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Bayes Linear Bayes Networks with an
Application to Prognostic Indices

Wael A. J. Al-Taie† and Malcolm Farrow∗

Abstract. Bayes linear kinematics and Bayes linear Bayes graphical models pro-
vide an extension of Bayes linear methods so that full conditional updates may be
combined with Bayes linear belief adjustment. The use of Bayes linear kinematics
eliminates the problem of non-commutativity which was observed in earlier work
involving moment-based belief updates. In this paper we describe this approach
and investigate its application to the rapid computation of prognostic index val-
ues in survival when a patient’s values may only be available for a subset of
covariates. We consider the use of covariates of various kinds and introduce the
use of non-conjugate marginal updates. We apply the technique to an example
concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear
predictor of the lifetime distribution as a latent variable and use its expectation,
given whatever covariates are available, as a prognostic index.

Keywords: Bayes linear kinematics, Bayes linear Bayes graphical model, survival
analysis, prognostic index, missing covariates.

1 Introduction

A Bayes linear analysis (Goldstein and Wooff, 2007) differs from a full Bayesian analysis
in that only first and second order moments are specified in the prior. Posterior (termed
adjusted) moments are then calculated when data are observed. The introduction of
Bayes linear kinematics and Bayes linear Bayes models (Goldstein and Shaw, 2004)
extends Bayes linear methods to allow the incorporation of observations of types which
are not readily accommodated in a straightforward Bayes linear analysis. For example,
beliefs about certain unknown quantities might be updated by full conditional Bayesian
inference when observations are made on conditionally Poisson or binomial variables and
then information can be propagated between these unknowns, or to other unknowns,
via a Bayes linear belief structure. This approach avoids the need for computation-
ally intensive methods such as Markov chain Monte Carlo which are often required in
standard Bayesian analyses.

In this paper, we investigate the application of Bayes linear Bayes models and Bayes
linear kinematics to the calculation of prognostic indices in medicine, particularly in
survival or time-to-event problems. Many prognostic indices used in practice involve
only a small number of covariates but other information may be available. We wish to
be able to construct a prognostic index which can use information from a larger num-
ber of variables. An obstacle to doing this with conventional methods is that the extra
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variables might not always be observed. We wish to overcome this difficulty by being
able to compute an index value even when some variables are not observed. This can
be done in the case where all variables are jointly multivariate normal. It can also be
done, in a Bayesian network, when all variables are categorical with finite sets of states
(eg Lauritzen and Spiegelhalter, 1988; Jensen and Nielsen, 2007). Other cases are more
computationally demanding and typically require the use of methods such as Markov
chain Monte Carlo (MCMC) algorithms. We develop an approach which allows for a
large number of potential covariates but which allows the calculation of a prognostic in-
dex value when only a subset of the covariates are observed. The Bayes linear kinematic
approach makes this possible in a straightforward way, with deterministic calculations,
and, indeed, allows the index to be adjusted in a straightforward and commutative way
if new covariate information is received. This opens the possibility of a fast and easy-
to-use Web-based prognostic index calculator which might be used in different parts
of the world where different subsets of covariates may be available. Covariates used in
prognostic indices can take many forms so we investigate a new approach to dealing
with non-conjugate relationships in the marginal full-Bayes parts of the model. This
extends the applicability of the Bayes linear Bayes approach.

In Section 2 we discuss prognostic indices and the case where some covariates might
not be observed. In Section 3 we briefly outline Bayes linear methods, Bayes linear
kinematics and Bayes linear Bayes graphical models. In Section 4 we extend previous
work on Bayes linear Bayes graphical models by developing the case where the marginal
full-Bayesian sub-models are non-conjugate. In Section 5 we discuss the application of
these methods to the routine computation of prognostic index values for patients with
terminal illness where only partial information may be available. We discuss the stages of
constructing the Bayes linear Bayes network which is used to compute the index values.
In Section 6 we illustrate this with an example involving patients with Non-Hodgkin’s
lymphoma.

2 Prognostic Indices

2.1 Prognostic Indices in Survival

Prognostic indices are used to help to predict outcomes in patients, for example sur-
vival times in patients with a terminal illness. The value taken by the prognostic index
depends on the clinical information about patients. A prognostic index can be useful to
make a decision about the appropriate treatment for the patients. For example, Hen-
derson et al. (2001) described the significance of using prognostic indices in terms of
the impact on the selection of various treatments and the importance for the patients
and their families to know and think about the future to give the best support to the
patients in the remaining years of their lives.

Typically, a prognostic index is a linear predictor based on the explanatory variables.
In a proportional hazards model, the hazard function for patient i is λi(t) = λ0(t)e

ηi ,
where λ0(t)e

β0 is the baseline hazard, and the prognostic index of patient i is ηi =
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log[λi(t)/λ0(t)]. A greater value corresponds to worse prognosis. Typically we write

ηi = β0 +
J∑

j=1

βjxj,i (1)

where (β0, β1, . . . , βJ) are the regression coefficients and x1,i . . . , xJ,i, are the covariate
values for the patient of interest. Thus the baseline hazard applies to a patient for
whom all of the covariate values are zero. Usually we would determine values for the
coefficients by fitting a suitable survival model to historical data. For example, if Ti is
the survival time of patient i in the historical data then we might use a Weibull model
with Ti ∼ Weibull(α, λi) where, α is the shape parameter in the model and λi = exp{ηi}
is the scale parameter. So, ηi = log(λi) is the prognostic index for patient i.

Note that the predictive mean for the linear predictor for a new patient with covariate
values x1,i, . . . , xJ,i is obtained by substituting the posterior means of β0, . . . , βJ into
(1), provided, of course, that all of the covariates are observed. This predictive mean is
then given as the prognostic index value. Our method provides a means of dealing with
the case where not all of the covariates are observed.

Once the prognostic index value for a patient has been computed, it might be trans-
formed to help with interpretation. For example, we might use the distribution of prog-
nostic index values in the historical data and determine the percentile of this distribution
corresponding to a new index value. Thus we would give a score on a 0-100 scale.

2.2 Prognostic Networks and Unobserved Covariates

If we have a fixed list of covariates X = {X1, . . . , XJ} then the index must be given by a
function of the values x1, . . . , xJ taken by these covariates. Conventionally, to construct
a prognostic index, we try to choose a suitable function g(x1, . . . , xJ). Suppose now that
we have a list Xmax = {X1, . . . , XJ} of covariates which can be observed but that we
might not always observe all of X1, . . . , XJ but rather we observe some subset of Xmax.
Let the possible observed subsets be X1, . . . ,XM . We need a different function gm for
each possible subset Xm. To do this in a coherent and principled way, we introduce the
idea of a latent variable ZT . When we supply an index value to a user, we will give our
current expectation of ZT , given the information available to us. We can choose ZT to
be a quantity on which the lifetime distribution depends, as in a traditional prognostic
index. For example, in a Weibull model with survival function exp{−λit

α} for subject i,

we can use ZT = ηi = log(λi) as the prognostic index. If ηi = β0 +
∑J

j=1 βjXj,i, where
Xj,i is the value of covariate j for subject i, but not all of X1,i, . . . , XJ,i are observed
for subject i, then we use Gi = E(ηi | Xi) where Xi is the subset of observations made
for patient i. We refer to Gi as the predicted prognostic index value. Alternatively we
can regard ZT as the result of a transformation of the lifetime, T , itself, such that
E(ZT,i | ηi) = ηi where ZT,i is the value of ZT for patient i. Again, in this case, we
compute the current expectation of ηi as our predicted prognostic index value.

