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Combining Chains of Bayesian Models with
Markov Melding∗

Andrew A. Manderson† and Robert J. B. Goudie‡

Abstract. A challenge for practitioners of Bayesian inference is specifying a
model that incorporates multiple relevant, heterogeneous data sets. It may be
easier to instead specify distinct submodels for each source of data, then join the
submodels together. We consider chains of submodels, where submodels directly
relate to their neighbours via common quantities which may be parameters or de-
terministic functions thereof. We propose chained Markov melding, an extension
of Markov melding, a generic method to combine chains of submodels into a joint
model. One challenge we address is appropriately capturing the prior dependence
between common quantities within a submodel, whilst also reconciling differences
in priors for the same common quantity between two adjacent submodels. Esti-
mating the posterior of the resulting overall joint model is also challenging, so we
describe a sampler that uses the chain structure to incorporate information con-
tained in the submodels in multiple stages, possibly in parallel. We demonstrate
our methodology using two examples. The first example considers an ecologi-
cal integrated population model, where multiple data sets are required to accu-
rately estimate population immigration and reproduction rates. We also consider
a joint longitudinal and time-to-event model with uncertain, submodel-derived
event times. Chained Markov melding is a conceptually appealing approach to
integrating submodels in these settings.

Keywords: combining models, Markov melding, Bayesian graphical models,
multi-stage estimation, model/data integration, integrated population model.

1 Introduction

The Bayesian philosophy is appealing in part because the posterior distribution quanti-
fies all sources of uncertainty. However, a joint model for all data and parameters is a pre-
requisite to posterior inference, and in situations where multiple, heterogeneous sources
of data are available, specifying such a joint model is a formidable task. Models that
consider such data are necessary to describe complex phenomena at a useful precision.
One possible approach begins by specifying individual submodels for each source of data.
These submodels could guide the statistician when directly specifying the joint model,
but to use the submodels only informally seems wasteful. Instead, it may be preferable
to construct a joint model by formally joining the individual submodels together.
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Some specific forms of combining data are well established. Meta-analyses and ev-
idence synthesis methods are widely used to summarise data, often using hierarchical
models (Ades and Sutton, 2006; Presanis et al., 2014). Outside of the statistical liter-
ature, a common name for combining multiple data is data fusion (Lahat et al., 2015;
Kedem et al., 2017), though there are many distinct methods that fall under this gen-
eral name. Interest in integrating data is not just methodological; applied researchers
often collect multiple disparate data sets, or data of different modalities, and wish to
combine them. For example, to estimate severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) positivity Donnat et al. (2020) build an intricate hierarchical model
that integrates both testing data and self-reported questionnaire data, and Parsons
et al. (2021) specify a hierarchical model of similar complexity to estimate the number
of injecting drug users in Ukraine. Both applications specify Bayesian models with data-
specific components, which are united in a hierarchical manner. In conservation ecology,
integrated population models (IPMs) (Besbeas et al., 2002; Brooks et al., 2004; Schaub
and Abadi, 2011; Maunder and Punt, 2013; Zipkin and Saunders, 2018) are used to
estimate population dynamics, e.g. reproduction and immigration rates, using multiple
data on the same population. Such data have standard models associated with them,
such as the Cormack-Jolly-Seber model (Lebreton et al., 1992) for capture-recapture
data, and the IPM serves as the framework in which the standard models are combined.
More generally, the applications we list illustrate the importance of generic, flexible
methods for combining data to applied researchers.

Markov melding (Goudie et al., 2019) is a general statistical methodology for combin-
ing submodels. Specifically, it considers M submodels that share some common quantity
φ, with each of the m = 1, . . . ,M submodels possessing distinct parameters ψm, data
Ym, and form pm(φ, ψm, Ym). Goudie et al. (2019) then propose to combine the submod-
els into a joint model, denoted pmeld(φ, ψ1, . . . , ψM , Y1, . . . , YM ). However, it is unclear
how to integrate models where there is no single quantity φ common to all submodels,
such as for submodels that are linked in a chain structure.

We propose an extension to Markov melding, which we call chained Markov meld-
ing,1 which facilitates the combination of M submodels that are in a chain structure.
For example, when M = 3 we address the case in which submodel 1 and 2 share a
common quantity φ1∩2, and submodel 2 and 3 share a different quantity φ2∩3. Our ex-
tension addresses previously unconsidered complications including the distinct domains
(and possibly supports) of the common quantities, and the desire to capture possi-
ble prior correlation between them. Two examples serve to illustrate our methodology,
which we introduce in the following section. The computational effort required to fit
a complex, multi-response model is a burden to the model development process. We
propose a multi-stage posterior estimation method that exploits the properties of our
chained melded model to reduce this burden. We can parallelise aspects of the compu-
tation across the submodels, using less computationally expensive techniques for some
submodels. Reusing existing software implementations of submodels, and subposterior
samples where available, is also possible. Multi-stage samplers can aid in understanding
the contribution of each submodel to the final posterior, and are used in many applied

1“Chained graphs” were considered by Lauritzen and Richardson (2002), however they are unre-
lated to our proposed model. We use “chained” to emphasise the nature of the relationships between
submodels.
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settings, including hierarchical modelling (Lunn et al., 2013) and joint models (Mauff
et al., 2020).

One contribution of our work is to clarify the informal process commonly used in
applied analyses of summarising and/or approximating submodels for use in subsequent
analyses. The two most common approximation strategies seem to be (i) approximating
the subposterior of the common quantity with a normal distribution for use in subse-
quent models (see, e.g. Jackson and White, 2018; Nicholson et al., 2021) and (ii) taking
only a point estimate of the subposterior, and treating it as a known value in further
models. These strategies may, but not always, produce acceptable approximations to
the chained melded model. Both the chained melded model and these approximation
strategies are examples of ‘multi-phase’ and ‘multi-source’ inference (Meng, 2014), with
the melding approach most comprehensively accounting for uncertainty.

1.1 Example introduction

In this section we provide a high-level overview of two applications that require inte-
grating a chain of submodels, with more details in Sections 4 and 5. Our first example
decomposes a joint model into its constituent submodels and rejoins them. This sim-
ple situation allows us to compare the output from the chained melding process to the
complete joint model, and is meant to illustrate both the ‘chain-of-submodels’ notion
and the mechanics of chained melding. The second example is a realistic and complex
setting in which the combining of submodels without chained Markov melding is nonob-
vious. Our comparator is the common technique of summarising previously considered
submodels with point estimates, and demonstrates the importance of fully accounting
for uncertainty.

An integrated population model for little owls

Integrated population models (IPMs) (Zipkin and Saunders, 2018) combine multiple
data to estimate key quantities governing the dynamics of a specific population. Schaub
et al. (2006) and Abadi et al. (2010) used an IPM to estimate fecundity, immigration,
and yearly survival rates for a population of little owls. These authors collect and model
three types of data, illustrated in Figure 1. Capture-recapture data Y1, and associated
capture-recapture submodel p1(φ1∩2, ψ1, Y1), are acquired by capturing and tagging owls
each year, and then counting the number of tagged individuals recaptured in subsequent
years. Population counts Y2 are obtained by observing the number of occupied nesting
sites, and are modelled in p2(φ1∩2, φ2∩3, ψ2, Y2). Finally, nest-record data Y3 counts both
the number of reproductive successes and possible breading pairs, and is associated with
a submodel for fecundity p3(φ2∩3, ψ3, Y3). The population count model p2 shares the
parameter φ1∩2 with the capture-recapture model p1, and the parameter φ2∩3 with the
fecundity model p3; each of the m = 1, 2, 3 submodels has distinct, submodel-specific
parameters ψm. No single source of data is sufficient to estimate all quantities of interest,
so it is necessary to integrate the three submodels into a single joint model to produce
acceptably precise estimates of fecundity and immigration rates. We will show that the
chained Markov melding framework developed in Section 2 encapsulates the process of
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Figure 1: A simplified directed acyclic graph (DAG) of the integrated population model
(IPM) for the little owls. The capture-recapture submodel (p1) is surrounded by the blue
line, the population count submodel (p2) by the black line, and the fecundity submodel
(p3) by the red line. The capture-recapture and population count submodels share
parameters affecting the juvenile and adult survival rate (φ1∩2), whilst the parameter
for fecundity is common to both the population count and fecundity submodels (φ2∩3).
The combination of all the submodels forms the IPM.

integrating these submodels, producing results that are concordant with the original
joint IPM.

