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Comparing Dependent Undirected Gaussian
Networks∗

Hongmei Zhang†,‖, Xianzheng Huang‡, and Hasan Arshad§,¶

Abstract. A Bayesian approach is proposed, which unifies network construc-
tions and comparisons between two longitudinal undirected Gaussian networks
on their differentiation status (identical or differential) for data collected at two
time points. Utilizing the concept of modeling repeated measures, we construct a
joint likelihood of networks. The conditional posterior probability mass function
for network differentiation is derived and its asymptotic proposition is theoret-
ically assessed. An alternative approach built upon latent rather than manifest
data is proposed to significantly reduce computing burden. Simulations are used
to demonstrate and compare the two methods and compare them with existing
approaches. Based on epigenetic data collected at different ages, the proposed
methods are demonstrated on their ability to detect dependent network differ-
entiations. Our theoretical assessment, simulations, and real data applications
support the effectiveness of the proposed methods, although the approach relying
on latent data is less efficient.

Keywords: Bayesian methods, efficient Bayesian sampling, Gaussian network
testing, latent data likelihood, penalized conditional posterior probability.

1 Introduction

Epigenetics regulates gene functions through its modulation of gene expression. One
epigenetic mechanism is DNA methylation, where a methyl group is added to the 5′ po-
sition of the cytosine base of cytosine-phosphate-guanine dinucleotide sites (CpG sites
or CpGs) in the DNA. Recent studies suggest that joint activities among CpGs may
be more biologically informative and important for their associated health conditions
compared to individual CpG sites (Hotta et al., 2018). Interplay between genes or CpG
sites can be reflected by Gaussian undirected networks assuming data following a multi-
variate normal distribution. Such networks offer researchers an opportunity to decipher
underlying complex mechanisms leading to the interconnections, which is valuable to the
detection of gene markers beneficial to disease prediction and consequently prevention.
For data following a multivariate normal distribution, zeros in the covariance matrix
represent marginal independence between nodes. The precision matrix, on the other
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hand, represents a conditional independence structure of the distribution with a zero
denoting independence between nodes conditional on the remaining nodes. Under the
context of joint biological activities of genes, modeling a network of genes via precision
matrix better reflects such underlying mechanisms.

In genetic or epigenetic studies, often it is of interest to examine whether joint ac-
tivities among genes change after a certain treatment or after a certain period of time,
and such change may reflect modification of underlying biological pathways of disease
etiology. Although most studies under frequentist (Friedman et al., 2008; Mazumder and
Hastie, 2012) or Bayesian framework (Wang et al., 2015; Li and Zhang, 2017; Bashir
et al., 2019; Shaddox et al., 2020; Ni et al., 2021), focus on network constructions, ap-
proaches to compare between networks have been proposed. For comparison between
undirected networks, Gill et al. (2010) suggested a procedure to globally test differen-
tial undirected graphs applied to genes. The approach is based on strength of genetic
associations or interaction between genes. Jacob et al. (2012) compares two graphs by
comparing multivariate two-sample means on known graphs using Hotelling’s T 2-tests.
A method estimates the differences in precision matrices between two differential undi-
rected networks was suggested by Zhao et al. (2014), which was further developed with
an ability to globally test differentiation of undirected graphs (Xia et al., 2015). The
work by Städler et al. (2017) was under a framework similar to Zhao et al. (2014). More
recently, He et al. (2019), based on the inference of Gaussian graphic modeling and
asymptotic normality of precision matrix components, proposed a test statistic that
has the ability to efficiently compare two precision matrices. Approaches comparing
between covariance matrices have been proposed and can also be applied to compare
agreement between two Gaussian undirected networks based on precision matrices. For
instance, Cai et al. (2013) derived test statistics for two-sample covariance matrix test-
ing; and Chang et al. (2017) proposed a computationally efficient procedure to compare
two covariance matrices that is expected to be robust against complex structures. How-
ever, to our knowledge, existing methods focus on comparing two independent graphs,
which is likely to be underpowered if applied to compare two networks that are depen-
dent.

Motivated by the needs in genetic and epigenetic epidemiological and medical stud-
ies with interest in longitudinally network differentiations, in this article we propose two
methods to compare dependent networks constructed based on data with repeated mea-
sures, in which the novelty lies. The proposed approaches unify network construction
and comparison. The remaining of the article is organized as follows. We introduce the
modeling of two dependent graphs in Section 2. A Bayesian method used to compare the
two dependent graphs and the property of a penalty-incorporated posterior probability
are discussed in Section 3. Also in this section, we propose another likelihood-based
method that is computationally less demanding and incorporates a block sampling ap-
proach to achieve efficient sampling. Simulations with different simulation scenarios
and comparison with competing methods are discussed in Section 4. To demonstrate
the methods, in Section 5, we present real data applications to compare epigenetic net-
works between pre- and post-adolescence and during young adulthood. We summarize
our work in Section 6.
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2 Modeling two dependent graphs

Let Xit denote a vector of p variables for subject i at time t, i = 1, . . . , n, t = 1, . . . , T .
Without loss of generality, we assume the mean of Xit is 0. Following the concept of
linear mixed models, we decompose Xit into two components (Xie et al., 2016),

Xit = X∗
it + Si, (1)

where X∗
it are the underlying variables after eliminating random subject effects Si

across the p variables shared between T time points. We assume X∗
it and Si are in-

dependent and each follows a multivariate Gaussian distribution with mean 0 and
p × p covariance matrices Σt and Σ0, respectively. Denoting Ωt = Σ−1

t , Ω0 = Σ−1
0 ,

and Xi. = {X ′
i1, . . . ,X

′
iT }′, a vector of length pT , the joint density of Xi. in terms of

Ωt and Ω0 can be derived,

n∏
i=1

p(Xi.|Ω) = (2π)−
npT
2

[det(Ω0)

det(A0)

]n
2

T∏
t=1

det(Ωt)
n
2 exp

{
−n

2
tr(Σ̂X(t,t)Ωt)

}

× exp
{n

2

T∑
t1,t2=1

tr(Ωt1Σ̂X(t1,t2)Ωt2A
−1
0 )

}
,

∝
[det(Ω0)

det(A0)

]n
2

T∏
t=1

det(Ωt)
n
2 exp

{
−n

2
tr(Σ̂X(t,t)Ωt)

}

× exp
{n

2

T∑
t1,t2=1

tr(Ωt1Σ̂X(t1,t2)Ωt2A
−1
0 )

}
, (2)

with Ω = (Ω0,Ω1, . . . ,ΩT ), A0 = Ω0+Ω1+· · ·+ΩT , Σ̂X(t,t) being the sample covariance

matrix of X.t = {X1,t, . . . ,Xn,t} at time t, and Σ̂X(t1,t2) being the sample covariance
matrix between t1 and t2, t1, t2 = 1, . . . , T . The joint density (2) is derived following
Xi. ∼ N(0,ΣX) with ΣX = Ω−1

X = Ω−1
1 ⊕ · · · ⊕ Ω−1

T + J ⊗ Ω−1
0 (Xie et al., 2016).

