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Fast Methods for Posterior Inference of
Two-Group Normal-Normal Models∗

Philip Greengard†, Jeremy Hoskins‡, Charles C. Margossian§, Jonah Gabry¶,
Andrew Gelman‖, and Aki Vehtari∗∗

Abstract. We describe a class of algorithms for evaluating posterior moments
of certain Bayesian linear regression models with a normal likelihood and a nor-
mal prior on the regression coefficients. The proposed methods can be used for
hierarchical mixed effects models with partial pooling over one group of predic-
tors, as well as random effects models with partial pooling over two groups of
predictors. We demonstrate the performance of the methods on two applications,
one involving U.S. opinion polls and one involving the modeling of COVID-19
outbreaks in Israel using survey data. The algorithms involve analytical marginal-
ization of regression coefficients followed by numerical integration of the remaining
low-dimensional density. The dominant cost of the algorithms is an eigendecom-
position computed once for each value of the outside parameter of integration.
Our approach drastically reduces run times compared to state-of-the-art Markov
chain Monte Carlo (MCMC) algorithms. The latter, in addition to being com-
putationally expensive, can also be difficult to tune when applied to hierarchical
models.

Keywords: hierarchical modeling, linear regression, mixed effects models, fast
algorithms.

1 Introduction

Advances over the last decade in statistical methods and their implementation in open-
source, user-friendly software have drastically simplified statistical modeling for applied
researchers. For example, with probabilistic programming languages such as Stan (Car-
penter et al., 2017) a user can specify and sample from a general choice of posterior
density with flexible language and an easy-to-use interface. For its primary tool of in-
ference, Stan (as well as other probabilistic programming languages) samples from the
posterior distribution via dynamic Hamiltonian Monte Carlo sampler (HMC) (Betan-
court, 2018; Hoffman and Gelman, 2014). HMC is a gradient-based sampling method
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that has become ubiquitous in statistics over the last decade due to its being flexible,
reliable, and general.

Despite its widespread use, HMC, as well as other Markov chain Monte Carlo
(MCMC) methods, can have two drawbacks in statistical problems with large amounts
of data—they can be prohibitively slow and difficult to tune (e.g. Betancourt et al.,
2015). For example, in the case of a linear regression with n observations and k predic-
tors, evaluation of the posterior density requires O(nk) operations with straightforward
implementation. To make matters worse, MCMC methods require large numbers of
evaluations of the posterior density, and in the case of HMC, the posterior’s gradient.

Alternative methods for inference have been proposed for problems where MCMC
is impractical. These approaches typically involve a suitable approximation of the pos-
terior density with a function with desirable properties. Laplace approximation (e.g.
Margossian et al., 2020) and variational inference (Blei et al., 2017) are two examples.
More generally, there is extensive literature on efficient computational tools and anal-
ysis of posterior densities, and there are various software packages devoted to their
implementation (see, e.g. Rue et al., 2017; Kristensen et al., 2016).

While these packages, and indeed most of the literature, are devoted to general tools
for a wide range of posterior densities, in this paper we introduce an efficient algorithm
for computing posterior expectations for two particular classes of Bayesian regression
models—two-group normal-normal models and mixed-effects models. These classes of
models find a broad range of applications in, for example, social sciences, epidemiology,
biochemistry, and environmental sciences (Gelman et al., 2013; Gelman and Hill, 2006;
Greenland, 2000; Merlo et al., 2005; Bardini et al., 2017). Furthermore, in the broader
context of statistical workflow, these regressions can serve as template models (Gelman
et al., 2020).

Using general MCMC methods for sampling from these posteriors can be exceedingly
slow for problems with large amounts of data. By specializing on this particular family
of models, we leverage their structure to create customized algorithms for fast and
accurate inference. We provide a publicly available implementation of the algorithms
in R.

The two Bayesian linear regression models we consider are:

1. Two group normal-normal: We define the two-group normal-normal model by

yi ∼ N(X1β1 +X2β2, σ
2
yI),

β1 ∼ N(0, σ2
1I),

β2 ∼ N(0, σ2
2I),

(1.1)

where X1 is an n× k1 data matrix, β1 ∈ R
k1 is a vector of regression coefficients,

X2 is an n × k2 data matrix, and β2 ∈ R
k2 is a vector of regression coefficients.

For Bayesian inference, we assume priors on the scale parameters σy, σ1, σ2. The
performance of the algorithm is largely independent of the choice of these priors.
In the models that we use in this paper, we assign independent weakly informative
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normal+(0, 1) priors on σy, σ1, σ2 (assuming y and the columns of X have been
normalized to have standard deviation 1). The normal+(0, 1) distribution denotes
the standard normal restricted to the non-negative reals.

