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Post-Processed Posteriors for Banded
Covariances∗ †

Kwangmin Lee‡,§, Kyoungjae Lee¶ and Jaeyong Lee‖

Abstract. We consider Bayesian inference of banded covariance matrices and
propose a post-processed posterior. The post-processing of the posterior consists
of two steps. In the first step, posterior samples are obtained from the conjugate
inverse-Wishart posterior, which does not satisfy any structural restrictions. In
the second step, the posterior samples are transformed to satisfy the structural
restriction through a post-processing function. The conceptually straightforward
procedure of the post-processed posterior makes its computation efficient and can
render interval estimators of functionals of covariance matrices. We show that
it has nearly optimal minimax rates for banded covariances among all possible
pairs of priors and post-processing functions. Additionally, we provide a theorem
on the credible set of the post-processed posterior under the finite dimension
assumption. We prove that the expected coverage probability of the 100(1− α)%
highest posterior density region of the post-processed posterior is asymptotically
1− α with respect to any conventional posterior distribution. It implies that the
highest posterior density region of the post-processed posterior is, on average,
a credible set of conventional posterior. The advantages of the post-processed
posterior are demonstrated by a simulation study and a real data analysis.
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1 Introduction

In this paper, we propose a new Bayesian procedure for banded covariance matrices. The
banded matrices are the matrices whose entries farther than a certain distance from the
diagonal are all zeros. Banded covariance matrices arise in modelling marginal depen-
dence structures of variables with natural ordering such as time series data. The banded
sample covariance has been applied to the autoregressive and moving average models
(Wu and Pourahmadi, 2009) and the time-varying autoregressive-moving-average mod-
els (Wiesel and Globerson, 2012).
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When p is small relative to n, the inverse-Wishart prior is the most commonly
used conjugate prior for the covariance of the multivariate normal model. We denote
Σ ∼ IWp(Λ, ν), if it has density π(Σ) ∝ |Σ|−ν/2 exp{−tr(Σ−1Λ)/2}, for any p×p positive
definite matrix Σ, where ν > 2p is the degree of freedom, and |Σ| is the determinant
of Σ. The inverse-Wishart prior has many nice properties under the traditional setting
of a small p. The posterior induced by the inverse-Wishart prior attains the optimal
minimax rate when p ≤ cn, 0 ≤ c < 1, under the spectral norm (Lee and Lee, 2018).
The Jeffreys prior for covariance matrices (Yang and Berger, 1996) can be expressed
as the limit of the inverse-Wishart prior as the degree of freedom and the scale matrix
converge to p+ 1 and the p× p zero matrix, respectively. When the degree of freedom
is 2p + 1 and the scale matrix is a diagonal matrix, the marginal distribution of each
correlation induced by the inverse-Wishart prior follows a uniform distribution over the
interval [−1, 1] (Huang and Wand, 2013); thus it can be viewed as a non-informative
prior for correlations.

When p ≥ n, however, Lee and Lee (2018) showed that the degenerate prior δIp , an
obviously inadequate prior, attains the optimal minimax rate, implying that without
further assumptions, the inference of the covariance matrix is hopeless. This is expected
because, without any constraint, the number of parameters, p(p + 1)/2, in the covari-
ance matrix is much larger than the sample size n. To reduce the number of effective
parameters, several matrix classes have been proposed including bandable matrices (Cai
and Zhou, 2010; Banerjee and Ghosal, 2014), sparse matrices (Cai and Liu, 2011; Cai
et al., 2016; Lee et al., 2019) and low-dimensional structural matrices (Cai et al., 2013;
Pati et al., 2014; Gao and Zhou, 2015).

In this paper, we focus on the banded covariance assumption. The banded covari-
ance assumption is a popular structural assumption to reduce the number of effective
parameters, especially when there is a natural ordering between variables. From the
frequentist side, the banded covariance estimator has been studied extensively. Since
the banded covariance structure is an example of the Gaussian covariance graph model,
the methods of Kauermann (1996) and Chaudhuri et al. (2007) can be used for the
estimation of the banded covariance. However, the two methods are originally designed
for the case of p < n, and need a modification of the sample covariance matrix for
the case of p ≥ n. Bickel and Levina (2008) focused on the bandable covariance struc-
ture and obtained the convergence rate of the banded sample covariance. Despite of
a few point estimation methods, there is no frequentist interval estimation method in
high-dimensional settings. Chaudhuri et al. (2007) suggested an interval estimation of
banded covariances under the asymptotic normality of the maximum likelihood estima-
tor, which is valid only for fixed p. Also, there is no minimax rate result in the literature
for banded covariance matrices, although Cai and Zhou (2010, 2012a) showed the taper-
ing estimator satisfies the optimal minimax rate for bandable covariances, which are the
matrices whose entries are getting smaller as they are more distant from the diagonal.

Compared to frequentist methods, Bayesian methods have a natural advantage of
producing interval estimators automatically. However, Bayesian methods for banded
covariance matrices that are scalable and supported by theoretical properties in high-
dimensional settings are scarce. This is due to the difficulty of inventing a tractable prior
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distribution on the space of banded covariances. Khare and Rajaratnam (2011) and Silva
and Ghahramani (2009) proposed prior distributions for covariance graphical model,
which can be used for banded covariance matrices, but there are no minimax optimality
results for these methods. This is partly because there are no closed forms of normalizing
constants for these priors, which prevents direct investigation of posterior asymptotics.
It is also mathematically challenging to apply traditional posterior consistency and
contraction theorems (Ghosal and Van der Vaart, 2017), which are applicable when it
is hard to tract posterior directly.

In summary, there are no Bayesian or frequentist methods for banded covariance
matrices, which (1) are computationally efficient, (2) produce interval estimators for
functionals of covariance matrices, and (3) have optimal or nearly optimal minimax rate.
In this paper, we propose a new Bayesian method that has the above three properties.
In particular, we propose post-processed posteriors for banded covariance matrices.

The construction of the post-processed posterior consists of two steps, the initial
posterior computing step and the post-processing step. In the initial posterior com-
puting step, posterior samples are generated from the initial posterior, the conjugate
inverse-Wishart posterior for covariance, without any structural restrictions. In the post-
processing step, the initial posterior samples are transformed through a function f(Σ)
whose range belongs to a space of banded covariances. We call the distribution of the
transformed posterior samples the post-processed posterior, which will be rigorously
defined in Section 2.

The idea of transforming the posterior samples has been suggested in various set-
tings. Posterior projection methods (Dunson and Neelon, 2003; Gunn and Dunson,
2005; Lin and Dunson, 2014; Patra et al., 2018) are proposed for various problems,
which project the posterior samples onto the constrained parameter space to obtain
the projected posterior. Our proposal is the same as the posterior projection method
in spirit, but the choice of posterior transformation is determined through asymptotic
consideration, while the posterior projection method uses the projection on the con-
strained space. In fact, our proposal is the posterior projection method on the space of
banded covariances with the Frobenius norm. Recently, Bashir et al. (2018) proposed a
support recovery method for sparse precision matrices based on post-processing of the
posterior samples.

