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Normal Approximation for Bayesian Mixed
Effects Binomial Regression Models

Brandon Berman∗, Wesley O. Johnson†, and Weining Shen‡

Abstract. Bayesian inference for generalized linear mixed models implemented
with Markov chain Monte Carlo (MCMC) sampling methods have been widely
used. In this paper, we propose to substitute a large sample normal approxima-
tion for the intractable full conditional distribution of the latent effects (of size k)
in order to simplify the computation. In addition, we develop a second approxi-
mation involving what we term a sufficient reduction (SR). We show that the full
conditional distributions for the model parameters only depend on a small, say
r � k, dimensional function of the latent effects, and also that this reduction is
asymptotically normal under mild conditions. Thus we substitute the sampling
of an r dimensional multivariate normal for sampling the k dimensional full con-
ditional for the latent effects. Applications to oncology physician data, to cow
abortion data and simulation studies confirm the reasonable performance of the
proposed approximation method in terms of estimation accuracy and computa-
tional speed.

Keywords: asymptotic approximation, binomial regression, generalized linear
mixed models, Markov chain Monte Carlo, sufficient reduction.

1 Introduction

Generalized linear mixed models (GLMMs) have been widely used for modeling lon-
gitudinal and clustered data in many scientific applications (McCulloch, 1996; Diggle
et al., 2002). Statistical inference for GLMMs has received a lot of interest over the
past three decades. In frequentist literature, it is common to consider a likelihood-based
approach (McCulloch, 1997; Breslow and Clayton, 1993), which often requires a painful
high-dimensional numerical integration and the derivation of large-sample asymptotic
results for inference. Consequently, Bayesian methods have become more attractive as
they provide a useful alternative to numerical integration by adopting posterior sam-
pling techniques such as Markov chain Monte Carolo (MCMC) methods. The MCMC
methods for GLMMs are usually carried out using Gibbs sampling (Zeger and Karim,
1991) and Metropolis-Hastings methods (Gamerman, 1997); and those methods can
now be conveniently implemented using standard software platforms such as BUGS
(Spiegelhalter et al., 2003) and JAGS (Plummer, 2012).

Despite the popularity of MCMC methods for GLMMs, in some cases, posterior
sampling can still be challenging due to computational issues such as the convergence
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of Markov chains and the lack of efficient sampling methods; particularly with a large
number of latent effects (Hadfield, 2010). The main focus of this paper is to provide a
simple-yet-useful alternative by considering a large sample approximation method that
could have the potential to improve upon the computational efficiency of MCMC sam-
pling for GLMMs. Large sample approximation is a classical approach that has been
well explored in many areas of statistics, including Bayesian statistics and GLMMs.
For example, asymptotic normality results were established for posterior distributions
under different conditions (Walker, 1969; Chen, 1985). Laplace approximation (Tier-
ney and Kadane, 1986) and the integrated nested Laplace approximation (INLA) (Rue
et al., 2009) provided a computationally convenient first-order approximation to a pos-
terior density function by a normal density centered at the posterior mode. For GLMMs,
Breslow and Clayton (1993) proposed the penalized quasi-likelihood method by approx-
imating the marginal quasi-likelihood function.

More recently, Yee et al. (2002) obtained an asymptotic joint normal approximation
for the posterior distributions of two blocks of variables, i.e., one block of GLMM model
parameters and another block of random effects. They first obtained the conditional
asymptotic distributions for normalized block variables, and then, due to compatibility
of the limiting distributions, they obtained the appropriate joint asymptotic distribu-
tion. This result was later generalized to a model with multiple blocks of variables by
Su and Johnson (2006). Posterior normality was also obtained for stochastic processes
by Weng and Tsai (2008). Fong et al. (2010) gave a comprehensive review of the imple-
mentation of INLA for GLMMs. Baghishani and Mohammadzadeh (2012) also obtained
asymptotic normality results for the joint posterior distribution of the model parameters
and random effects in GLMMs by using Stein’s Identity.

Unlike the aforementioned methods that focus on establishing joint asymptotic nor-
mality results for general model forms, our interest here focuses on a large sample
approximation for the block that is more difficult to sample, namely the one for latent
effects. Using our normal approximation for the latents, the normal prior for regres-
sion coefficients is conditionally conjugate. The gamma prior for the precision is also
conditionally conjugate.

