN(θt−1, ξ

2
θ), (22)

where the folded normal has location parameter θt−1, with the scale parameter fixed
at ξ2θ = 0.9, which yielded reasonable acceptance rates between 0.30 and 0.59 for all
evaluations of interest (Brooks et al., 2011). Note that the folded normal is still a
symmetric proposal density, allowing for the usual simplification to the acceptance ratio.
To avoid unnecessary complications in the description of our approach to this illustrative
example, we minimised the MCMC sampling error and ensured convergence by running
an excessively large number of steps. A total of 200000 steps were used, the initial
condition θ = 0.5 was chosen and a burn in of 100 steps assumed. An example of the
posterior sample generated by the MCMC algorithm is given as the grey histogram in
Figure 1 (right panel), for the initial conjugate case where ε = 0 and ν = 1. Also shown
is the prior and true posterior distributions as the red and blue lines respectively. The
prior mean μ0 and posterior mean E[θ|z, ν=1, ε=0] are given as the vertical dashed red
and blue lines respectively. This figure therefore represents a single point in the class of
Bayesian updates X that we wish to emulate over, the specific point being

f(x = (1, 0)) = (E[θ|z, ν = 1, ε = 0], SD[θ|z, ν = 1, ε = 0]) .

For any point in X with ε > 0, conjugacy is no longer true and MCMC becomes vital.

Emulating the Bayesian analysis

In order to construct an emulator for the function f(x) over X , we now run the MCMC
algorithm at a set of 35 design points xD over the two dimensional input space X ,
using a lattice design (see Sup. Mat. Table 1). This choice of run number, slightly larger
than the rough guide suggestion of 10d, was made to ensure we obtained reasonably
accurate emulators after a single batch of runs. We check the convergence, the mixing
plots and the autocorrelation plots for each of the 35 MCMC chains. As θ here is one
dimensional, and as we employed a very large number of steps, our MCMC algorithm
was unsurprisingly found to perform adequately across the whole input space (we discuss
alternate MCMC strategies in Section 4.2).

Figure 2 (left panel) shows the estimated posterior density functions for the 35 sep-
arate MCMC-based analyses performed across X , which display a reasonable range of
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Figure 2: Left Panel: the estimated posterior density functions for the 35 MCMC runs
performed across X , coloured by their ν values, which display a reasonable range of
posterior means and standard deviations. Right Panel: mixing plots for the four runs
closest to the corners of the space X , demonstrating excellent convergence and mixing,
as expected.

posterior means and standard deviations. This implies that the different choices within
the analysis, as represented by X , will lead to substantial differences in the Bayesian pos-
terior. Note that this would likely preclude alternative strategies based on re-weighting
one posterior sample to estimate other posterior attributes across X , strategies that
would likely become even weaker for more complex problems: see Sup. Mat. section 2.3
for further discussion comparing our approach with importance sampling. Figure 2 (right
panel) shows the mixing plots for the four runs closest to the corners of the space X ,
and demonstrate convergence and excellent mixing, as expected.

With such checks in place, we are now free to emulate the function f(x) over the
input space X using the methodology described in Section 2. Specifically, we used a
simple emulator construction sufficient for this example, with constant mean function
m(x) = m0, and covariance function c(x, x′) given by the Gaussian form of equation (5).
We set the variance of the nugget equal to the mean of the MCMC sampling variance
(a very small value), which was assumed constant across the input space. The inputs x
were scaled to have range [−1, 1] and a fixed correlation length of θem = 0.6 was used for
both, following the arguments in Vernon et al. (2010a,b) for choosing correlation lengths
a priori. Finally, the emulator variance parameter σ2

em was set equal to the variance of
the 35 run outputs. See Sup. Mat. Table 1 for the design and MCMC output.

Figure 3 (left panel) shows the emulator expectation E[f1(x)|f (s)
1 (xD)], given by

equation (7), for the posterior mean f1(x) = E[θ|z, x] as a function of the inputs
x = (ν, ε) (we suppress the implicit conditioning on m(.) and c(., .) as given in equa-
tion (6) from here onward). The blue dot represents the original conjugate analysis
where x = (1, 0), the output of which is shown in Figure 1 (right panel). This plot in-
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Figure 3: Left panel: the emulator expectation E[f1(x)|f (s)
1 (xD)] for the posterior mean

f1(x) = E[θ|z, x] as a function of the inputs x = (ν, ε), with the blue dot at the location
of the original conjugate analysis, shown in Figure 1 (right panel). We see that the
posterior mean is more sensitive to ν than to ε, and that the original conjugate analysis
is relatively robust to small departures from conjugacy, of the given form. The black
cross, vertical, horizontal and semi-elliptical lines represent the Cases 1-4 respectively,

described in the text. Right panel: the emulator expectation E[f2(x)|f (s)
2 (xD)] for the

posterior standard deviation f2(x) = SD[θ|z, x], as a function of the inputs x = (ν, ε).

stantly confirms several intuitive features about the class of Bayesian analyses, as well as
providing clear quantitative statements in response to various robustness questions. We
see that conditioning on ε and increasing ν always leads to a decrease in the posterior
mean E[θ|z, x], while conditioning on ν and increasing ε (and hence moving away from
conjugacy) also decreases the mean. The experts may find it useful to know that moving
away from conjugacy in this manner would lead to their posterior mean decreasing at
most from 3.4 to approximately 2.75, as can be seen by drawing a vertical line above
the blue dot, and that this mean is relatively insensitive to smaller likelihood contami-
nations of this form. A comparable lowering of the mean could also arise from choosing
ν = 1.55 instead of the original value of ν = 1, showing that the analysis is far more sen-
sitive to the prior standard deviation than to the likelihood contamination. For a careful
interpretation, we should also take account of the emulator variance Var[f1(x)|f1(xD)]
and the corresponding credible intervals for f1(x) across X , as is discussed for several
example specifications in Section 2.2.