The post-processed posterior is conceptually straightforward and computationally
fast. This is advantageous when the data set is huge and the dimension of the ob-
servations is high. The existing Bayesian method can be slow at times especially in
high-dimensional settings. Through the simulation study, we will show that the post-
processed posterior significantly reduces the computation time compared to the co-
variance graphical models proposed by Silva and Ghahramani (2009) and Khare and
Rajaratnam (2011). Furthermore, the post-processed posterior attains the nearly opti-
mal minimax rate for the class of banded covariance matrices. This is the first minimax
result for banded covariance matrices in both Bayesian and frequentist sides.

The banded covariance matrices have been investigated as a case of covariance graph-
ical model, but the minimax lower bound for covariance graphical model is absent in
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the literature. Methods for obtaining minimax lower bound, e.g., Le Cam’s method and
Assouad’s lemma, are based on the testing problem of δ-separated sets as described in
Proposition 15.1 of Wainwright (2019). Since patterns of parameter spaces of covariance
graphical model differ by the graphs, it is not easy to choose representative separated
sets for arbitrary graphical structures. Instead, we focus on the banded covariance struc-
ture and could choose appropriate separated sets. We also show that the post-processed
posterior has the nearly optimal minimax rate for the class of bandable covariances,
which is given in the supplementary material (Lee et al., 2022).

It is worth mentioning that there are substantial differences between banded covari-
ance and precision matrices. For banded precision matrices, G-Wishart priors (Banerjee
and Ghosal, 2014) or banded Cholesky priors (Lee and Lee, 2021) can be used, and the
normalizing constants are available in a closed form. However, by contrast, imposing a
prior on the Cholesky factor of a banded covariance matrix will result in a non-conjugate
posterior whose normalizing constant is intractable. Intuitively, in the Bayesian frame-
work, constraints on precision matrices are more manageable than those on covariance
matrices because the precision matrix is a natural parameter of multivariate normal
distributions as an exponential family. In other words, the likelihood function of the co-
variance is expressed through the precision matrix. Thus, Bayesian banded covariance
matrix estimation is more challenging than banded precision matrix estimation.

There is difference in the estimation methods of covariance and precision matrices in
the frequentist literature as well. The sparse covariance estimation is typically based on
banding or thresholding the sample covariance (Cai and Zhou, 2012b) while the sparse
precision matrix estimation is often based on the penalized likelihood approach (Cai
et al., 2011; Zhang and Zou, 2014). The difference is due to the form of the likelihood
function as well as the singularity of the sample covariance matrix. Contrary to the
sample covariance matrix, the sample precision matrix, the inverse of the sample co-
variance matrix, does not exist when p > n, which prevents thresholding the sample
precision matrix. One could choose a small constant ε > 0 to make Sn + εIp invert-
ible and use (Sn + εIp)

−1 instead of S−1
n as the sample precision matrix, but it can be

computationally unstable especially when ε is small.

The rest of the paper is organized as follows. In Section 2, the post-processed poste-
rior is introduced for the banded covariances. In Section 3, it is shown that the banding
post-processed posterior attains the nearly optimal minimax rate for banded covariance
matrices, and the expected coverage probability of the (1 − α)100% highest posterior
density region of the post-processed posterior is asymptotically 1− α with respect to a
conventional posterior distribution. In Section 4, the post-processed posterior is demon-
strated via simulation studies and a real data analysis. The supplementary material
contains the proofs of the theorems in the paper, a minimax result for bandable covari-
ance matrices and more numerical studies.

2 Post-Processed Posterior

Suppose X1, . . . , Xn are independent and identically distributed samples from Np(0,Σ),
the p-dimensional normal distribution with zero mean vector and covariance matrix
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Σ = (σij) > 0. We write B > 0 (B ≥ 0) if B is a positive (nonnegative) definite matrix.
When the variables have a natural ordering such as time or causal relationship, it is
commonly assumed that the covariance satisfies a band structure. In this paper, we
assume that Σ is banded:

Σ ∈ B̃p,k :=
{
Σ ∈ Cp : σij = 0 if |i− j| > k, ∀i, j ∈ [p]

}
,

where k is a natural number, [p] = {1, 2, . . . , p} and Cp is the set of all p × p positive
definite matrices.

We propose a computationally efficient and theoretically supported Bayesian method
for banded covariance matrices. The proposed method consists of two steps: the initial
posterior computing step and the post-processing step. We describe these two steps in
detail below.

Step 1. (Initial posterior computing step)

In the initial posterior step, a conjugate posterior for the parameter space with-
out any structural restriction is obtained. We take the inverse-Wishart prior
IWp(B0, ν0). We say this is the initial prior πi for Σ. By conjugacy, the initial
posterior is then

Σ | Xn ∼ IWp(B0 + nSn, ν0 + n),

where Xn = (X1, . . . , Xn)
T and Sn = n−1

∑n
i=1 XiX

T
i is the sample covariance

matrix. We sample Σ(1),Σ(2), . . . ,Σ(N) from the initial posterior, πi(Σ|Xn).

Step 2. (Post-processing step)

Let the function Bk(B) denote the k-band operation,

Bk(B) = {bijI(|i− j| ≤ k)}

for any B = (bij) ∈ R
p×p. In the second step, we post-process the samples

from the initial posterior to obtain those from the post-processed posterior.
The samples from the post-processed posterior, Σ(i)’s, are defined by

Σ(i) = f(Σ(i)) = B
(εn)
k (Σ(i)) (1)

:=

{
Bk(Σ

(i)) +
[
εn − λmin{Bk(Σ

(i))}
]
Ip, if λmin{Bk(Σ

(i))} < εn,

Bk(Σ
(i)), otherwise,

where εn is a small positive number decreasing to 0 as n → ∞, for i = 1, . . . , N .
There is no guarantee that Bk(Σ

(i)) is positive definite, so the second term
of (1) is added to make Σ(i) positive definite. The resulting post-processed
samples, (Σ(1), . . . ,Σ(N)), are banded positive definite matrices. We suggest
using the samples from the post-processed posterior for Bayesian inference of
banded covariance matrices.
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We call the posterior distribution of (1) the k-banding post-processed posterior to
emphasize that the k-band operation Bk is used; however, other operations can be used
to obtain the desired structure. We call the function f represented by (1) the post-
processing function, and the post-processed posterior with the post-processing function
f is denoted by πpp(·|Xn; f) or simply πpp(·|Xn) if f is understood in the context.