We initially develop the concept for a particular GLMM, the mixed effects binomial
regression model

Yi
⊥∼ Bin(ni, pi), logit(pi) = ui, ui | xi, β

⊥∼ N(xiβ, 1/τ), i = 1, . . . , k, (1)

where xi is a 1× p vector with a one in the first slot and with p− 1 predictor values for
unit i in the remaining slots; β is a vector of regression coefficients. The main reason
for considering this model is because the type of data we envision involves obtaining
Bernoulli success/failure observations for units that are clustered. For example suppose
we were to count the number of patients in each of k hospitals who acquired nosocomial
infections while under treatment, during a specified amount of time. Since the number
of treated patients at hospital i, ni, would be known, the corresponding number of
infections, yi, might initially be regarded as a binomial count. But when considering
multiple counts, we might realize that the individual Bernoullis within hospitals would
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be correlated since the same environment, including hospital staff, physical space, man-
agement, etc is shared by all who are being treated. So extra binomial variation is to
be expected and this model will account for it. A main goal for the ensuing analysis of
such data would be to estimate regression effects, β, corresponding odds ratios, eβ , and
probabilities of infection, expit (xiβ) = exp(xiβ)/{1 + exp(xiβ)}. We consider a more
complex model later in the paper after exploring this one.

Denote the observed data as y = {y1, . . . , yk}. The MCMC approach for making nu-
merical approximations to the joint conditional distribution, p(β, τ, u | y) involves sam-
pling from the full conditional distributions p(β | τ, u, y), p(τ | β, u, y), and p(u | β, τ, y).
With conditionally conjugate priors for β and τ , the first two distributions are easy to
sample. However sampling from the third generally involves adaptive rejection sampling
(Gilks and Wild, 1992). We consider a large-sample normal approximation to replace the
nonstandard conditional density kernels for the ui’s. This allows us to bypass the need
of implementing the usual adaptive rejection step within the Gibbs sampler and hence
renders more convenient computation. In particular, we explore two types of the normal
approximation methods. One is to approximate the conditionals for each ui separately
with a normal distribution; and the other is to construct a low-dimensional statistic,
T , in replacement of the potentially high-dimensional collection of all k ui’s and then
approximate the conditional distribution of T with a normal distribution. In our current
illustration we are able to sample a two-dimensional T (u), instead of k dimensional u,
in order to make full inferences about all regression parameters, probabilities of success
and odds ratios,

The normal approximation and dimension reduction ideas that we develop in this
paper are in general applicable to other mixed effect models although we focus on bi-
nomial regression for demonstration. Our goal is to introduce these ideas and methods,
and to show their fittness, rather than to claim any superiority over existing computa-
tional methods. We will see clearly that JAGS is much faster than our methods due to
its C++ based platform being superior to our R code. Moreover, their optimization of
the (Gilks and Wild, 1992) adaptive rejection scheme is surely superior to ours. We also
acknowledge that the Pólya-gamma data augmentation (Polson et al., 2013) scheme for
binomial regression with logit link, which manages to perform Gibbs sampling exactly
with an efficient augmentation scheme, is surely an attractive alternative to other possi-
bilities including ours. Instead, the main goal of this paper is to present a neat idea and
show its promise as a valuable alternative for analyzing Bayesian mixed effect models,
especially when the number of latent effects is large. Normal approximation is a classi-
cal idea that has been widely studied in all areas of statistics. It is our hope that the
work presented in this paper may pave the way for future investigation of more compli-
cated GLMMs (e.g., with more levels of random effects and general link functions) and
development of efficient computational toolkits.