Covariance ΣX is a pT × pT positive definite matrix. The first part of ΣX represents a
matrix with Ω−1

t on the diagonal blocks, and the second part is a Kronecker product
between J , a T × T matrix of 1, and Ω−1

0 . More specifically, Ω−1
t + Ω−1

0 is on the
diagonal blocks of ΣX representing the covariance structure at time t, and Ω−1

0 is on
the off-diagonal blocks of ΣX for the covariance among nodes between the two time
points.

Graph structures corresponding to Ω0,Ω1, . . . ,ΩT are denoted individually by binary
adjacency matrices G0, G1, . . . , GT such that each entry indicates a connected (repre-
sented by the number 1) or disconnected (denoted by 0) edge. We assume that each
graph does not have any self-loops (an edge that connects a node to itself) and thus
all the diagonal entries in the adjacency matrices are zeros. With dependent networks
modeled under this framework as in Xie et al. (2016), in the sections below we describe
our network comparison approaches.
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3 Comparing two dependent graphs

3.1 The probability density function under different graphical
conditions

In the following, we focus on longitudinal data at two time points, i.e., T = 2, but the
idea is ready to be generalized for T > 2. In practice, networks under two conditions
or between two time points, represented by two graphs, can be differential or identical.
To incorporate such graphical conditions into the definition of density function, we
introduce an indicator variable η with η = 1 denoting two graphs identical and η = 0
differential. The density function defined in (2) can be viewed as the density associated
with the observed data conditioning on η = 0, that is, p(Xi.|Ω, η = 0). Imposing the
constraint that Ω1 = Ω2 = Ωc in (2) yields the density function of Xi. conditional on
η = 1,

n∏
i=1

p(Xi.|Ω, η = 1) ∝
[det(Ω0)

det(A1)

]n
2

det(Ωc)
n exp

{
−n

2

[ 2∑
t=1

tr(Σ̂X(t,t)Ωc)
]}

× exp
{n

2

2∑
t1,t2=1

tr(ΩcΣ̂X(t1,t2)ΩcA
−1
1 )

}
, (3)

with A1 = Ω0 + 2Ωc. Correspondingly, the graph structures are G1 = G2 = Gc. Since
Ω0 is common between different time points, in graph comparisons, the focus is on Ωt

and Gt.

3.2 Inference on graphical conditions

Inferences on the graphs as well as graphical conditions (η) will be carried out through
a fully Bayesian approach. For graph structures, we introduce a vector denoting edge
connections, gt = {gt,m1m2},m1 ≤ m2 = 1, . . . , p, with gt,m1m2 = 1,m1 �= m2, if
nodes m1 and m2 are connected and the corresponding entry of Ωt is non-zero, and
0 otherwise. When two graphs are identical, Ωt = Ωc and Gt = Gc and the vector of
edge connections is denoted as gc. Analogously, we define g0 in the same way for edge
connections of G0. To incorporate η to the definitions of Gt, Ωt, Gc, and Ωc, we define
G(t) = Iη=0Gt+Iη=1Gc and Ω(t) = Iη=0Ωt+Iη=1Ωc, t−1, 2. Edge connections for graph
G(t) denoted as g(t) and components in Ω(t) denoted as ω(t) are defined analogously.

Let Θ = {η,Ω(t),Ω0, g
(t), g0, t = 1, 2} be a collection of parameters to be inferred. To

draw posterior inferences on the parameters, we start from assigning prior distributions
to the parameters.

Prior distributions Since our focus is on network comparisons, for network construc-

tions, we apply established prior distributions. Let ω(t) = (ω
(t)
m1m2 ,m1,m2,m1 ≤ m2)

denote a collection of unique parameters in Ω(t) with (m1,m2) being an entry of Ω(t).

We assign the spike-and-slab prior distribution to each ω
(t)
m1m2 with m1 �= m2,

p(ω(t)
m1m2

|g(t)m1m2
, η) = g(t)m1m2

N(0, ν21,t) + (1− g(t)m1m2
)N(0, ν20,t), (4)
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conditional on Ω(t) ∈ M+ with M+ denoting a space of positive definite matrices.
The spike-and-slab prior was initially proposed by Mitchell and Beauchamp (1988),
was further studied in George and McCulloch (1993) and Ishwaran and Rao (2005),
and has been widely applied in variable selections. The hyper-parameters ν21,t and ν20,t
are the variances in the two respective normal distributions. In this work, we use the
same hyper-parameters for the two time points, i.e., ν21,t = ν21 and ν20,t = ν20 , since the
underlying comparison is between two dependent networks and similarity in network
sparsity between the two time points can be assumed. The selection of ν0 and ν1 is
critical and is discussed in detail after we present the full conditional posterior distribu-

tions. For parameters on the diagonal of Ω(t) with m1 = m2 = m, p(ω
(t)
mm) is assumed

to be an exponential distribution with parameter λ. Following Wang et al. (2015), we
set λ = 1. Our simulation assessment of selecting different values of λ also indicates
that posterior inferences on network comparison are insensitive to different choices of λ.
Similar definitions are applied to Ω0 with conditioning graph structure parameters g0
and hyper-parameters of variances ζ0 and ζ1.

For each component in g(t) and g0, we take Bernoulli probability mass function with
prior probability parameter π denoting our a priori belief of two nodes being connected,

e.g., for g(1), p(g
(1)
m1m2) = πg(1)

m1m2 (1 − π)1−g(1)
m1m2 ,m1 �= m2. We set π = O(2/(p − 1))

based on a common assumption on the expected number of edges, O(p), for sparse
graphs (Jones et al., 2005; Wang et al., 2015). Finally, for the prior mass function of η,
we assume a Bernoulli distribution with hyper-parameter 0.5.