3 Properties of Post-Processed Posterior

3.1 Minimax Convergence Rates

In this section, we show that the proposed post-processed posterior procedure is nearly
optimal in the minimax sense among all possible post-processed posterior procedures,
the pairs of initial priors and post-processing functions. A conventional Bayesian pro-
cedure can be considered as a post-processed posterior procedure, which has a prior
supported on B̃p,k and an identity post-processing function. Thus, the proposed post-
processed posterior is nearly optimal even compared with conventional Bayesian proce-
dures.

Lee and Lee (2018) proposed a decision-theoretic framework for comparison of priors.
In this framework, a posterior and the space of all probability measures on the parameter
space are considered as an action and the action space, respectively. A prior is a decision
rule in this setting because a prior combined with data generates a posterior. The
posterior-loss (P-loss) and posterior-risk (P-risk) (Lee and Lee, 2018) are the loss and
risk functions.

The decision-theoretic framework of Lee and Lee (2018) can be modified for the
study of the minimax properties of post-processed posterior. In this setting, a post-
processed posterior is an action and a post-processed posterior procedure, a pair of an
initial prior and a post-processing function, is a decision rule. We define the P-loss and
P-risk of the post-processed posterior as follows:

L{Σ0, π
pp(· | Xn; f)} := Eπpp

(||Σ0 − Σ|| | Xn)

= Eπi

{||Σ0 − f(Σ)|| | Xn},
R(Σ0, π

pp) := EΣ0 [L{Σ0, π
pp(· | Xn; f)}]

= EΣ0 [E
πi

{||Σ0 − f(Σ)|| | Xn}],

where Eπi

and EΣ0 denote expectations with respect to Σ ∼ πi and random samples
X1, . . . , Xn from Np(0,Σ0), respectively, Σ0 is the true parameter of the Σ, and ||A|| :=
{λmax(AA

T )}1/2 is the spectral norm of a symmetric matrix A. We define the maximum
P-risk given a parameter space Θ0, in which the true parameter is believed to reside, as

sup
Σ0∈Θ0

EΣ0 [L{Σ0, π
pp(· | Xn; f)}].

We now define the minimax rate and convergence rate for post-processed posteriors.
Let

Π∗ = {πpp(·; f) = (π, f) : π ∈ Π, f ∈ F}
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be the space of all possible post-processing procedures, where Π is the space of all
priors on Cp, and F is the space of all possible post-processing functions, for example,

FB
k = {f : Cp → B̃p,k}.
Before we give some definitions of minimax rates, we introduce some notation. For

any positive sequences an and bn, we denote an = o(bn) if an/bn −→ 0 as n → ∞, and
an � bn if there exists a constant C > 0 such that an ≤ Cbn for all sufficiently large n.
We denote an � bn if an � bn and bn � an.

A sequence rn is said to be the minimax rate for Π∗ over Θ0 if

inf
(π,f)∈Π∗

sup
Σ0∈Θ0

EΣ0 [L{Σ0, π
pp(·|Xn; f)}] � rn,

and a post-processing procedure (π, f) ∈ Π∗ is said to have P-risk convergence rate an
if

sup
Σ0∈Θ0

EΣ0 [L{Σ0, π
pp(·|Xn; f)}] � an.

If an � rn and rn is the P-risk minimax rate, (π, f) ∈ Π∗ is said to attain the P-risk
minimax rate.

We are now ready to state that the banding post-processed posterior attains nearly
minimax rate in terms of the P-risk over banded covariance matrices. Suppose that we
observe the data X1, . . . , Xn from p-dimensional normal distribution, Np(0,Σ0), with
Σ0 ∈ Bp,k0 , where

Bp,k0 =
{
Σ ∈ B̃p,k0 : λmax(Σ) < M0, λmin(Σ) > M1

}
,

where 0 < M1 ≤ M0 < ∞, λmin(Σ) and λmax(Σ) are the minimum and maximum
eigenvalues of Σ, respectively, and k0 represents the bandwidth of the true covariance.

The following theorems say that the P-risk of the banding post-processed posterior
is nearly minimax optimal.

Theorem 3.1. Let the initial prior πi of Σ be IWp(An, νn). If An ∈ Bp,k, n/4 ≥
(M

1/2
0 M−1

1 log p) ∨ k ∨ ||An|| ∨ (νn − 2p), νn > 2p and ||An|| ∨ (νn − 2p) = o(n), then

sup
Σ0∈Bp,k0

EΣ0{Eπi

(||B(εn)
k (Σ)− Σ0||2 | Xn)}≤C{(log k)2 k + log p

n
+ (k0 − k)2I(k0>k)},

where the post-processing function B
(εn)
k is defined in (1), ε2n = O{(log k)2(k+log p)/n},

and C is a constant that depends on M0 and M1.

Theorem 3.2. If n/2 ≥ [min{(M0 −M1)
2, 1} log p] ∨ k0 and νn > 2p, then

inf
(π,f)∈Π∗

sup
Σ0∈Bp,k0

EΣ0{Eπi

(||f(Σ)− Σ0||2 | Xn)} ≥ C
k0 + log p

n
,

where C is a constant that depends on M0 and M1.
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Theorem 3.1 gives the convergence rate of the P-risk of the banding post-processed
posterior for a class of banded covariance matrices Bp,k0 , while a minimax lower bound is
given in Theorem 3.2. Note that we distinguish the true bandwidth k0 from bandwidth k
in the post-processing function. If k = k0, the obtained convergence rate in Theorem 3.1
matches the minimax lower bound up to a (log k0)

2 factor. When k0 ≤ k ≤ C1k0 for
some positive constant C1, the obtained convergence rates are asymptotically equivalent
to the nearly minimax rate, (log k0)

2(k0 + log p)/n. While Theorem 3.1 gives the con-
vergence rate of the maximum P-risk over the parameter space Bp,k0 , we also consider
the convergence rate given a fixed Σ0 ∈ Bp,k0 in the following remark.

Remark. Given a fixed Σ0 ∈ Bp,k0 , we have the convergence rate as below:

EΣ0{Eπi

(||B(εn)
k (Σ)− Σ0||2 | Xn)} ≤ C{(log k)2 k + log p

n
+ ||Bk(Σ0)− Σ0||2},

where C is some positive constant depending on M0 and M1. Even when k < k0, if
||Bk(Σ0)−Σ0||2 is small enough so that ||Bk(Σ0)−Σ0||2 = O((log k0)

2(k0 + log p)/n),
the convergence rate is still nearly minimax.

In practice, an outcome of the post-processed posterior may not be an element
of Bp,k0 . In the following Theorem 3.3, we show that the probability that the post-
processed posterior sample belongs to Bp,k0 converges to 1 as n −→ ∞. Thus, when n
is large enough, a post-processed posterior sample resides in the parameter space Bp,k0

with a large probability tending to 1.