We give a more detailed description of the proposed methodology in Section 2.
We evaluate the empirical performance of the proposed method through an oncology
physician data analysis and additional simulation studies in Sections 3 and 4. We further
extend our method to a two-level logistic mixed effect model in Section 5, and we provide
an elaborate sketch of theoretical details that supports its use in this more complex
model. Several future working directions are discussed in Section 6.
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2 Method

2.1 Normal approximation

Following Gelfand et al. (1995), we consider a mixed effect binomial regression model
that involves centering the random effects, ui, on xiβs. This parametrization also facil-
itates our normal approximation here. The augmented data likelihood is

k∏
i=1

(
ni

yi

)
pyi

i (1− pi)
ni−yi

√
τ

2π
exp

(
−τ(ui −Xiβ)

2

2

)

∝ τk/2 exp

{
k∑

i=1

[yi logit(pi) + ni log(1− pi)]−
τ(u−Xβ)′(u−Xβ)

2

}
, (2)

where u = (u1, u2, . . . , uk)
′ and X = (x′

1, x
′
2, . . . , x

′
k)

′.

We assign independent prior distributions on β and τ ; β ∼ Np(B0, C) and τ ∼
Ga(a/2, b/2) where B0, C, a, b are hyper-parameters determined using a priori knowl-
edge. Consequently, the joint conditional for (β, u, τ) given the data is proportional
to

τ (a+k)/2−1 exp

{[
k∑

i=1

[yiui − ni log(1 + exp(ui))]

]
− τ

2
[(u−Xβ)′(u−Xβ)

+(β −B0)
′C−1(β −B0) + bτ

]}
. (3)

To approximate inferences using MCMC methods, we obtain the full conditional distri-
butions:

β |u, τ, y,X ∼ Np

(
(τX ′X + C−1)−1(X ′uτ + C−1B0), (τX

′X + C−1)−1
)
,

τ |u, β, y,X ∼ Ga

(
a+ k

2
,
b+ u′(Ik −X(X ′X)−1X ′)u+ (β − β̂)′X ′X(β − β̂)

2

)
,

and

p(u |β, τ, y,X) ∝ exp

{
k∑

i=1

ni [π̃iui − log(1 + exp(ui))]

}
exp

{
−τ

2
(u−Xβ)′(u−Xβ)

}
,

(4)

where π̃i = yi/ni for all i and β̂ = (X ′X)−1X ′u. Here we assume π̃i ∈ (0, 1) since
a Poisson approximation will work better than a normal approximation if π̃ = 0 or 1.
Since the ui’s are mutually independent, we only need to sample the full conditional dis-
tributions of the individual ui’s, which is usually accomplished with adaptive-rejection
sampling or slice sampling.
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We propose to approximate the conditional distribution for u |β, τ, y,X in (4) using
a multivariate normal distribution with diagonal covariance structure due to the afore-
mentioned conditional independence. This is accomplished by expanding the terms in
the first exponent of (4) in a particular second order Taylor expansion and recognizing
that the first term in the expansion does not involve u, the second term is zero, and
the third term is a quadratic form in u. Moreover, since (u − Xβ)′(u − Xβ) is itself
a quadratic form in u, it is possible to complete the square to obtain a normal kernel
for the conditional pdf for u. The precise result is given in Proposition 1 below and is
proven in the Supplementary File (Berman et al., 2022), Section S1.

Let ũi = logit(π̃i) and ũ = (ũ1, ũ2, . . . , ũk)
′, π̃ = (π̃1, . . . , π̃k)

′, and Dnπ̃(1−π̃) be
a k×k diagonal matrix, Dnπ̃(1−π̃) = diag{niπ̃i(1 − π̃i) : i = 1, 2, . . . , k}. The following
proposition establishes a normal approximation for the conditional distribution of u.

Proposition 1. The ratio of the kernel for the full conditional density function for
u |β, τ, y,X defined in (4) and the kernel of the pdf for the following normal distribution

Nk

(
(Dnπ̃(1−π̃) + τIk)

−1(Dnπ̃(1−π̃)ũ+ τXβ), (Dnπ̃(1−π̃) + τIk)
−1

)
. (5)

converges in probability to one as mini=1,...,k(ni) → ∞, with k fixed.

2.2 Normal approximation with sufficient reduction

In most statistical applications, a large sample size is an advantageous feature as more
information is usually helpful for understanding scientific phenomena. However, in our
case, methods with a large k can be difficult since our normal approximation method
relies on Gibbs sampling; and since we sample the full conditional for u |β, τ, y,X as
a k-dimensional multivariate normal distribution, the computational costs increase as
k increases. In this section we propose a solution that we call, “sufficient reduction”,
where the name comes from the concept of sufficient statistics, even though our method
does not involve a sufficient statistic in the classical sense. It is a form of conditional
sufficiency. Our proposal is motivated by examining the conditional distributions for
β | τ, u, y,X and τ |β, u, y,X.