Survival analysis with time varying covariates and uncertain event times

Our second example considers the time to onset of respiratory failure (RF) amongst
patients in intensive care units, and factors that influence the onset of RF. A patient can
be said to be experiencing RF if the ratio of the partial pressure of arterial blood oxygen
(PaO2) to the faction of inspired oxygen (FiO2) is less than 300mmHg (The ARDS
Definition Task Force, 2012), though this is not the only definition of RF. Patients’
PaO2/FiO2 (P/F) ratios are typically measured only a few times a day. The relative
infrequency of P/F ratio data, when combined with the intrinsic variability in each
individual’s blood oxygen level, results in significant uncertainty in about the time of
onset of RF.

Factors that influence the time to onset of RF are both longitudinal and time in-
variant. Both types of data can be considered in joint models (Rizopoulos, 2012), which
are composed of two distinct submodels, one for each data type. However, existing joint
models are not able to incorporate the uncertainty surrounding the event time, which
may result in overconfident and/or biased estimates of the parameters in the joint model.

Chained Markov melding offers a conceptually straightforward, Bayesian approach
to incorporating uncertain event times into joint models. Specifically, we consider the
event time as a submodel-derived quantity from a hierarchical regression model akin
to Lu and Meeker (1993). We call this submodel the uncertain event time submodel
and denote it p1(φ1∩2, ψ1, Y1), where φ1∩2 incorporates the event time. The survival
submodel p2(φ1∩2, φ2∩3, ψ2, Y2) uses the event time within φ1∩2, the common quantity,
as the response. We treat the longitudinal submodel, p3(φ2∩3, ψ3, Y3), separately from
the survival submodel, as is common in two-stage joint modelling (Mauff et al., 2020),
and denote the subject-specific parameters that also appear in the survival model as
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Figure 2: A simplified DAG of the submodels considered in the survival analysis example.
The event time submodel p1 defines the event time φ1∩2 as noninvertible function of
the other model parameters (denoted by the dotted line), whilst the survival submodel
p2 considers φ1∩2 as the response. The longitudinal submodel p3 has parameters φ2∩3

in common with the survival submodel.

φ2∩3. Each of the m = 1, 2, 3 has submodel-specific data Ym and parameters ψm. The
high level submodel relationships are displayed as a DAG in Figure 2.

It is in examples such as this one that we foresee the most use for chained Markov
melding; a fully Bayesian approach is desired and the submodels are nontrivial in com-
plexity, with no previously existing or obvious joint model.

1.2 Markov melding

We now review Markov melding (Goudie et al., 2019) before detailing our proposed
extension. As noted in the introduction, Markov melding is a method for combining
M submodels p1(φ, ψ1, Y1), . . . , pM (φ, ψM , YM ) which share the same φ. When the sub-
model prior marginals pm(φ) are identical, i.e. pm(φ) = p(φ) for all m, it is possible to
combine the submodels using Markov combination (Dawid and Lauritzen, 1993; Massa
and Lauritzen, 2010)

pcomb (φ, ψ1, . . . , ψM , Y1, . . . , YM ) = p(φ)

M∏
m=1

pm (ψm, Ym | φ)

=

∏M
m=1 pm (φ, ψm, Ym)

p(φ)M−1
.

(1)

Markov combination is not immediately applicable when submodel prior marginals
are distinct, so Goudie et al. define a marginal replacement procedure, where indi-
vidual submodel prior marginals are replaced with a common marginal ppool(φ) =
h(p1(φ), . . . , pM (φ)) which is the result of a pooling function h that appropriately
summarises all prior marginals (the choice of which is described below). The result
of marginal replacement is

prepl,m(φ, ψm, Ym) = ppool(φ)
pm(φ, ψm, Ym)

pm(φ)
. (2)

Goudie et al. show that prepl,m(φ, ψm, Ym) minimises the Kullback–Leibler (KL) di-
vergence between a distribution q(φ, ψm, Ym) and pm(φ, ψm, Ym) under the constraint
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that q(φ) = ppool(φ), and that marginal replacement is valid when φ is a deterministic
function of the other parameters in submodel m. Markov melding joins the submodels
via the Markov combination of the marginally replaced submodels

pmeld(φ, ψ1, . . . , ψM , Y1, . . . , YM ) = ppool(φ)

M∏
m=1

prepl,m(ψm, Ym | φ)

= ppool(φ)

M∏
m=1

pm(φ, ψm, Ym)

pm(φ)
.

(3)

Pooled prior

Goudie et al. proposed forming ppool(φ) using linear or logarithmic prior pooling
(O’Hagan et al., 2006; Genest et al., 1986)

ppool, lin(φ) =
1

Klin(λ)

M∑
m=1

λmpm(φ), Klin(λ) =

∫ M∑
m=1

λmpm(φ)dφ, (4)

ppool, log(φ) =
1

Klog(λ)

M∏
m=1

pm(φ)λm , Klog(λ) =

∫ M∏
m=1

pm(φ)λmdφ, (5)

where λ = (λ1, . . . , λM ) are nonnegative weights, which are chosen subjectively to ensure
ppool(φ) appropriately represents prior knowledge about the common quantity. Two
special cases of pooling are of particular interest. Product of experts (PoE) pooling
(Hinton, 2002) is a special case of logarithmic pooling that occurs when λm = 1 for all
m. Dictatorial pooling is a special case of either pooling method when λm′ = 1 and, for
all m �= m′, λm = 0.

2 Chained model specification

Consider m = 1, . . . ,M submodels each with data Ym and parameters θm denoted
pm(θm, Ym), with M ≥ 3. We assume that the submodels are connected in a manner
akin to a chain and so can be ordered such that only ‘adjacent’ submodels in the chain
have parameters in common. Specifically we assume that submodels m and m+1 have
some parameter φm∩m+1 in common for m = 1, . . . ,M − 1. For notational convenience
define φ1 = φ1∩2, φM = φM−1∩M and φm = (φm−1∩m, φm∩m+1) form = 2, . . . ,M−1, so
that φm ⊆ θm denotes the parameters in model m shared with another submodel. The
submodel-specific parameters of submodel m are thus ψm = θm \ φm. Define the vector

of all common quantities φ =
⋃M

m=1 φm = (φ1∩2, φ2∩3, . . . , φM−1∩M ) so that all elements
in φ are unique. Further denote by φ−m the subvector of φ excluding the mth element.
It will also be convenient to define ψ = (ψ1, . . . , ψM ) and likewise Y = (Y1, . . . , YM ).
Note that all components of φ,ψ and Y may themselves be multivariate. Additionally,
because φm∩m+1 may be a deterministic function of either θm or θm+1 we refer to
φm∩m+1 as a common parameter or a common quantity as appropriate.
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All submodels, and marginal and conditional distributions thereof, have density
functions that are assumed to exist and integrate to one. When considering conditional
distributions we assume that the parameter being conditioned on has support in the
relevant region. We define the mth subposterior as pm(φm, ψm | Ym).

2.1 Extending marginal replacement

We now define the chained melded model by extending the marginal replacement pro-
cedure to submodels linked in a chain-like way. The proposed chained marginal re-
placement operation modifies the submodels to enforce a common prior for φ. This
consistency allows us to employ Markov combination to unite the submodels.

Specifically, the mth marginally replaced submodel is

prepl,m(φ, ψm, Ym) = ppool(φ)pm(ψm, Ym | φ) = ppool(φ)
pm(φm, ψm, Ym)

pm(φm)
, (6)

where ppool(φ) = g(p1(φ1), p2(φ2), . . . , pm(φm)) is a pooling function that appropri-
ately summarises all submodel prior marginals. The second equality in (6) is because of
the conditional independence (ψm, Ym ⊥⊥ φ−m) | φm that exists due to the chained re-
lationship between submodels. It is important to note that prepl,m(φ, ψm, Ym) is defined
on a larger parameter space than pm(φm, ψm, Ym), as it includes φ−m.

Define prepl,m(φm, ψm, Ym) =
∫
prepl,m(φ, ψm, Ym)dφ−m. Each marginally replaced

submodel, as defined in (6), minimises the following KL divergence2

prepl,m(φm, ψm, Ym) = argmin
q

{
DKL (q ‖ pm) | q(φm) = ppool(φm) for all φm

}
, (7)

where ppool(φm) =
∫
ppool(φ)dφ−m. We can thus interpret prepl,m(φm, ψm, Ym) as a

minimally modified pm(φm, ψm, Ym) which admits ppool(φm) as a marginal. Note that
it is the combination of prepl,m(φm, ψm, Ym) and ppool(φ−m | φm) that uniquely deter-
mine (6).

We form the chained melded model by taking the Markov combination of the
marginally replaced submodels

pmeld(φ,ψ,Y ) = ppool(φ)

M∏
m=1

prepl,m(ψm, Ym | φ) (8)

= ppool(φ)

M∏
m=1

pm(φm, ψm, Ym)

pm(φm)
. (9)

Rewriting (9) in terms of φm∩m+1 for m = 1, . . . ,M − 1 yields

pmeld(φ,ψ,Y ) = ppool(φ)
p1(φ1∩2, ψ1, Y1)

p1(φ1∩2)

pM (φM−1∩M , ψM , YM )

pM (φM−1∩M )

×
M−1∏
m=2

(
pm(φm−1∩m, φm∩m+1, ψm, Ym)

pm(φm−1∩m, φm∩m+1)

)
.