Theorem 3.3. Suppose X1, . . . , Xn are generated from Np(0,Σ0) with Σ0 ∈ Bp,k0 . Let

the prior πi of Σ be IWp(An, νn). If An ∈ Bp,k0 , n/4 ≥ (M
1/2
0 M−1

1 log p)∨ k0 ∨ ||An|| ∨
(νn − 2p), νn > 2p, ||An|| ∨ (νn − 2p) ∨ k0 ∨ log p = o(n) and ε2n = O{(log k0)2(k0 +
log p)/n}, then

Prπ
i

(B
(εn)
k0

(Σ) ∈ Bp,k0 | Xn)
p−→ 1,

as n −→ ∞, where
p−→ means convergence in probability.

Proof. We show PrΣ0 [Pr
πi

(B
(εn)
k0

(Σ) /∈ Bp,k0 | Xn) > δ] −→ 0, as n −→ ∞ for all δ > 0.
Let δ2 = (M0 − λmax(Σ0)) ∧ (λmin(Σ0)−M1). We have

Prπ
i

(B
(εn)
k0

(Σ) /∈ Bp,k0 | Xn) ≤ Prπ
i

(||B(εn)
k0

(Σ)− Σ0||2 > δ2/2 | Xn)

≤ 4δ−2
2 Eπi

(||B(εn)
k0

(Σ)− Σ0||22 | Xn),

for all sufficiently small εn > 0. By Theorem 3.1, we get

PrΣ0 [Pr
πi

(B
(εn)
k0

(Σ) /∈ Bp,k0 | Xn) > δ]

≤ 4δ−1δ−2
2 EΣ0E

πi

(||B(εn)
k0

(Σ)− Σ0||22 | Xn)

≤ 4δ−1δ−2
2 (log k0)

2 k0 + log p

n
,

for a positive constant C. Thus, if k0 ∨ log p = o(n), then the upper bound goes to zero
as n −→ ∞.
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3.2 Interval Estimation

In this subsection, we show that the (1 − α)100% highest posterior density region of
the post-processed posterior is asymptotically on the average an (1 − α)100% credible
set of the conventional posterior. By the conventional Bayesian method, we mean the
Bayesian method imposing a prior distribution on banded covariance matrices directly.
Thus, the post-processed posterior provides approximations to the credible regions of
the conventional posterior.

For a given integer 0 < k ≤ p and Σ ∈ Cp, let θ1 = θ1(Σ) = (σij , |i − j| ≤ k) and
θ2 = θ2(Σ) = (σij , |i− j| > k). Let πc(θ1) be a prior for k-banded covariance matrices.
We use the bracket notation for the distribution or density of random variables. For
examples, the joint distribution of h(X) and g(Y ) and conditional distribution of h(X)
given g(Y ) are denoted by [h(X), g(Y )] and [h(X)|g(Y )], respectively. Probability that
h(X) ∈ A will be denoted by [h(X) ∈ A|g(Y )] where A is a set. Subscripts to the
brackets are used to distinguish different joint distributions of (X,Y ).

Define

[θ1 | Xn]PPP,0 =

∫
πi(θ1, θ2 | Xn)dθ2,

∝
∫

πi(θ1, θ2)p{Xn | Σ(θ1, θ2)}dθ2

[θ1 | Xn]C = πc(θ1 | Xn)

∝ πc(θ1)p{Xn | Σ(θ1, 0)},

where p(Xn | Σ) is the probability density function of Xn when Xi’s follow Np(0,Σ).
In the above, [θ1 | Xn]PPP,0 and [θ1 | Xn]C denote the post-processed posterior with
only the k-band operation Bk and the posterior of the conventional Bayesian method,
respectively. Note that, in [θ1 | Xn]PPP,0, we use subscript 0 to distinguish it from the
post-processed posterior defined in (1), which we will denote as [θ1 | Xn]PPP .

Suppose that the true covariance matrix Σ0 has the k-banded structure. Let (θ̂∗1 , θ̂
∗
2)=

argmaxθ1,θ2 log p{Xn | Σ(θ1, θ2)} and θ̂1 = argmaxθ1 log p{Xn | Σ(θ1, 0)} be the maxi-
mum likelihood estimators. Furthermore, we denote the Fisher-information matrix by

I(θ1, θ2) = −EΣ(θ1,θ2)

{[ ∂

∂θ
log p{Xn|Σ(θ1, θ2)}

]T [ ∂

∂θ
log p{Xn|Σ(θ1, θ2)}

]}
,

=

(
I11 I12
I21 I22

)

and I11·2(θ1, θ2) = I11 − I12I−1
22 I21.

For the theorem on the credible interval of post-processed posterior, we make as-
sumptions based on the Bernstein-von-Mises theorem and the regularity conditions on
the maximum likelihood estimator. We assume that the total variation distance version
of Bernstein von-Mises theorem holds for [θ1 | Xn]PPP,0 and [θ1 | Xn]C , i.e.,
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A1. (Bernstein-von Mises condition)

lim
n−→∞

EΣ0 ||[n1/2(θ1(Σ)− θ̂∗1) | Xn]PPP,0 −Np(0, I−1
11·2{θ1(Σ0), 0})||TV = 0,

lim
n−→∞

EΣ0 ||[n1/2(θ1(Σ)− θ̂1) | Xn]C −Np(0, I−1
11 {θ1(Σ0), 0})||TV = 0.

Using a slight abuse of notation, we let Np(0, I−1) denote the probability measure
of the multivariate normal distribution with zero mean vector and covariance matrix
I−1. For any probability measures P and Q on a σ-field M, ||P −Q||TV is defined by
supA∈M |P (A)−Q(A)|. The total variation distance version of the Bernstein von-Mises
theorem is given in Van der Vaart (2000) and Ghosal and Van der Vaart (2017).

Furthermore, we assume that the following regularity conditions hold. Let
d−→ and

P−→ denote the convergence in distribution and in probability, respectively.

A2. As n −→ ∞,

n−1/2L′
n{θ1(Σ0), 0} d−→ Np[0, I{θ1(Σ0), 0}],

(θ̂∗1 , θ̂
∗
2)

P−→ (θ1(Σ0), 0),

θ̂1
P−→ θ1(Σ0), (2)

sup
t:||t−θ1(Σ0)||≤εn

1

n
||L′′

n(t, 0)− L′′
n{θ1(Σ0), 0}|| P−→ 0 as εn → 0,

−n−1L′′
n{θ1(Σ0), 0} P−→ I{θ1(Σ0), 0},

I{θ1(Σ0), 0} is positive-definite, and L′′
n{θ1(Σ0), 0} is continuous, where

Ln(θ1, θ2) = log p{Xn | Σ(θ1, θ2)},
L′
n{θ1(Σ0), 0} = ∂Ln{θ1(Σ0), 0}/∂(θ1, θ2),

L′′
n{θ1(Σ0), 0} = ∂2Ln{θ1(Σ0), 0}/∂(θ1, θ2)2.