Figure 3 (right panel) shows the emulator expectation E[f2(x)|f2(xD)] for the poste-
rior standard deviation f2(x) = SD[θ|z, x] as a function of the inputs x = (ν, ε), with the
blue dot representing the original conjugate analysis. In contrast to the mean plot, this
plot displays far more counterintuitive behaviour. Conditioning on ν and increasing ε
has little effect for low ν and causes the SD to decrease monotonically for high ν. When
ε = 0 or 1, increasing ν leads to an increase in the posterior SD as expected. However,
for intermediate values of the contamination ε, there are regions of X for which the
opposite is true: an increase in the prior SD ν leads to a decrease in the posterior SD.
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For example, a prior specification of (ν = 0.8, ε = 0.72) has posterior SD = 0.50, but
an increase in prior SD only to (ν = 2, ε = 0.72) leads to a posterior SD = 0.46. So
there are regions where being more certain a priori leads to one being comparatively
less certain a posteriori. Note that this is not due to an over interpretation of the SD
which may be too simple a summary of complex distributions, as exactly the same ef-
fect is seen, for example, when examining the width of the corresponding HPD intervals
or the interquartile range. Nor is it an artefact of the emulation process, as has been
checked by making further evaluations of the MCMC algorithm. Instead, this counter-
intuitive behaviour can be explained in terms of a wider, less restrictive prior allowing
the Bayesian update to be influenced by a larger range of the contaminated likelihood,
sections of which may favour posteriors with lower variance.

Finding this non-trivial behaviour in a simple 1-dimensional case suggests that
high-dimensional Bayesian analyses could easily exhibit similarly complex behaviour
as we move away from conjugacy. The emulation methodology presented here is pre-
cisely designed to deal with high-dimensional cases of this form. Whether such complex
behaviour was present would be difficult to discover without a careful global robust-
ness/sensitivity analysis such as we propose here, which would be vital if the problem
was deemed to be of high enough importance.

Example specifications

To further demonstrate the depth of analysis that is possible using Gaussian process
emulation, we give the results of a small number of example specifications that could
be provided by either single experts, or combinations of experts. We show that our
analysis can give immediate and accurate answers in these cases, along with appropriate
uncertainty statements that can be subsequently used to decide if further runs of the
MCMC algorithm are required, to achieve a desired level of accuracy. We imagine that
the following four specifications have been made:

Case 1 An expert has precise prior beliefs xe corresponding to ν = 1.5 and ε = 0.5,
but requests a local sensitivity analysis at this point.

Case 2 The experts have a fixed prior variance but want to explore the full range of
contamination: ν = 0.8, 0 ≤ ε ≤ 1.

Case 3 The experts have a fixed level of contamination, but imprecise prior variance
such that: 0.5 ≤ ν ≤ 1.9, ε = 0.72.

Case 4 The experts wish to perform a robustness analysis over a half elliptical region
around the original conjugate analysis (ν = 1, ε = 0) that satisfies

(ν − 1)2

0.32
+

ε2

0.42
< 1 and ε > 0. (23)

These four cases are shown in Figure 3 as the black cross and the black vertical, hori-
zontal and curved lines respectively. The emulators derived in Section 2.2 can instantly
provide the desired results for the four cases, as we now describe.
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Table 2 gives the emulator expectation (first row) for the posterior mean f1(x) =
E[θ|z, ν, ε] and SD, f2(x) = SD[θ|z, ν, ε] (first and forth columns) evaluated at the point
xe = (1.5, 0.5), corresponding to the specification of case 1. As a local sensitivity analysis
was requested, also given are the partial derivatives of f1(x) and f2(x) with respect to
ν and ε, at this point, calculated as described in Section 2.1. These show that f1(x) is
sensitive to both ν and ε at xe; however, f2(x) is relatively insensitive to changes in ν.
Most importantly, the second row of Table 2 gives the uncertainties due to the emulation
process corresponding to each of these quantities, in the form of the emulator standard
deviations, found from equation (8). These can be used to determine if a desired level
of accuracy has been achieved, or if further MCMC runs are required.

f1(x)
∂f1(x)

∂ν
∂f1(x)

∂ε f2(x)
∂f2(x)

∂ν
∂f2(x)

∂ε

E[.] 2.596 −0.693 −0.423 0.533 −0.052 −0.243
SD[.] 0.020 0.113 0.179 0.006 0.028 0.049

Table 2: Results of the local sensitivity analysis corresponding to specification case
1. The first row gives the emulator expectation of all requested quantities of interest,
namely the posterior mean f1(x), posterior SD f2(x) and partial derivatives of each.
The second row gives the corresponding emulator SD of each of these estimates, which
could be reduced using further MCMC runs.