This allows us to compute a (predicted) prognostic index value given observations
of any subset of the possible covariates, for example when some values are missing or
when some variables are only measured in certain cases.
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Additional flexibility is provided by modelling the joint distribution of ZT and the
covariates, often through latent variables Z1, . . . , ZJ associated with the covariates, so
that ZT is not known precisely even when all of the covariates are observed. In this way
we always use an expectation of ZT as our declared index value.

Bayes linear methods applied to {Z1, . . . , ZJ , ZT } require the specification of only
the first and second moments of this collection and, when given the values of some
of these variables, it is straightforward to compute the adjusted expectation of ZT .
We outline Bayes linear methods in Section 3.1. In many cases, the observation of a
covariate Xj does not determine the value of the corresponding Zj but only changes its
moments. The use of Bayes linear kinematics and a Bayes linear Bayes model allows
us to deal with this situation in a way which is quick and efficient and, importantly,
commutative so that covariate information may be introduced in any order without
affecting the resulting index value. We outline Bayes linear kinematics and Bayes linear
Bayes models in Sections 3.3 and 3.4.

3 Bayes Linear Kinematics and Bayes Linear Bayes
Graphical Models

3.1 Bayes Linear Methods

In the standard Bayesian paradigm, we specify the full joint prior distribution for all
unknown quantities. Using Bayes’ theorem, we update our prior beliefs by conditioning
on the observations and then calculating the posterior distributions. A Bayes linear
analysis (Goldstein and Wooff, 2007) is distinct from the full Bayesian approach in
that we only need to specify the first and second-order moments for the prior and
then calculate posterior moments. For instance, if we have a vector random quantity
Z, then we specify the prior expectation and variance of Z respectively as E0(Z) and
Var0(Z) = E0[{Z − E0(Z)}{Z − E0(Z)}′]. Furthermore, for two quantities Z1 and Z2,
we also specify a prior covariance Cov0(Z1, Z2) = E0[{Z1 − E0(Z1)}{Z2 − E0(Z2)}′].

Suppose that we have two vectors A = (A1, . . . , Ap)
′ and B = (B1, . . . , Bq)

′, where
A is the observed quantities and B is the inferential quantities, and that we have made
a full second-order prior specification for the elements of Z = (A′, B′)′. Bayes linear
methods provide a way to update beliefs about B by a linear fitting on A using the
Bayes linear updating equations for B adjusted by A as

E1(B) = E0(B) +HB|A [A− E0(A)] , (2)

Var1(B) = Var0(B)−HB|ACov0(A,B), (3)

where HB|A = Cov0(B,A)Var−1
0 (A), provided that Var0(A) is invertible.

3.2 Probability Kinematics

Bayes linear kinematics was introduced by Goldstein and Shaw (2004). It is named after
the probability kinematics proposed by Jeffrey (1965) since the relationship of Bayes
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linear kinematics to Bayes linear methods can be seen as analogous to the relationship of
probability kinematics to probabilistic conditioning. So, before discussing Bayes linear
kinematics, we first briefly introduce probability kinematics.

Probability kinematics is a method for revising a probability specification which
depends on new probabilities over a partition. Suppose that we have a partition A =
(a1, . . . , am) and corresponding probabilities Pr0(ak) and

∑m
k=1 Pr0(ak) = 1. Suppose

that we have obtained some information I which causes us to update our probabilities of
these events to Pr1(a1 | I), . . . ,Pr1(am | I). Then we can impose the so-called rigidity,
or sufficiency, condition that, for any future event B,

Pr0(B | ak) = Pr1(B | ak), ∀k.

Therefore, the new marginal probability of B can be found by probability kinematics
on Pr1(a1 | I), . . . ,Pr1(am | I) as

Pr1(B) =
m∑

k=1

Pr0(B | ak)Pr1(ak | I).

An important special case is where I consists of the observation of the value x of a
random variable X where X is judged to be probabilistically conditionally independent
of B given A. See, for example, Diaconis and Zabell (1982). In this case, Pr1(B) =
Pr0(B | X = x).

However, suppose that we have two different partitions, A1 = (a1,1, . . . , a1,m1) and
A2 = (a2,1, . . . , a2,m2). Then successive probability kinematic revisions based on these
two partitions might not be commutative if the order is reversed. A simple example
of non-commutativity is given by Wilson (2011). The conditions for commutativity are
discussed by Field (1978) and Diaconis and Zabell (1982).

3.3 Bayes Linear Kinematics

Bayes linear kinematics was introduced by Goldstein and Shaw (2004). It is a special
form of Bayes linear analysis where, instead of observing A, as in Section 3.1, we simply
update our beliefs about this set of quantities by obtaining some information. Then those
changes in our beliefs can be propagated through other unknown quantities within a
Bayes linear structure. The idea is that, instead of observing A directly and using (2)
and (3), we observe some relevant information I that changes our beliefs about A so that
our mean and variance become E(A | I) and Var(A | I). Then we wish to propagate
these updates to B. In particular, the information I, may be observations on some
related quantities X.

In order to propagate these changes in our beliefs, we could use a full-Bayes analysis
which requires a full probabilistic specification and more intensive calculations such as
Markov chain Monte Carlo (MCMC) methods. However, by imposing the sufficiency
conditions that (2) and (3) continue to hold when we have not observed A but merely
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changed its mean and variance, we can use Bayes linear kinematics by adjusting the
expectation vector and variance matrix based on (2) and (3) and therefore we can adjust
our mean and variance of Z. Applying (2) and (3) to B we obtain

EA|I(B) = E0(B) +HB|A
[
E(A | I)− E0(A)

]
, (4)

VarA|I(B) = HB|AVar(A | I)H ′
B|A +Var0(B)−HB|AVar0(A)H

′
B|A

= Var0(B)−HB|A{Var0(A)−Var(A | I)}H ′
B|A (5)

and CovA|I(B,A) = HB|AVar(A | I).

We can combine these into two updating equations for the whole of Z by writing

HZ|A = Cov0(Z,A)Var−1
0 (A) =

(
Ip

HB|A

)
,

where Ip is a p× p identity matrix. Then

EA|I(Z) = E0(Z) +HZ|A
[
E(A | I)− E0(A)

]
(6)

and VarA|I(Z) = Var0(Z)−HZ|A
[
Var0(A)−Var(A | I)

]
H ′

Z|A. (7)

Now suppose we wish to make multiple updates. As with probability kinematics,
we need to consider commutativity. Suppose that we have J sets of random quantities
Z1, . . . ,ZJ , where, for j = 1, . . . , J , the elements of Zj are arranged as a vector Zj =
(Zj,1, . . . , Zj,nj )

′. The sets Zj need not be disjoint. Suppose that a full second order
prior specification, S0(Z) = [E0(Z),Var0(Z)], has been made for Z = Z1 ∪ . . . ∪ ZJ

and that the elements of Z are arranged in a vector Z. If we observed Zk then (2) and
(3) would lead to an adjusted expectation E(0)(Z | Zk) and variance Var(0)(Z | Zk).
Now suppose that, instead of observing Zk, information Ik is received which causes our
beliefs about Zk to be updated to S1(Zk | Ik) = [E1(Zk),Var1(Zk)].

Suppose that, in this new situation, if we now observed Zk, our expectation would
be E(1)(Z | Zk) and our variance would be Var(1)(Z | Zk). Then the Bayes linear
kinematic update for Z, if we gain information Ik, is found by setting the adjustments
to expectations and variances using specifications S0(Z) and S1(Z | Ik) equal to each
other. That is we can use (2) and (3) with A replaced by Zk and B replaced by Z. So
E(0)(Z | Zk) = E(1)(Z | Zk) and Var(0)(Z | Zk) = Var(1)(Z | Zk).