Recall β̂ = (X ′X)−1X ′u. If we let T1(u) = β̂, then the conditional distribution of β
depends on u only through T1(u). The rate parameter of conditional distribution of τ
depends only on u through (β−T1(u))

′X ′X(β−T1(u))+u′(Ik−X(X ′X)−1X ′)u, which
motivates us to select T2(u) = u′(Ik −X(X ′X)−1X ′)u. To summarize, we consider the
following “conditionally sufficient reduction” for u,

T (u) ≡ (T1(u), T2(u)), T1(u) = (X ′X)−1X ′u, T2(u) = u′(Ik −X(X ′X)−1X)u. (6)

Thus if we sample from the full conditional for T , we no longer need to sample the
full conditional for u, or its approximation, in order to make inferences about (β, τ), or
functions of it.

The conditional distributions for β and τ are now expressed as

β |T1(u), τ ∼ Np

(
(τX ′X + C−1)−1(X ′XT1(u)τ + C−1B0), (τX

′X + C−1)−1
)

(7)
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τ |β, T1(u), T2(u) ∼ Ga

(
a+ k

2
,
b+ T2(u) + (β − T1(u))

′X ′X(β − T1(u))

2

)
. (8)

Since the conditional distribution of u is approximately multivariate normal, the
conditional distribution for T1(u) is also approximately multivariate normal (exactly
normal of course if u is exactly normal). The conditional distribution for T2(u) involves
a quadratic function of u, and it can also be approximated by a normal distribution, for
large k. More specifically, we consider a multivariate normal approximation for the joint
conditional distribution of (T1(u), T2(u)). Before asserting formal asymptotic normality,
it is straightforward to obtain the conditional moments for T (u):

E [T1(u) | else] = Au0, E [T2(u) | else] = tr [BD0] + u′
0Bu0,

var[T1(u) | else] = AD0A
′, var[T2(u) | else] = 2 tr [BD0BD0] + 4u′

0BD0Bu0,

cov[T1(u), T2(u) | else] = 2AD0Bu0, (9)

where A = (X ′X)−1X ′ ∈ R
p×k, PX = X(X ′X)−1X ′, B = Ik − PX , D0 = (Dnπ̃(1−π̃) +

τIk)
−1, u0 = D0γ, and γ = Dnπ̃(1−π̃)ũ+Xβτ . Based on (9), the posterior samples can

be obtained by the usual Gibbs sampling of β, τ and (T1, T2).

For the formal result, we treat the result in Proposition 1 as if it were exact. Thus we
have u ∼ Nk(u0, D0) and therefore T1(u) = Au ∼ Np(Au0, AD0A

′). We then standard-

ize T1 and T2 as T̃1 = (AD0A
′)−1/2(T1 − Au0), T̃2 = (T2 − E(T2))/sd(T2) and proceed

to show that the joint distribution for (T̃1, T̃2) converges to a (p+ 1) dimensional stan-
dard multivariate normal. From a practical standpoint, when we do computations, we
can just use the normal distribution with the moments given in Equations (9) when we
sample the full conditional for T .

Technical assumptions (A1)-(A4) are given in the Supplementary File Section S1.
Assumption (A1) is easily satisfied since (Ik − sBD0) should be very close to Ik as s is
sufficiently small. Assumptions (A2) and (A3) require the existence of the asymptotic
variance for T̃2 and its covariance with T̃1. Assumption (A4) is needed for handling
the remainder terms in the Taylor expansion of the mgf in the proof. Now we state
Proposition 2, which establishes the joint asymptotic distribution for (T̃1, T̃2). The proof
is in Supplementary File Section S1. There, we also give a simple illustration of the
assumptions for a concrete example.