Figure 4 shows the results for the posterior mean f1(x) (top left panel) and poste-
rior SD f2(x) (bottom left panel) for the specification given in case 2, where here the
contamination parameter ε varies along the x-axis. The blue lines give the emulator ex-
pectations, and the red lines give a 95% credible interval that represents the uncertainty
due to the emulation process (and to a much smaller extent, due to the finite sample size
of the MCMC draws). While both the posterior mean and SD appear to be monotoni-
cally decreasing with increasing ε, the posterior SD sharply decreases for ε > 0.7. This
alerts the expert to the fact that careful thought may be required when specifying levels
of contamination above 0.7. Figure 4 gives the corresponding plots (top right: posterior
mean, bottom right: posterior SD) for the specification given in case 3, where the prior
standard deviation parameter ν varies along the x-axis. We can see that the posterior
mean has been emulated to a high degree of accuracy compared to its variation over
this range. The posterior SD exhibits some of the counterintuitive behaviour discussed
in Section 2.2: once ν increases beyond approximately 0.8, the posterior SD decreases
as a function of increasing ν. Here, the expert should be aware of both the counterintu-
itive behaviour and the sensitivity of the posterior to low values of ν. All four panels of
Figure 4 also show multiple left-out diagnostic MCMC runs as black points. These were
created by running the MCMC algorithm along the 1D regions defined by Case 2 and
Case 3, and show good emulator performance. See Sup. Mat. for further diagnostics.

In many situations, the experts may purely want a robust Bayesian analysis per-
formed over their specified regions Xk say, that is the identification of the maximum
and minimum of the posterior quantities of interest over Xk. For the maximum, we
would hence wish to evaluate E[maxxe∈Xk

f(xe)], where the expectation is performed
over the Gaussian process, however, unlike all examples up to this point, we do not have
an analytic expression for this term, as the distribution of the maxima and minima of



1382 A Bayesian Computer Model Analysis of Robust Bayesian Analyses

Figure 4: Emulator expectations (blue lines) and 95% credible intervals (red lines) for
the expert specifications case 2 (ν = 0.8, left column) and case 3 (ε = 0.72, right
column), with the results for the posterior means E[θ|z, ν, ε] given by the top row, and
the posterior standard deviations SD[θ|z, ν, ε] by the bottom row. Black points are left-
out diagnostic MCMC runs, showing good emulator performance.

a Gaussian process is only known for a small number of specific correlation functions.
However we can easily approximate these expressions using simulation as follows, being
careful to respect the smoothness of f(x) and hence the joint structure of the emulator

over Xk. We define a large number of points x
(i)
E , i = 1, . . . , nE spanning the specified

region Xk, and simulate jointly from the emulator across x
(i)
E . Specifically, we use the

joint posterior distribution over the vector f(xE) of length nE , which is given by

f(xE)|f (s)(xD),m(.), c(., .) ∼ N(m∗(xE),Σ
∗(xE)), (24)

a direct consequence of equation (6), where Σ∗(xE) is a covariance matrix of dimension

nE , with elements Σ∗
ij = c∗(x

(i)
E , x

(j)
E ). Equation (24) can be used to efficiently simulate

a large number nS of joint realisations from the posterior of the emulator. This provides,

f (j)(x
(i)
E ), with j = 1, . . . , nS and i = 1, . . . , nE (25)
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From these we may extract nS maxima Mj and minima mj and their corresponding

means M and m respectively:

Mj = max
i

f (j)(x
(i)
E ) , mj = min

i
f (j)(x

(i)
E ) (26)

M =
1

nS

nS∑
j=1

Mj , m =
1

nS

nS∑
j=1

mj (27)

where M and m are estimates of E[maxxe∈Xk
f(xe)] and E[minxe∈Xk

f(xe)] respectively.

Figure 5 (left panel) shows the estimated expected maxima M and minima m and

the intervening range of the posterior mean f1(x) as the blue error bars, where M

and m are the top and bottom of the blue error bars respectively, for each of the four

cases, as labelled on the x-axis. The uncertainty due to the emulation process regarding

these maxima and minima is represented by the red boxplots, which are formed from

nS = 1000 values of Mj and mj respectively. Note the resulting asymmetries in some

of the boxplots: e.g. the maxima of case 2: this is due to the correlation structure of the

underlying GP calculation, which still respects the smoothness of the Bayesian analysis

as a function of x. This can lead to accurate maximum and minimum estimates, even

if the emulator uncertainty is high at individual input points. The blue points show

the expected posterior means evaluated at the midpoint of the specification region, for

each case, which give an approximate idea of any non-linearity of the posterior mean’s

response. The right-hand panel of Figure 5 shows the equivalent plot for the posterior

standard deviations, f2(x). Once again, the emulator uncertainty, as represented by the

red box-plots, shows how much variation could be resolved by further MCMC runs.

In both panels, for cases 2 to 4, we can see that we have captured the majority of

the variation of the robust Bayesian analysis (as given by the blue error bars), and

that the emulator uncertainty is small in comparison, so it is unlikely that we would

wish to design more MCMC runs. However, as a result of the correlation structure of

the updated emulator, given as c∗(x, x′) in equation (8), the uncertain maximum and

minimum of the GP may be correlated, and even possess a complex joint structure (see

supplementary material for further discussion).