2. Mixed effects: The mixed-effects model differs slightly from the two-group nor-
mal-normal model. Instead of modeling the scale parameter σ2, fixed scale param-
eters are assigned to the normal priors on β2. The mixed-effects model is defined
by

y ∼ N(X1β1 +X2β2, σ
2
yI),

β1 ∼ N(0, σ2
1I),

β2,i ∼ N(0, σ2
2,i),

(1.2)

where σ2,i is the fixed scale parameter prior on each regression coefficient β2,i

for i = 1, . . . , k2 where β2 ∈ R
k2 . We will assume priors on the scale parameters

σy, σ1.

The models we discuss in this paper are standard models of Bayesian statistics
and appear when seeking to model an outcome, y, as a linear combination of two
(or more) distinct groups of predictors. In our notation, the data matrices of the two
groups of predictors are X1, X2 with corresponding regression coefficients β1, β2. The
Gaussian prior on the predictors enable various strategies commonly used in statistical
modeling and machine learning; notably regularization and partial pooling between
various sources of data. We demonstrate these models on three applications.

1. COVID-19: Due to a lack of reliable, fast, and widespread testing, an online
survey initiative was created in Israel (Rossman et al., 2020) for tracking and
predicting outbreaks of Coronavirus disease 2019 (COVID-19). We constructed
a mixed-effects model for estimating geographic and age effects on the spread of
the virus. With tens of thousands of responses, straightforward implementation of
MCMC methods takes hours. Using the methods of this paper, we obtain accurate
posterior inference in seconds.

2. Rat growth: We demonstrate the efficiency of our two-group algorithm on the
classical two-group model for rat growth (Gelfand et al., 1990), which estimates
the growth rates of a population of rats over the first few weeks of life.

3. Public opinion on abortion: We use 2018 results of the annual Cooperative
Congressional Election Study (CCES) to estimate geographic and demographic ef-
fects on attitudes towards abortion. The CCES contains nearly 100,000 responses,
and performing inference via MCMC sampling can be prohibitively slow. We use
the mixed-effects algorithm introduced in this paper to perform posterior inference
in seconds.

The computational methods we introduce for the two-group normal-normal model
and the mixed-effects models are closely related. In fact, the mixed-effects model is,
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from a computational standpoint, a special case of the two-group model. We organize
this paper by first describing an overview of the algorithms used in both the two-
group normal-normal and mixed-effects models. In supplemental material, we provide a
full description of both algorithms. We start by deriving the two-group normal-normal
algorithm in detail, and then outline the minor modifications that allow for efficient
evaluation of posterior moments of mixed-effects models.

The unnormalized density corresponding to the two-group model is given by

q(β, σ1, σ2, σy) =
p(σ1, σ2, σy)

σn
y σ

k1
1 σk2

2

e
− 1

2σ2
y
‖Xβ−y‖2

e
− 1

2σ2
1
‖β1‖2

e
− 1

2σ2
2
‖β2‖2

, (1.3)

where p(σ1, σ2, σy) denotes a prior probability density function for (σ1, σ2, σy) and β =
(β1, β2) with β1 ∈ R

k1 , β2 ∈ R
k2 , β ∈ R

k, and y ∈ R
n. For convenience, we denote by σ

the vector of scale parameters (σy, σ1, σ2) ∈ R
3.

In the methods of this paper, we obtain high-order approximations of the posterior
moments of β, σ by first analytically reducing the calculation of moments from integrals
over k + 3 dimensions to 3-dimensional integrals. The 3-dimensional integrals are then
approximated with spectral quadrature rules. The source of approximation of these
methods is entirely in the quadrature and errors decay super-algebraically in the number
of quadrature nodes. The total computational cost of evaluation of posterior means is
O(mk3 + m2k + m3 + nk2) operations, while posterior covariance requires O(mk3 +
m2k2+m3+nk2) operations where n is the number of observations, k is the number of
predictors, and m is the number of quadrature nodes in each dimension of the numerical
integration. These computational costs assume n is larger than k.

The tools we use are a generalization of the approach proposed by Greengard et al.
(2021) and generalize to higher-dimensional multilevel and higher-dimensional multi-
group posterior distributions. Since we integrate the marginal density using a tensor
product of Gaussian nodes, the cost of the integration scales like O(md) where m is the
number of discretization nodes in each direction and d is the dimension of the marginal-
ized integral (where d = 3 in the models of this paper). As a result, higher dimensional
problems require evaluation of marginal integrals via sampling-based algorithms and
cannot rely solely on Gaussian quadrature. We leave the analysis and description of
numerical tools for such models to a subsequent publication.