Joint likelihood and full conditional posterior distribution Based on (2) and (3), the
joint likelihood of Θ is defined as

L(Θ|X) =

n∏
i=1

p(Xi.|Ω, η)

∝
{
(1− η)

[det(Ω0)

det(A0)

]n
2

T∏
t=1

det(Ω(t))
n
2 exp

{
−n

2
tr(Σ̂X(t,t)Ω

(t))
}

× exp
{n

2

T∑
t1,t2=1

tr(Ωt1Σ̂X(t1,t2)Ωt2A
−1
0 )

}

+ η
[det(Ω0)

det(A1)

]n
2

det(Ωc)
n exp

{
− n

2

[ 2∑
t=1

tr(Σ̂X(t,t)Ωc)
]}

× exp
{n

2

2∑
t1,t2=1

tr(ΩcΣ̂X(t1,t2)ΩcA
−1
1 )

}}
, (5)

where X = {X ′
1., . . . ,X

′
n.}′ and Ω = {Ω(t),Ω0, t = 1, 2}. With the prior distributions

specified earlier, the joint posterior distribution of Θ is defined as,

p(Θ|X) ∝
n∏

i=1

p(Xi.|Ω, η)p(Ω|η, g(t), g0)
{
p(g1)p(g2)

}I(η=0){
p(gc)

}I(η=1)

p(η)p(g0).

(6)
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To infer the parameters, we utilize Markov Chain Monte Carlo (MCMC) simulations,
in particular, the Gibbs sampler, to sample from full conditional posterior distributions
of each parameter, which can be derived straightforwardly based on the joint posterior
distribution (6). Posterior samples are then drawn using the Gibbs sampler, based on
which we infer graph structures and η. In the following, we present conditional pos-
terior distributions of each parameter in Θ. We use (·) to denote a collection of other
parameters which a parameter is conditioned on in its conditional posterior distribution.

We start from the conditional posterior probability of η, the main focus of our work
and a critical parameter for subsequent inferences on graph structures. Based on (6),
p(η = 1|(·),X) ∝

∏n
i=1 p(Xi.|Ω0, η = 1, gc)p(η = 1). We show in Appendix A (Zhang

et al., 2022) that p(η = 1|(·),X) can be approximated by

p(η = 1|(·),X) ≈
[
1 + exp{log(b)− log(a) + λ(n)}

]−1 ≡ pλ(η = 1|(·)),
λ(n) = (log n)/2(|E| − |E1| − |E2|), (7)

where |E| denotes the number of edges in an inferred network when η = 1 (identical
networks), and |Et|, t = 1, 2, the number of edges of an inferred network at time t when
η = 0 (differential networks). The two parameters a and b are defined as follows,

a =

n∏
i=1

p(Xi.|Ω, η = 1)

= C
[det(Ω0)

det(A1)

]n
2

det(Ωc)
n exp

{
−n

2

2∑
t=1

tr(Σ̂X(t,t)Ωc)
}

× exp
{n

2

2∑
t1,t2=1

tr(ΩcΣ̂X(t1,t2)ΩcA
−1
1 )

}
,

b =

n∏
i=1

p(Xi.|Ω, η = 0)

= C
[det(Ω0)

det(A0)

]n
2

2∏
t=1

det(Ωt)
n
2 exp

{
−n

2
tr(Σ̂X(t,t)Ωt)

}

× exp
{n

2

2∑
t1,t2=1

tr(Ωt1Σ̂X(t1,t2)Ωt2A
−1
0 )

}
, (8)

where C = (2π)−npT/2. This approximation ensures that the estimate of η approaches
to its underlying truth with probability 1 under some regulatory conditions, as seen
from the following Proposition of pλ(η = 1|(·),X).

Proposition. Assume 1) sparse networks with |E|, |E1|, and |E2| in the order of O(p)
and 2) logn/p → ∞ as n, p → ∞. Then limn→∞ pλ(η = 1|(·),X) = 1 if the underlying
η = 1, and limn→∞ pλ(η = 1|(·),X) = 0 if the underlying η = 0.

The proof of the Proposition is included in Appendix B. With pλ(η = 1|(·),X)
defined as in (7), the Proposition ensures the detection of the underlying truth of η
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with probability. In addition, under a finite sample situation, the definition of λ(n)
adds to the preference on parsimonious networks and penalizes large numbers of edges
(Appendix B). Parsimonious networks have the potential to avoid false positive edges.
In medical studies, such a property will benefit biomarker detections. In the context
of network differentiation, the concept of parsimony also includes the situation of two
networks being identical rather than being differential.

As seen in (8), the conditional posterior distribution of η involves all the precision
matrices, Ω0 and Ω(t). Such an involvement requires demanding computing power when
p is large, especially in the calculation of the inverse of A0 and A1. In the next sec-
tion, Section 3.3, we propose an alternative approach to reduce the computing burden.
A block-wise sampling method suggested by Wang et al. (2015) is applied to further
improve the computing speed.

Turning back to conditional posterior distributions, we now move to parameters
in Ω(t),

p(ω(t)
m1m2

|(·),X) ∝
n∏

i=1

p(Xi.|Ω, η)p(ω(t)
m1m2

|η, g(t)m1m2
),

p(ω(t)
mm|(·),X) ∝

n∏
i=1

p(Xi.|Ω, η)p(ω(t)
mm|λ), (9)

subjective to Ω(t) being positive definite, where t = 1, 2, m = 1, . . . , p, m1 < m2,
m1,m2 = 1, . . . , p. The conditional posterior distributions of parameters in graph struc-
tures G(t),

p(g(t)m1m2
|(·),X) ∝

n∏
i=1

p(Xi.|Ω, η)p(ω(t)
m1m2

|η, g(t)m1m2
)p(g(t)m1m2

|η). (10)

The conditional posterior distributions of parameters in Ω0 and G0 follow similar struc-
tures as in (9) and (10), respectively.

As seen from (4) and (10), hyper-parameters ν0 and ν1, ν0 < ν1, define a priori the
sparsity of a graph. With ν1 fixed, different values of ν0 control the exclusion of edges
with larger values of ν0 resulting in a smaller number of edges, and vice versa. If the
value of ν0 is too small, an edge between nodes m1 and m2 will not be excluded unless
extremely strong information on edge exclusion is present in the data leading to a rather

small entry of ω
(t)
m1m2 of Ω(t). This may result in a graph with a large number of falsely

connected edges, causing difficulties to decipher underlying network structures. On the
other hand, if we take a relatively large value of ν0 (relative to ν1), then we may end
up with a graph that is overly spare.