Now suppose that, for each j (j = 1, . . . , J), information Ij is received once and
beliefs are changed for Zj . A Bayes linear kinematic update can be made for Z each time.
However, successive Bayes linear kinematic updates are not necessarily commutative.
Making an update given I1 changes the moments of the Bayes linear structure and
so the update using I2 is changed. The Bayes linear kinematic method depends on
the assumption that the updating formulae do not change. By straightforward repeated
application of (6) and (7) we violate this assumption and it turns out that commutativity
does not hold. It is necessary to define Bayes linear kinematic formulae for updating by
the whole of the data, based on an assumption analogous to the assumption that (2) and
(3) continue to hold, but which will apply commutatively to intermediate steps, whatever
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the order in which we enter the information. Goldstein and Shaw (2004) derived the
conditions under which a commutative Bayes linear kinematic update exists and under
which this update is unique. When a unique commutative update exists, the adjusted
variance [P(Z | I)]−1 and expectation E(Z | I) are given by

P(Z | I) =

J∑
j=1

P(Z | Ij)− (J − 1)P(Z), (8)

P(Z | I)E(Z | I) =

J∑
j=1

P(Z | Ij)E(Z | Ij)− (J − 1)P(Z)E(Z), (9)

where I = (I1, . . . , IJ) and P(Z) = Var(Z)−1 is the prior precision matrix. Goldstein
and Shaw give formal proofs in the general case.

3.4 Bayes Linear Bayes Graphical Models

In complicated models, experts often make full marginal probabilistic specifications,
but they are not able to assess the full joint probability distribution for all unknown
quantities in the model. Goldstein and Shaw (2004) developed a formalism for updating
beliefs about these quantities which depends on Bayes linear kinematics. They intro-
duced Bayes linear Bayes graphical models with directed graph G = (V,E) where V
is a collection of nodes representing quantities (X1, . . . , XJ , Z1, . . . , ZK), each of which
may be a vector, and E is a collection of edges. A Bayes graphical model is a model
where the generalised conditional independence relationship is probabilistic conditional
independence (Lauritzen, 1996; Cowell et al., 1999) and by taking second-order belief as
the generalised conditional independence, we obtain a Bayes linear graphical model. See
Goldstein and Wilkinson (2000). A Bayes linear Bayes graphical model is a combination
of fully Bayesian and Bayes linear graphical models allowing conditioning on marginal
distributions of any form and taking advantage of Bayes linear kinematics to involve
full conditional updates within Bayes linear adjustments. The quantities Z1, . . . , ZK are
connected in a Bayes linear structure. Each Xj , j = 1, . . . , J depends on an associated
Zk(j), which is one of Z1, . . . , ZK , through a conditional probability distribution and
is conditionally independent of Xj′ for j′ �= j and of Zk for k �= k(j) given Zk(j). See
Goldstein and Shaw (2004). In the rest of this paper we will assume that Z1, . . . , ZK

are labelled so that k(j) = j.

Apart from Goldstein and Shaw (2004), published work on Bayes linear Bayes graph-
ical models includes Wilson and Farrow (2010); Wilson et al. (2013); Gosling et al.
(2013); Quigley et al. (2013) and Wilson and Farrow (2017).

Example 1 Figure 1 shows a very simple Bayes linear Bayes graphical model. We have
two observable quantities, X1 and X2. Each Xj depends, through a conditional
probability distribution, on a corresponding underlying quantity Zj . So, beliefs
about the pair (Zj , Xj) are represented by a probability model. The relationship
between Z1 and Z2 is described by a Bayes linear structure.
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Figure 1: Bayes linear Bayes graphical model with two variables. The red undirected edge
linking the pair (Z1, Z2) represents a Bayes linear structure (we could use a directed edge
in either direction) and the directed blue arrows refer to the conditional distributions
which allow full-Bayes analysis.

For example, consider the following prognostic problem. Patients suffering from
chronic obstructive pulmonary disease (COPD) suffer exacerbations from time to
time. Current research includes the development of systems to monitor patients
and predict when the next exacerbation might occur in each patient. See, for
example, Guerra et al. (2017). Many covariates might be used but suppose, for
the purpose of this example, that we just use the number, X1, of exacerbations
suffered by the patient in an earlier year. We are interested in X2, the time, in
days, until the next exacerbation. In a very simple model we might suppose that,
given the value of λ1, X1 has a Poisson distribution with mean 365λ1 and, given
the value of λ2, X2 has an exponential distribution with mean λ−1

2 . Although we
might expect λ1 and λ2 to be similar, we do not expect them to be equal since the
condition of the patient changes over time. We have marginal prior distributions
for λ1 and λ2 and we express our belief in the relationship between them by a
Bayes linear structure involving quantities Z1 and Z2 which are related to λ1 and
λ2 in some specified way. So we specify means and variances for Z1 and Z2 and
a covariance between them. Then, given an observation of X1 for a particular
patient, our beliefs about Z1 change. This changes our beliefs about Z2, through
the Bayes linear relationship, and therefore our beliefs about X2 change, although
it may be sufficient for us to have a revised expectation of Z2.

Example 2 Figure 2 shows a larger Bayes linear Bayes graphical model, with J =
K = 5. Here X5 is denoted T to represent survival time as this model is intended
for use in survival prognosis. The m = J − 1 = 4 quantities X1, . . . , X4 repre-
sent covariates. We give Z = (Z1, . . . ZK)′ a second-order prior specification. For
generality, this Bayes linear structure is shown as a fully connected undirected
graph in Figure 2. In particular applications, directed edges can be used and con-
ditional independence might lead to the omission of some edges. If we observe Xj ,
then Bayes theorem is used to calculate the adjusted expectation E(Zj | Xj) and
variance Var(Zj | Xj). These changes are passed through the rest of the network
using Bayes linear kinematics. When m > 1 we use (8) and (9).

Early work on Bayes linear Bayes models used conjugate prior distributions in the
full-Bayes components and applied Bayes linear kinematics to the usual parameters of
these distributions. For example, if the conditional distribution of Xj given Zk(j) were
Poisson with mean λ = Zk(j), then a gamma prior distribution would be given to λ.
Observing Xj would lead to a posterior gamma distribution and the revised mean and
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Figure 2: Bayes linear Bayes graphical model for use in survival prognosis. The red
undirected edges linking Z1, . . . , Z5 represent a Bayes linear structure and the directed
blue arrows refer to the conditional distributions which allow full-Bayes analysis.

variance would lead to changes in the moments in the Bayes linear structure which
would be propagated by Bayes linear kinematics. Wilson and Farrow (2010) introduced
the idea of using a transformation, or link function. This can make the use of a Bayes
linear structure more reasonable by eliminating bounds on the values of parameters
and removing mean-variance relationships. It can also, in certain cases, ensure that the
conditions for (8) and (9) to be the unique commutative Bayes linear kinematic update
are met. For example, in the Poisson case, we would use Zk(j) = η = log λ instead
of λ and compute the adjusted mean and variance of η given Xj , while still giving λ
a gamma prior distribution. Wilson and Farrow (2017) retained the conjugate prior
distribution but suggested using a “guide relationship”, as used, for example, by West
et al. (1985) and Gamerman (1991). The flexibility of Bayes linear kinematics allows
us to use as the adjusted mean and variance of Zk(j), after observing Xj , values which
are approximations to the posterior mean and variance given Xj , rather than the exact
values. In particular, in the Poisson case, instead of setting Zk(j) = η = log λ and giving
Zk(j) the mean and variance of the resulting log-gamma distribution, we could give
Zk(j) the mean and variance of the normal distribution such that the corresponding
lognormal distribution has the same mean and variance as the gamma prior for λ, or
we could give Zk(j) a mean equal to the mode of the distribution of η and a variance
given by −[dl(η)/dη]−1, evaluated at the mode, where l(η) is the log density of η. These
options, in the Poisson case, are discussed by Wilson and Farrow (2017) who examine
the effects of these choices on the adjustments propagated through a simple network.