For the applications we consider in this paper, we assign half-normal priors (normal
distributions restricted to the positive reals) to the scale parameters σ. This choice of
prior is unrelated to the computational costs of our algorithm. After analytically inte-
grating the regression coefficients, numerical integration via quadrature is performed on
the remaining low-dimensional density. That density contains a multiplicative factor of
p(σ) where p denotes the prior on scale parameters σ. In that sense, the only conditions
on p are that p is not highly singular and can be evaluated relatively cheaply. Both of
these conditions are easily met by any reasonable choice of p.

We implemented the two-group normal-normal and mixed effects algorithms of this
paper in an R package fastNoNo, which is publicly available on GitHub at https://
github.com/pgree/fastNoNo.

https://github.com/pgree/fastNoNo
https://github.com/pgree/fastNoNo


P. Greengard et al. 893

The structure of this paper is as follows. In the following section we provide back-
ground on the quadrature rules we use for the numerical integration stage of the al-
gorithms. In Section 3 we provide a summary of the numerical methods used in this
paper as well as intuition behind the computational efficiency. In Section 5, Section 4
and Section 6 we apply the algorithms of this paper to applications. Conclusions and
generalizations of the algorithm of this paper are presented in Section 7. Lastly, the sup-
plemental material includes a detailed description of our algorithms as well as numerical
implementation details.

2 Mathematical preliminaries

The algorithms of this paper rely heavily on numerical integration using Gaussian
quadrature (or Gauss-Legendre quadrature). In this section, we provide a brief overview
of Legendre polynomials and Gaussian quadrature (Abramowitz and Stegun, 1964) that
will be used throughout the remainder of the paper. The contents of this section are
well-known and a more in-depth discussion can be found in, for example, a book by Tre-
fethen (2020).

In accordance with standard practice, we denote by Pi : [−1, 1] → R the i-th Legen-
dre polynomial for all i = 0, 1, . . .. Legendre polynomials satisfy the three-term recursion

Pi+1(x) =
2i+ 1

i+ 1
xPi(x)−

i

i+ 1
Pi−1(x)

with

P0(x) = 1,

P1(x) = x.

Legendre polynomials are orthogonal with respect to L2[−1, 1]. That is, for all i, j =
0, 1, . . . ∫ 1

−1

Pi(x)Pj(x) dx =

{
0 i �= j,

2
2i+1 i = j.

For all n, Pn has n unique roots which we denote x1, . . . , xn. Additionally, for all n,
there exist n positive reals w1, . . . , wn such that for any polynomial p of degree ≤ 2n−1,

∫ 1

−1

p(x)dx =

n∑
i=1

wip(xi).

The roots, x1, . . . , xn are known as the order-n Gaussian quadrature nodes (or Gaussian
nodes) and w1, . . . , wn are known as Gaussian weights. Efficient algorithms for calcu-
lating Gaussian nodes and weights can be found in standard software packages such as
Chebfun (Driscoll et al., 2014).

In dimensions more than one, integrals can be approximated using tensor-product
Gaussian quadrature rules. Specifically, suppose that f(x, y) is a real-valued function
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defined on the square, [0, 1]2. Then, a tensor-product Gaussian quadrature rule is used
to obtain the approximation

n∑
i=1

n∑
i=1

f(xi, xj)wiwj ≈
∫ 1

0

∫ 1

0

f(x, y)dxdy. (2.1)

In the algorithms of this paper, we use Gaussian quadrature in large part due to its
desirable convergence properties. In particular, for any smooth function, f : [a, b] → R,
the error of the order-n Gaussian quadrature approximation∣∣∣∣

∫ b

a

f(x)dx−
n∑

i=1

f(xi)wi

∣∣∣∣
decays super-algebraically, that is, faster than O(n−j) for any j ∈ N (naturally the
constant on the decay rate grows as a function of j). Since f is defined on [a, b], Gaussian
nodes and weights must be appropriately shifted and scaled.

As with functions defined on R, for smooth functions defined on a region of Rd,
tensor-product quadratures also possess super-algebraic accuracy – errors decay faster
than O(n−j/d) for any j ∈ N where again, the constant on the decay rate grows with
d and j. Broadly, suppose that the integral of a function f : [a, b] → R, requires an
n-degree Gaussian quadrature for some desired level of accuracy. Then for a function
g : [a, b]d → R with similar smoothness properties to f , approximating its integral with
tensor-product Gaussian quadrature will require roughly nd points to achieve the same
level of accuracy.

3 Overview of algorithm

Greengard et al. (2021) introduced a numerical method for computing with posterior
unnormalized densities such as the one-group Bayesian regression model posterior

q0(β, σ1, σy) =
p(σy, σ1)

σn
y σ

k
1

e
− 1

2σ2
y
‖Xβ−y‖2

e
− 1

2σ2
1
‖β‖2

, (3.1)

where p(σy, σ1) denotes a prior probability density function on σy, σ1. The approach of
Greengard et al. (2021) uses a change of variables in β to the singular vectors of the
data matrix X, that results in the conditional densities q0(β |σy, σ1) being Gaussian
with diagonal covariance, for all σy, σ1 > 0. Moments of β, σy, σ1 with respect to q0 can
then be computed via numerical integration with minimal work.