Theorem 3.4 shows that, under the regularity conditions, the highest posterior den-
sity region based on the post-processed posterior is, on average, a credible region of
the conventional Bayesian method for banded covariance matrices. The regularity con-
ditions, A1 and A2, are not generally satisfied in the high-dimensional settings, while
they hold for a fixed p. However, we would like to emphasize that it is the first result
on credible sets of post-processed posteriors (or projected posteriors) up to our knowl-
edge. Note that the idea of transforming posterior samples has been used in the various
settings, but they do not provide theoretical results on credible sets constructed from
the transformed posterior sample.

Theorem 3.4. Suppose A1 and A2 hold. If C1−α,n is the highest posterior density
regions of [θ1 | Xn]PPP and p is fixed, then

lim
n−→∞

EΣ0{[θ1(Σ) ∈ C1−α,n | Xn]C} = 1− α.



K. Lee, K. Lee, and J. Lee 1027

4 Numerical Studies

4.1 Choice of Post-Processing Parameters

The post-processed posterior procedure requires the banding parameter k and the
positive-definiteness adjustment parameter εn in the post-processing step (1). We sug-
gest using the Bayesian leave-one-out cross-validation (LOOCV) method (Gelman et al.,
2014) to choose these parameters. We define the log-predictive density given k and εn
as

R(k, εn) =

n∑
i=1

log

∫
p{Xi | B(εn)

k (Σ)}πi(Σ | Xn,−i)dΣ,

where Xn,−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn) and p{· | B
(εn)
k (Σ)} is the multivariate

normal density with zero mean and the covariance matrix B
(εn)
k (Σ). Then, using Monte

Carlo method, we obtain the estimated log-predictive density as

R̂(k, εn) =

n∑
i=1

log
1

S

S∑
s=1

p{Xi | B(εn)
k (Σi,s)}, (3)

where Σi,s is the sth sample from πi(· | Xn,−i), and S is the number of the posterior

samples. We choose the parameters as (k̂, ε̂n) = argmink∈[p],εn>0 R̂(k, εn). We optimize
k and εn using the grid search method. In this simulation study, we consider the set of
εn as {0.5, 0.3, 0.1, 0.05, 0.01, 0.005, 0.001}. When calculating R̂(k, εn), we set S = 500,
i.e., 500 initial posterior samples are used for the Monte Carlo integration.

We apply the Bayesian LOOCV method to simulation data. We consider four banded

covariances Σ
(1)
0 , Σ

(1′)
0 , Σ

(2)
0 and Σ

(3)
0 as the true covariance matrices. Let Σ

(1)∗
(ρ,α) =

(σ
(1)
(ρ,α),ij)p×p, where

σ
(1)
(ρ,α),ij =

{
1, 1 ≤ i = j ≤ p

ρ|i− j|−(α+1), 1 ≤ i �= j ≤ p.

Then we define Σ
(1)
0 = Bk0(Σ

(1)∗
(0.6,1)) + [0.5 − {λmin(Bk0(Σ

(1)∗
(0.6,1)))}]Ip and Σ

(1′)
0 =

Bk0(Σ
(1)∗
(5,0.01))+[0.5−{λmin(Bk0(Σ

(1)∗
(5,0.01)))}]Ip, where k0 is the bandwidth. They are de-

fined by banding Σ
(1)∗
(ρ,α) and adding an identity matrix multiplied by a positive number

to make the minimum eigenvalue of the resulting matrix be 0.5. Let Σ
(2)∗
0 = (σ

(2)
0,ij)p×p,

where σ
(2)
0,ij = {1− |i− j|/(k0 +1)} ∧ 0 for any 1 ≤ i, j ≤ p. Then we set Σ

(2)
0 = Σ

(2)∗
0 +

[0.5−{λmin(Σ
(2)∗
0 )}]Ip. Let Σ(3)∗

0 = L0D0L
T
0 and Σ

(3)
0 = Σ

(3)∗
0 +[0.5−{λmin(Σ

(3)∗
0 )}]Ip,

where

L0
ij =

⎧⎪⎨
⎪⎩
1, 1 ≤ i = j ≤ p

lij , 0 < i− j ≤ k0

0, otherwise,
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Figure 1: Visualization of true banded covariances.

lij are independent sample from N(0, 1), and D0 = diag(dii) is a diagonal matrix where
dii is independent sample from IG(5, 1), the inverse-gamma distribution with the shape
parameter 5 and the scale parameter 1. The true covariance matrices with p = 100 and
k0 = 5 are plotted in Figure 1.

For each banded covariance with k0 = 5, we generate the data X1, . . . , Xn from

Np(0,Σ
(t)
0 ) independently, where t = 1, 2, 3, 4, n = 25, 50, 100 and p = 100. For the

initial prior of the post-processed posterior, we choose IWp(A0, ν0) with ν0 = 2p+k+1
and A0 = Ip.

We examine estimated k̂ for 100 repetitions of the simulated data and present the
results in Table 1. We also investigate the estimation error of the post-processed poste-
rior with k̂. Let Σ̂k0 and Σ̂k̂ be the posterior means of the post-processed posterior with

bandwidth k0 and k̂, respectively. The average of the error ratio, ||Σ̂k̂−Σ0||/||Σ̂k0−Σ0||,
are reported in Table 2. For Σ

(1′)
0 , Σ

(2)
0 and Σ

(3)
0 , the error ratios are close to 1, while

the estimated bandwidths k̂ are concentrated around k0. On the other hand, when the
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k̂
1 2 3 4 5 (= k0) 6 7 8

Σ
(1)
0

n = 25 99 1 0 0 0 0 0 0
n = 50 100 0 0 0 0 0 0 0
n = 100 0 100 0 0 0 0 0 0

Σ
(1′)
0

n = 25 3 23 31 3 39 1 0 0
n = 50 0 0 6 0 88 6 0 0
n = 100 0 0 0 0 95 5 0 0

Σ
(2)
0

n = 25 0 0 0 48 38 14 0 0
n = 50 0 0 0 14 75 11 0 0
n = 100 0 0 0 11 80 9 0 0

Σ
(3)
0

n = 25 0 0 5 27 61 7 0 0
n = 50 0 0 0 14 84 2 0 0
n = 100 0 0 0 1 89 10 0 0

Table 1: Number of times bandwidth k̂ are chosen out of 100 repetitions. The first and
second columns represent the true covariance and the sample sizes, respectively. For

example, when the true covariance is Σ
(1)
0 and n = 25, k̂ = 1 is chosen for 99 data sets

and k̂ = 2 for one data set.