(10)

2This is shown in Appendix B of the online supplement to Goudie et al. (2019).
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Finally, we use chained melded posterior pmeld(φ,ψ | Y ) ∝ pmeld(φ,ψ,Y ) to refer to
posterior of the chained melded model conditioned on all data.

2.2 Pooled prior

Specifying (9) requires a joint prior for φ. As in Markov melding we form the joint
prior by pooling the marginal priors, selecting a pooling function g that appropriately
represents prior knowledge about the common quantities. We define ppool(φ) as a generic
function of all prior marginals

ppool(φ) = g(p1(φ1), p2(φ2), . . . , pM (φM )) (11)

= g(p1(φ1∩2), p2(φ1∩2, φ2∩3), . . . , pM (φM−1∩M )), (12)

because we do not always wish to assume independence between the components of φ.

Two special cases of (12) are noteworthy. Firstly, if all components of φ are inde-
pendent, then we can form ppool(φ) as the product of M −1 standard pooling functions
hm defined in Section 1.2

ppool(φ) =

M−1∏
m=1

ppool,m(φm∩m+1), (13)

ppool,m(φm∩m+1) = hm(pm(φm∩m+1), pm+1(φm∩m+1)). (14)

A second case, in between complete dependence (12) and independence (14), is that if
pm(φm−1∩m, φm∩m+1) = pm(φm−1∩m)pm(φm∩m+1) then we can define

ppool(φ) = g1(p1(φ1∩2), . . . , pm(φm−1∩m))g2(pm(φm∩m+1), . . . , pM (φM )), (15)

without any additional assumptions. That is, if any two consecutive components of φ are
independent in the submodel containing both of them, we can divide the pooled prior
specification problem into two pooling functions. The smaller number of arguments to
g1 and g2 make it easier to choose appropriate forms for those functions.

Selecting a specific form of g is not trivial given the many choices of functional form
and pooling weights (the latter of which we discuss momentarily). One complication
is that standard linear and logarithmic pooling, as defined in (4) and (5), are not
immediately applicable when the submodel marginal distributions consider different
quantities. We now propose extensions to logarithmic, linear, and dictatorial pooling
for use in the case of chained melding.

Chained logarithmic pooling

Extending logarithmic pooling for chained Markov melding is straightforward. We define
the logarithmically pooled prior to be

ppool, log(φ) =
1

Klog(λ)

M∏
m=1

pm(φm)λm , (16)
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with Klog(λ) =
∫ ∏M

m=1 pm(φm)λmdφ for nonnegative weight vector λ = (λ1, . . . , λM )

and
∑M

m=1 λm ≥ 1. Note that (16) does not imply independence between the elements
of φ because

M∏
m=1

pm(φm)λm = p1(φ1∩2)
λ1

M−1∏
m=2

(
pm(φm−1∩m, φm∩m+1)

λm
)
pM (φM−1∩M )λM . (17)

When λ1 = λ2 = . . . = λM = 1 we obtain a special case which we call product-of-experts
(PoE) pooling (Hinton, 2002).

Chained linear pooling

Our generalisation of linear pooling to handle marginals of different quantities is a two
step procedure. The first step forms intermediary pooling densities via standard linear
pooling, using appropriate marginals of the relevant quantity

ppool,m(φm∩m+1) ∝ λm,1pm(φm∩m+1) + λm,2pm+1(φm∩m+1), (18)

where λm = (λm,1, λm,2) are nonnegative pooling weights, and for m = 2, . . . ,M − 1

pm(φm∩m+1) =

∫
pm(φm−1∩m, φm∩m+1)dφm−1∩m. (19)

For m = 1 and m = M the relevant marginals are p1(φ1∩2) and pM (φM−1∩M ). In step
two we form the pooled prior as the product of the intermediaries

ppool, lin(φ) =
1

Klin(λ)

M−1∏
m=1

ppool,m(φm∩m+1), (20)

with Klin(λ) =
∫ ∏M−1

m=1 ppool,m(φm∩m+1)dφ, for λ = (λ1, . . . , λM ). Clearly, this as-
sumes prior independence amongst all components of φ which may be undesirable,
particularly if this independence was not present under one or more of the submodel
priors. We discuss extensions to linear pooling that enable prior dependence between
the components of φ in Section 6.

Dictatorial pooling

Chained Markov melding does not admit a direct analogue to dictatorial pooling as de-
fined in Section 1.2 because not all submodel prior marginals contain all common quan-
tities. For example, consider the logarithmically pooled prior of (16) with, say, the mth

entry in λ set to 1 and all others set to 0. This choice of λ results in ppool(φ) = p(φm),
which is flat for φ−m. It seems reasonable to require any generalisation of dictatorial
pooling to result in a reasonable prior for all components in φ. Such a generalisation
should also retain the original intention of dictatorial pooling, i.e. ‘the authoritative
prior for φm is pm(φm)’.
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We propose two possible forms of dictatorial pooling that satisfy the aforementioned
criteria. Partial dictatorial pooling enforces a single submodel prior for the relevant
components of φ, with no restrictions on the pooling of the remaining components; and
complete dictatorial pooling which requires selecting one of the two possible submodel
priors for each component of φ.

Partial dictatorial pooling considers pm(φm) as the authoritative prior for φm =
(φm−1∩m, φm∩m+1). This results in,

ppool,dict(φ) = g1
(
p1(φ1∩2), . . . , pm−1(φm−2∩m−1)

)
× pm(φm−1∩m, φm∩m+1)

× g2
(
pm+1(φm+1∩m+2), . . . , pM (φM−1∩M )

)
,

(21)

where g1 and g2 are linear or logarithmic pooling functions as desired.3

Complete dictatorial pooling requires the marginal pooled prior for each component
in φ to be chosen solely on the basis of only one of the two priors specified for it under
the submodels. For m = 1, . . . ,M − 1, the mth marginal of the pooled prior is either

ppool, dict(φm∩m+1) :=

{
pm(φm∩m+1) or

pm+1(φm∩m+1).
(22)

If two consecutive marginals are chosen to have the same submodel prior, then we wish
to retain the dependence between φm−1∩m and φm∩m+1 present in pm. We thus redefine
consecutive terms so that

ppool, dict(φm−1∩m)ppool, dict(φm∩m+1) =pm(φm−1∩m)pm(φm∩m+1), (From (22))

ppool, dict(φm−1∩m)ppool, dict(φm∩m+1) := pm(φm−1∩m, φm∩m+1). (Redefined)

(23)
The complete dictatorially pooled prior is thus

ppool, dict(φ) =

M−1∏
m=1

ppool, dict(φm∩m+1), (24)

where, subject to the potential modification in (23), the terms in the product are as de-
fined in (22). For example, if M = 5 and we wish to ignore p2 and p4 when constructing
the pooled prior and instead associate φ1∩2 with p1, both φ2∩3 and φ3∩4 with p3, and
φ4∩5 with p5, then

ppool,dict(φ) = p1,dict(φ1∩2)

Apply (23)︷ ︸︸ ︷
p3,dict(φ2∩3)p3,dict(φ3∩4) p5,dict(φ4∩5)

= p1(φ1∩2)p3(φ2∩3, φ3∩4)p5(φ4∩5).

(25)

3Some care is required if the authoritative submodel is pm for m ∈ {1, 2,M−1,M}. If it is taken to
be m ∈ {1, 2}, then g1 does not exist, and additionally in the m = 1 case p1(φ0∩1, φ1∩2) := p1(φ1∩2).
The m ∈ {M − 1,M} cases have analogous definitions.
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Pooling weights

Choosing values for the pooling weights is an important step in specifying the pooled
prior (Carvalho et al., 2022; Abbas, 2009; Rufo et al., 2012a,b). Because appropriate
values for the weights depend on the submodels being pooled and the information
available a priori, universal recommendations are impossible, so we illustrate the impact
of different choices in a straightforward example. It is important that prior predictive
visualisations of the pooled prior are produced (Gabry et al., 2019; Gelman et al., 2020)
to guide the choice of pooling weights and ensure that the result suitably represents
the available information. Figure 3 illustrates how λ and the choice of pooling method
impacts ppool(φ) when pooling normal distributions. Specifically, we consider M = 3
submodels and pool

p1(φ1∩2) = N(φ1∩2;μ1, σ
2
1), p3(φ2∩3) = N(φ2∩3;μ3, σ

2
3),

p2(φ1∩2, φ2∩3) = N

([
φ1∩2

φ2∩3

]
;

[
μ2,1

μ2,2

]
,

[
σ2
2 ρσ2

2

ρσ2
2 σ2

2

])
,

(26)

where N(φ;μ, σ2) is the normal density function with mean μ and variance σ2 (or
covariance matrix where appropriate). The two dimensional density function p2 has an
additional parameter ρ, which controls the intra-submodel marginal correlation. We set
μ1 = −2.5, μ2 = [μ2,1 μ2,2]

′
= [0 0]

′
, μ3 = 2.5, σ2

1 = σ2
2 = σ2

3 = 1 and ρ = 0.8. In the
logarithmic case we set λ1 = λ3 and parameterise λ2 = 1−2λ1, so that λ1+λ2+λ3 = 1
whilst limiting ourselves to varying only λ1. Similarly, in the linear case we set λ1,1 =
λ2,2 = λ1 and λ1,2 = λ2,1 = 1− 2λ1. We consider 5 evenly spaced values of λ1 ∈ [0, 0.5].