Unfortunately, for the class of models we consider in this paper, the approach of
Greengard et al. (2021) cannot be directly applied – there is no change of variables over
β such that the Gaussian q(β |σ) has diagonal covariance for all σ. For the remainder
of this section, we summarize the strategy used by the class of algorithms of this paper
and provide intuition for the computational speed-ups obtained. In the supplemental
material, we include a detailed derivation of the algorithms and associated numerical
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implementation for computing moments of β and σ with respect to q. The algorithms
described in the supplemental material, for two-group normal-normal models and mixed
effects models, are closely related. They both rely on a change of variables that facilitates
an analytical integration of regression coefficients followed by numerical integration of
the remaining low-dimensional density.

In order to summarize the algorithm, we demonstrate its use in evaluation of the nor-
malizing constant of q (see (1.3)). Evaluating the first and second moments is straight-
forward using the same approach as the one outlined in this section.

The normalizing constant of q, which we denote by C, is defined by

C =

∫
R+

∫
R+

∫
R+

∫
Rk

q(β, σy, σ1, σ2)dβ dσy dσ1 dσ2.

It is well-known that due to conjugacy of normal-normal models the inner integral can be
evaluated in O(k3) operations after O(nk2) precomputation. This can be done in various
equivalent ways, for example, using the determinants of Lindley and Smith (1972) or the
singular value decomposition of Greengard et al. (2021). Since the innermost integral of
C is smooth and low-dimensional, one natural approach for evaluating C is to compute
the outer integrals, those with respect to σ, with quadrature (e.g. see (2.1)), that is, a
sum of the form

C ≈
m∑
i

m∑
j

m∑
�

∫
Rk

q(β, σy,i, σ1,j , σ2,�)dβ wiwjw�, (3.2)

where σi, wi ∈ R
+ for i = 1, . . . ,m. Such an approximation would result in a computa-

tional cost of O(m3k3) operations (O(m3) evaluations of a function that requires O(k3)
operations to evaluate). For many modern problems, with large numbers of predictors
(large k), this cost can result in prohibitively slow inference.

In order to improve the computational burden of this approach, we start with a
change of variables of the scale parameters σy, σ1, σ2 to spherical coordinates:

C =

∫ π/2

0

∫ π/2

0

∫ ∞

0

∫
Rk

f(β, ρ, θ, φ)ρ2 sin(φ)dβ dρ dφ dθ, (3.3)

where f : R× R
+ × (0, π/2)2 → R is defined by

f(β, ρ, φ, θ) =
e−ρ2/2

ρn+k cosn(φ) sink φ cosk1 θ sink2 θ

exp

[
− 1

2ρ2

(
1

cos2 φ
‖X(β − β̃)‖2 + ‖d‖2

cos2 φ
+

βt
(

I1
cos2 θ + I2

sin2 θ

)
β

sin2 φ

)]
,

where β̃ ∈ R
k is computed once in precomputation in O(k3) operations, d = Xβ − y,

and I1, I2 are identity matrices.

The new conditional density f(β | ρ, φ, θ) is still Gaussian in β, but now has a co-
variance matrix that depends on ρ only up to a multiplicative constant. That is, the
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covariance can be expressed as 1
ρ2Σ(θ, φ) where Σ(θ, φ) is a covariance matrix that

depends only on θ, φ, and X. Using this property and identities of Section 2 of the sup-
plemental material (Greengard et al., 2022), the normalizing constant (and moments)
of f(β | ρ, φ, θ) can be efficiently calculated in O(1) operations given the normalizing
constant of f(β |φ, θ).

Using a quadrature-based scheme, this reduces the number of times the O(k3) cost
of evaluating the inner integral of (3.3) needs to be performed. Now, instead of being
performed over a three dimensional space, (θ, φ, ρ), the O(k3) operations needs to be
performed over a 2-dimensional space (θ, φ). This reduces the cost of the quadrature
approach of (3.2) from O(m3k3) to O(m2k3 +m3) operations.

We next perform a further change of variables of the regression coefficients, w =
Mθβ, where Mθ is a k × k matrix that depends only on θ (see supplemental material
for details on Mθ). The matrix Mθ requires O(k3) operations to evaluate and converts
the Gaussian f(β | ρ, φ, θ) to a form that allows for rapid updating of the normalizing
constant (and moments) for different values of φ and ρ. Specifically, after the change of
variables w = Mθβ, we obtain

C =

∫ π/2

0

∫ π/2

0

∫ ∞

0

∫
Rk

e
− ρ2

2 − ‖d‖2
2ρ2 cos2 φ

ρn+k cosn φ sink φ

exp

[
− 1

2ρ2

k∑
i=1

(
λi(wi − w̃i)

2

cos2 φ
+

w2
i

sin2 φ

)]
dw dρ dφ dθ.