n = 25 n = 50 n = 100

Σ
(1)
0 0.821 0.797 0.825

Σ
(1′)
0 1.016 1.003 1.003

Σ
(2)
0 1.009 1.009 1.005

Σ
(3)
0 1.009 1.003 1.005

Table 2: The average of error ratios ||Σ̂k̂ − Σ0||/||Σ̂k0 − Σ0|| for 100 repetitions of the
simulation data. The first column and first row represent the true covariances and the
sample sizes, respectively.

true covariance matrix is Σ
(1)
0 , k̂ tends to underestimate k0 and Σ̂k̂ gives similar or

smaller estimation errors than Σ̂k0 . See Table 2. A referee pointed out that this may

be because Σ
(1)
0 is too diagonally dominant. We also agree with the referee. We have

examined values σij/σii, where σij is the (i, j) element of Σ
(1)
0 , as

(
σi,i+1

σii
,
σi,i+2

σii
,
σi,i+3

σii
,
σi,i+4

σii
,
σi,i+5

σii
) = (0.396, 0.100, 0.044, 0.025, 0.016).

The off-diagonal elements are small compared to the diagonal element. Especially, when
the index difference |i − j| is larger than 2, σij/σii is smaller than 0.05. Thus, using
smaller bandwidth can increase the accuracy.

For the choice of the bandwidth, we also regard the adaption of the post-processed
posterior given a prior on k. The remark below presents the posterior distribution
π(k | Xn) given a prior on k and the simulation data analysis.
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Remark. The proposed post-processed posterior framework can be adapted to the case
where a prior on k is specified. We split n observations of Xn into X

(1) and X
(2), which

consist of n1 and n2 observations, respectively, where n1 + n2 = n. Then, the posterior
distribution π(k | Xn) is derived as

π(k | Xn) ∝ π(k)
{c2

c

∫
p(X(1) | Σ)

p(Xn | B(εn)
k (Σ))

πi(Σ | X(2))dΣ
}−1

, (4)

where c =
∫
p(Xn | Σ)πi(Σ)dΣ, c2 =

∫
p(X(2) | Σ)πi(Σ)dΣ, and πi(Σ | X(2)) is the

density function of the initial posterior distribution given data X
(2). Note that c and

c2 are obtained analytically. We can estimate π(k | Xn) by applying the Monte Carlo
integration, which is denoted by π̂(k | Xn). For the derivation of (4) and estimation of
π̂(k | Xn), see the supplementary material.

We examine π̂(k | Xn) using the simulation data. For the simulation data analysis,
we set n1 = n/2, εn = (log k)(k + log p)1/2/n1/2, a prespecified value of εn based on
Theorem 3.1, and use the uniform prior π(k) ∝ 1, for k = 1, . . . , 10. We have tested
values of n1 including 0, n and n/2 and empirically found that n1 = n/2 works fine for
most cases. Figure 2 shows the average of the estimated marginal posterior π̂(k | Xn)

based on 100 repetitions. For the true covariances Σ
(1′)
0 , Σ

(2)
0 and Σ

(3)
0 , when n = 100,

the estimated posteriors are concentrated on the true bandwidth k0 = 5. However, when

the true covariance is Σ
(1)
0 , the estimated posteriors tend to spread over values smaller

than the true bandwidth k0 = 5. We believe that this is because Σ
(1)
0 is too diagonally

dominant as discussed after Tables 1 and 2.

4.2 Comparative Study

We compare the post-processed posterior with other methods: the banded sample co-
variance (Bickel and Levina, 2008) and covariance graphical model methods. Since the
k-banded covariance structure corresponds to a graph model, covariance graphical model
methods can be used for the banded covariance estimation. As frequentist methods of
the covariance graphical model, we consider dual maximum likelihood estimator (Kauer-
mann, 1996), and the maximum likelihood estimator by iterative conditional fitting
(Chaudhuri et al., 2007). As Bayesian methods, we consider G-inverse Wishart distri-
bution (Silva and Ghahramani, 2009) and Wishart distributions for covariance graph
(Khare and Rajaratnam, 2011). Additionally, we conduct the dual post-processed pos-
terior, which is a post-processing posterior based on the dual algorithm (Kauermann,

1996) instead of the banding post-processing function B
(εn)
k . We obtain a posterior

sample of the dual post-processed posterior as follows:

Step 1. (Initial posterior computing step) For l = 1, 2, . . . , sample Σ(l) from the initial
posterior,

Σ(l) | Xn ∼ IWp(B0 + nSn, ν0 + n).
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Figure 2: The average of the estimated marginal posterior probabilities of the band-
width, π(k | Xn), for various simulation settings.

Step 2. (Post-processing step) Obtain ΣD
(l) as the solution of the simultaneous equations:

{(ΣD
(l))

−1}ij = {(Σ(l))−1}ij ,

for |i− j| ≤ k and (ΣD
(l))ij = 0 for |i− j| > k.

In this comparative study, we fix the bandwidth k as the true bandwidth k0 since the
covariance graphical model methods do not consider the choice of the graph structure.
For the Wishart distribution for covariance graph (Khare and Rajaratnam, 2011), we
used αi = 2k0 +5 and U = Ip as they suggested. Similarly, we set δ = 5 and U = Ip for
the G-inverse Wishart distribution (Silva and Ghahramani, 2009) as they suggested. For
both methods, the initial values of the Σ for the Markov chain Monte Carlo algorithms
were set at the identity matrix and 500 posterior samples were drawn with 500 burn-in
sample.

For the dual maximum likelihood estimator and the maximum likelihood estimator,
Sn+εnIp is used in place of the sample covariance matrix because these algorithms need
a positive definite sample covariance matrix. The adjustment parameter εn is chosen as
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the minimizer of R̂f (εn), which is defined as

R̂f (εn) =
n∑

i=1

log p{Xi | h(Xn,−i; εn)}, (5)

where h(Xn; εn) is a frequentist estimator of Σ based on Xn and an adjustment param-
eter εn.

We compare the methods using the simulation data in Section 4.1. For the compar-
ison, we consider two respects: the spectral norm error and the coverage probability for
a functional of covariance when interval estimation is available.

Comparison of Spectral Norm Error

For each simulation setting, 100 sets of samples were generated. The performance of
each estimator is measured by the mean spectral norm error

1

100

100∑
s=1

||Σ0 − Σ̂(s)||,

where Σ̂(s) is a point estimate based on the sth simulated data set. For Bayesian meth-
ods, we use the posterior mean as the point estimator. Table 3 shows the mean spectral
norm error of each method.