Example 1 We illustrate three variations on the method using Example 1. For each of
λ1 and λ2, we assess the prior mean to be 0.01 and the prior upper quartile to be
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about three times the prior lower quartile. This suggests a gamma Ga(1.8, 180)

prior distribution for each, which has a variance of 0.01/180 = 5.56×10−5. Suppose

that, in each case, we use the same relationship for (λ1, Z1) as for (λ2, Z2) so

E0(Z1) = E0(Z2) and Var0(Z1) = Var0(Z2), and, in each case, we give Z1 and Z2

a prior correlation of 0.9. Therefore HZ2|Z1
= 0.9. Suppose for a particular patient,

we observe six exacerbations in the earlier year. The posterior distribution for λ1

is therefore Ga(7.8, 545), with a mean of 0.0143 and a variance of 2.62× 10−5.

Using (4) and (5), we have, in each case,

EZ1|X1
(Z2) = E0(Z2) + 0.9[E(Z1 | X1)− E0(Z1)]

and VarZ1|X1
(Z2) = Var0(Z2)− 0.92{Var0(Z1)−Var(Z1 | X1)}.

Working directly in terms of λ1 and λ2, so Zj = λj , we obtain the moments in

the rows labelled “Direct” in Table 1.

Using the method of Wilson and Farrow (2010), we obtain the moments in the

rows labelled “WF10” in Table 1. The adjusted moments of Z2 correspond to a

Ga(4.466, 314.9) distribution for λ2 | X1.

Now consider the “lognormal” method of Wilson and Farrow (2017). If we give Zj a

normal N(−4.826, 0.4418) prior distribution, then exp(Zj) has the same mean and

variance as the gamma prior for λj . Similarly, if Z1 has a normal N(−4.307, 0.1206)

distribution, then exp(Zj) has the same mean and variance as the gamma posterior

for λ1. We obtain the moments in the rows of Table 1 labelled “WF17”. Using the

lognormal relationship the adjusted moments correspond to the moments given

for λ2 | X1.

For comparison, we can use a full-Bayes analysis of a model in which λj = exp(Zj)

and Zj ∼ N(m, v), j = 1, 2. We show the results of this with two different prior

moment specifications. Firstly we set m = −4.826 and v = 0.4418, the prior

moments used to illustrate the Wilson and Farrow (2017) method. The results are

labelled “Full Bayes 1” in Table 1. Secondly we set m = −4.937 and v = 0.6635

which gives the specified mean and ratio of quartiles for λj . We obtain the moments

labelled “Full Bayes 2” in Table 1.

In this paper we consider a broad range of different kinds of covariates. Conjugate

priors might not be available. We investigate the use of non-conjugate priors, typically

using a one-dimensional numerical integration for each marginal update. For example,

in the Poisson case, we set Zk(j) = η = log λ but give η a normal prior and update

its moments numerically when Xj is observed. We see that the resulting revised mean

for a prognostic index is similar to that obtained by a full-Bayes calculation. This is

described in Section 4.
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Zj E0(Zj) E(Z1 | X1) EZ1|X1
(Z2) EZ1|X1

(λ2)
Direct λj 0.01 0.0143 0.0139 0.0139
WF10 ηj −4.908 −4.312 −4.372 0.0142
WF17 η̃j −4.826 −4.307 −4.359 0.0140
Full Bayes 1 ηj −4.826 −4.369 −4.415 0.0133
Nonconjugate ηj −4.937 −4.346 −4.405 0.0139
Full-Bayes 2 ηj −4.937 −4.345 −4.404 0.0139

Zj Var0(Zj) Var(Z1 | X1) VarZ1|X1
(Z2) VarZ1|X1

(λ2)
Direct λj 5.56× 10−5 2.62× 10−5 3.18× 10−5 3.18× 10−5

WF10 ηj 0.7370 0.1368 0.2508 4.50× 10−5

WF17 η̃j 0.4418 0.1206 0.1816 3.90× 10−5

Full Bayes 1 ηj 0.4418 0.1426 0.1995 3.74× 10−5

Nonconjugate ηj 0.6635 0.1580 0.2541 5.57× 10−5

Full-Bayes 2 ηj 0.6635 0.1582 0.2547 5.25× 10−5

Table 1: Moments using different methods in Example 1. WF10: Wilson and Farrow
(2010). WF17: Wilson and Farrow (2017) “lognormal”. Here ηj = log(λj) and η̃j ≈ ηj .

4 Non-Conjugate Marginal Updates

4.1 Introduction

While there are advantages in using a link function, as in Wilson and Farrow (2010,

2017), the use of a conjugate prior and then calculation of the change in mean and

variance of a transformed parameter is a somewhat restrictive arrangement. In addition,

a normal prior distribution is symmetric, has unbounded support and no mean-variance

dependence. These features fit well with the use of Bayes linear updating between nodes

in the network. A direct non-conjugate relationship to such a prior is closer to the usual

structure in a full-Bayes analysis and, as we shall see, the results tend to be closer to

those of the full-Bayes analogue. Furthermore our approach provides a general method

which allows many different kinds of observational distributions. The price to be paid

for this is that we need to use numerical integration to find the adjusted mean and

variance of Zj given Xj = xj . However this is typically a one-dimensional integration

and suitable fast approximation methods can often be used. Suppose that we give Zj a

prior distribution with density fj(z) and that the likelihood from observing Xj = xj is

Lj(z; xj). Then the posterior density of Zj is proportional to gj(z) = fj(z)Lj(z; xj). For

example, in the Poisson case mentioned above, we might give a normal prior distribution

to η = log λ and the likelihood is proportional to exp(−λ)λxj .

In suitable cases, particularly where the support is unbounded, we might use a simple

normal approximation to obtain posterior moments. Let Gj(z) = log gj(z). Then we

can find the maximum m of Gj(z) as an approximation to the posterior mean and

use v = −[∂2Gj(z)/∂z
2]−1 evaluated at z = m as an approximation to the posterior
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variance. Alternatively, we write the posterior mean as

E1(Zj | Xj = xj) =

∫∞
−∞ zgj(z) dz∫∞
−∞ gj(z) dz

=

∫∞
−∞ exp{log(z)Gj(z)} dz∫∞

−∞ exp{Gj(z)} dz

and then use Laplace approximations (Tierney and Kadane, 1986) for the integrals in
the numerator and denominator. Another possibility would be to use Gauss-Hermite
quadrature (eg Naylor and Smith, 1982).

Example 1 To apply this method in Example 1, we use the same model as in the
full-Bayes analysis except that we do not relate Z1 and Z2 through a bivariate
normal distribution but simply through a second-order moment specification. We
use the Laplace approximation to find the moments of Z1 | X1. The effect of
this change is then passed to Z2 using (4) and (5) as in the other Bayes linear
kinematic methods. The results are shown in the rows labelled “Nonconjugate”
in Table 1. We can see that these results are the closest of all of the Bayes lin-
ear kinematic results to the corresponding full-Bayes moments (“Full Bayes 2”).
The “Nonconjugate” moments are closer to the “Full Bayes 2” moments than the
“WF17” moments are to either set of full-Bayes results. This is achieved with a
very small increase in computation compared to the conjugate-update methods.
The greatest discrepancy between the “Nonconjugate” and “Full Bayes 2” mo-
ments is in VarZ1|X1

(λ2) where the full-Bayes posterior variance is obtained by
integrating over the posterior distribution of Z2 to obtain the posterior variance
of λ2 = exp(Z2) but the Bayes linear kinematic method has available only the
first two moments of Z2.