We now imagine that there is an important decision criteria that demands an al-

ternative action if the posterior mean f1(x) < 2.6 and the posterior standard deviation

f2(x) < 0.47 say. Experts in cases 1, 2 and 4 can rule out the alternative action immedi-

ately, as our analysis has confirmed that despite the imprecision in their specifications,

their posteriors will not be close to the critical region. In case 3, these criteria are indeed

possible, and the expert now knows that they need to think carefully about their orig-

inal specification, particularly for the higher values of v where the critical region lies,

as is confirmed by Figure 4 (right column). Should we need to do further exploration

of the Bayesian analysis, in order to reduce the uncertainty about the location of such

a critical region, we would perform additional waves of MCMC runs, using the well

developed history matching methodology (see Vernon et al., 2010a,b, 2014).
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Figure 5: Output from the proposed analysis for the four example specifications given
in Section 2.2. Left panel: the expected maximum and minimum of the posterior means
E[θ|z, ν, ε] are given by the top and bottom of the blue error bars. The uncertainty on
these maximum and minimum estimates, due to the emulation process, is represented
by the red box plots (based on 1000 realisations of the emulator), and could be reduced
with further evaluations of the MCMC algorithm. The emulator expectation of the
posterior mean at the midpoint of the imprecise specifications is given by the blue
points. Right panel: the equivalent plot showing the possible ranges for the posterior
standard deviations SD[θ|z, ν, ε].

3 Application to a Bayesian analysis of river flow

3.1 Extension of a conjugate analysis

Vicens et al. (1975) give an account of a conjugate Bayesian analysis of annual stream-
flows of the Pemigewasset River at a measuring point at Plymouth, New Hampshire,
USA. The data were the recorded flows in ft3/s over the 60-year period of 1904-1963
(Survey, 2015). In their calculations, they assumed that the annual streamflows were
identically and independently distributed as

zi|μ, σ2 ∼ N
(
μ, σ2

)
, i = 1, . . . , 60,

where μ and σ2 were parameters that they wished to learn about. In order to have a
conjugate analysis, the following prior specification for μ and σ was made:

μ|σ2 ∼ N

{
μ0,

(
σ

n0

)2
}
,

σ2 ∼ Inv-Ga(α, β),

where μ0, n0, α and β are hyperparameters that were specified.
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We embed their analysis within a more general structure as follows. Because the
data can be naturally thought of as a time series, the following simple extension can be
made to the assumed data generating process:

zi − φ(zi−1 − μ)|μ, σ2, φ ∼ N
(
μ, σ2

)
, i = 2, . . . , 60,

z1|μ, σ2 ∼ N
(
μ, σ2

)
,

where φ is a correlation parameter that could be fixed or we may be uncertain about.
Because we are aiming to demonstrate just some of the utility of our approach and we
have limited knowledge of the problem in hand, we will also investigate the following
extension of the prior specification of Vicens et al. (1975):

μ|σ2 ∼ (1− ε)NQ (Q1, Q3) + ε CQ (Q1, Q3) ,

σ2 ∼ Inv-Ga(α, β),

where Q1 and Q3 denote the lower and upper quartiles respectively and NQ and CQ

are normal and Cauchy distributions that are parameterised using the lower and upper
quartiles derived from

N

{
μ0,

(
σ

n0

)2
}
.

In order to complete this extended specification, we need to assign values to μ0, n0, α,
β, φ and ε. Note that it would of course be possible to increase the sophistication of
this structure, say by adding additional levels onto the underlying hierarchical model
(e.g. by placing priors on φ, or indeed any of the parameters). However, as we wish to
demonstrate our methods while also maintaining a clear comparison with the results of
the original specification (and hence investigating its robustness), we choose to employ
the robust analysis at this level. This has the benefit whereby the original specification
can be identified as a single point within the space X , which will aid interpretation.

When we use this prior specification with ε 	= 0, we lose conjugacy and we need
some numerical technique to derive the posterior distribution. For this application, we
use a Metropolis-Hastings algorithm with proposal distributions:

μ∗|μt−1, ξ
2
μ ∼ N(μt−1, ξ

2
μ),

σ2∗|σ2
t−1, ξ

2
σ ∼ N(σ2

t−1, ξ
2
σ).

We use an adaptive algorithm to choose ξ2μ and ξ2σ, and we use diagnostics to ensure
the convergence of the Markov chains for each set of hyperparameters as in Section 2.2.

3.2 Emulation of the Bayesian analysis

We take as inputs to the computer model the specified parameters x = (μ0, n0, α, β, φ, ε).
We take as outputs f(x) the posterior mean and variances of both μ and σ2. The inputs
and outputs are listed in Table 3 along with the ranges we decided to explore the analysis
over that define the region X . Note that the range for φ was chosen to be smaller than
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Inputs x Type of Input Range Outputs f(x)
μ0 Prior hyperparameter [500, 2000] E[μ|z]
n0 Prior hyperparameter [0.5, 30] Var[μ|z]
α Prior hyperparameter [100, 500] E[σ2|z]
β Prior hyperparameter [0, 30] Var[σ2|z]
φ Autocorrelation parameter [−0.2, 0.5]
ε Prior contamination [0,1]

Table 3: The inputs x and outputs f(x) of the extended Bayesian analysis of river flow
when represented as a computer model. The ranges for the inputs are also given to
define the extent of the sensitivity analysis over X .

the full [−1, 1] range possible for correlations, as it was thought unlikely that an expert
would assert such extreme values, due to meteorological considerations.