Since G1 and G2 are unique graphs after adjusting the shared G0, it is sensible to
assume that G1 and G2 are both sparse. We do not have to impose such a stringency
on G0. Under this context, the selection of ν0 needs to have a potential to control the
sparsity of G1 and G2. Rather than taking a fixed value of ν0, we tune ν0 by restricting
the level of sparsity of a graph within a certain range. As noted earlier, for sparse
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graphs, the expected number of edges is O(p), based on which the probability of edge-
inclusion can be set at 2/(p− 1) when the expected number being p. This further gives
the variance of the number of edges V 2 = p(p − 3)/(p − 1). In this article, we set the
upper bound of the number of edges of G1 and G2 at p + cV and the lower bound at
max(1, p−cV ) with c = 10. In practice, users have the flexibility to set the limits guided
by minimum and maximum sparsity. Based on our experience, the initial value of ν0
needs to be relatively small compared to ν1. Herein, based on suggestions of Wang et al.
(2015) on the selection of ν0, we take ν0 = 0.02 as the initial value in both simulations
and real world examples. The value of ν1 is set at ν1 = 4. For the hyper-parameters ζ0
and ζ1 involved in the conditional posterior distributions of parameters in Ω0 and G0,
if sparsity is not assumed, then we could fix ζ0 and ζ1 at ζ0 = 0.02 and ζ1 = 4. The
algorithm for the whole sampling procedure is included in Appendix C.

3.3 An efficient modeling and sampling approach

As noted in Section 3.2, the method introduced so far for inferring network differen-
tiation status involves computationally burdensome matrix inverse calculations. This
section we propose an alternative approach that is computationally efficient. Based
on (1),

n∏
i=1

p(X∗
it|Ω(t)) = (2π)−

np
2 det(Ω(t))n/2 exp

{−n

2
tr(Σ̂tΩ

(t))
}
,

n∏
i=1

p(Si|Ω0) = (2π)−
np
2 det(Ω0)

n/2 exp
{−n

2
tr(Σ̂0Ω0)

}
, (11)

where Σ̂0 and Σ̂t are the sample covariance matrices of Si and X∗
it, respectively, had

they been observed. Certainly, both Si and X∗
it are latent. We now propose an estimate

of these sample covariance matrices. Here, with some abuse of notation, we still use Σ̂0

and Σ̂t to denote the estimated sample covariance matrices.

Since Σ0 is the covariance matrix shared between the two time points, logically we
estimate Σ̂0 in (11) with the off-diagonal block of Σ̂X , a pT × pT sample covariance
of Xi.,

Σ̂0 =
1

2n

∑
t1,t2

n∑
i=1

(xi,t1x
′
i,t2),

where t1, t2 = 1, 2 with t1 �= t2 and xi,t, t = 1, 2 are centered observed data of Xit. The
definition of ΣX leads to Σt = ΣX,t − Σ0 with ΣX,t denoting the covariance matrix of

X at time t. We then estimate Σ̂t in (11) as Σ̂t = Σ̂X,t− Σ̂0 with Σ̂X,t being the sample
covariance of data at time t.

Recall that η denotes the differentiation in networks between two time points de-
termined by X∗

i. = {X∗
i1, X

∗
i2}. Under this context, we formulate the likelihood as

L∗(Θ|X∗) =
∏2

t=1

∏n
i=1 p(X

∗
it|Ω(t), η), where X∗ = {X∗

1., . . . ,X
∗
n.}. Since the distri-

bution of X∗
it does not depend on Ω0, this parameter is excluded from Θ. The prior
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distributions of each parameter in Θ are constructed as in Section 3.2 and we do not
repeat here.

The joint posterior distribution of Θ in (6) is updated to the following,

p(Θ|X∗) ∝
2∏

t=1

n∏
i=1

p(X∗
it|Ω(t), η)p(Ω(t)|η, g(t))

{
p(g1)p(g2)

}I(η=0){
p(gc)

}I(η=1)

p(η).

(12)

Note that the joint conditional posterior distribution does not involve any expensive
matrix inversions. The conditional posterior distributions of each parameter are derived

in the same way as in Section 3.2. In particular, p(g
(t)
m1m2 |(·),X∗) is in the same format

as in (10) with X replaced by X∗. For η, following a similar route of (7) and (8),

p(η = 1|(·),X∗) ≈
[
1 + exp{log(b∗)− log(a∗) + λ(n)}

]−1
, (13)

with λ(n) being the same as in (7) and a∗ = C∗ det(Ωc)
n exp

{−n
2

∑2
t=1

[
tr(Σ̂tΩc)

]}
,

b∗ = C∗ ∏2
t=1 det(Ωt)

n/2
exp

{−n
2 tr(Σ̂tΩt)

}
with C∗ = (2π)−np. The derivation of (13)

follows the same way as that for (7) and it shares the same Proposition with (7).

We now present the full conditional posterior distribution of Ω(t), t = 1, 2. From (12),

p(Ω(t)|(·),X∗) ∝
2∏

t=1

n∏
i=1

p(X∗
it|Ω(t), η)p(Ω(t)|η, g(t)).

The independence between X∗
i1 and X∗

i2 allows us to further improve computing effi-
ciency in the posterior sampling of Ω(t). Specifically, we apply the block Gibbs sam-
pler proposed by Wang et al. (2015) to sample Ω(t), t = 1, 2. Details of the sampling
method are in Wang et al. (2015). Basically, instead of sampling Ω(t) node-by-node, the
block sampler generates Monte Carlo samples by columns, which tremendously reduces
computing time. Since this approach relies on an approximation to the latent sample
covariance matrix of Si and that of X∗

it, we denote this method as a method based on
latent-data likelihood or a LDL method. Accordingly, we denote the approach using ob-
served data presented in earlier sections as a method based on manifest-data likelihood
or an MDL method. The algorithm for this efficient sample approach is also included
in Appendix C.

4 Simulations

4.1 Network structures and settings

We consider the following network structures to simulate a network shared between the
two time points (G0) and networks unique at two time points (G1 and G2).

S1. Chain networks at both time points with shared network being a nearest-neighbor
network (see the top panel of Figure 1). When two networks are differential, the
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Figure 1: Graph structures for scenario S1 (top panel) and S2 (bottom panel). Figures
(a) and (d) are the shared network (G0), (b) and (e) network unique to time t = 1
(G1), and (c) and (f) network unique to time t = 2 (G2). Thicker lines indicate different
connections between G1 and G2.

network at each time point is a chain-network but at time t = 2 the chain is
broken at two consecutive nodes. In this case, the two networks are different in
two edges (Figure 1).