The inner integral (in addition to moments of w) are available using standard identities
(e.g. Abramowitz and Stegun (1964)). In particular, we have the following formula for
the normalizing constant.

C =

∫ π
2

0

∫ π
2

0

α(φ, θ) sinφ

cosn−k φ

∫ ∞

0

e
− ρ2

2 − 1
2ρ2

(
‖d‖2
cos2 φ

+β(φ,θ)

)

ρn
ρ2 dρdφ dθ,

where α : (0, π/2)2 → R
+ and β : (0, π/2)2 → R

+ require O(k) operations to compute
and are defined in Section 2 of the supplemental material (Greengard et al., 2022). Now,
the inner integrals of C,

∫ π
2

0

α(φ, θ) sinφ

cosn−k φ

∫ ∞

0

e
− ρ2

2 − 1
2ρ2

(
‖d‖2
cos2 φ

+β(φ,θ)

)

ρn
ρ2 dρdφ,

can be evaluated in O(k2) operations using Gaussian quadrature.

Finally, we now evaluate C using a 3-dimensional tensor product of Gaussian nodes.
That is, we compute C with a sum of the form

C =
m∑
i

m∑
j

α(φj , θi) sinφj

cosn−k φj

m∑
�

e
− ρ2�

2 − 1

2ρ2
�

(
‖d‖2

cos2 φj
+β(φj ,θi)

)
ρ2−n
� wρ,�wφ,jwθ,i, (3.4)
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where θi, φj , ρ� and wρ,�, wφ,j , wθ,i are appropriately scaled and shifted Gaussian nodes
and weights. We’ve reduced the approximation of C from a sum requiring O(k3m3)
operations to a sum that requires O(mk3 +m3) operations – the O(mk3) cost arising
from the O(k3) construction of Mθ for m different values of θ, while O(m3) is required
to sum each term in the tensor-product quadrature.

The change of variables described in this section allows for efficient evaluation of
posterior means and covariances of β and σ in addition to the normalizing constant. We
leave details to the supplemental material.

The supplemental material (Greengard et al., 2022) includes a detailed description of
the algorithms of this paper and associated numerical implementation. We collectively
refer to this class of algorithms as “fastNoNo.” Additionally, we have included a publicly
available code in R of the two-group normal-normal and mixed effects algorithms, which
can be found at https://github.com/pgree/fastNoNo or installed from the command
line in RStudio via devtools::install_github(‘‘pgree/fastNoNo’’).

4 A simple example: Hierarchical linear model

We demonstrate the two-group normal-normal algorithm on a hierarchical linear model
describing the growth of a group of young rats over a period of several weeks; this is a
small example that has been used in the statistical literature (Gelfand et al., 1990). In
the experiment, the weight of each rat is measured at regular time intervals. Regression
coefficients are computed for each rat; that is, for the jth rat, we estimate an intercept
αj and a linear coefficient βj . We assign a normal prior on both parameters and estimate
the prior scale. The full model is as follows:

yi ∼ N(Xi
1α+Xi

2β, σ
2
y),

αj ∼ N(0, σ2
1),

βj ∼ N(0, σ2
2),

σy ∼ N+(0, 102),

σk ∼ N+(0, 102) for k = 1, 2,

(4.1)

where X1 is an indicator matrix indicating to which rat each observation (weighing)
corresponds; X2 is that same indicator matrix multiplied by w − w̄, where w is the
observation week and w̄ the mean observation week. In other words, we have an intercept
and a slope parameter for each rat. The data is centered at 0 and the priors on the scale
parameters are weakly informative.

We demonstrate the efficiency of the two-group normal-normal algorithm on evalu-
ating posterior means and standard deviations of the rats model on simulated data. We
assume an experiment with 100 rats and 20 weighing times and randomly generated
data for each weighing. As a result, matrix X1 and X2 of model (4.1) are 2000 × 100
matrices.