We create a 100-point design by creating a 99 point maximin Latin hypercube over
the six dimensional hypercube X given by the ranges in Table 3 and adding a single input
corresponding to the particular conjugate analysis carried out in Vicens et al. (1975).
Again we choose to use slightly more runs than the rough guide suggestion of 10d, to
ensure reasonably accurate emulators after a single batch of runs. The parameters for the
conjugate analysis were: μ0 = 1, 333, n0 = 1, α = 6.5, β = 402, 057.5, φ = 0 and ε = 0.
We created a training set for our emulator by running the MCMC algorithm for each of
the parameters and recording the four posterior moments of interest. The emulator was
built using a Matérn correlation function, a linear mean function and an extra variance
term to capture variability in the MCMC estimation process as described in Section 2.2.
We also checked the performance of the emulator using the diagnostic tools of Bastos
and O’Hagan (2008), and found that the uncertainty caused by employing an emulator
was generally two orders of magnitude smaller than the range of different values we
observed for each of the four outputs of interest.

Figure 6 shows the effect of changing some of the parameters for three of the outputs
of interest. The red line in each plot gives the average value for the output named on the
y-axis conditional on the fixed value of the input from the x-axis. For these sensitivity
analysis plots, we assume uniform distributions over all the ranges given in Table 3.
The grey regions on the plot show a 90% credible interval for the different outputs
conditional on the fixed input value and can be thought of being illustrative of plausible
values for the output given the fixed input value. The top-right plot of Figure 6 shows
that as we vary α the posterior mean of μ will on average stay at 1347 ft3/s, but the
plausible range of values shrinks slightly as we increase α. We can of course create
such plots for each input-output combination, and the four shown in Figure 6 are the
most interesting for this example in that the ranges and mean change over the range
of the input. The top-left plot of Figure 6 shows the potentially unexpected effect that
changing μ0 has on the posterior mean of μ in this analysis: relatively small deviations
from the original specification of μ0 can have a large effect on the posterior mean of μ.
This information is obviously useful to any interested in the robustness and sensitivity
of this hyperparameter in this analysis. The fact that the posterior mean is, on average,
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Figure 6: Main effects plots, showing the average effect of inputs μ0, α and φ on various
outputs (red line). The grey envelope represents the possible output values (due to
varying the other five inputs) as a 90% credible interval, conditioned on the given
input. The blue points give the outputs corresponding to the prior specification for the
parameters made by Vicens et al. (1975).

stable for values of μ0 below 1,000 and above 1,700 would be of interest to scientists who
have prior beliefs that accord with one of those possibilities in that they will know that
relatively little effort should be spent on eliciting their beliefs about μ0 precisely. This
behaviour is due to the Cauchy part of the prior distribution dominating the Bayesian
update, when there is modest prior-data conflict. We must of course interpret such plots
with caution, and may choose to further investigate interesting regions (for example,
where ε → 0) with a second wave of MCMC runs, as discussed in Section 4.2.

The variance contributions of each of the inputs to each of the outputs of interest
are calculated to show the influence of each input using the probabilistic sensitivity
analysis method of Oakley and O’Hagan (2004) (again, using uniform distributions
over the ranges in Table 3). The results are given in Table 4. In the table, the main-
effect index column shows the percentage of variance in the output that is due to the
corresponding input alone, and the total-effect index is the percentage of variance that
is due to the corresponding input and all of the higher-order interactions it is involved
in (Saltelli et al., 2000). Immediately, from the table, we can see which parameters have



1388 A Bayesian Computer Model Analysis of Robust Bayesian Analyses

E(μ|z) Var(μ|z) E(σ2|z) Var(σ2|z)
Main- Total- Main- Total- Main- Total- Main- Total-
effect effect effect effect effect effect effect effect

index(%) index(%) index(%) index(%) index(%) index(%) index(%) index(%)
μ0 71 99 0 0 0 0 0 0
n0 0 4 0 4 0 0 0 1
α 0 2 11 21 85 87 88 93
β 0 0 1 5 5 6 2 4
φ 1 24 75 85 8 9 5 8
ε 0 1 0 5 0 1 0 1

Table 4: Variance-based sensitivity indices for the μ outputs.

most impact on the different outputs of interest: for instance, we can see that (over the
ranges specified) μ0 is accounting for the majority of the variation in the output E(μ|z)
as expected, but μ0 is having no discernible effect on any other output of the analysis.
The impact of the contamination parameter ε across all the analysis outputs can also
be seen to be relatively small, which may be of interest to any person who questioned
the choice of the normal prior in the original paper. From Table 4, we can also see that
the input φ is having an effect on E(μ|z), but only in interaction with the other input
parameters (most probably μ0). Given this information, we may want to investigate the
changes in E(μ|z) when we jointly manipulate μ0 and φ.