Proposition 2. Suppose that Assumptions (A1)-(A4) hold, u ∼ Nk(u0, D0) and let c
be a p× 1 column vector defined in (A3), then(

T̃1(u)

T̃2(u)

)
L→ Np+1

((
0
0

)
,

(
Ip c
c′ 1

))
(k → ∞). (10)

3 HDP data analysis

3.1 Data description

We demonstrate the use of our proposed approximation by analyzing a hospital, doctor,
and patient (HDP) dataset simulated by UCLA’s Institute of Digital Research and Edu-
cation (IDRE), available at https://stats.idre.ucla.edu/r/codefragments/mesimulation/.

https://stats.idre.ucla.edu/r/codefragments/mesimulation/
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Despite the fact that the data were simulated, they provide a very nice conceptual sit-

uation with a moderately large k in order for us to illustrate our methods.

There are 308 oncology physicians in the dataset who have treated 6745 individuals

for lung cancer, i.e, on average 21.9 patients treated by each physician. We are mainly

interested in modeling the probability of a physician’s ability to facilitate lung can-

cer remission using physician level covariates, including physician’s years of experience

(mean = 17.96, sd = 4.08), the number of malpractice lawsuits involving the physician

(mean = 1.97, sd = 1.53), and whether or not the physician attended a top ranked

medical school (22.4% attended top school). These covariates are believed to be helpful

in quantifying a physician’s ability to successfully facilitate cancerous tumor remission.

For example, the more experience a physician has, ideally, the better the treatment.

The number of malpractice lawsuits may have a negative effect on the probability of

a physician’s ability to successfully facilitate cancerous tumor remission, as it may be

viewed as a sign of carelessness.

Let yi be the number of patients that physician i has treated successfully (the cancer

went into remission) and ni be the total number of patients they treated. Also let xi =

(1, sExpi, sLSi,TMSi), where sExp and sLS are standardized experience and law suit

scores (mean zero and variance 1) respectively, and where TMS is one if the physician

went to a top medical school and zero otherwise. We consider a physician with about

18 years of experience, with about two law suits and who went to a non-top medical

school to be a baseline physician. This concept will be useful when we specify priors.

Moreover, patients of the same physician, say i, would naturally share a common

treatment environment and experience. Thus it is reasonable to assume that they would

share the same random ui whose distribution is centered on the xiβ for that physician.

Thus we regard their ni patients as a cluster, and we propose the model in Equation

(1) for these data. Accordingly, we don’t expect all patients of the same physician to

have exactly the same probability of successful treatment. In fact, the median success

rate for physicians with covariates xi is p̃i = expit(xiβ), and the corresponding 90th

percentile of success probabilities is p̃i,90 = expit(xiβ + 1.28σ), where σ = 1/
√
τ .

We specify β ∼ N4(0, I4), and τ ∼ Ga(1/2, 1/2) as our prior for the model pa-

rameters. On the logistic scale, a N(0, 1) prior induces a prior on a probability that is

not overly concentrated near zero or one. While priors with large variances have been

used in attempts to be “noninformative”, the induced prior on the probability scale

attaches considerable mass to 0 and to 1, which can have a big effect on the posterior

(Christensen et al., 2010, Chapter 8).

Part of the particular specification involves thinking about the success probability

for baseline physicians, whose median probability of success is expit(β1). Our best guess

for this probability 0.5 and we specify 95% certainty that it is between 0.1 and 0.9. Using

this information, we find the N(0, b) distribution for β1 that induces this specification;

b = 1.1 does the job. Additional considerations are made for the full specification, and

are given in Supplementary File Section S2.
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Parameter Method 2.5%tile Median 97.5%tile Mean SD

exp(β2)
Normal Appx 1.12 1.31 1.53 1.31 0.10
JAGS 1.13 1.34 1.58 1.34 0.12

exp(β3)
Normal Appx 0.60 0.86 1.21 0.87 0.15
JAGS 0.58 0.84 1.22 0.86 0.16

exp(β4)
Normal Appx 0.78 0.92 1.08 0.92 0.08
JAGS 0.76 0.91 1.08 0.91 0.08

expit(β1)
Normal Appx 0.30 0.34 0.38 0.34 0.02
JAGS 0.28 0.32 0.36 0.32 0.02

Table 1: Posterior inferences for the HDP example.