The post-processed posterior performs reasonably well in all cases. While the per-
formance of the maximum likelihood estimator and the banded sample covariance is
similar to that of the post-processed posterior, when n = 100, the maximum likelihood
estimator and the banded sample covariance have larger mean spectral norm errors
when n = 25.

n = 25 n = 50 n = 100

Σ
(1)
0 Σ

(2)
0 Σ

(3)
0 Σ

(1)
0 Σ

(2)
0 Σ

(3)
0 Σ

(1)
0 Σ

(2)
0 Σ

(3)
0

Post-processed posterior 2.96 3.63 4.32 1.89 2.64 3.13 1.35 1.89 2.13
G-inverse Wishart 2.98 5.79 6.80 2.72 5.23 6.16 2.33 4.39 5.10
Wishart for covariance graph 3.90 6.86 5.88 1.73 4.36 4.78 1.47 2.94 5.06
Dual post-processed posterior 3.24 6.46 7.71 3.23 6.42 7.68 3.06 6.02 7.19
Banded sample covariance 3.42 4.44 5.17 2.06 2.89 3.40 1.44 1.97 2.23
Dual MLE 3.17 6.33 7.59 3.08 6.09 7.38 2.64 4.96 6.04
MLE 4.59 4.09 5.70 2.24 2.51 3.27 1.48 1.67 2.12

Table 3: Spectral norm-based errors for Σ
(1)
0 , Σ

(2)
0 and Σ

(3)
0 . MLE means the maximum

likelihood estimator.

Comparison of Coverage Probability

We investigate the performance of interval estimation for a functional of covariances in
this section. There is no valid frequentist interval estimator for functionals of banded
or bandable covariances in the high-dimensional covariance. However, if one assumes
p is fixed, the interval estimator for functionals of banded covariances can be derived
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from the Fisher information matrix given in Chaudhuri et al. (2007). Define vecb(Σ) :=

vecb(Σ; k) = vec({σij : i ≤ j, |i − j| ≤ k}) and Q ∈ R
p2×p∗

such that vec(Σ) =
Q × vecb(Σ; k), where vec is the column-wise vectorization operation, and p∗ is the
dimension of vecb(Σ; k). By asymptotic normality of maximum likelihood estimators
and the Fisher information matrix in Chaudhuri et al. (2007), we obtain

n1/2{vecb(ΣMLE)− vecb(Σ0)} d−→ Np∗ [0, 2{QT (Σ−1
0 ⊗ Σ−1

0 )Q}−1],

as n −→ ∞, where ΣMLE is obtained by the iterative conditional fitting (Chaudhuri
et al., 2007). Let φ{vecb(Σ)} and ∇φ{vecb(Σ)} be a functional and its derivative,
respectively. By the delta method, we obtain

n1/2[φ{vecb(ΣMLE)} − φ{vecb(Σ0)}] d−→ N(0, σ2
0,φ),

as n −→ ∞, where σ2
0,φ = 2∇φ{vecb(Σ0)}{QT (Σ−1

0 ⊗Σ−1
0 )Q}−1∇Tφ{vecb(Σ0)}. Then,

we induce an (1− α)100% confidence interval of the functional as

φ(vecb(ΣMLE))± zα/2
σ0,φ

n1/2
.

Since σ0,φ depends on the true covariance matrix, we use an estimated value as

σ̂2
φ = 2∇φ{vecb(ΣMLE)}{QT ((ΣMLE)−1 ⊗ (ΣMLE)−1)Q}−1∇Tφ{vecb(ΣMLE)}.

For Bayesian methods, we obtain credible intervals using the posterior samples. For
posterior sample Σ1, . . . ,ΣS , the (1−α)100% credible interval for a functional φ(Σ) can
be obtained based on φ(Σ1), . . . , φ(ΣS). We set S = 500 in the simulation.

In the numerical experiment, we focus on the conditional mean for the prediction
problem as a functional of covariances. When Xi = (Xi,1, . . . , Xi,p)

T ∼ Np(0,Σ), the
conditional mean given X−p = (X1, . . . , Xp−1)

T is

cm(Σ;X−p) := E(Xp | X−p) = Σp,−pΣ
−1
−p,−pX−p.

We compare the coverage probabilities and the lengths of intervals for 95% credible
intervals of cm(Σ;X−p) in Table 4.

The post-processed posterior performs well overall. It appears that the post-proc-
essed posterior and the Wishart for covariance graph produce practically reasonable
interval estimates, but the coverage probabilities of Wishart for covariance graph tend
to be smaller than the nominal coverage. The G-inverse Wishart and the dual post-
processed posterior have much smaller coverage probabilities than the nominal prob-
ability. The maximum likelihood estimator tends to produce wide (thus conservative)
confidence intervals when n = 25, which makes it less meaningful in practice.

Additionally, we compare computation times of the Bayesian methods in Table 5.
The post-processed posterior is faster than G-inverse Wishart distribution and Wishart
distribution for covariance graph methods. The dual post-processed posterior method
is the fastest because it does not have the cross-validation step for the adjustment
parameter εn, but its mean spectral norm errors in Table 3 sometimes shows poor
performance.



1034 Post-Processed Posteriors for Banded Covariances

n = 25

Σ
(1)
0 Σ

(2)
0 Σ

(3)
0

Post-processed posterior 94.7% (2.55) 92.9% (2.36) 93.9% (3.90)
G-inverse Wishart 50.4% (1.09) 48.0% (0.93) 45.3% (1.63)
Wishart for covariance graph 99.3% (2.86) 99.9% (3.24) 98.2% (3.78)
Dual post-processed posterior 70.9% (0.89) 61.5% (0.82) 43.3% (1.14)
Maximum likelihood estimator 99.5% (3.77) 99.8% (5.71) 99.9% (15.83)

n = 50

Σ
(1)
0 Σ

(2)
0 Σ

(3)
0

Post-processed posterior 97.0% (2.15) 97.0% (1.84) 96.4% (3.27)
G-inverse Wishart 62.3% (0.72) 63.4% (0.66) 60.1% (1.03)
Wishart for covariance graph 96.0% (1.51) 98.9% (1.72) 91.2% (1.89)
Dual post-processed posterior 73.5% (0.81) 73.3% (0.74) 54.9% (1.09)
Maximum likelihood estimator 97.9% (1.69) 99.2% (2.13) 99.6% (4.28)

n = 100

Σ
(1)
0 Σ

(2)
0 Σ

(3)
0

Post-processed posterior 94.9% (1.26) 96.5% (1.52) 97.1% (2.77)
G-inverse Wishart 74.6% (0.59) 71.3% (0.54) 70.7% (0.84)
Wishart for covariance graph 94.2% (0.94) 97.0% (1.06) 85.3% (1.16)
Dual post-processed posterior 48.8% (0.78) 51.7% (0.70) 48.5% (1.09)
Maximum likelihood estimator 97.7% (1.08) 98.4% (1.23) 99.6% (2.65)

Table 4: Coverage probabilities and lengths of interval estimates of the conditional

mean for banded covariances Σ
(1)
0 , Σ

(2)
0 and Σ

(3)
0 . The average lengths of intervals are

represented in parentheses.