For both pooling methods, as the weight λ1 associated with models p1 and p3 in-
creases, the relative contributions of p1(φ1∩2) and p3(φ2∩3) increase. Note the lack of
correlation in ppool under linear pooling (right column of Figure 3) due to (20). A large,
near-flat plateau is visible in the λ1 = 0.25 and λ1 = 0.375 cases, which is a result of the
mixture of four, 2-D normal distributions that linear pooling produces in this example.
The logarithmic pooling process produces a more concentrated prior for small values of
λ1, and does not result in a priori independence between φ1∩2 and φ2∩3. Supplemen-
tary Material A (Manderson and Goudie, 2022b) shows analytically that λ2 controls
the quantity of correlation present in ppool in this setting.

3 Posterior estimation

We now present a multi-stage Markov chain Monte Carlo (MCMC) method for gen-
erating samples from the melded posterior. Whilst the melded posterior is a standard
Bayesian posterior and so can, in principle, be targeted using any suitable Monte Carlo
method, in practice this may be cumbersome or infeasible. More specifically, it may be
feasible to fit each submodel separately using standard methods, but when the submod-
els are combined – either through Markov melding, or by expanding the definition of
one submodel to include another – the computation required to estimate the posterior
in a single step poses an insurmountable barrier. In such settings we can employ multi-
stage posterior estimation methods including Tom et al. (2010), Lunn et al. (2013),
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Figure 3: Contour plots of ppool(φ) (red) under logarithmic and linear pooling (left
and right column respectively). The three original densities p1(φ1∩2), p3(φ2∩3) and
p2(φ1∩2, φ2∩3) are shown in blue, with the univariate densities shown on the appropriate
axis. The pooling weight parameter λ1 is indicated in the plot titles.
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Hooten et al. (2019), and Mauff et al. (2020). We propose a multi-stage strategy that
uses the chain-like relationship to both avoid evaluating all submodels simultaneously,
and parallelise the computation required in the first stage to produce posterior samples
in less time than an equivalent sequential method.4 Avoiding concurrently evaluating all
submodels also enables the reuse of existing software, minimising the need for custom
submodel and/or sampler implementations.

We also describe an approximate method, where stage one submodels are sum-
marised by normal distributions for use in stage two.

We consider the M = 3 case, as this setting includes both of our examples. Our
approach can be extended to M > 3 settings, although we anticipate that it is unlikely
to be suitable for large M settings. We discuss some of difficulties associated with
generic, parallel methodology for efficient posterior sampling in Section 6.

3.1 Parallel sampler

Our proposed strategy involves obtaining in stage one samples from submodels 1 and 3
in parallel. Stage two reuses these samples in a Metropolis-within-Gibbs sampler, which
targets the full melded posterior. The stage specific targets are displayed in Figure 4.

p1 p2 p3
φ1∩2 φ2∩3

s1 s1

s2

Figure 4: A graphical depiction of the submodels and their shared quantities, with the
parallel sampling strategy overlaid. The stage one (s1) targets are surrounded by blue
dashed lines, with the stage two (s2) target in red.

The parallel sampler assumes that the pooled prior decomposes such that

ppool(φ) = ppool,1(φ1∩2)ppool,2(φ1∩2, φ2∩3)ppool,3(φ2∩3). (27)

All pooled priors trivially satisfy (27) by assuming ppool,1(φ1∩2) and ppool,3(φ2∩3) are im-
proper and/or flat distributions. Alternatively we may choose ppool,1(φ1∩2) = p1(φ1∩2)
and ppool,3(φ2∩3) = p3(φ2∩3), with appropriate adjustments to ppool,2(φ1∩2, φ2∩3). This
choice targets, in stage one, the subposteriors of p1 and p3 under their original prior for
φ1∩2 and φ2∩3 respectively.

Stage one Two independent, parallel sampling processes occur in stage one. Terms
from the melded model that pertain to p1 and p3 are isolated

pmeld,1(φ1∩2, ψ1 | Y1) ∝ ppool,1(φ1∩2)
p1(φ1∩2, ψ1, Y1)

p1(φ1∩2)
, (28)

4For completeness, Supplementary Material B describes such a sequential MCMC sampler. We do
not use the sequential sampler in this paper.
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pmeld,3(φ2∩3, ψ3 | Y3) ∝ ppool,3(φ2∩3)
p3(φ2∩3, ψ3, Y3)

p3(φ2∩3)
, (29)

and targeted using standard MCMC methodology. Assuming that the stage one chains
converge and after discarding warmup iterations –possibly thinning them, if within-chain
correlation is high– we obtain N1 samples from {(φ1∩2, ψ1)n}N1

n=1 from pmeld,1(φ1∩2, ψ2 |
Y1), and N3 samples {(φ2∩3, ψ3)n}N3

n=1 from pmeld,3(φ2∩3, ψ3 | Y3). For well mixing stage
one Markov chains targeting the correct stationary distribution, and large values of N1

or N3, the stage one samples accurately approximate the subposteriors.

Stage two Stage two targets the melded posterior of (9) using a Metropolis-within-
Gibbs sampler, where the proposal distributions are

φ∗
1∩2, ψ

∗
1 | φ2∩3, ψ2, ψ3 ∼ pmeld,1(φ

∗
1∩2, ψ

∗
1 | Y1), (30)

φ∗
2∩3, ψ

∗
3 | φ1∩2, ψ1, ψ2 ∼ pmeld,3(φ

∗
2∩3, ψ

∗
3 | Y3), (31)

ψ∗
2 | φ1∩2, φ2∩3, ψ1, ψ3 ∼ q(ψ∗

2 | ψ2), (32)

where q(ψ∗
2 | ψ2) is a generic proposal distribution for ψ2. We draw an index n∗

1 uni-
formly from {1, . . . , N1} and use the corresponding value (φ∗

1∩2, ψ
∗
1)n∗

1
as the proposal,

doing likewise for n∗
3 and (φ∗

2∩3, ψ
∗
3)n∗

3
. The acceptance probabilities for these updates

are

α((φ∗
1∩2, ψ

∗
1)n∗

1
, (φ1∩2, ψ1)n1) =

ppool,2(φ
∗
1∩2, φ2∩3)

ppool,2(φ1∩2, φ2∩3)

p2(φ
∗
1∩2, φ2∩3, ψ2, Y2)

p2(φ1∩2, φ2∩3, ψ2, Y2)

p2(φ1∩2, φ2∩3)

p2(φ
∗
1∩2, φ2∩3)

,

(33)

α((φ∗
2∩3, ψ

∗
3)n∗

3
, (φ2∩3, ψ3)n3) =

ppool,2(φ1∩2, φ
∗
2∩3)

ppool,2(φ1∩2, φ2∩3)

p2(φ1∩2, φ
∗
2∩3, ψ2, Y2)

p2(φ1∩2, φ2∩3, ψ2, Y2)

p2(φ1∩2, φ2∩3)

p2(φ1∩2, φ∗
2∩3)

,

(34)

α(ψ∗
2 , ψ2) =

p2(φ1∩2, φ2∩3, ψ
∗
2 , Y2)

p2(φ1∩2, φ2∩3, ψ2, Y2)

q(ψ2 | ψ∗
2)

q(ψ∗
2 | ψ2)

, (35)

where α(x, z) denotes the probability associated with a move from z to x. Note that all
stage two acceptance probabilities only contain terms from the second submodel and
the pooled prior, and thus do not depend on ψ1 or ψ3. If a move is accepted then we
also store the index, i.e. n∗

1 or n∗
3, associated with the move, otherwise we store the

current value of the index. The stored indices are used to appropriately resample ψ1

and ψ3 from the stage one samples.