3.2 Results

We implemented the proposed normal approximation within the Gibbs sampling and
compared the results to the method used in JAGS. Both methods used the same prior
as described in the previous section, the same number of iterations (5000) and the
same burn-in (500). In Figure 1 we plot posterior pdfs for five quantities: expit(β1),
expit(β1+1.28σ), exp(β2), exp(β3), and exp(β4). The quantity expit(β1) represents the
probability of a “baseline” physician (with average covariate values), i.e., approximately
18 years of experience, subject to approximately 2 lawsuits, and did not attend a top
ranked medical school, to remit a patient’s cancerous tumor. Then expit(β1 + 1.28σ)
represents the 90th percentile of cancer remission probabilities for baseline physicians.
The other objects of interest, exp(β2), exp(β3), and exp(β4), are odds ratios for the
three predictors, experience, lawsuits, and top-ranked medical school, respectively.

We present numerical summaries for these quantities in Table 1. We find that our
normal approximation method (we are not implementing the SR method here) works
quite well given the minor discrepancy between the results from normal approximation
and JAGS. For example, the posterior median for the odds ratio, exp(β2), is 1.31 with
a 95% PI of (1.12, 1.53) under normal approximation; and it is 1.34 with 95% PI of
(1.13, 1.58) using JAGS. Thus if there are two physicians of equal education level and
number of lawsuits, the type of physician with four more years of experience has odds
of tumor remission that are 31% higher than for the less experienced type of physician.
Similar interpretations can be obtained for other two predictors.

In Figure 1, we see greater discrepancies for expit(β1) and for expit(β1 + 1.28σ)
compared with other parameters. Aside from the different graph scales, we believe this
is also due to using the normal kernel for approximating the binomial likelihood when
the expected number of successes np (or failures n(1− p)) is too small (Cochran, 1952).
To further explore this phenomenon, we selected two physicians with the most extreme
sample proportions of cancer remission, i.e., smallest (Physician # 4) and largest (Physi-
cian # 218). We also randomly selected two additional physicians (# 116 and 171) as
benchmarks. We present inferences for their probabilities of cancer remission in Figure 2
and Table 2. It is clear that the proposed normal approximation works almost perfectly
for the benchmark Physicians # 116 and 171, but is not as well for Physicians 4 and
218, especially in the tails. It is worth noting that Physician 4 only treated one patient
out of 34 patients successfully while Physician 218 successfully treated 36 out of 40
patients.
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Figure 1: Posterior density plots for HDP data with JAGS and Gibbs sampling with
normal approximation.

Figure 2: Fitted probability densities for four select physicians in HDP example.
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Physician Method 2.5%tile Median 97.5%tile Mean SD

116
Normal Appx 0.29 0.45 0.62 0.45 0.08
JAGS 0.29 0.45 0.62 0.45 0.09

171
Normal Appx 0.09 0.20 0.40 0.21 0.08
JAGS 0.07 0.18 0.36 0.19 0.08

4
Normal Appx 0.02 0.08 0.29 0.10 0.07
JAGS 0.01 0.05 0.15 0.06 0.04

218
Normal Appx 0.68 0.85 0.93 0.84 0.06
JAGS 0.74 0.87 0.94 0.86 0.05

Table 2: Summary of fitted probabilities for four selected physicians in HDP example.

Figure 3: Estimated conditional densities based on data with expected counts > 5.

In Figure 1, we also plot the empirical CDF of the posterior medians for ni min(pi, 1−
pi) : i = 1, . . . , 308 for physicians in the lower right picture. It is clear that about half
(150 out of 308) of the physicians have an estimated np value less than 5, which explains
why the normal approximation does not work perfectly when p is close to the boundary
of (0, 1). We also present results after filtering out the physicians with nmin(p, 1−p) > 5
in Figure 3. Results from normal approximation method and JAGS align quite well.

We also did an analysis of these data restricted to the physicians with nmin(p, 1−
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p) ≥ 10, and the analogous figure to Figure 3 shows perfect alignment of estimated pdfs
based on JAGS and the normal approximation.