Because the data size is relatively small and the data matrices have a friendly, sparse
structure, running MCMC with Stan (4 chains in parallel, each with 1,000 warmup it-

https://github.com/pgree/fastNoNo


898 Fast Methods for Normal-Normal Models

Figure 1: Absolute error of MCMC estimates via Stan as a function of run time. The
horizontal orange line is the absolute error of fastNoNo.

erations and 1,000 sampling iterations) only takes 13.9s. This timing reflects a Stan
implementation that takes advantage of the sparsity of the data matrices. Our algo-
rithm takes 1.6s and achieves significantly smaller errors than MCMC estimates. For
problems with larger data, the difference in time scale becomes important. Figure 1
shows the error of posterior mean approximations via MCMC in Stan as a function
of time as well as the error achieved by our algorithm. Errors are defined to be the
absolute difference between the true posterior mean and the approximation. Accurate
approximations of true posterior moments were obtained via our algorithm with a large
number of quadrature nodes.

5 Application: COVID-19 symptom survey

As of the writing of this article, the coronavirus pandemic is still raging in many coun-
tries and stressing healthcare systems around the world. A challenge at the start of the
pandemic was tracking its spread, especially in locations where reliable testing was not
widely available. Having accurate estimates of infection rates across geographical regions
can be extremely helpful. For example, reliable estimates allow hospital systems to al-
locate resources efficiently, they can alert residents of the need to take extra precaution
in their daily routines, and they can facilitate better policy from local governments. In
order to get improved estimates of infection rates in the absence of widespread testing,
initiatives were deployed in early 2020 in several countries that allowed individuals to
report symptoms via publicly available surveys (e.g., Segal et al., 2020).

One country where these surveys provided valuable information was Israel (Rossman
et al., 2020), where demographic and health data was provided by tens of thousands
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of respondents across the country. The large amount of data collected from survey
respondents provided data scientists and policy-makers with a great resource, however
at the same time, large amounts of data turns the computational aspect of statistical
modeling into a substantial challenge.

In this section, we present an exploratory model used to analyze data from the
COVID-19 survey conducted in Israel (Rossman et al., 2020). Using straightforward
MCMC with Stan (Carpenter et al., 2017) was inconvenient; using the full data set
resulted in run times of several hours. Using the algorithms of this paper, we were able
to evaluate posterior moments to high accuracy in seconds.

Multilevel regression and poststratification procedure

The respondents are anonymous, but several of their features are recorded, including
their age and the city in which they live. We can use the data to identify regions in
which the average symptom score seems unusually high.

A first exploratory model uses an intercept, age group, and population density in
the respondent’s city, as covariates, X, and an indicator matrix Z for city:

y ∼ N(Xβ + Zu, σ2
yI),

with a hierarchical prior on the city parameters,

u ∼ N(0, σ1I),

and weakly informative priors on the other coefficients,

β ∼ N(0, I).

This unit prior is weakly informative if the outcome yi has been standardized and the
continuous predictors (in this case, population density) has also been standardized to
be on unit scale.

In addition, we put weakly informative half-normal priors (standard normal distri-
butions restricted to the non-negative reals) on the hyperparameters σy and σ1:

σy ∼ N+(0, 1),

σ1 ∼ N+(0, 1).

This corresponds to a two-group normal-normal model with an additional covariate. In
cities where u cannot be well estimated due to a low response rate, we can rely on the
rest of the model, that is a regression model based on age and population density.

Only a fraction of the population responds to the survey, which raises questions about
biases. This is notably a concern because different age groups behave differently: not
only do their chances of contracting and spreading the disease vary, their susceptibility
to the disease also changes. In multilevel regression and poststratification (MRP), we
adjust for these biases by using estimates of the proportion of people in each city that
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belong to each age group. For this model, the proportions are estimated using census
data. This leads to a corrected estimate for the expected symptom score of an individual
in city i:

ũi = ui + β0 + βdensitydi +

n∑
j=1

aijβage,j ,

where β0 is the intercept, βdensity,i is the regression coefficient of the population density
covariate, di denotes the density of city i, aij is the proportion of individuals in the jth

age group in the ith city, and βage,j is the regression coefficient of age group j.

Using the means and covariances of u, β0, βdensity, and βage we compute the posterior
mean and variance for ũ, per the following formulas. Given a linear combination of
random variables, Y =

∑
i δiZi, we have

EY =
∑
i

δiEZi,

and

VarY =
∑
i

δ2iVarZi + 2
∑
i<j

δiδjCov(Zi, Zj).

Moreover, variance and thence standard deviations of ũ can be computed, provided we
also evaluate the relevant posterior covariances.

Comparison of our algorithm to MCMC

We analyze the data collected over the two weeks between April 15th and 30th, 2020,
across 351 cities. These are cities for which we know, through census data, the population
density and the age distribution. The total number of responses is 135,501.

Our proposed algorithm returns the posterior mean and standard deviation for all
variables of interest and takes ∼7s to run.