In addition to the plots in Figure 6, we are able to visualise the joint effect of two
inputs by plotting the average value of the outputs conditioning on fixed values of two
of the inputs. The joint effect of μ0 and φ on E[μ|z] is shown in the plot of Figure 7:
it is clear from that plot that the level of autocorrelation φ, changes the influence of
μ0, with larger positive values of φ resulting in a much stronger dependence on μ0.
Again, these types of plots can be used to identify regions of the input space where the
analysis is robust. Like for the plots of Figure 6, we could have presented these plots
for any input-pair and output combination, but, for the most part, these plots were
either flat, or just showed interesting behaviour in one dimension (which is represented
by Figure 6).

On all the plots in Figures 6 and 7, the location of the result of the original analysis
from Vicens et al. (1975) is shown as a blue dot. By considering the plots and the
variance-based sensitivity analysis results we can judge which outputs are robust to
changes in which inputs within the vicinity of the original analysis. For instance, it is
clear from these results that careful consideration needs to be given to the specification
of μ0, φ and α, and we know that the output E(μ|z) is particularly sensitive to changes
in μ0 around the value used in the original analysis.

The emulator can also be used in a predictive manner: another scientist may come
along who agrees with the original specification of μ0, n0, α and β, but they believe that
there is autocorrelation that is captured by setting φ = 0.25 and that the prior should
be Cauchy rather than normal (ε = 1). The emulator can be queried to find immediately
that, under this specification, we have the results in Table 5, where we have an estimate
of the relevant Bayesian analysis and an appreciation of the uncertainty caused by
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Figure 7: Joint effects plot showing the average effect of pairs of the inputs φ and μ0 on
the analysis output of E[μ|z].

Posterior Results from Median 90% credible
summary Vicens et al. (1975) interval
E[μ|z] 1,347 1,344 (1,339,1,350)
Var[μ|z] 1,015 1,749 (1,424,2,073)
E[σ2|z] 61,937 68,210 (67,420,68,990)
Var[σ2|z] 1.11×108 1.47×108 (1.32×108,1.62×108)

Table 5: Predictions from the emulator when using original values for μ0, n0, α and β
alongside φ = 0.25 and ε = 1 (all results are to four s.f.).

approximating the analysis using the emulator. We can see in this particular case that
the posterior mean for μ is in the vicinity of the value from the original analysis (1,347),
but the posterior variance for μ is far greater than the original (1,015), which is to be
expected due to the increased correlation in the likelihood giving a reduced effective
sample size, combined with a more uncertain prior. If this scientist was uncertain about
the level of autocorrelation and wished to specify a distribution for φ, the emulator
could still be used to find their posterior summaries using the usual uncertainty analysis
approach of Oakley and O’Hagan (2002).

Of course, considering the sensitivity of the outputs in this way and performing
predictions based on the emulator are just two of the ways we can investigate the original
analysis using our method: we can also perform the type of analyses that were covered
in Section 2.2 and many more as discussed later in the present article. In particular,
if there was interest in further exploring the robustness of the analysis in a particular
part of input space, we could use the emulator to help select further MCMC runs for
different inputs in order to increase our knowledge of how the posterior summaries are
affected in that region. The emulator-building exercise and the subsequent plotting of
main and joint effects can also be useful as a diagnostic tool in that we may have prior
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beliefs about the way in which inputs influence the posterior outputs and these plots
can help identify unexpected behaviour that may be due to programming bugs in the
MCMC implementation.

4 Discussion and future research directions

4.1 Modelling choices

The proposed methodology raises many questions, some of which are related to those
seen in a standard robust Bayesian analysis. We give our thoughts on some of the key
issues as follows (see Insua and Ruggeri (2000) for further discussion):

• What parts of the prior and likelihood should we vary? When setting
up such analyses, we have many choices over what parts of the prior and likelihood
we could vary. These can in the first instance be guided by the differing views held
within the scientific community, or by our desire to test the sensitivity of our analysis to
important parts of the specification. Key elicited quantities (such as the prior variance ν
in Section 2.2) are obvious choices for parameters to vary, as are parameters representing
relatively arbitrary but convenient assumptions, such as the additive contamination
parameter ε from both Sections 2.2 and 3, which breaks conjugacy for ε > 0, or indeed
multiplicative contaminations of the form p(1−ε)qε motivated say from a differential
geometry perspective. In full generality, we may wish to vary everything possible, while
maintaining consistency with the limited prior and likelihood specification. However,
we should be careful here as although not explicitly stated, the prior specification may
contain further reasonable but implicit structural information, such as unimodality and
continuity of both the prior and likelihood pdfs, as well as additional, and possibly
quite strict, bounds on the derivatives of the pdf’s to ensure smoothness (the expert’s
beliefs, were we to interrogate them further, are unlikely to be jagged). This is critical as
many robust analyses that leave out such additional constraints, can produce relatively
non-informative results, especially in high dimension (this links to arguments made by
Gustafson and Wasserman, 1995). These constraints therefore greatly restrict the class
of analyses we should use, and hence may allow parameterised approaches, such as we
present here, to capture the major sources of variation. The limitations as to what we
can vary link to the concept of model discrepancy that we discuss in Section 4.2, which
would capture the additional uncertainty that our current representation ignores.