The generation of a chain network follows the suggestion of Fan et al. (2009). A co-
variance matrix is designed following an autoregressive process of order one. In
particular, for entry {m1,m2 = 1, . . . , p,m1 �= m2}, it is defined as exp{−a|sm1 −
sm2 |} with sm1 − sm1−1

i.i.d∼ Unif(0.5, 1),m1 = 2, . . . , p, and s1 < s2 < · · · < sp.
The diagonal entries are all 1’s. Parameter a controls the magnitude of link be-
tween nodes, and we set a = 0.1. Precision matrices generated under this setting
have partial correlations ranged from around −0.4 (low in magnitude) to 0.9 (high
in magnitude).

To generate a nearest-neighbor network, the framework given by Li and Gui (2006)
is implemented. The structure of a network is generated based on pairwise dis-
tances between nodes with each node point generated from a uniform distribution
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on a [0, 1] × [0, 1] space. For each node, k nearest neighbors are identified using
the distances with k pre-specified. In our simulations, we set k = 4. Then the al-
gorithm in Li and Gui (2006) is applied to generate entries in the precision matrix
for each pair of nodes with an edge. This process yields a precision matrix with
all diagonal entries being 1 and off-diagonal elements ranged −0.2 to 0.2 for most
entries, indicating overall low partial correlations.

S2. Nearest-neighbor networks at both time points and for the shared network (see the
bottom panel of Figure 1). To create differential networks, the network at the first
time point (G1) is a nearest-neighbor network generated as in S1, and randomly
taking out two edges from the network produces a network for the second time
point (G2). The shared network G0 is generated in the same way as in S1.

For each of the two scenarios, we set the number of nodes at p = 10, 30 and sample size
at n = 50, 100, 200, and 500 to demonstrate finite sample properties. In total, 100 Monte
Carlo (MC) replicates are generated under each setting to address sampling errors.

In the process of MCMC simulations, two chains and each with 5,000 iterations
were applied to multiple randomly selected MC replicates to examine the convergence
of the Markov Chains. After observing fast convergence, for each MC replicate, one
chain with 500 iterations is adopted, of which 250 iterations are used as the burn-in.
The program is written in R and available to users from the first author’s website.
Four statistics focusing on network comparison and network constructions are used to
summarize the results and assess the proposed methods: 1) empirical power of correct
detection with respect to network comparison (i.e., η = 1 [identical] or 0 [differential]),
2) median proportion of true positives for edge connection (TP; sensitivity) in a network,
3) median proportion of true negatives (TN; specificity) of a network, and 4) median
proportion of correct connections (CC) of edges. A correct connection between two
nodes is defined as an observed connection status between the two nodes is consistent
with the underlying truth. A proportion of correct connections combines information on
sensitivities and specificities. For all the statistics except for power, we also provide 95%
empirical credible intervals. We evaluate the proposed method based on these statistics
on the choices of number of nodes, sample sizes and different network structures noted
earlier in this section.

4.2 Performance of the two proposed methods

Results under scenario S1 (Table 1) We start from graphs with a smaller number
of nodes, p = 10. Under scenario S1, when the two networks are truly identical, using
the approach based on manifest-data likelihood (the MDL method; Table 1a) provides
a power in general comparable to or higher than the power via the method based on
latent-data likelihood (the LDL method; Table 1b). For both approaches, the power to
detect the underlying truth of identical networks is low when the sample size is small,
but quickly increases as the sample size increases.

As for proportions of TP, TN, and CC, their values from the MDL approach are
overall higher than the statistics when the LDL method is applied. The statistics from
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(a) Results from the MDL approach

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (p = 10 nodes, |EX1 | = |EX2 | = 10 edges)
50 32.0 0.444 (0.111, 0.736) 0.833 (0.722, 0.972) 0.756 (0.631, 0.881)
100 97.2 0.667 (0.386, 1.0) 0.806 (0.722, 0.944) 0.80 (0.667, 0.933)
200 99.6 1.0 (0.778, 1.0) 0.889 (0.778, 0.972) 0.911 (0.778, 0.978)
500 99.6 1.0 (0.999, 1.0) 0.917 (0.833, 0.972) 0.933 (0.867, 0.978)
Underlying truth: differential networks (p = 10 nodes, |EX1 | = 9, |EX2 | = 7 edges)
50 99.0 X1: 0.667 (0.386, 0.889) 0.806 (0.694, 0.903) 0.756 (0.644, 0.901)

X2: 0.286 (0.0, 0.714) 0.921 (0.816, 0.988) 0.822 (0.733, 0.911)
100 99.9 X1: 0.889 (0.556, 1.0) 0.806 (0.694, 0.903) 0.822 (0.689, 0.923)

X2: 0.571 (0.286, 1.0) 0.895 (0.816, 0.974) 0.844 (0.756, 0.945)
200 99.9 X1: 1.0 (0.778, 1.0) 0.806 (0.722, 0.889) 0.822 (0.733, 0.911)

X2: 0.999 (0.593, 1.0) 0.868 (0.789, 0.947) 0.867 (0.778, 0.956)
500 99.9 X1: 1.0 (0.999, 1.0) 0.778 (0.639, 0.944) 0.822 (0.711, 0.956)

X2: 0.996 (0.998, 1.0) 0.868 (0.776, 0.935) 0.889 (0.811, 0.945)

(b) Results from the LDL approach

n EP TP TN CC
(%) (95% EI) (95% EI) (95% EI)

Underlying truth: identical networks (p = 10 nodes, |EX1 | = |EX2 | = 10 edges)
50 48.8 0.444 (0.222, 0.889) 0.806 (0.639, 0.889) 0.733 (0.600, 0.856)
100 71.8 0.667 (0.444, 0.889) 0.694 (0.541, 0.806) 0.689 (0.556, 0.800)
200 94.2 0.889 (0.667, 1.0) 0.639 (0.528, 0.722) 0.689 (0.556, 0.778)
500 100 1 (0.889, 1.0) 0.556 (0.458, 0.639) 0.622 (0.556, 0.701)
Underlying truth: differential networks (p = 10 nodes, |EX1 | = 9, |EX2 | = 7 edges)
50 99.9 X1: 0.222 (0.053, 0.556) 0.847 (0.750, 0.944) 0.733 (0.633, 0.822)

X2: 0.143 (0.00, 0.429) 0.947 (0.881, 1.0) 0.822 (0.756, 0.889)
100 99.9 X1: 0.444 (0.222, 0.778) 0.778 (0.667, 0.861) 0.711 (0.588, 0.844)

X2: 0.286 (0.00, 0.571) 0.921 (0.842, 0.974) 0.822 (0.756, 0.901)
200 99.9 X1: 0.722 (0.444, 0.947) 0.750 (0.652, 0.833) 0.756 (0.611, 0.844)