3.2 Normal approximations to submodel components

Normal approximations are commonly employed to summarise submodels for subse-
quent use in more complex models. For example, two-stage meta-analyses often use a
normal distribution centred on each studies’ effect estimate (Burke et al., 2017). Sup-
pose we employ such an approximation to summarise the prior and posterior of φ1∩2
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and φ2∩3 under p1 and p3 respectively. In addition, assume that (a) such approxima-
tions are appropriate for p1(φ1∩2), p1(φ1∩2 | Y1), p3(φ2∩3), and p3(φ2∩3 | Y3), (b) we
are not interested in ψ1 and ψ3, and can integrate them out of all relevant densities,
and (c) we employ our second form of dictatorial pooling and choose p2(φ1∩2, φ2∩3) as
the authoritative prior. The latter two assumptions imply that the melded posterior of
interest is proportional to

pmeld(φ1∩2, φ2∩3, ψ2 | Y ) ∝ p1(φ1∩2 | Y1)

p1(φ1∩2)
p2(φ1∩2, φ2∩3, ψ2 | Y2)

p3(φ2∩3 | Y3)

p3(φ2∩3)
. (36)

Denote the normal approximation of p1(φ1∩2 | Y1) as p̂1(φ1∩2 | μ̂1, Σ̂1), which is a

normal distribution with mean μ̂1 and covariance matrix Σ̂1. The corresponding normal
approximation of the prior p1(φ1∩2) is p̂1(φ1∩2 | μ̂1,0, Σ̂1,0). The equivalent approxima-

tions for the subposterior and prior of p3 are p̂3(φ2∩3 | μ̂3, Σ̂3) and p̂3(φ2∩3 | μ̂3,0, Σ̂3,0)
respectively. Substituting in the approximations and using standard results for Gaussian
density functions (see Bromiley (2003) and Supplementary Material C) results in

p̂meld(φ1∩2, φ2∩3, ψ2 | Y ) ∝ p̂
(
(φ1∩2, φ2∩3) | μ̂, Σ̂

)
p2(φ1∩2, φ2∩3, ψ2 | Y2), (37)

where

μ̂nu =

[
μ̂1

μ̂3

]
, Σ̂nu =

[
Σ̂1 0

0 Σ̂3

]
, μ̂de =

[
μ̂1,0

μ̂3,0

]
, Σ̂de =

[
Σ̂1,0 0

0 Σ̂3,0

]
,

Σ̂ =
(
Σ̂−1

nu − Σ̂−1
de

)−1

, μ̂ = Σ̂
(
Σ̂−1

nu μ̂nu − Σ̂−1
de μ̂de

)
.

(38)

Standard MCMC methods can be used to sample from the approximate melded poste-
rior. If instead we opt for product-of-experts pooling, all μ̂de and Σ̂de terms disappear
from the parameter definitions in (38).

4 An integrated population model for little owls

We now return to the integrated population model (IPM) for the little owls introduced in
Section 1.1. Finke et al. (2019) consider a number of variations on the original model of
Schaub et al. (2006) and Abadi et al. (2010): here we consider only the variant from Finke
et al. (2019) with the highest marginal likelihood (Model 4 of their online supplement).
This example is particularly interesting to us as, for a certain choice of pooling function
and pooling weights, the chained Markov melded model and the IPM are identical.
This coincidence allows us to use the posterior from the IPM as a benchmark for our
multi-stage sampler.

Before we detail the specifics of each submodel, we must introduce some notation.
Data and parameters are stratified into two age-groups a ∈ {J,A} where J denotes
juvenile owls (less than one year old) and A adults, two sexes s ∈ {M,F}, and obser-
vations occur annually at times t ∈ {1, . . . , T}, with T = 25. The sex- and age-specific
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probability of an owl surviving from time t to t+ 1 is δa,s,t, and the sex-specific prob-
ability of a previously captured owl being recaptured at time t + 1 is πs,t+1 so long as
the owl is alive at time t+ 1.

4.1 Capture recapture: p1

Capture-recapture data pertain to owls that are released at time t (having been captured
and tagged), and then recaptured at time u = t + 1, . . . , T , or not recaptured before
the conclusion of the study, in which case u = T + 1. Define Ma,s,t,u as the number
of owls of age-group a and sex s released at time t and recaptured at time u. We
aggregate these observations into age- and sex-specific matrices Ma,s, with T rows,
corresponding to release times, and T+1 columns, corresponding to recapture times. Let
Ra,s,t =

∑T+1
u=1 Ma,s,t,u be the number of owls released at time t, i.e. a vector containing

the row-wise sum of the entries in Ma,s. The recapture times for owls released at time
t follow an age- and sex-specific multinomial likelihood

(Ma,s,t,1, . . . ,Ma,s,t,T+1) ∼ Multinomial(Ra,s,t,Qa,s,t), (39)

with probabilities Qa,s,t = (Qa,s,t,1, . . . , Qa,s,t,T+1) such that

Qa,s,t,u =

⎧⎨⎩
0, for u = 1, . . . , t,

δa,s,tπs,u

∏u−1
r=t+1 δa,s,r (1− πs,r) , for u = t+ 1, . . . , T,

1−
∑T

r=1 Qa,s,t,r, if u = T + 1.

(40)

4.2 Count data model: p2

To estimate population abundance, a two level model is used: the first level models the
observed (counted) number of females at each point in time denoted yt, with a second,
latent process modelling the total number of females in population. The observation
model is

yt | xt ∼ Poisson (xt) , (41)

where we denote the number of juvenile and adult females in the population at time t
as xJ,t and xA,t respectively, with xt = xJ,t + xA,t. If surt adult females survive from
time t−1 to time t, and immt adult females immigrate over the same time period, then
the latent, population level model is

xJ,t | xt−1, ρ, δJ,F,t−1 ∼ Poisson
(
xt−1

ρ

2
δJ,F,t−1

)
,

surt | xt−1, δA,F,t−1 ∼ Binomial (xt−1, δA,F,t−1) ,

immt | xt−1, ηt ∼ Poisson (xt−1ηt) ,

xA,t = surt + immt,

(42)

where ηt is the immigration rate. The initial population sizes xJ,1 and xA,1 have inde-
pendent discrete uniform priors on {0, 1, . . . , 50}. If xt−1 = 0 then we assume that the
Poisson and binomial distributions become point masses at zero.
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4.3 Fecundity: p3

The fecundity submodel considers the number of breeding females at time t denoted
Nt, and the number of chicks produced that survive and leave the nest denoted nt. A
Poisson model is employed to estimate fecundity (reproductive rate) ρ

nt ∼ Poisson(Ntρ). (43)

4.4 Parameterisation and melding quantities

Abadi et al. (2010) parameterise the time dependent quantities via linear predictors to
minimise the number of parameters in the submodels. The specific parameterisation of
Finke et al. (2019) we employ is

logit(δa,s,t) = α0 + α1I(s = M) + α2I(a = A), log(ηt) = α6,

logit(πs,u) = α4I(s = M) + α5,u, for u = 2, . . . T,
(44)

thus the quantities in common between the submodels are φ1∩2 = (α0, α2) and φ2∩3 = ρ.
To align the notation of this example with our chained melding notation we define, for
all permitted values of a, s and t, Y1 = (Ma,s), ψ1 =

(
α1, α4, (α5,u)

T
u=2

)
; Y2 = (yt),

ψ2 = (xJ,t, α6, surt, immt); and Y3 = (Nt, nt), ψ3 = ∅. Note that the definition of φ1∩2

does not include α1 as it is male specific and does not exist in p2. The model variant of
Finke et al. (2019) we consider does not include α3, and for comparability we keep the
other parameter indices the same.

4.5 Priors

We use the priors of Finke et al. (2019) for the parameters in each submodel. Denote
α = (α0, α1, α2, α4, α6). In both p1 and p2 the elements of α are assigned independent
Normal(0, 22) priors truncated to [−10, 10]. The time varying recapture probabilities
α5,u also have Normal(0, 22) priors truncated to [−10, 10]. A Uniform(0, 10) prior is
assigned to ρ in p2 and p3.

To completely specify pmeld we must choose how to form ppool(φ1∩2, φ2∩3). We form
ppool(φ1∩2, φ2∩3) using three different pooling methods and estimate the melded poste-
rior in each case. The first pooling method is product-of-experts (PoE) pooling, which is
logarithmic pooling with λ = (1, 1, 1), and we denote the melded posterior as pmeld, PoE.

We also use logarithmic pooling with λ = (12 ,
1
2 ,

1
2 ), which is denoted pmeld, log and re-

sults in the chained melded model being identical to the IPM. The final pooling method
is linear pooling with λ = ( 12 ,

1
2 ,

1
2 ,

1
2 ), denoted pmeld, lin.