• How do we decide how to contaminate a prior or likelihood? As we
have demonstrated, the contamination of a prior or likelihood represents a simple to
implement parameterised method of breaking away from mathematically convenient
distributional assumptions, while respecting core scientific principles. There is of course
much freedom in the choice of contaminating distribution, however, we would usually
want to ensure the contaminant possesses key attributes found in the uncontaminated
term. For example, in Section 2.2 the contaminant to the likelihood π(zi|θ, ε = 1) given
in equation (17) was chosen to have the same expectation of 1/θ, as the uncontaminated
term π(zi|θ, ε = 0) given by equation (14), but note that this is not a restriction or
requirement of our approach, just a specific choice we made to mimic say an expert
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adhering to that physical principle. Similarly the prior contamination of Section 3.1,
shared the same quartiles as the original prior specification. Note that in both cases the
contaminants shared with the original analysis the additional properties of unimodality
and continuity of the pdfs (and derivatives). While these perturbations are by their very
nature limited, it would still be comforting to find that the key features of the posterior,
or end decision process, are robust to them, and highly informative to find the opposite.

• What should the exploratory space X look like? In the simplest case,
what ranges should we use? Ideally, the exploratory space X should contain the
differing specifications that exist across all, or at least some specific subset, of the rele-
vant scientific community. Note that X may contain regions Xk representing individual
robust Bayesian analyses that scientists wish to perform, such as cases 2, 3 and 4 in
Section 2.2. While in practice this would be difficult to achieve precisely, as the scientific
community may not agree exactly with our choice of parameterisation, we would still
hope to capture the major aspects of the differences of opinion across the area. This
implies that there is an important difference between X and the corresponding region
Xk explored in a single perfunctory robust Bayesian analysis, in that X just needs to
cover all areas of interest, and assuming it achieves this, the precise location of its
boundary is of somewhat less importance (however, although in principal our proposed
emulation methodology can deal with large numbers of inputs defined over wide ranges,
as discussed below, the smaller X is, the easier it may be to emulate). In contrast, when
specifying a particular region Xk for use in a robust Bayesian analysis, where interest
lies in the extrema of f(x) over Xk, such as in cases 2 to 4 in Section 2.2, the geometry
and extent of the boundaries of Xk should be considered very carefully. For example,
often, Xk may be constructed from the intersection of univariate interval constraints
on the components of x, implying Xk is a hypercube. However, this is usually just a
convenient construction, and can possess disadvantages: as f(x) may display noticeably
different behaviour in the many corners of such a hypercube, the corners may dominate
the robust analysis. An elliptical specification, as used in case 4 in Section 2.2, may
be both more realistic and simultaneously easier to emulate. These issues have caused
problems in previous robustness studies in differing dimensions: while exploring wide
classes of priors in 1-dimension can still lead to meaningful conclusions (Berger, 1994),
in higher dimensions such artificial classes of priors can overwhelm the data, leading to
non-informative results (Insua and Ruggeri, 2000), a problem that will become worse
when we simultaneously perturb the likelihood. We see that the requirement to specify
X is not created by our analysis, rather it already exists for any robust Bayesian analy-
sis and by extension for any Bayesian analysis. Our approach just helps one to explore
X in a principled manner and should help facilitate the analysis of quite large spaces,
providing deeper insight.

• What happens if we cannot emulate the Bayesian analysis? One can en-
visage a particularly erratically behaved Bayesian analysis where standard emulation
procedures would perform poorly, as would most likely be flagged by emulator diagnos-
tics (Bastos and O’Hagan, 2008). In this case, we would a) be very glad to have been
made aware of this erratic behaviour across X and b) most likely suggest the analysis
would fail any reasonable test of robustness. Hence if we cannot emulate it, we would be
unlikely to trust it. We may then attempt to emulate sub-components of the full analysis,
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to investigate its structure further and to identify the cause of the non-robust behaviour.
One possible cause of such erratic MCMC output could be that the original Bayesian
analysis suffers from identifiability issues (Gustafson, 2015), again which may be picked
up here by emulator diagnostics. Other challenges can arise if the original Bayesian anal-
ysis is both complex and we wish to perturb many of its attributes, for example in the
case of complex Bayesian linear mixed models, or various spatio-temporal models. This
may lead to the dimension of X being very large, possibly requiring substantial numbers
of MCMC evaluations, which despite being embarrassingly parallelizable, may still be
impractical to perform. While GP emulation can handle moderate to high-dimensional
functions, this requires more sophisticated emulator forms, e.g. as shown in equation (7)
in the Sup. Mat., which are designed to exploit both global smoothness, and dimension
reduction strategies in the form of active/inactive inputs. In addition, if the dimension of
X is still too large, we may want to carefully consider limiting our analysis to interesting
subspaces of X that we suspect will drive most of the behaviour of f(x), perhaps those
aligned with the main sources of disagreement between domain experts’ specifications.
Here again, emulation may be successful or would at least highlight classes of features
that require further investigation. See Sup. Mat. for further discussion.

• What can we do if we cannot assume smoothness? If we are uncomfort-
able with the standard smoothness assumption across X , we can use alternative forms
for the emulator correlation function that represent non-smooth surfaces with partic-
ular attributes. If we suspect the output to have sudden discontinuities, either in its
derivative or in the function f(x) itself, we can attempt to identify the location of such
discontinuities using history matching techniques discussed below.