In the rest of Section 4 we consider some special types of observational variables,
especially those which may be relevant to our prognostic index application.

4.2 Binary Variables

In the case of a binary variable X, a number of possibilities arise. One is simply to have
separate conditional models for the two possible values of the variable. We will see an
example of this in Section 5. Another is to let X = 1 if the corresponding Z ≥ 0 and
X = 0 if Z < 0 and, for this purpose, we assign to Z a normal prior distribution. In this
case the support of the posterior distribution is bounded at zero and, for this reason,
a quadrature method rather than the normal or Laplace approximation would be used.
We treat binary variables as a special case of ordinal variables. See Section 4.3.

4.3 Ordinal Variables

Suppose that we have ordered categories labelled 1, . . . , S and X takes the value of
the category label. Then X = s if and only if cs−1 ≤ Z < cs for a set of thresholds
c1, . . . , cS−1 where c0 → −∞ and cS → ∞. In this case the posterior support is bounded,
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often both below and above, and we use a quadrature method to find the posterior
moments.

Suppose that Xj is an ordinal variable and that the conditional mean of Zj , given
Z̄j = z̄j , is mj + b′j(z̄j − m̄j) where Z̄j = (Z1, . . . , Zj−1, Zj+1, . . . , ZJ)

′ and m̄j is the

corresponding mean vector, and the conditional variance is wj . Then, if Zj | Z̄j = z̄j
has a conditional normal distribution,

Pr(Xj ≤ s | Z̄j = z̄j) = Φ([cs −mj − b′j(z̄j − m̄j)]/
√
wj) = Φ(ks − d′j z̄j),

where ks = [cs − mj + b′jm̄j ]/
√
wj , dj = bj/

√
wj and Φ() is the standard normal

distribution function. So the marginal model corresponds to a conventional ordinal
regression with a probit link. For identifiability, when S > 2, we fix two thresholds,
usually c1 = 0 and cs−1 = 1. In the binary case S = 2 and we fix c1 = 0 and wj = 1.

To do the numerical integration we proceed as follows. Suppose that the prior dis-
tribution of Z is N(m, v). Let u = g(z) = Φ([z−m]/

√
v). Then U = g(Z) has a uniform

U(0, 1) prior distribution. Let c̃s = g(cs) for s = 1, . . . , S − 1, s̃0 = 0 and s̃S = 1. Then
the posterior distribution of U , given X = s, is U(c̃s−1, c̃s). Then the posterior mean
and variance of Z are E1(Z | X = s) = M1 and Var1(Z | X = s) = M2 −M2

1 , where

Mr =
1

c̃s − c̃s−1

∫ c̃s

c̃s−1

[g−1(u)]r du

where g−1(u) = m +
√
(v)Φ−1(u). We approximate the integral Mr using Mr ≈

H−1
∑H

h=1[g
−1(uh)]

r, where uh = c̃s−1 + (2h− 1)(c̃s − c̃s−1)/2H for h = 1, . . . , H.

4.4 Unordered Categorical Variables

Dealing with a categorical variable with S > 2 unordered categories, other than by
conditioning the whole model on the categories, requires the use of an underlying vector
variable with dimension S − 1. This can be handled within the general Bayes linear
kinematic and Bayes linear Bayes framework since an observation Xj can be associated
with a subset Zj = {Zj,1, . . . , Zj,S} containing more than one of the elements of Z. For
example, we can set

Pr(Xj = s | Zj,1 = zj,1, . . . , Zj,S = zj,s) =
exp(zj,k)∑S
s=1 exp(zj,s)

and this provides the likelihood. A constraint, such as Zj,1 = 0 or
∑S

s=1 Zj,s = 0 is
applied for identifiability. The elements of Zj which are not fixed can then be given a
multivariate normal prior distribution with marginal variances of 1.

A numerical integration of dimension S − 1 is required. This presents a difficulty if
S is large but, in certain special cases, such as when the categories have a hierarchi-
cal structure, the (S − 1)-dimensional integration can be replaced with a sequence of
integrations of lower dimension. We have not come across an application to prognostic
indices where anything other than a low dimensional integration was required.
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4.5 Interval Censored Variables

A variable subject to interval censoring may be handled by methods similar to those in

the case of ordinal variables. If X is not censored, then Z = X and we make a direct

observation. If the observation is censored then we observe that c1 ≤ Z < c2 for lower

and upper bounds c1 and c2 and the posterior support is bounded.

5 Application to Bayes Linear Bayes Prognostic
Networks

5.1 Introduction

Consider Figure 2. The nodes X1, . . . , X4 represent covariates. Just as Xj depends

on Zj , we have a lifetime T which depends on Z5 ≡ ZT . In general we can have

covariates X1, . . . , XJ depending on Z1, . . . , ZJ respectively and then an additional

dependent node T depending on an element ZJ+1 of the Bayes linear structure. Then

ZJ+1 represents our prognostic index. When we observe some or all of the covariates

this changes our expectation of ZJ+1 and therefore the index value which we report.

In routine use, with a new patient, i, we need a mean vector and a variance-covariance

matrix for the elements, Z1,i, . . . , ZJ,i, ZJ+1,i of the Bayes linear structure. Some or all

of these moments might differ between patients because of other information about

individual patients. Specifically, we might select certain important variables which are

always observed, such as Age and Sex, and condition the rest of the model on these. We

will refer to these as permanent covariates. We propose to allow the mean vector mi

of Zi = (Z1,i, . . . , ZJ,i, ZJ+1,i)
′ for patient i to depend on the values of the permanent

covariates for this patient, typically through a linear model. However we propose that

the variance-covariance matrix, V , should not depend on the permanent covariates.

The variance-covariance matrix might be developed in a general, unstructured, way,

as suggested by Figure 2. Alternatively we might impose some structure and exploit

conditional independences, perhaps by introducing mediating nodes which induce corre-

lation between related covariates. This might be done by expert judgement. A subjective

covariance structure might be developed using an approach similar to methods described

in Farrow (2003). On the other hand we might use analysis of historical data to help

determine a suitable network structure. Methods for structure learning for Bayesian

networks are discussed in, for example, Heckerman et al. (1995); Neapolitan (2003);

Margaritis (2003); Wang (2015). In our Bayes linear Bayes structure, the dependencies

between variables are specified by the variance-covariance matrix, V , of Zi. Given a

value for this matrix, it is straightforward to compute, for example, conditional corre-

lations given the values of some elements and this can help in the search for potential

conditional independences.

Once we have chosen a qualitative structure, we need to quantify it with values
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for means, variances and covariances. These might be chosen subjectively. More likely
we will use historical data and an offline learning phase in which we fit an analogous
model, with a fully specified prior distribution, using, for example, Markov chain Monte
Carlo (MCMC) methods to compute posterior summaries for model parameters. We
construct a model for the joint distribution of Z1,i, . . . , ZJ,i, ZJ+1,i, the corresponding
covariates, X1,i, . . . , XJ,i, and the lifetime, T . This provides a missing data model for
any missing covariate values in the historical data. The model for offline learning is the
same as the Bayes linear Bayes model except that we specify a full joint probability
distribution and a prior distribution for the unknown model parameters, including the
thresholds for ordinal covariates and the parameters involved in the means and the
variance-covariance matrix in the Bayes linear structure.