4.6 Posterior estimation

We estimate the melded posterior – pmeld(φ,ψ | Y ), proportional to (9) – using both the
parallel sampler (Section 3.1) and normal approximation (Section 3.2). This allows us to
use pre-existing implementations of the submodels. Specifically, the capture-recapture
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submodel is written in BUGS (Lunn et al., 2009) and sampled via rjags (Plummer,
2019). The fecundity submodel is written in Stan (Carpenter et al., 2017) and sampled
via rstan (Stan Development Team, 2021). The count data submodel is also written
in BUGS, and we reuse this implementation in stage two of the multi-stage sampler via
NIMBLE (de Valpine et al., 2017) and its R interface (NIMBLE Development Team, 2019).
The approximate melded posterior obtained by Section 3.2 is sampled using rjags. Code
and data for this example, as well as trace plots and numerical convergence measures
(Vehtari et al., 2020) for both stages of the parallel sampling process, are available in
the accompanying online repository.5

4.7 Results

We empirically validate our methodology and sampler by comparing the melded poste-
rior samples to a large sample – 6 chains, each containing 1×105 post-warmup iterations
– from the original IPM posterior. Similarity in the posteriors is expected as the IPM
is effectively the joint model we wish to approximate with the chained melded model.
It is simply fortunate, from a modelling standpoint, that this example’s joint model is
easy to construct and computationally feasible with standard tools. Note that under
logarithmic pooling with λ = (12 ,

1
2 ,

1
2 ) the melded posterior is identical to the original

IPM, so any differences between the two posteriors are attributable to the multi-stage
sampler. Figure 5 depicts the posterior credible intervals (Gabry et al., 2021; Kay, 2020)
for the common quantities from the individual submodels, the melded models, and the
original IPM. The top row in Figure 5 indicates that the count data alone (p2) con-
tain minimal information about α0, α2 and ρ; incorporating the data from the other
submodels is essential for precise estimates.

The multi-stage sampler works well by producing melded posterior estimates gener-
ally similar to the original IPM estimate, and are near identical for logarithmic pool-
ing. PoE pooling produces the posterior most different from the original IPM, as it
yields a prior for (α0, α2) that is more concentrated around zero than the other pooling
methods. The lack of large differences between the melded posteriors that use different
pooled priors indicates that the prior has almost no effect on the posterior. The sim-
ilarity of the approximate approach (p̂meld – bottom row of Figure 5) to the melding
approaches suggests that the normal approximations are good summaries of the sub-
posteriors, and that the approximate melding procedure of Section 3.2 is suitable for
this example.

5 Survival analysis with time varying covariates and
uncertain event times

We return now to the respiratory failure example introduced in Section 1.1. Our inten-
tion is to illustrate the application of chained Markov melding to an example of realistic

5https://doi.org/10.5281/zenodo.6552714

https://doi.org/10.5281/zenodo.6552714
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Figure 5: Top row: credible intervals for φ1∩2 = (α0, α2) and φ2∩3 = ρ from the poste-
rior of the original integrated population model pipm, and the individual subposteriors
from submodels p1, p2, and p3. Bottom row: credible intervals for the same quantities,
but with a different x-axis scale, from the original IPM (repeated from top row); the
chained melded posteriors using product-of-experts pooling, logarithmic pooling, and
linear pooling denoted pmeld, pmeld, log and pmeld, lin; and the melded posterior using
the normal approximation p̂meld. Intervals are 50%, 80%, 95%, and 99% wide.

complexity, and explore empirically the importance of accounting for all sources of un-
certainty by comparing chained Markov melding to equivalent analyses which use only a
point estimate summary of the uncertainty. Specifically, event times and indicators are
a noninvertible function of other parameters in the first submodel, and are an uncertain
response in the survival submodel. Chained Markov melding enables us to specify a
suitable joint model despite these complications.

There are i = 1, . . . , N individuals in the data set. Each individual is admitted
to the intensive care unit (ICU) at time 0, and is discharged or dies at time Ci. See
Supplementary Material I for information on how the N = 37 individuals were selected
from the medical information mart for intensive care III (MIMIC-III) (Johnson et al.,
2016).
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5.1 P/F ratio submodel (B-spline): p1

The first submodel fits a B-spline to the PaO2/FiO2 data to calculate if and when an
individual experiences respiratory failure. Each individual has PaO2/FiO2 ratio observa-
tions zi,j (in units of mmHg) at times ti,j , with j = 1, . . . , Ji. For each individual denote
the vector of observations zi = (zi,1, . . . , zi,Ji) and observation times ti = (ti,1, . . . , ti,Ji).
To improve computational performance, we standardise the P/F ratio data for each in-

dividual such that zi,j =
z̃i,j−zi

ŝi
, where z̃i,j is the underlying unstandardised observation

with mean zi and standard deviation ŝi. Similarly we rescale the threshold for respira-
tory failure: τi =

300−zi

ŝi
.

We choose to model the P/F ratio using cubic B-splines and 7 internal knots, and
do not include an intercept column in the spline basis (for background on B-splines see:
Chapter 2 in Hastie and Tibshirani, 1999; and the supplementary material of Wang
and Yan, 2021). The internal knots are evenly spaced between two additional boundary
knots at min(ti) and max(ti). These choices result in k = 1, . . . , 10 spline basis terms per
individual, with coefficients ζi,k where ζi = (ζi,1, . . . , ζi,10). We denote the individual
specific B-spline basis evaluated at time ti,j as Bi(ti,j) ∈ [0,∞)10 so that the submodel
can be written as

zi,j = β0,i +Bi(ti,j)
�ζi + εi,j . (45)

We employ a weakly informative prior for the intercept β0,i ∼ N(0, 12), a heavy tailed
distribution for the error term6 εi,j ∼ t5(0, ωi), and a weakly informative half-normal
prior for the unknown scale parameter ωi ∼ N+(0, 1

2). For the spline basis coefficients
we set ζi,1 ∼ N(0, 0.12), and for k = 2, . . . , 10 we employ the random-walk prior ζi,k ∼
N(ζi,k−1, 0.1

2) from Kharratzadeh (2017).

We identify that a respiratory failure event occurred (which we denote by di = 1)
at event time Ti if a solution to the following optimisation problem exists

Ti = min
t

{τi = β0,i +Bi(t)ζi | t ∈ [max(0,min(ti)), max(ti)]} . (46)

We attempt to solve (46) using a standard multiple root finder (Soetaert et al., 2020). If
there are no roots then the individual died or was discharged before respiratory failure
occurred so we set Ti = Ci and di = 0. The relationship between Ti and other model
coefficients is displayed in the left hand panel of Figure 6.

5.2 Cumulative fluid submodel (piecewise linear) p3

The rate of fluid administration reflects the clinical management of patients by ICU staff,
and hence changes to the rate reflect decisions to change treatment strategy. We employ
a breakpoint regression model to capture the effect of such decisions, and consider only
one breakpoint as this appears sufficient to fit the observed data. Specifically, we model

6P/F data contain many outliers for, amongst many possible reasons, arterial/venous blood sample
mislabelling; incorrectly recorded oxygenation support information; and differences between sample
collection time, lab result time, and the observation time as recorded in the electronic health record
(EHR).
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Figure 6: Parameters and form for the P/F ratio submodel (p1, left) and cumulative
fluid submodel (p3, right).

the 8-hourly cumulative fluid balance data xi,l (in litres) at times ui,l, l = 1, . . . , Li.
The cumulative data are derived from the raw fluid input/output observations, which
we detail in Supplementary Material D. We denote the complete vector of observations
by xi = (xi,1, . . . , xi,Li) and times by ui = (ui,1, . . . , ui,Li).

We assume a piecewise linear model with η0,i as the value at the breakpoint at time
κi, slope ηb1,i before the breakpoint, and slope ηa1,i after the breakpoint. We write this
submodel as

xi,l = mi(ui,l) + εi,l,

mi(ui,l) = η0,i + ηb1,i(ui,l − κi)1{ui,l<κi} + ηa1,i(ui,l − κi)1{ui,l≥κi}.
(47)

It will be useful to refer to the fitted value of this submodel at arbitrary time asmi(t). We
assume a weakly informative prior for the error term εi,l ∼ N(0, σ2

x,i), with individual-

specific error variances σx,i ∼ N+(0, 5
2), and specific, informative priors for the slope

before the breakpoint ηb1,i ∼ Gamma(1.53, 0.24) and after ηa1,i ∼ Gamma(1.53, 0.24).
An appropriate prior for κi and η0,i is challenging to specify due to the relationship
between the two parameters and the individual-specific support for κi. We address
both challenges by reparameterisation, resulting in a prior for κi that, in the absence
of other information, places the breakpoint in the middle of an individual’s ICU stay,
and a prior for η0,i that captures the diverse pathways into ICU that an individual
can experience. Details and justifications for all the informative priors are available in
Supplementary Material E. Figure 6 displays the parameters and their relationship to
the fitted regression line.