We next fit the model in Stan using the default dynamic HMC sampler exploiting
the sparsity of the data matrices for efficient sampling. After warming up the sampler
for 500 iterations, we compute another 500 draws, using 4 chains computed in parallel,
for a total of 2,000 sampling iterations. The wall time for this procedure is ∼12,000s
(>3 hours). For each city, we computed the Monte Carlo mean. Figure 2 plots the
posterior mean and standard deviation of ũ for all cities, computed by both methods.
Figure 3 shows the difference between our algorithm and the Monte Carlo estimate, as a
function of computation time. While it takes on the order of hours to get accurate results
with MCMC, our algorithm achieves better results within seconds. Errors presented are
absolute differences between the true posterior means and approximations using MCMC
and fastNoNo. As a benchmark, we use fastNoNo with a large number of quadrature
nodes. Table 1 provides the accuracy of posterior mean estimates for several regression
coefficients using both fastNoNo and MCMC.
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Figure 2: Posterior mean and standard deviation for ũ computed using Algorithm 1
and MCMC. The points represent the estimated mean and the “error bars” span two
standard deviations.

Figure 3: Absolute error of MCMC estimates via Stan as a function of run time. The
horizontal orange line is the absolute error of our method, which took 7 seconds to run.
MCMC in Stan required over 6,000 seconds of warmup before error can be measured.
Total run time for Stan was ∼12,000 seconds.
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Regression MCMC Error fastNoNo Error
coefficient (∼12,000 s) (7 s)

β0 3e-2 1e-5
u1 1e-2 4e-4
u2 1e-2 3e-4
u3 2e-2 6e-5

βage,1 3e-2 7e-6
βage,2 3e-2 8e-6
βage,3 3e-2 9e-8
βdensity 2e-3 2e-5

Table 1: Absolute error of the approximation of posterior means for several regression
coefficients with both MCMC and fastNoNo. For MCMC, the total time for the approx-
imation was ∼12,000s. Total time for fastNoNo was 7s.

Limitations of the model and our numerical method

We believe the presented model offers an improvement on the analysis conducted on
the survey data (Rossman et al., 2020), because (i) it uses full Bayesian inference to
quantify uncertainty and (ii) it corrects sampling biases using a poststratification step.
A more careful quantification of uncertainty would use posterior intervals, rather than
posterior variance. Such an interval can be estimated using MCMC draws. Extending
our numerical scheme into a sampling scheme to estimate such intervals is a direction
we are actively pursuing.

For the model of this paper we only used a fraction of the available covariates, that
is, the data collected in survey responses. As a result, the model can be extended to
include more than two groups. Estimates tend to be noisy because the studied covari-
ates can be strongly correlated with the outcome. For example, age is correlated with
intensity of symptoms. The marginal correlation however is weak. This, and other con-
siderations, suggest that it might be beneficial from a modeling standpoint to build a
more sophisticated model, which might be outside of the scope of application of the
methods of this paper. Nevertheless, the model considered here is an important step in
the development of a better model.

6 Application: Public opinion on abortion policies

We next apply our method to a hierarchical linear regression used to model attitudes on
abortion policies as they vary across states, ethnicity, age groups, and education levels.
Modeling this heterogeneity requires partitioning an initially large data set into small
groups. Furthermore, we must address biases that can arise in our survey and correct
them using more comprehensive surveys, such as census data. As in Section 5, we use
MRP to do inference for small slices of big data and correct biases in our survey.

We analyze data from the 2018 Cooperative Congressional Election Study (CCES)
using, as in the case study of (Lopez-Martin et al., 2022), a random subset of 5,000
respondents. Respondents express support or opposition on six abortion policies, for
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example “Ban abortion after the 20th week of pregnancy” or “Allow employers to decline
coverage of abortion in insurance plan.” These policies are intended to restrict access to
abortion. Each respondent is given a support score, y, ranging from 0 to 6, indicating
the number of supported policies.

We use a normal likelihood with the following covariates, recorded for each respon-
dent: state, ethnicity, age group, education level, and sex. We use the proportion of
votes for the Republican party in the state in 2016 as an additional predictor, denoted
as repvote. The model also admits an intercept term. The statistical formulation of
the model is the following:

yi ∼ N(β0 +Xstate
i βstate +Xethnicity

i βethnicity +Xageβage

+Xsexβsex +Xeducationβeducation +Xrepvoteβrepvote, σ
2
y).

The difficult parameters to estimate here are the state coefficients, to which we give
normal(0, σ1) priors. Because the model includes repvote, the partial pooling is done to-
ward the prediction of the state based on its previous vote, not toward the national mean.

Table 2 summarizes the performance of the algorithm on this model. The posterior
mean and standard deviation of the MRP estimates for each state can be computed as
in Section 5 and are plotted in Figure 4.

n k1 k2 max error total time (s)
5000 50 19 1.2× 10−8 0.05

Table 2: Computation time and accuracy of fastNoNo applied to a model of sup-
port/opposition for abortion policies. The column “max error” shows the maximum
error of posterior means and standard deviations of regression coefficients and scale
parameters.