X2: 0.571 (0.211, 0.857) 0.895 (0.763, 0.947) 0.844 (0.711, 0.911)
500 99.9 X1: 0.889 (0.667, 1.0) 0.667 (0.556, 0.807) 0.711 (0.600, 0.822)

X2: 0.714 (0.429, 1.0) 0.816 (0.749, 0.895) 0.822 (0.744, 0.889)

Table 1: Scenario S1. Summary statistics for detecting differential networks, including
empirical power (EP) of correct detection on network differentiation, and proportions of
true positives for edge connections (TP), true negatives (TN), and correct connections
(CC) across 100 MC replicates along with 95% empirical intervals (EI). |EX1 | and |EX2 |
denote the number of edges of the underlying networks at time 1 and 2, respectively.

the later approach, especially for the proportion of TP when underlying networks are

differential, are low when sample sizes are smaller (i.e., n = 100 and lower), but all

become acceptable when the sample size is larger. The computing time of the MDL
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method is substantially longer than the LDL method. Considering both computing
speed and the statistics assessing the performance of the methods, the LDL approach is
promising under S1. It has a potential to efficiently work with a large number of nodes
and provide satisfactory statistic inferences when sample sizes are relatively large.

With a larger number of nodes, p = 30, under scenario S1, the number of edges
also increases. Patterns of the statistics with p = 30 are comparable to those in Table 1
(Appendix D). Overall, the MDL method handles larger nodes better, but when sample
size is large, all the statistics from the LDL approach are significantly improved and
closer to results from the MDL method.

Under this scenario, we further assessed the inferences and computing efficiency of
the two approaches dealing with even larger numbers of nodes (p = 50, 70, and 90) and
results are in Appendix E. Basically, compared to the LDL approach, the MDL method
offers better inferences at the expense of high computing cost, especially when p = 90.

Results under scenario S2 The overall patterns of the statistics are consistent between
different numbers of nodes, although with p = 30 the statistics are lower, especially when
the sample size is small. In this section, we focus on results from p = 10 and results
with p = 30 are included in Appendix E.

With p = 10, when the underlying true network is temporally stable, with a small
sample size (e.g., n = 50), implementing the MDL method gives a lower power to detect
the truth than if the LDL approach is applied. This is potentially due to a larger number
of parameters to estimate with the MDL method compared to LDL. It is promising to
observe that the MDL approach quickly picks up the power as the sample size increases
(Figure 2). When two networks are truly differential, the two approaches both give close
to perfect power to detect the underlying truth.

Figure 2: Power for detecting the truth when two networks are identical.

With most partial correlations between −0.2 and 0.2, networks constructed following
scenario S2 overall have weak connections between nodes. This is reflected by relatively
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low proportions of true positives when sample sizes are small, but as the sample size gets
larger, proportion of true positives increases, regardless of the underlying truth about
network differentiation status (identical or differential) (Figure 3). A similar pattern is
observed for the proportions of correct connections. Proportion of true negatives shows a
different pattern; overall, it slightly decreases as the sample size increases. This pattern
is also shown in the estimated powers of detecting two identical networks (Figure 2).
All these are likely due to the inclusion of edges that are indirectly connected to a node
under investigation, a phenomenon discussed in Wasserman and Roeder (2009).

Under scenario S2, although the overall trends of TP, TN, and CC between the
two approaches are comparable, with the implementation of MDL, all the statistics are
generally better than those with LDL applied, regardless of sample sizes and numbers
of nodes (Figure 3 and Appendix E). On the other hand, comparing the statistics from
data generated under scenario S2 with those under S1, overall the proportions of TP are
lower than those under S1, which is likely due to different sparsity levels between the
two types of networks, the same pattern as seen in direct networks (Zhang et al., 2021).
Networks generated under S2 are nearest-neighbor networks, which in our simulations
have a larger number of edges compared to chain graphs generated under S1 (Figure 1).

4.3 Inference of G0

As noted earlier, although the computing burden of the MDL method is heavier than
the LDL method, the MDL approach is awarded by its high power in detecting the true
status of differentiation along with generally higher statistics in network identifications.
Another strength of the MDL method is its ability to infer G0, which cannot be carried
out by the LDL approach. Although not the main focus of our work, inference of G0 in
practice is beneficial to understand underlying network invariant to time.

To demonstrate, we use 100 MC replicates generated under scenario S1 with p = 10.
The underlying truth on the number of edges of G0 is 19. Graph G0 is constructed
via nearest-neighbors and thus G0 is expected to have more edges associated with each
node than the number of edges in chain graphs of G1 and G2 under this scenario. We
apply the MDL method to the 100 MC replicates and record TP, TN, and CC statistics.

The patterns of the statistics on network constructions follow our expectation of
finite sample properties (Figure 4), i.e., as the sample sizes increases, the statistics are
overall all improved. It is noted that proportions of true positive connections are low
when the sample sizes are smaller, e.g., n = 50, which is expected due to the relatively
large number of parameters to be inferred compared to the sample size.

4.4 Comparison with existing approaches

Competing methods Each of the two proposed approaches includes two parts, network
construction and comparison. For network constructions, we compare our approach with
Xie et al. (2016), since the graphical EM algorithm for shared and specific network
estimations is developed based on the same model structure as in our approaches. The
graphical LASSO penalty is utilized in Xie et al. (2016) to construct graphs and the
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Figure 3: Scenario S2. Proportions of true positives, true negatives, and correct connec-
tions, when true underlying networks are identical ((a), (c), (e); 15 edges) or differential
((b), (d), (f); G1 15 edges and G2 13 edges).
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Figure 4: Assessment of inferences ofG0 via the MDL method. Patterns of proportions of
true positives (TP), true negatives (TN), and correct connections (CC) (Left: underling
true networks are identical; Right: underlying true networks are differential).

tuning parameters in the penalty are selected using the extended Bayesian Information
Criterion suggested in that article. For network comparisons, two competing approaches
are included with one focusing on comparing networks constructed based on precision
matrix (Stäedler and Dondelinger, 2020), implemented in the R package nethet, and the
other on comparison between the two covariance matrices (Cai et al., 2013), Ω−1

1 and
Ω−1

2 , available in an R package HDtest. These two approaches are applied assuming Xi1

and Xi2 independent. We focus on the power of detecting the underlying differentiation
status of the two networks, and compare the testing results with those from the proposed
approach. For the purpose of comparison, we use data simulated under scenario S1 with
p = 10 and a sample size of 100.