Currently we use the posterior means from the offline learning as values for model
parameters in our Bayes linear Bayes model. The historical data are, however, indepen-
dent of future patients, given the model parameters. This raises the possibility, that we
can avoid any such compromise and obtain exactly the expectations which we need. For
example, in (8) and (9), clearly we can obtain the posterior expectations of P(Z) and
P(Z)E(Z) directly from the MCMC computations in the learning phase. However fur-
ther work is required to address the problem of parameter uncertainty in the adjusted
expectations and precisions. Nevertheless, with a large historical data set, such effects
are likely to be small.

A possible alternative to using MCMC in the offline-learning phase is the integrated
nested Laplace approximation (INLA) (eg Rue et al., 2009; Martino et al., 2011). Abdul
Jalal (2020) discusses the use of INLA for survival data with missing covariate values.

Once we have a fully specified model, in routine use with new patients we compute
adjusted expectations of the prognostic index given observations of some or all of the
covariates. Because we can do the calculation when only a subset of the covariates are
observed, we can include a greater number of potential covariates in our model and
therefore use more information when it is available.

5.2 The Latent Variables Z

In the offline-learning phase, the vector Zi = (Z1,i, . . . ZJ,i, ZJ+1,i)
′, where ZJ+1,i ≡

ZT,i, is given a multivariate normal distribution, conditional on the values for patient

i of any permanent covariates X
(p)
i , such as Age and Sex. The mean vector is mi =

E(Zi | X
(p)
i ) and the variance matrix is V = Var(Zi | X

(p)
i ). To facilitate specification

of a prior distribution for the (J + 1)(J + 2)/2 unique elements of V , we factorize the

distribution of Zi | X
(p)
i into a distribution for Z1,i | X(p)

i and, for j > 1, conditional

distributions of Zj,i given Z1,i, . . . , Zj−1,i and X
(p)
i . That is, for j > 1, we regress Zj,i

on its predecessors. Thus

Z1,i = m1,i + ε1,i, and Zj,i = mj,i +

j−1∑
k=1

φj,k(Zk,i −mk,i) + εj,i, (j > 1) (10)
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where φj,k is the regression coefficient of Zj,i on Zk,i, εj,i ∼ N(0, τ−1
j ) and εj,i is inde-

pendent of εj′,i′ unless j = j′ and i = i′. The means are given by

mj,i = μj +

H∑
h=1

γj,hX
(p)
h,i

where the values of the permanent covariates for patient i are X
(p)
1,i , . . . , X

(p)
H,i and γj,h is

the regression coefficient of Zj,i on X
(p)
h,i . The variables {X(p)

h,i } might include indicator
variables for any categorical permanent covariates, such as Sex.

Our model parameters thus include the J + 1 means, μ1, . . . , μJ+1, the (J + 1)H
regression coefficients, γ1,1, . . . , γJ+1,H , on the permanent covariates and our new pa-
rameters for V which are the J+1 conditional precisions τ1, . . . , τJ+1 and the J(J+1)/2
coefficients φj,k. The form (10) gives the possibility of introducing conditional indepen-
dence structure, if required, by setting some of the regression coefficients to zero and
thus omitting some edges in the directed graph. The regression parameters φj,k are
unrestricted and the conditional precisions τj just need to be positive. Expressing prior
beliefs in terms of these parameters allows greater flexibility in the specification of a
prior distribution than using, for example, an inverse-Wishart prior. Furthermore, espe-
cially if the order of the variables is chosen to reflect prior perceptions of the direction
of causality or possible conditional independences, we believe that prior specification
in terms of these regression parameters is much easier than directly in terms of the
elements of V .

The use of this reparameterisation of a variance matrix was introduced, in the con-
text of models for longitudinal data, by Pourahmadi (1999), who explained its rela-
tionship to a square-root-free Cholesky decomposition of the precision matrix V −1. An
explanation of this relationship is given in the Supplementary Materials (Al-Taie and
Farrow, 2022). See also Daniels and Pourahmadi (2002). Ibrahim et al. (2001) use a
similar structure, applied directly to the covariates, as a missing-data model in survival
and Zhao (2010) discusses this and other approaches to missing data in survival.

If we wish to use the historical data to select a more sparse structure, with some
edges omitted, then one possibility is to use a shrinkage prior for the parameters. See,
for example, Wang (2015); Carvalho et al. (2009).

5.3 Marginal Models for Covariates

We need to specify the conditional distributions of the covariates Xj given the corre-
sponding variables Zj , and of T given ZT . Some such distributions involve parameters
and we use the offline learning to choose values for these. We will discuss the case of
the lifetime T in Section 5.4.

In the case of an ordinal covariate, it is necessary to learn about the values of the
thresholds, c1, . . . , cS−1. However, since the mean and variance of Z are both unknown,
for identifiability we fix two thresolds. Thus, if S = 3, we can fix c1 = 0 and c2 = 1. If
S = 4, then we can fix c1 = 0 and c3 = 1 and then give c2 a beta prior distribution.
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For S > 4, we can fix c1 = 0 and cS−1 = 1 and then give u1, . . . , uS−2 a Dirichlet prior
distribution and, for s = 2, . . . , S − 2, let cs =

∑s−1
i=1 ui.

Some continuous covariates may be suitable for direct inclusion in the Bayes linear
structure, perhaps transformed through a suitable function g() so that Zj = g(Xj). In
this case Zj might be observed. If we have more than one such directly observed element
of Z, the covariance structure of Z might be such that the conditional independence
conditions for the use of (8) and (9) are violated. To overcome this, when updating,
we collect all such directly observed elements into a single vector observation, where
there may be nonzero conditional covariances between the elements, given the non-
directly observed elements of Z. The directly observed elements can include interval-
censored variables when they are not censored. In other cases we might prefer a less
direct relationship. For example we might set Zj = E[g(Xj ]. We might then structure the
graph so that each suchXj has a single parent Zk(j) so that the conditional independence
conditions given in Section 3.4 are satisfied. Then we can include g(Xj) in updating in
the same way as other covariates except that we update the mean and variance of Zk(j)

using Bayes linear adjustment.

5.4 Lifetime Distribution

In the routine use of our Bayes linear Bayes prognostic index with new patients, we
do not observe T or ZT . We simply need to compute the expectation of a quantity
related to T , given the available information. We order the variables in (10) so that
ZT comes last. Then, to compute the expectation of ZT given any information on the
covariates, that is given any current values of the expectations of Z1, . . . , ZJ , we do
not need to specify τT , where τ−1

T = σ2
T = Var(εT ), the conditional variance of ZT

given Zc = (Z1, . . . , ZJ)
′. To see this, first consider the dependence of ZT on Zc. The

variance-covariance matrix of Z can be written as

Var(Z) =

(
Vc c
c′ VT

)
,

where Vc is the variance-covariance matrix of Zc, c is the covariance between Zc and
ZT and VT is the marginal variance of ZT . Therefore we can write

E(ZT | Zc) = mT + c′V −1
c [Zc −mc], (11)

where mT is the prior mean of ZT and mc is the prior mean of Zc. Moreover (11)
continues to hold when we gain information, I, which changes our beliefs about some
or all of the elements of Zc. In particular

E(ZT | I) = mT + c′V −1
c [E(Zc | I)−mc]

which does not involve τT . Further details are given in the Supplementary Materials
(Al-Taie and Farrow, 2022).