1-quantile mean median 3-quantile

Post-processed posterior 40.45 40.63 40.63 40.78
G-inverse Wishart 205.47 206.67 207.32 208.23
Wishart for covariance graph 353.91 355.14 356.31 357.08
Dual post-processed posterior 10.60 10.73 10.67 10.78

Table 5: The summary statistics of computing times (unit: sec) for Bayesian methods,
when p = 100 and n = 50. In the computing times of the post-processed posterior
method, the step of Bayesian leave-one-out cross-validation for εn is involved.

4.3 Application to Call Center Data

We apply the post-processed posterior to analyze the call center data set, which is used

in Huang et al. (2006) and Bickel and Levina (2008). The data set consists of the number

of phone calls for 239 days, and the numbers of calls are recorded for 17 hours from 7:00

and divided into 10-minute intervals. We denote the number of calls in the jth time index

of the ith day as Nij (i = 1, . . . , 239; j = 1, . . . , 102), and define xi,j = (Nij + 1/4)1/2

so that its distribution is similar to the normal distribution. Furthermore, to focus on

covariance estimation, we center the data.
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Figure 3: The estimated log posterior predictive densities via the Bayesian leave-one-out
cross-validation. The estimated log posterior predictive densities are calculated for the
bandwidth k from 80 to 100.

Using the covariance estimators by the centered data, we predict the numbers of

calls at j = 71, . . . , 102 time points given those at the other time points. Let x
(1)
i =

(xi,1, . . . , xi,70)
T , x

(2)
i = (xi,71, . . . , xi,102)

T , then we obtain estimated conditional mean

of x
(2)
i given x

(1)
i as

x
(2)
i (Σ, x

(1)
i ) = Σ21Σ

−1
11 x

(1)
i ,

where Σab = E{x(a)
i (x

(b)
i )T } for any a, b ∈ {1, 2}. The first 205 days (i = 1, . . . , 205)

were used as a training data to estimate Σ, and the last 34 days (i = 206, . . . , 239) were
used as a test data. We measure the accuracy of the methods based on the mean square
error,

(34)−1
239∑

i=206

||x(2)
i − x̂

(2)
i ||2, (6)

where x̂
(2)
i ≡ x

(2)
i (Σ̂, x

(1)
i ) is an estimator for x

(2)
i . Here, Σ̂ is an estimator of Σ, where

posterior means are used based on 500 posterior samples for Bayesian methods.

We choose bandwidth k and the positive-definiteness adjustment parameter εn using
the Bayesian leave-one-out cross validation method given in Section 4.1. Let ε̂(k) =
argminεn>0 R̂(k, εn). We examine R̂(k, ε̂(k)) in Figure 3. Based on Figure 3, we choose
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Method error LPPD

Post-processed posterior 0.88 −84.60
Inverse-Wishart posterior 1.19 −88.28
Dual post-processed posterior 1.18 −91.65
Banded sample covariance 0.95 –
Dual maximum likelihood estimator 0.96 –
Sample covariance 0.99 –

Table 6: Mean square error between observations and estimated conditional mean. The
error column represents the mean square error of prediction values, and the LPPD
column represents the log posterior predictive density.

k̂ = 95. For the frequentist methods, we select the bandwidth based on the leave-one-out
cross-validation similar to (5).

We give the prediction error (6) in Table 6. Additionally, we compare the Bayesian
methods using the log posterior predictive density (LPPD), which is defined as

log

S∑
i=1

p(Xtest | Σi),

where Σi is the ith posterior sample, S is the number of posterior sample and X
test is

the test data.

The post-processed posterior outperforms the other methods in prediction error and

the log posterior predictive density. By the definition of x
(2)
i (Σ, x

(1)
i ), Bayesian methods

naturally induce interval estimators based on posterior samples of Σ. We visualize the
estimators as well as 95% credible intervals from the post-processed posterior for the
1st subject in the test data in Figure 4.

5 Discussion

In this paper, we have proposed a non-traditional Bayesian procedure called the post-
processed posterior. It is conceptually straightforward and computationally fast. It at-
tains a nearly minimax convergence rate over all possible pairs of post-processing func-
tions and initial priors, including conventional Bayesian posteriors. Also, its highest
density credible sets are asymptotically credible sets of the conventional posteriors on
average, and thus its credible sets can be viewed as approximations to the credible sets
of the conventional posteriors.

The post-processed posterior can be used for the Bayesian inference on the bandable
covariance. The class of bandable covariance matrices is defined as{

Σ = (σij) ∈ Cp :
∑

(i,j):|i−j|≥k

|σij | ≤ Mk−α, ∀k ≥ 1, λmax(Σ) ≤ M0, λmin(Σ) ≥ M1

}
,

where α,M > 0 and 0 < M1 < M0. We have shown that the post-processed posterior is
also nearly optimal in the minimax sense for the class of bandable covariance matrices
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Figure 4: The estimated conditional mean from the 71st to 102nd time indexes of the
1st subject in the test data. The red line and green dashed-line represents the estimated
conditional mean of the banded sample covariance and the post-processed posterior,
respectively. For the post-processed posterior distribution, 95% credible intervals of the
conditional mean are also represented as shade. The black dots represents the observa-
tions from the 71st to 102nd time indexes of the 1st subject in the test data.

(see Section S1 in the supplementary material). It is somewhat surprising that the
banding post-processed posterior is nearly optimal minimax rate because it was believed
that the banding estimator gives the sub-optimal convergence rate (Bickel and Levina,
2008) for bandable covariance matrices.

The idea of post-processing can be used in other covariance structures. For example,
the method can be applied to the class of sparse covariance matrices. We are investi-
gating the theoretical properties of the approach. We also believe the post-processing
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idea can be applied to other problems like sparse linear regression models and high-
dimensional nonparametric regression models. The open question is to set the boundary
of the post-processing posterior idea: when it has solid theoretical support.

Supplementary Material

Supplementary Material for “Post-Processed Posteriors for Banded Covariances” (DOI:
10.1214/22-BA1333SUPP; .pdf). We show the result of minimax convergence rate for
bandable covariance case and more simulation results. We also give an example of
application to Linear Discriminant Analysis. The proofs of lemmas and theorems in
the main paper are represented. We provide the R code of the post-processed posterior
procedure in the Github repository https://github.com/KwangminLee564/bandPPP.
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