5.3 Survival submodel p2

The rate at which fluid is administered is thought to influence the time to respiratory
failure (Seethala et al., 2017), so we explore this relationship using a survival model.
Individuals experience respiratory failure (di = 1) at time 0 < t < Ci, or are censored
(di = 0, t = Ci). We assume a Weibull hazard with shape parameter γ for the event
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times. All individuals have baseline (time invariant) covariates wi,a, a = 1, . . . , A, with
wi = (1, wi,1, . . . , wi,A) (i.e. including an intercept term), and common coefficients
θ = (θ0, . . . , θA). The hazard is assumed to be influenced by these covariates and the
rate of increase ∂

∂tmi(t) in the cumulative fluid balance. The strength of the latter
relationship is captured by α. Hence, the hazard is

hi(t) = γtγ−1 exp

{
w�

i θ + α
∂

∂t
mi(t)

}
, (48)

∂

∂t
mi(t) = ηb1,i1{t<κi} + ηa1,i1{t≥κi}. (49)

The survival function at an individual’s observed event time and status, (Ti, di), denoted

Si(Ti) = exp{−
∫ Ti

0
hi(u)du}, has an analytic form which we derive in Supplementary

Material F. Thus, the likelihood for individual i is

p(Ti, di | γ,θ, α, κi, η
b
1,i, η

a
1,i,wi) = hi(Ti)

diSi(Ti), (50)

where we suppress the dependence on the parameters on the right hand side for brevity.

Our priors, which we justify in Supplementary Material G, for the submodel
specific parameters are γ ∼ Gamma(9.05, 8.72), α ∼ SkewNormal(0, 0.5,−2),
θa ∼ SkewNormal(0, 0.5,−1), and θ0 ∼ N(Ê, 0.52) where Ê is the log of the crude
event rate (Brilleman et al., 2020). We adopt the same priors as the cumulative fluid
balance submodel for κi, η

b
1,i, and ηa1,i.

5.4 Chained Markov melding details

To combine the submodels with chained Markov melding we must define the common
quantities φ1∩2 and φ2∩3. We meld p1 and p2 by treating the derived event times and
indicators {(Ti, di)}Ni=1 under p1 as the “response”, i.e. event times, in p2. Care is
required when defining φ1∩2 under p1 as it is a deterministic function of β0,i and ζi.
Define χ1,i = (β0,i, ζi) and φ1∩2,i = f(χ1,i) = (Ti, di), where f is the output from
attempting to solve (46), so that φ1∩2 = (f(χ1,i), . . . , f(χ1,N )). The parameters shared
by (47) and (49) constitute φ2∩3 = (ηb1,i, η

a
1,i, κi)

N
i=1.

To completely align with our chained melding notation we also define, for the P/F
submodel, Y1 = (zi, ti)

N
i=1 and ψ1 = (ωi)

N
i=1, noting that ψ1 and (χ1,i, . . . , χ1,N ) have no

components in common. For the cumulative fluid submodel we define Y3 = (xi,ui)
N
i=1,

and ψ3 = (η0,i, σ
2
x,i)

N
i=1. Finally, for the survival submodel we define Y2 = (wi)

N
i=1 and

ψ2 = (γ,θ, α).

5.5 Pooling and estimation

We consider logarithmic pooling with λ = ( 45 ,
4
5 ,

4
5 ) (any smaller value of λ results

in a prior that is so uninformative that it causes computational problems) and with
λ = (1, 1, 1) (Product-of-Experts). Because the correlation between φ1∩2 and φ2∩3 in
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Figure 7: The P/F ratio data (Y1, top row); cumulative fluid data (Y3, bottom row);
subposterior means and 95% credible intervals for each of the submodels (black solid
lines and grey intervals); and stage one event times (Ti, red rug in the top row) for
individuals i = 17 and 29.

p2(φ1∩2, φ2∩3) is important, we do not consider linear pooling in this example. Logarith-
mic pooling requires estimates of p1(φ1∩2) and p2(φ1∩2, φ2∩3). Because these are mixed
distributions, with both discrete and continuous components, standard kernel density
estimation, as suggested by Goudie et al. (2019), is inappropriate. Instead we fit, to
transformed versions of φ1∩2 and φ2∩3, a mixture containing a discrete component and
either a Gaussian or beta distribution, depending on the transformation. Further details
for all the mixture distribution estimates are contained in Supplementary Material H.

We use the parallel multi-stage sampler with ppool,1(φ1∩2)=p1(φ1∩2), ppool,3(φ2∩3)=
p3(φ2∩3) and ppool,2(φ1∩2, φ2∩3) = ppool(φ) /(p1(φ1∩2)p3(φ2∩3)). That is, in stage one
we target the subposteriors p1(φ1∩2, ψ1 | Y1) and p3(φ2∩3, ψ3 | Y3); in stage two we tar-
get the full melded model. Targeting p1(φ1∩2, ψ1 | Y1) in stage one alleviates the need
to solve (46) within an MCMC iteration, instead turning the production of φ1∩2 into
an embarrassingly parallel, post-stage-one processing step. Attempting to sample the
melded posterior directly would involve solving (46) many times within each iteration,
presenting a sizeable computational hurdle which we avoid. It is crucial for the conver-
gence of our multi-stage sampler that the components of φ1∩2 and φ2∩3 are updated
individual-at-a-time in stage two. This is possible due to the conditional independence
between individuals in the stage one posterior, and Supplementary Material K contains
the details of this scheme. The stage one subposteriors are sampled using Stan, using
5 chains with 103 warm-up iterations and 104 post warm-up iterations. We use Stan

to sample ψ2 where, in every Metropolis-Hastings-within-Gibbs step, we run Stan for
9 warm-up iterations and 1 post warm-up iteration.7 We run 5 chains of 104 iterations

7We also initialise Stan at the previous value of ψ2, and disable all adaptive procedures as the
default (identity) mass matrix and step size are suitable for this example.
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for all stage two targets. Visual and numerical diagnostics (Vehtari et al., 2020) are
assessed and are available in the repository accompanying this paper.8

5.6 Results

We first inspect the subposterior fitted values for p1 and p3. The top row of Figure 7
displays the P/F data, the fitted submodel, and derived event times for individuals i =
17 and 29. The spline appears to fit the raw P/F data well, with the heavy tailed error
term accounting for the larger deviations away from the fitted value. It is interesting to
see the relatively wide, multimodal distribution for (T29, d29) (there is a second mode
at (T29 = C29, d29 = 0) and for other individuals not shown here). The bottom row of
Figure 7 displays the cumulative fluid data and the fitted submodel, with the little noise
in the data resulting in minimal uncertainty about the fitted value and a concentrated
subposterior distribution.

To assess the importance of fully accounting for the uncertainty in φ1∩2 and φ2∩3,
we compare the posterior for ψ2 obtained using the chained melding approach with
the posterior obtained by fixing φ1∩2 and φ2∩3. Plugging in a point estimate reflects
common applied statistical practice when combining submodels, particularly when a
distributional approximation is difficult to obtain (as it is for p1(φ1∩2 | Y1)). Addition-
ally, standard survival models and software typically do not permit uncertainty in event
times and indicators, rendering such a plug-in approach necessary.

Specifically, we fix φ1∩2 to the median value9 for each individual under p1(φ1∩2 | Y1)

and denote it φ̂1∩2, and use the subposterior mean of p3(φ2∩3 | Y3) denoted φ̂2∩3.

With these fixed values we sample p(ψ2 | φ̂1∩2, φ̂2∩3, Y2). We also compare the melded
posterior to the submodel marginal prior p2(ψ2), but we note that this comparison is
difficult to interpret, as the melding process alters the prior for ψ2. Figure 8 displays the
aforementioned densities for (θ3, θ17, γ, α) ⊂ ψ2, with (θ3, θ17) chosen as they exhibit the
greatest sensitivity to the fixing of φ1∩2 and φ2∩3. For the baseline coefficients (θ3, θ17)

the chained melding posterior differs slightly in location from p(ψ2 | φ̂1∩2, φ̂2∩3, Y2),
with a small increase in uncertainty. A more pronounced change is visible for α, where
the melding process has added a notable degree of uncertainty and shifted the posterior
leftwards.

To investigate which part of the melding process causes this change in the posterior
of α, we consider fixing either one of φ1∩2 and φ2∩3 to their respective point estimates.
That is, we employ Markov melding as described in Section 1.2, using either logarithmic
or PoE pooling, to obtain pmeld(α | φ̂1∩2, Y2, Y3) and pmeld(α | φ̂2∩3, Y1, Y2). Figure 9
displays the same distributions for α as Figure 8, and adds the posteriors obtained using
one fixed value (φ̂1∩2 or φ̂2∩3) whilst melding the other non-fixed parameter.