In the offline-learning phase, we use observed lifetimes and we do need to spec-
ify a model for the conditional lifetime distribution. An approach which is analogous
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to traditional survival models is to use a parametric model, such as a Weibull dis-
tribution, for the conditional lifetime distribution given Zc. In the case of a Weibull
distribution, for patient i, we use a Weibull(α, λi) distribution for patient i, where
ηi = log(ρi) = α−1 log(λi) and we set ηi = E(ZT,i | Zc). We do not really need to spell
out the relationship between Ti and ZT,i, merely to suppose that it exists and specify
the relationship between the conditional mean of ZT,i and the scale parameter of the
lifetime distribution. However we can describe the relationship as follows, conditioning
throughout on the values of m1,i, . . . ,mJ,i and φJ+1,1, . . . , φJ+1,J .

Let m∗
T,i = mJ+1,i+

∑J
j=1 φJ+1,j(Zj,i −mj,i) be the conditional mean of ZT,i given

Zc,i = (Z1,i, . . . , ZJ,i)
′. Let ZT,i | m∗

T,i ∼ N(m∗
T,i, σ

2
T ). Then Ti | m∗

T,i ∼ Weibull(α, λi)
if

Ti = exp(−m∗
T,i)

{
− log

[
1− Φ

(
ZT,i −m∗

T,i

σT

)]}1/α

, (12)

where Φ() is the standard normal distribution function and λi = exp(αm∗
T,i). We show

this as follows. The distribution functions of ZT,i and Ti are FN (z; m∗
T,i, σ

2
T ) = Φ({z−

m∗
T,i}/σT ) and FW (t; λi, α) = 1−exp(−λit

α) respectively. Then setting FW (Ti; λi, α) =

FN (ZT,i; m∗
T,i, σ

2
T ) and solving for Ti in terms of ZT,i gives (12).

The ratio of two quantiles in a Weibull(α, λi) distribution depends only on α. Sim-
ilarly, the ratio of two quantiles in the lognormal(m∗

T,i, σ
2
T ) distribution of exp(ZT,i) |

m∗
T,i depends only on σ2

T . The quantiles at probability p for these two distributions

are [− log(1 − p)/λi]
1/α and exp[m∗

T,i + σTΦ
−1(p)] respectively. The logarithm of the

ratio of two quantiles, at probabilities p1 and p2, is RW (α, p1, p2) = α−1 log[log(1 −
p1)/ log(1−p2)] in the Weibull case and RLN (σ2

T , p1, p2) = σT [Φ
−1(p1−Φ−1(p2)] in the

lognormal case. We can fix the relationship between α and σ2
T by choosing p1 and p2

and setting RW (α, p1, p2) = RLN (σ2
T , p1, p2). For example, we can use the upper and

lower quartiles, so p1 = 0.75 and p2 = 0.25. This gives α = 1.166σ−1
T .

An alternative would be to set ηi = ZT,i, rather than ηi = m∗
T,i, in a Weibull(α, λi)

distribution, with ηi = log(λi)/α. This corresponds to introducing lognormal frailties.
In this case τ−1

T would be the variance of the logarithms of the frailties and we would
need to learn about both α and τT in the offline learning. With univariate survival data,
separating the effects of these two parameters in the likelihood depends on a change in
the shape of the survival function and the degree of non-proportionality in the hazards.

Of course, distributions other than the Weibull distribution could be used. Wil-
son and Farrow (2017) used Bayes linear kinematics in survival analysis using a semi-
parametric approach with a piecewise-constant hazard model.

6 Non-Hodgkin’s Lymphoma Example

6.1 Background

As an example, we use survival prognosis for patients with non-Hodgkin lymphoma.
To build our model we used historical data collected by the Scotland and Newcastle
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Lymphoma Group from patients in Scotland and the North of England, UK, (Proctor
and Taylor, 2000). The data set contained 1391 patients. A large proportion of these
patients had at least some missing covariate values. The data set was used by Sieniawski
et al. (2009) who used fourteen of the many covariates. Details of these are summarised
in the Supplementary Materials (Al-Taie and Farrow, 2022). Three of the fourteen
covariates are quantitative, seven are binary, two are ordinal and one is an interval-
censored continuous variable, where the observation was recorded as “normal”, if the
measurement was inside the normal range, or as an actual value if it was not. Only 636
(45.7%) of these patients had observations of all fourteen of these covariates recorded.
The outcome variable is survival time, from diagnosis. This was right-censored in 653
cases, with 738 observed death times. For further details, see, for example, Zhao (2010);
Abdul Jalal (2020). Abdul Jalal (2020) gives a survey of relevant medical literature
which can be used in the construction of prior distributions.

Computer code used in the example is available for download at

https://github.com/ZigZag1dr/AlTaieFarrow1.

6.2 Example with Six Covariates

To illustrate our method, we initially use a subset of these fourteen covariates, consist-
ing of Age, Sex, Stage (Ann Arbor Stage, Carbone et al., 1971), an ordinal variable,
Hb, blood haemoglobin concentration, a continuous variable, Wbc, white blood cell
count, also treated as a continuous variable, and Albumin, a binary variable indicat-
ing whether serum albumin concentration was within the normal range. We used the
logarithm of the white blood cell count to make the distribution more symmetric.

We chose to treat Age and Sex, which are always observed, as permanent covariates
and to condition the rest of the model on these. Thus the means of Z1, . . . , ZJ , ZJ+1,
but not the variances and covariances, depend via a linear model on age and sex. We
adopted a general covariance structure for the Bayes linear network, with Z1, . . . , Z4,
for the remaining covariates, and ZT related using the regression structure described
in Section 5.2. Specifically, the covariates were numbered so that X1,i, X2,i, X3,i and
X4,i are, respectively, Hb, the logarithm of Wbc, Stage and Albumin (0: normal,
1: abnormal) for patient i. Let X5,i = Ti, the lifetime for patient i. Let Xa,i + 60 be
the age in years and Xs,i indicate the sex (−1: female, 1: male) of patient i. Then, for
j = 1, . . . , 5, mj,i = μj + γj,aXa,i + γj,sXs,i. The regression structure is then given by
(10).

The marginal models were as follows. For j = 1, 2, Xj,i = Zj,i. For j = 3 (Stage),
Xj,3 = s if and only if cs−1 ≤ Z3,i < cs for cut-points c0 → −∞, c1 = 0, c2, c3 = 1, c4 →
∞. For j = 4 (Albumin), X4,i = 0 if Z4,i < 0 and X4,i = 1 if Z4,i ≥ 0. For j = 5
(lifetime), we used a Weibull distribution. Of course other forms of lifetime distribution
could also be used, but, in our example, we used Ti ∼ Weibull(α, λi), where

log λi = α

{
m5,i +

4∑
k=1

φ5,k(Zk,i −mk,i)

}
.
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Figure 3: Bayes linear kinematic prognostic index values against the corresponding “full-
Bayes” values in the 6-covariate example, with line of equality in red.

The computations in the offline-learning phase were done using JAGS through the R
package rjags (Plummer, 2017; R Core Team, 2018). The JAGS model specification is
given in the Supplementary Materials (Al-Taie and Farrow, 2022).

Having completed the offline learning, we calculated the Bayes linear kinematic
(BLK) prognostic index values for all of the patients in the dataset with parameter
values obtained from the offline learning. For comparison with the BLK prognostic
index values, we also used MCMC to calculate “full Bayes” values. To make the re-
sults comparable and represent routine use in practice, we fixed parameters in the “full
Bayes” calculation at the values obtained from the offline learning. The R code for the
Bayes linear kinematic calculations and the JAGS model specification for the full-Bayes
comparison are given in the Supplementary Materials (Al-Taie and Farrow, 2022).