4.2 Future research directions

The proposed methodology raises several future research directions, some of which we
highlight here (see the supplementary material for details). For example, there are pow-
erful computer model techniques that have interesting analogies in this context:

• History matching: say interest lies in identifying a subset X0 ⊂ X that satisfies
some criteria on the posterior, possibly related to a downstream decision calculation, or
related to finding regions of high sensitivity. In this case we can employ the computer
model technique of history matching: a global search strategy that efficiently exploits
the structures of the emulators using iterative waves of runs (e.g. see Vernon et al.,
2010a,b; Rodrigues et al., 2017; Williamson et al., 2013; Andrianakis et al., 2017).

• Model discrepancy: a key feature of current computer model analyses is the
inclusion of a model discrepancy term (Craig et al., 1997; Kennedy and O’Hagan, 2001;
Goldstein et al., 2013), an upfront acknowledgement of the deficiencies of a scientific
computer model due to missing physics, simplifying assumptions, imperfect solvers etc.
In our current context of a Bayesian analysis, the model discrepancy would represent the
uncertainty due to the simplifying assumptions used throughout the construction of the
Bayesian model and prior specification, beyond those explored by the robust analysis
itself. It would therefore link our current robust analysis with the robust analysis that
we would wish to do given more time, computational resources and expert input.
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Other lines of research more specific to this context are also possible:

• Structured Emulator Priors: There are several situations where we would
have detailed insight into the result of the Bayesian update for specific subsets of X , for
example, there may be surfaces in X where we can solve the Bayesian update exactly due
to certain prior variances equalling zero, or due to conjugacy. Other information may
be provided by fast, but approximate algorithms. Depending on the posterior features
of interest, there is a rich hierarchy of informed priors one could use that incorporates
such information for minimal computational cost. Here, we would elicit priors from the
statistician, not the subject matter expert, hence detailed elicitations may be possible.

• MCMC development: While the use of MCMC in our approach is trivially
parallelisable, we also envisage improvements to MCMC algorithms tailored specifically
to this type of analysis, that exploit the geometry of X . For example, the final end state
and tuning parameters values for a chain located at x1 ∈ X would make an ideal initial
condition for a chain located at x2 ∈ X were |x1−x2| considered small. Perhaps of most
use would be the incorporation of MCMC based local sensitivity analysis (Perez et al.,
2005) into the emulator via the derivative structure given by equation (12), which may
lead to substantial improvement in emulator accuracy.

5 Conclusion

In this article we have proposed a framework for addressing the general Bayesian ro-
bustness problem, in which we treat complex and computationally demanding Bayesian
analyses as expensive computer models. We applied emulation technology developed for
complex computer models to explore the structure of the Bayesian analysis itself, and,
specifically, its response to various changes in both the prior and likelihood specification.
This allows for a more general sensitivity and robustness analysis, and provides a very
flexible methodology that could also be applied to a wide class of statistical analyses.

It could be argued that every important Bayesian analysis, where the results may
have serious consequences, should employ a robust analysis of the kind we propose
here. Enabling the analysis of classes of prior and likelihood specification should also
help the uptake of Bayesian methods within scientific communities, as each expert will
have access to the posterior attributes corresponding to their own subjective beliefs.
Experts may also find the answer to the question: “how far do I have to perturb my
specification before my decision changes” to be easy to interpret, and help assuage
their fears over the use of specific choices of subjective priors and likelihood, due to
their (possible) robustness. In many contexts this strategy may be of more use that the
standard Bayesian approach of adding another layer to the model hierarchy, requiring
the assertion of possibly artificial priors over the space X , the meaning of which may
be questionable.

There are now some extremely expensive MCMC algorithms that may take weeks
or longer to run, and hence there may be obvious practical challenges that make it
impossible to perform repeated evaluations as required for this analysis. However, in
many of these cases other, faster but approximate Bayesian methods will be available
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such as Hamiltonian Monte Carlo, Variational Inference or even Approximate Bayesian
Computation. We can apply our emulation based robust analysis to these approxima-
tions either directly, or by incorporating them within a multilevel analysis (see Sup.
Mat. for further discussion). In the case where the MCMC is indeed too slow for our
analysis, and no reliable alternative approximations are available, we should insist on
turning the argument around, and our response would be the same as is often given to
climate scientists, who also construct extremely expensive models: if the model is too
expensive to allow a reasonable sensitivity analysis, why should we trust in its results
at all? Such considerations would promote a welcome change in emphasis in Bayesian
statistics away from extremely complex models and algorithms, and toward well under-
stood, robust and trustworthy analyses. This, combined with further developments to
tailor MCMC and other approximate algorithms for efficient use in this context, maybe
a sensible direction for Bayesian statistics to take.

Supplementary Material

A Bayesian computer model analysis of Robust Bayesian analyses: Supplementary Mate-
rial (DOI: 10.1214/22-BA1340SUPP; .pdf). Further details regarding a) an introduction
to computer model emulation, b) the example Bayesian model: emulator diagnostics,
posterior quantile emulation, c) comparison with importance sampling, d) extended
discussion of future research directions.
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