Evident for both choices of pooling is the importance of incorporating the uncertainty
in φ1∩2. This is expected given the large uncertainty and multimodal nature of φ1∩2

8https://doi.org/10.5281/zenodo.6552714.
9For each individual the samples of (Ti, di)

N
i=1-pairs are sorted by Ti, and the �N

2
�th tuple (T̂i, d̂i)

is chosen as the median.

https://doi.org/10.5281/zenodo.6552714
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Figure 8: Density estimates for a subset of ψ2. The submodel marginal prior p2(ψ2) is
shown as the grey dotted line (note that this is not the marginal prior under the melded
model). The figure also contains the subposteriors obtained from chained melding using
PoE pooling (red, solid line) and logarithmic pooling (blue, solid line), as well as the

posterior using the fixed values p(ψ2 | φ̂1∩2, φ̂2∩3, Y2) (black, dashed line).

compared to φ2∩3 (see Figure 7). We suspect that it is the multimodality in p1(φ1∩2 | Y1)
that produces the shift in posterior mode of φ1∩2, with the width of p1(φ1∩2 | Y1)
affecting the increase in uncertainty. Because we prefer the chained melded posterior,
under either pooling method, for its full accounting of uncertainty we conclude that
p(α | φ̂1∩2, φ̂2∩3, Y2) is both overconfident and biased.

The marginal changes to the components of ψ2 visible in Figure 8 appear small,
however the cumulative effect of such changes becomes apparent when inspecting the
posterior of the survival function. Figure 10 displays the model-based, mean survival
function under the melded posterior (using PoE pooling), and corresponding draws of
φ1∩2 converted into survival curves using the Kaplan-Meier estimator. Also shown are
the Kaplan-Meier estimate of φ̂1∩2 and the mean survival function computed using
p(ψ2 | φ̂1∩2, φ̂2∩3, Y2). The posterior survival functions differ markedly, with the 95%
intervals overlapping only for small values of time. It is also interesting to see that
φ̂1∩2, despite being a reasonable point estimate of p1(φ1∩2 | Y1), is not very likely under
the melded posterior. Figure 10 also suggests that the Weibull hazard is insufficiently
flexible for this example. We discuss the complexities of other hazards in Section 6.

6 Conclusion

This paper introduces the chained Markov melded model. In doing so we make explicit
the notion of submodels related in a chain-like way, describe a generic methodology for
joining together any number of such submodels and illustrate its application with our
examples. Our examples also demonstrate the importance of quantifying the uncertainty
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Figure 9: Median (vertical line), 50%, 80%, 95%, and 99% credible intervals (least
transparent to most transparent) for α. The marginal prior (grey, top row) and posterior

using fixed φ̂1∩2 and φ̂2∩3 (black, bottom row) are as in Figure 8. For the chained melded
posteriors (red and blue, rows 2 and 3) and the melded posteriors (red and blue, rows
4 – 7), the tick label on the y-axis denotes the type of pooling used, and which of φ1∩2

and/or φ2∩3 are fixed.

Figure 10: Survival curves and mean survival function at time t. The red, stepped lines
are draws of φ1∩2 from the melded posterior using PoE pooling, converted into survival
curves via the Kaplan-Meier estimator. The smooth red line and interval (posterior
mean and 95% credible interval) denote the model-based, mean survival function ob-
tained from the melded posterior (PoE pooling) values of ψ2 and φ2∩3. The blue dashed

line is the Kaplan-Meier estimate of φ̂1∩2, and the blue solid line and interval are the
corresponding model-based estimate from p(ψ2 | φ̂1∩2, φ̂2∩3, Y2).
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when joining submodels; not doing so can produce biased, over-confident inference. We
also present the choices, and their impacts, that users of chained Markov melding must
make which include: the choice of pooling function, and where required the pooling
weights; the choice of posterior sampler and the design thereof, including the appor-
tionment of the pooled prior over the stages and stage-specific MCMC techniques.

We have introduced extensions to linear and logarithmic pooling to marginals of
different but overlapping quantities. Linear pooling, introduced in Section 1.2, could be
extended to induce dependence between the components of φ using multivariate or vine
copulas (Kurowicka and Joe, 2011; Nelsen, 2006), or other techniques (Lin et al., 2014).
Copula methods are particularly appealing as, depending on the choice of copula, they
yield computationally cheap to evaluate expressions for the density function, are easy
to sample, and induce correlation between an arbitrary number of marginals.

Our parallel multi-stage sampler currently only considers M = 3 submodels, rather
than the fully generic definition of chained Markov melding in (10). Whilst we anticipate
needing more complex methods in large M settings, the value of M at which the per-
formance of our multi-stage sampler becomes unacceptable will depend on the specific
submodels and data under consideration. A general method would consider a large and
arbitrary number of submodels in a chain, and initially split the chain into more/fewer
pieces depending on the computational resources available. Designing such a method is
complex, as it would have to:

• avoid requiring the inverse of any component of φ with a noninvertible definition,

• estimate the relative cost of sampling each submodel’s subposterior, to split the
chain of submodels into steps/jobs of approximately the same computational cost,

• decide the order in which pieces of the chain are combined.

These are substantial challenges. It may be possible to use combine the ideas in Lind-
sten et al. (2017) and Kuntz et al. (2021), who propose a parallel Sequential Monte
Carlo method, with the aforementioned constraints to obtain a generic methodology.
Ideally we would retain the ability to use existing implementations of the submodels,
however the need to recompute the weights of the particles, and hence reevaluate pre-
viously considered submodels, may preclude this requirement. Our current sampler is
also sensitive to large differences in location or scale of the target distribution between
the stages. The impact of these differences can be ameliorated using the methodology of
Manderson and Goudie (2022a), and, more generally, Sequential Monte Carlo samplers
are likely to perform better in these settings.

Our chained Markov melding methodology is general and permits any form of un-
certainty in the common quantities. In Section 5 we use our chained melded model
to incorporate uncertainty in the event times and indicators into a survival submodel.
Some specific forms of uncertainty in the event times have been considered in previous
work. These include Wang et al. (2020), who consider uncertain event times arising
from record linkage, where the event time is assumed to be one of a finite number of
event times arising from the record linkage; and Giganti et al. (2020), Oh et al. (2018),
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and Oh et al. (2021), who leverage external validation data to account for measurement
error in the event time. However, the general and Bayesian nature of our methodology
readily facilitates any form of uncertainty in the event times and the event indicators;
uncertainty in the latter is not considered in the cited papers.

The example in Section 5 has three more interesting aspects to discuss. Firstly,
the P/F ratio data used in the first submodel is obtained by finding all blood gas
measurements from arterial blood samples. Approximately 20% of the venous/arterial
labels are missing. In these instances a logistic regression model, fit by the MIMIC
team,10 is used to predict the missing label based on other covariates. It is theoretically
possible to refit the model in a Bayesian framework and use the chained melded model
to incorporate the uncertainty in the predicted sample label – adding another ‘link’ to
the chain.

Secondly, the application of our multi-stage sampler to this example is similar to
the two-stage approach used for joint longitudinal and time-to-event models (see Mauff
et al., 2020, for a description of this approach). In the two-stage approach, the lon-
gitudinal model is fit using standard MCMC methods in stage one, and the samples
are reused in stage two when considering the time-to-event data. This can significantly
reduce the computational effort required to fit the joint model. However, unlike our
multi-stage sampler, the typical two-stage approach does not target the full posterior
distribution, which can lead to biased estimates (though Mauff et al. (2020) extend the
typical two-stage approach to reduce this bias).

Thirdly, we observe a lack of flexibility the baseline hazard, visible in Figure 10.
More complex hazards could be employed, e.g. modelling the (log-)hazard using a (pe-
nalised) B-spline (Royston and Parmar, 2002; Rosenberg, 1995; Rutherford et al., 2015).
However, this increased flexibility precludes an analytic form for the survival function.
Whilst numerical integration is possible it is not trivial, particularly when the hazard
is discontinuous, as our hazard is at the breakpoint. Splines also have more coefficients
than the single parameter of the Weibull hazard. Identifiability issues arise with a small
number of individuals, many of whom are censored, and are compounded when there
are a relatively large number of other parameters (α,θ). Whilst we do not believe these
costs are worth incurring for our example, for settings with a larger number of pa-
tients and more complicated longitudinal submodels the increased flexibility may be
vital.

Supplementary Material

Supplement to “Combining chains of Bayesian models with Markov melding” (DOI:
10.1214/22-BA1327SUPP; .pdf).

10The coefficients, classification threshold, and the imputation used in the case of missing data
are supplied in the blood-gasses.sql file in the GitHub repository accompanying this paper. No other
information is available about this model (the data used to produce the coefficients, and the performance
of the fitted model).

https://doi.org/10.1214/22-BA1327SUPP
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