Figure 3 shows the BLK index values plotted against the corresponding “full-Bayes”
values. We can see that the values from the BLK adjustment are very close to the
posterior means from the full-Bayes analysis. To be able to see the agreement more
clearly we show a Bland and Altman agreement plot (Bland and Altman, 1986) in
Figure 4. The difference between the BLK index value and the “full-Bayes” value is
plotted against the mean of these values for each patient. We can see that the mean
difference is very close to zero and the differences are small compared to the scale of
the index values. Some points are shown coloured. These are cases where the value of
at least one covariate is missing. Only Hb, Wbc and Albumin have missing values.
There were no missing values for Stage. There is no obvious pattern to the locations
of the missing-value cases.

Using non-conjugate marginal updates with normal marginal priors has brought the
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Figure 4: Bland-Altman plot for Bayes linear kinematic prognostic index values and
“full-Bayes” values in the 6-covariate example. The red lines mark the mean difference
and mean ± 2 std.dev. Coloured points are cases with missing covariate values as follows.
Red: Hb, Green: Wbc, Dark blue: Albumin, Light blue: Hb, Wbc, Pink: Hb,
Albumin, Yellow: Wbc, Albumin, Grey: Hb, Wbc, Albumin.

results of the Bayes linear kinematic analysis closer to those obtained in an analogous
full-Bayes analysis when compared to earlier work. The difference between the Bayes
linear kinematic analysis and the full-Bayes analogue is now largely in how changes in
belief are propagated through Z when data are observed, whether this is by Bayes linear
kinematics using only first and second moments or a more complicated change in a joint
probability distribution. This example suggests that, in practical terms, there is little
difference between the results.

6.3 Example Using Ten Covariates

We also investigated the construction of a network using ten of the covariates used by
Sieniawski et al. (2009). As in the 6-covariate example, we treated Age and Sex as
permanent covariates. In the offline-learning phase, the additional four covariates were
appended to the regression structure following the four in the six-covariate example,
in the order as follows: LDH, serum lactate dehydrogenase level, units per litre, an
interval-censored variable; ECOG, Eastern Cooperative Oncology Group performance
status (Oken et al., 1982), an ordinal variable with five categories; AP, serum alka-
line phosphatase concentration, a binary variable (normal or high); Urea, serum urea
concentration, a binary variable (normal or high).

In the case of LDH, observations within the normal range were simply recorded as
“normal” but values outside the normal range were recorded numerically. The normal
range varies between centres of data collection. Zhao et al. (2014) converted LDH values
into an ordinal variable by first dividing the LDH value by the upper limit of the normal
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range and then categorising this ratio, R, into three categories: 1 for R ≤ 1, 2 for
1 < R ≤ 3 and 3 for R > 3. Like Zhao et al. (2014), we transformed the LDH values
using the limits of the normal range. However we did not convert observed values into
an ordinal variable but rescaled so that, if Y is the original LDH value and y0 and y1
are the lower and upper limits of the normal range, then we used X = (Y −y0)(y1−y0)
as our covariate so that the lower and upper limits are always 0 and 1. Values between
these limits are interval censored. If the observation is not censored, then it is treated
as a continuous, normally distributed, observation. If the observation is censored, then
it is treated as an observation on an ordinal variable with three categories, 0, 1 and 2,
with the observed value being 1.

After completing the offline-learning, as in the six-covariate example, computation
of the BLK index values for patients was very fast and no problems were encountered.
The corresponding “full-Bayes” computation, used for comparison, involved sampling
values for a number of unobserved elements of Z. If no covariates were missing and LDH
was not censored, this number was six. Any missing covariate increased this number by
one, as did LDH being censored. Mixing and convergence of the MCMC chains need
to be considered in the “full-Bayes” calculation. In contrast, the Bayes linear kinematic
computation is deterministic so there were no concerns about mixing or convergence.
As in the six-covariate example, there is a good agreement between the index values
given by Bayes linear kinematics and the “full-Bayes” analogue. Further details of this
larger example are given in the Supplementary Materials (Al-Taie and Farrow, 2022).

7 Conclusions

In this paper, we have extended the applicability of Bayes linear kinematics and Bayes
linear Bayes graphical models by developing the use of non-conjugate marginal prior
distributions for observable variables. We have then described the application of these
ideas to the routine calculation of prognostic index values in medical survival.

The purpose of our Bayes linear Bayes prognostic network is the quick and easy
routine calculation of prognostic index values for new patients, potentially using a large
number of covariates but able to work when only some of these are observed. The
missing-data ability can be achieved in a full-Bayes model by modelling the joint dis-
tribution of all of the variables, rather than just the conditional distribution of the
lifetime given the covariates. However, in a full-Bayes model, we would need to inte-
grate over the joint distribution of the missing covariates, conditional on the observed
values, which may be computationally demanding. In our Bayes linear Bayes network,
even with non-conjugate marginal updates, we typically need no more than a series of
one-dimensional integrations which can usually be done very quickly.

Furthermore, a full-Bayes analysis typically requires a lot of decisions to be made
about the forms of relationships between variables and these choices may have little
basis either in expert judgement or the analysis of historical data. In contrast, the
Bayes linear Bayes approach requires a more limited specification of relationships in
terms of first and second moments and focussing on these more limited judgements
might lead to sounder choices.
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Our method might be regarded as an approximation to a full-Bayes analysis. Wilson

and Farrow (2017) compared the behaviour of Bayes linear kinematic belief adjustments

with full-Bayes posterior inferences in the case of a piecewise constant hazard survival

model and found that the results were generally close. Our use of non-conjugate updates

brings our model closer to the corresponding full-Bayes model and gives Bayes linear

kinematic adjusted expectations which are even closer to the full-Bayes posterior means.

Our prototype prognostic network produces prognostic index values using all, or

only some, of the possible covariates almost instantly and has the potential to be used,

for example, as a Web-based calculator.

An alternative method, not involving BLK or MCMC in the computation of an

index value for a new patient, might be developed by using the offline-learning phase

to develop a separate predictive formula for each possible configuration of missing and

censored covariates. However the number of such configurations might be large and

some might not be present in the historical data, or only represented by a small number

of cases. It would therefore be necessary to use a model for the joint distribution of the

covariates and, when different types of covariates are involved, the resulting calculations

for the conditional expectation of the index might not be straightforward.

This paper is not intended to deal with questions such as variable selection. It is

assumed that the covariates are all thought to contain information which is at least

potentially useful in prognosis. Similarly, the paper is not concerned specifically with

answering questions of whether particular covariates are or are not useful predictors of

survival. We might, however, learn something about this latter question in the offline-

learning phase. For example, a particular latent variable Zj might turn out to be almost

conditionally uncorrelated with ZT given some other elements of Z. This latter possibil-

ity is interesting since there may be little to be gained by measuring Xj if certain other

covariates have already been measured. This leads to the interesting decision problem

of whether to observe additional covariates when making the observations might entail

costs or risks.

Supplementary Material

Bayes linear Bayes networks with an application to prognostic indices Supplementary

Materials (DOI: 10.1214/22-BA1314SUPP; .pdf). The Supplementary Material contains

the following items. Numbers in parentheses refer to sections of this paper. Sections 1

and 2 give further details of the square-root-free Cholesky decomposition of the precision

matrix (5.2) and the adjusted expectation of ZT (5.4) respectively. Section 3 gives details

of the data set in the non-Hodgkin’s lymphoma example (6) and the analyses with six

and ten covariates are described in Sections 4 and 5. JAGS model specifications for the

offline learning and the “full-Bayes” comparison are given in Sections 7 and 9 while

Section 8 gives R functions used in the Bayes linear kinematic calculations. The code is

all available in a repository specified in Section 6.

https://doi.org/10.1214/22-BA1314SUPP
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