Results of network constructions Since the focus of this comparison is on network
constructions, we use data with underlying networks being differential and assess the
quality of network constructions for shared networks as well as time-specific networks.
Overall, the MDL performs the best (Figure 5); especially for G0, MDL clearly outper-
forms Xie et al. (2016). For time-specific graphs (G1 and G2), the method of Xie et al.
(2016) tends to choose more edges and thus has higher proportions of TP and lower
proportions of TN than those from MDL and LDL. Thus, it has a tendency to produce
more false positive edges, compared to the other two approaches. Although LDL offers
the lowest statistics in terms of TP and CC, high proportions of TN from this approach
indicate that LDL is likely to be more suitable for studies aiming to identify edges with
low probability of false positives.

Results of network comparison We apply the aforementioned two competing methods
(Stäedler and Dondelinger, 2020; Cai et al., 2013) to the data generated under S1
with p = 10, n = 100. As noted in Table 1, with the MDL approach, the power to
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Figure 5: Comparison with results from Xie et al. (2016) on network constructions.
Differential networks generated under Scenario S1 (p = 10 nodes) are included in the
comparison. Proportions of true positives for edge connections (TP), true negatives
(TN), and correct connections (CC) across 100 MC replicates for (a) G0 (no results
from LDL is included due to the inestimability of G0 from LDL), (b) G1, and (c) G2.
Underlying truth: |EX1 | = 9, |EX2 | = 7 edges with |EX1 | and |EX2 | denote the number
of edges of the underlying networks at time 1 and 2, respectively.

detect two networks being identical is estimated as 97.2% and the power is 99.9% to
identify two networks being truly differential. The LDL approach produces a lower power
to detect the truth when two network are truly identical. Both competing methods
have a perfect power, higher than the proposed methods, to detect the truth when
the two underlying networks are identical. However, when the two networks are truly
differential, both approaches lose their power substantially to detect the underlying
truth. For the approach by Stäedler and Dondelinger (2020), the estimated power to
detect the underlying truth is 23%, and for the method by Cai et al. (2013), the power
is 48%. The plummet of the power is expected, since both approaches are designed
for independent networks and the dependence between the two time points cannot be
incorporated into the process of comparison.
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4.5 Detection of potential driving edges/nodes

The utilization of MCMC simulations offers an opportunity to identify edges that po-
tentially drive network differentiation (noted as driving edges). The probability that an
edge is a driving edge is estimated using the proportion that an edge is uniquely selected
at one time point across a certain number of iterations that are low in autocorrelations.
To demonstrate, we again utilize 100 MC replicates generated under scenario S1 with
p = 10. The cutoff proportion for an edge being a driving edge is set at 0.5. As seen in
Figure 1 (b) and (c), the true driving edges are 2 — 3 and 3 — 4 . Based on findings
from the 100 MC replicates, at least one driving edge is detected regardless of the sam-
ple size (Table 2). Other detected but pseudo driving edges are all formed by neighbors
of the nodes in the true driving edges. These pseudo driving edges are potentially due
to indirect connections, but tend to diminish when sample size is large; for instance,
when n = 500, pseudo driving edges are limited to edges connected among nodes 1 to 4.

Sample size (n) Detected driving edges (estimated probability)

50 1 — 2 (0.55), 2 — 3 (0.68)

100 1 — 2 (0.56), 2 — 3 (0.81), 3 — 4 (0.60), 4 — 5 (0.77)

200 1 — 2 (0.63), 2 — 3 (0.98), 3 — 4 (0.66), 4 — 5 (0.72)

500 1 — 3 (0.88), 2 — 3 (0.86), 3 — 4 (0.75), 2 — 4 (0.58)

Table 2: Detected driving edges under S1. The probabilities are inferred based on 100
MC replicates.

5 Assessment of epigenetic network differentiation over
time

5.1 The data and plan for assessment

To demonstrate the proposed methods, we utilize an epigenetic data set, in particular,
DNA methylation at 22 CpGs (Table 3) measured at ages 10, 18 and 26 years, in a
population-based birth cohort established on the Isle of Wight in the United Kingdom
(Arshad et al., 2018). Each of these 22 CpG sites has shown to be associated with
exposure to tobacco smoking in uterus (Joubert et al., 2016), indicating the potential
of an underlying epigenetic network among these CpGs, due to biological interaction
and dependence within and between genes. Note that at age 10 years, although some
girls have started puberty, most children have not experienced any significant pubertal
changes, while at age 18 most children have gone through the period of adolescence.
We apply the methods to these 22 CpGs at two pairs of ages, 10 and 18 years and 18
and 26 years, as an attempt to answer a real world question, i.e., does the period of
adolescence impact the networks of CpGs? It is worth pointing out that the focus here is
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Chr Gene CpG CpG Index
1 GFI1 cg06338710 1

cg09662411 2
cg09935388 3
cg10399789 4
cg12876356 5
cg14179389 6
cg18146737 7
cg18316974 8

5 AHRR cg05575921 9
6 HLA-DPB2 cg11715943 10
7 CNTNAP2 cg25949550 11

ENSG00000225718 cg04598670 12
MYO1G cg04180046 13

cg12803068 14
cg19089201 15

8 EXT1 cg03346806 16
14 TTC7B cg18655025 17
15 CYP1A1 cg05549655 18

cg11924019 19
cg18092474 20
cg22549041 21

21 RUNX1 cg12477880 22

Table 3: Relevant information of the 22 CpG sites. “Chr” denotes the chromosome
location of a CpG site.

on an examination of temporal differentiation in networks in a general population rather
than difference in networks between different exposure statuses; the later comparison
is expected to be a straightforward extension of (1) with the inclusion of a component
reflecting treatment effect analogous to linear mixed modeling.

We apply both the MDL and LDL approaches to draw inferences. In total, 5,000
iterations are run after the parameter ν0 is tuned by controlling the number of edges
with a lower bound of 10 edges and an upper bound of 31 edges, defined in Section 3.2.
Samples from the last 2,500 iterations are used to draw posterior inferences.

5.2 Results

We first assess network differentiation between ages 10 and 18 years (n = 325). Results
from the two approaches (MDL and LDL) have certain noticeable agreements. The
probability that the network at age 18 years is different from that at age 10 years is
estimated as 0.999 by both methods, consistent with simulation findings when under-
lying networks are differential. As for the inferred graphs (Figure 6), at age 18 years,
both approaches detected links among nodes 13, 14, and 15 and between nodes 18 and
20. CpGs at nodes 13, 14, and 15 are all on MYO1G gene, and nodes 18 and 20 are
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CpGs both on gene CYP1A1, which supports the identified joint activities among these
CpGs.