Figure 4 shows that the expected support score increases with the level of support for
the Republican party, barring some fluctuations. The large posterior standard deviations
indicate there is quite a bit of heterogeneity within each state. For further insight, we
may examine how groups other than states, e.g. ethnic groups, age groups, etc. behave.

The present model has certain limitations. First, one could consider interaction
terms. This seems sensible since, for instance, white males with no college education
likely behave differently than white males with a college degree. The numerical method
presented in this paper can handle interaction terms. Computing the posterior standard
deviation of the MRP estimate however requires some data wrangling. We plan to create
an R package with routines that seamlessly implement these MRP calculations, making
it straightforward for modelers to experiment with different covariates and interaction
terms.

There is also interest in nonlinear models with non-normal likelihoods. Lopez-Martin
et al. (2022) consider an item-response or ideal-point logistic regression. This sort of
model can better capture certain characteristics of the data, such as dependence among
different survey responses. For such models, we cannot use the proposed integration
scheme. This presents us with a tradeoff: the proposed algorithm takes a fraction of a
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Figure 4: MRP estimate of the expected level of support for anti-abortion policies in
each state. The point represents the posterior mean, and the bars span two posterior
standard deviations. The states are ordered based on Republican vote share in the 2016
presidential election.

second to run, while fitting the ideal point model with Stan’s MCMC takes hundreds of
seconds (after exploiting sparsity of the data matrices). The difference is more severe if,
rather than fitting a subset of 5,000 respondents, we use all 60,000 respondents in the
survey. The modeler then needs to assess how useful it is to use a non-normal likelihood.
Even then, the normal likelihood model can be a fast way to do model exploration, by
for example examining various covariates and interaction terms.

7 Conclusions and generalizations

In this paper we describe a class of fast algorithms for evaluating the posterior moments
of two Bayesian linear regression models, the two-group normal-normal model and the
mixed effects model.

The algorithms of this paper allow for assigning a general choice of priors on the
scale parameters. We demonstrated the performance of our algorithm for posterior in-
ference on two applications. In Section 5 we used COVID-19 symptom survey data to
model geographic and age effects. We also used the mixed-effects model with public
opinion survey data to estimate geographic and demographic impacts on attitudes to-
wards abortion. These are both existing applications that have been fit with MCMC;
by allowing these models to be fit much faster, our algorithm can facilitate a workflow
in which users can fit and explore many more models in real time.

The algorithms of this paper provide substantial improvements over standard MCMC
methods in both computation time and accuracy in approximating posterior moments.
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These improvements rely on analytically integrating the regression coefficients, which
make up the bulk of the posterior dimensions, and then numerically integrating the
remaining low-dimensional density with Gaussian quadrature.

Many of the techniques and analysis used in this paper generalize to multilevel and
multigroup models with more than two-groups. For an m group model, the numerical
integration of our algorithm is computed over a m + 1 dimensional density, m scale
parameters each corresponding to one group of predictors and the residual standard de-
viation. For models with large m (large number of groups) the analytic marginalization
of this paper can still be applied, although integration via a tensor product of Gaus-
sian nodes will not be feasible. On the other hand, using MCMC or other integration
schemes can be used on the m+ 1 dimensional marginal density.

Another example of a natural extension of the models we consider in this paper are
normal-normal models with priors on the mean of a group of regression coefficients.
Consider, for example, the posterior unnormalized density qμ defined by

qμ(β, σ1, σ2, σy, μ) =
p(σ1, σ2, σy, μ)

σn
y σ

k1
1 σk2

2

e
− 1

2σ2
y
‖Xβ−y‖2

e
− 1

2σ2
1
‖β1‖2

e
− 1

2σ2
2
‖β2−μ‖2

. (7.1)

This posterior differs from q (see (1.3)) in one respect. The regression coefficients β2 are
given a prior with non-zero mean, μ, which is itself given a prior. The numerical methods
of this paper are applicable to this density with one modification. The low-dimensional
density obtained after analytically integrating the regression coefficients will now be
a 4-dimensional density (as opposed to 3-dimensional) over σy, σ1, σ2, μ. As a result,
computational costs of the quadrature stage of the algorithm will increase by a factor
of m where m is the number of quadrature nodes in each direction. While quadrature
of a 4-dimensional function can still be efficient, modeling further features of qμ may
call for a sampling-based approach.

Bayesian models such as qμ, in addition to those with more than two groups and
non-Gaussian likelihoods, are directions of future research.

Supplementary Material

Fast methods for posterior inference of two-group normal-normal models. Supplemen-
tary Material. (DOI: 10.1214/22-BA1329SUPP; .pdf).
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