Figure 6: Estimated networks unique to each age (Ĝ1 and Ĝ2) based on DNA methy-
lation data at p = 22 CpG sites. Graphs in the top panel are inferred based on the
manifest-data likelihood (MDL) method and the lower panel is based on the latent-
data likelihood (LDL) method. Figures (a) and (c) are for age 10 years, and (b) and (d)
are for age 18 years. The thick lines in (b) indicate edges common between the networks
identified by the MDL and LDL methods at age 18 years.
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At age 18 years, the MDL method identified a network with more edges (10 edges)
compared to the LDL approach (3 edges). Based on simulation results, the MDL method
tends to have a higher sensitivity, which indicates that the additional edges identified
by this approach is likely to be informative, e.g., the subnetwork formed by nodes 18 to
21 with CpGs all on gene CYP1A1. In addition, the MDL method identified a unique
sub-network formed by nodes 2, 3, 5, and 9. CpGs on nodes 2, 3, and 5 are all on
gene GFI1, and node 9 has cg05575921 on gene AHRR. CpG site cg05575921 has been
suggested by multiple studies that it can be used as a marker for smoking exposure,
e.g., Bojesen et al. (2017). Note that this node is not connected to any of the remaining
nodes at age 10 from both methods. No children in the cohort actively smoked at age
10 years but by age 18 years, some children had smoked for a certain amount of time,
which may explain the appearance of this node in the unique network detected at age
18 years by the MDL approach. Further assessment on driving edges (results for “10
and 18 years” in Table 4) indicates that, overall, the subnetwork with node 9 included
is not strong enough to cause differentiation in the networks between the two ages,
while the subnetwork formed by nodes 18 to 21 plays a more important role in network
differentiation. These are indicated by the estimated probabilities for an edge being a
driving edge.

Ages Detected driving edges (Estimated probability)

10 and 18 years 5 — 2 (0.55), 11 — 18 (0.91), 13 — 14 (0.67), 14 — 15 (0.88)

14 — 17 (0.53), 18 — 20 (0.84), 18 — 21 (0.52), 20 — 21 (0.82)

18 and 26 years 13 — 14 (0.57), 19 — 20 (0.75), 19 — 21 (0.59)

Table 4: Potential driving edges for network differentiation between ages 10 and 18 and
between ages 18 and 26 years.

Regardless of age, children are likely to be exposed to passive smoking, and such
impact is expected to be captured by the shared network G0 but not G(t). The G0

estimated using the MDL approach has in total 42 edges (Figure 7(a)), reflecting the
interconnections among CpGs invariant to age. Since our approach for detecting network
differentiation takes into account edge connections as well as strength of connections,
the detected age-18-year subnetworks noted earlier (one by 13, 14, and 15, and the
other in the cluster of nodes 18 to 21, which are both in the inferred G0) indicate
that at these nodes the strength of connection is likely to be different between ages 10
and 18. Finally, at age 10 years, both methods identified a small number of edges but
without any agreement. This may reflect a strong uncertainty of unique network at age
10 compared to the shared network G0.

We further compared network differentiation between ages 18 and 26 years (n =
244). Again, both methods estimated the probability of differentiation close to 1 and
our analysis on driving edges indicates that such a differentiation is most likely to be
caused by the connection between nodes 19 and 20 (probability of 0.75 as a driving
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Figure 7: Estimated underlying shared networks (Ĝ0) based on DNA methylation data
at p = 22 CpG sites, (a) between ages 10 and 18 years, and (b) between ages 18 and 26
years. Edges in (a) also shown in (b) are indicated by thicker lines.

edge). In terms of the number of edges showing differentiation between 18 and 26 years
(Appendix G), results from the LDL approach is overall comparable to that for ages
10 and 18 years. Notably, the MDL approach found a much smaller number of edges
showing differentiation between ages 18 and 26 years (5 edges at age 26 years and one
edge at age 18 years) compared to ages 10 and 18 years (10 and 2 edges, respectively).
Consequently, the number of driving edges for this period (18 to 26 years) is also smaller.

It is noteworthy that edge 13— 14 is identified as a driving edge at both periods (10

to 18 years and 18 to 26 years), indicating the strength of connection between these two
nodes is likely to change over time. Furthermore, the estimated shared network has 154
edges, which covered most of the 42 edges of the inferred network shared between ages
10 and 18 years (only 4 of the 42 not included; Figure 7(b)). All this seems to indicate
that adolescence transition (from 10 to 18 years) may substantially affect the underlying
interconnection among epigenetic factors, such influence tends to be stable as children
become adults, and connections among certain CpG sites appear during adolescence
and become stable after adolescence.

6 Discussion

We proposed a Bayesian approach to compare two dependent networks potentially due
to temporal changes or impact from other unknown factors over time. To ensure efficient
convergence, we developed a penalty-incorporated conditional posterior probability for
η, the indicator of two network being identical or differential, and theoretically inves-
tigated the property of this posterior probability on its convergence to the underlying
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status of network differentiation. In posterior computing, in addition to the standard
sampling approach constructed based on the joint likelihood of manifest data (the MDL
method), we defined a joint likelihood utilizing latent data and implemented block sam-
pling to substantially improve computing efficiency (the LDL method). Simulations
indicated the efficacy of the proposed approaches; the MDL method overall outper-
forms the LDL approach, especially in the detection of underlying edges, but at the
expense of computing cost. Based on simulations, the MDL approach is able to handle
relatively small numbers of nodes (e.g., < 90) without a significant computing burden
on a personal computer (e.g., with 3.70 GHz processor and 32.0 GB memory). The LDL
approach is computationally scalable and has the ability to deal with a large number of
nodes. The relatively low true positive proportions and high true negative proportions
indicate that the LDL method is likely to benefit studies aiming to identify strong edges
unique to each time point. Findings from our real data applications using DNA methy-
lation data are consistent with simulation results. In particular, our results indicate that
epigenetic networks are likely to change over time and the period of adolescence tends
to contribute substantially to network differentiation.

The proposed methods are not limited to DNA methylation data and can be directly
applied to other data, e.g., gene expression measured at different time points or in
different tissues from the same subject. In addition, the proposed approaches can be
applied to perform pair-wise comparisons between multiple networks (> 2 networks), in
which case adjustment of multiple testing needs to be considered. However, before pair-
wise comparisons, it is desirable to examine overall status of network differentiation.
Under this context, there is a need to extend the proposed techniques of two dependent
network comparisons to fit the situation of multiple dependent networks.

Supplementary Material

Appendix (DOI: 10.1214/22-BA1337SUPP; .pdf).
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