Finally we conclude the analysis by briefly actually analyzing the data. We use the
normal approximation to make inferences, but inferences would be virtually/practically
identical if we used the JAGS output. The estimated probability of patient remission for
a baseline physician is estimated to be 0.34 (0.30, 0.38). Observe from Figure 1 that the
corresponding 90th percentile of remission probabilities for baseline doctors would be
estimated to be considerably larger than the median (50th percentile). An additional
four years experience is estimated to improve the odds of remission by about 30%,
with a 95% probability interval for that improvement of 12 to 53 percent. This effect
is statistically important and plausibly practically important as well. The estimated
effect of having two additional law suits against a physician is a reduction in estimated
odds by about 14%. However this is not statistically important since the possibility of
both reductions and increases in these odds are well inside of the corresponding 95%
interval. Finally, the effect of attending a top medical school does not appear to have any
practical or statistical importance. It is clear from Figure 2 that there is a considerable
range of estimated probabilities of success across the types of physicians in the data.
We remind the reader that the data were simulated.

4 Simulations

In this section we use simulations to further evaluate the empirical performance of the
proposed normal approximation method. We generate the data from a realistic setting
that is similar to what we observed from the HDP data example. More specifically, we
consider three covariates, including the intercept, a continuous covariate that follows a
standard normal distribution and a binary covariate following a Bernoulli distribution
with success probability of 22% (the same percentage with the medical school covariate
from the HDP example). The true coefficient values are set to be the same with the
posterior medians obtained from the HDP data analysis using JAGS with the prior
β ∼ N3(0, I) and τ ∼ Gamma(1/2, 1/2). We vary the number of observational units,
k, i.e., the number of physicians in the HDP data example, in the set {100, 300, 500};
and generate ni (e.g,. number of patients being treated by physician i) from a Poisson
distribution with parameter λ, where λ takes values in {25, 50, 100}.

We compare the performance of four methods including (i) the method implemented
by JAGS, (ii) the normal approximation method proposed in Section 2.1, (iii) the suf-
ficient reduction method in 2.2, and (iv) an adaptive-rejection sampling (ARS) method
that we programmed. All four methods generate MCMC samples using Gibbs sampling
and they all update the blocks for β and τ by sampling the exact full conditional distri-
butions. The exact full conditional distribution for u is sampled using adaptive-rejection
Gilks and Wild (1992) in methods (i) and (iv), using different code of course. And finally,
the full conditional for u is sampled approximately using our normal approximation in
method (ii), and the full conditional for T is sampled approximately with a normal
approximation in our method (iii). The main reason that we include the ARS method
(iv) is to allow a fair comparison of computational time because methods (ii-iv) (except
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expit(β1) expit(β1 + 1.28σ)

JAGS ARS
Normal Sufficient

JAGS ARS
Normal Sufficient

Approx. Reduc. Approx. Reduc.

k = 100

λ = 25
0.040 0.045 0.039 0.045 0.041 0.046 0.041 0.045
(0.029) (0.028) (0.041) (0.041) (−0.007) (−0.007) (−0.031) (−0.031)

λ = 50
0.033 0.034 0.036 0.036 0.040 0.040 0.040 0.040
(0.016) (0.017) (0.024) (0.024) (0.006) (0.006) (−0.007) (−0.007)

λ = 100
0.031 0.031 0.031 0.031 0.042 0.042 0.042 0.042
(0.004) (0.005) (0.009) (0.009) (−0.003) (−0.003) (−0.010) (−0.010)

k = 300

λ = 25
0.027 0.028 0.038 0.038 0.026 0.026 0.037 0.037
(0.024) (0.025) (0.037) (0.037) (−0.011) (−0.011) (−0.033) (−0.034)

λ = 50
0.019 0.019 0.023 0.023 0.024 0.024 0.027 0.027
(0.009) (0.010) (0.018) (0.018) (−0.004) (−0.004) (−0.017) (−0.017)

λ = 100
0.018 0.018 0.018 0.018 0.023 0.023 0.024 0.024
(0.001) (0.002) (0.006) (0.006) (−0.004) (−0.004) (−0.011) (−0.011)

k = 500

λ = 25
0.025 0.025 0.036 0.036 0.023 0.023 0.024 0.024
(0.023) (0.024) (0.036) (0.036) (−0.013) (−0.013) (−0.036) (−0.036)

λ = 50
0.016 0.016 0.020 0.020 0.019 0.019 0.023 0.023
(0.009) (0.010) (0.018) (0.018) (−0.005) (−0.005) (−0.018) (−0.018)

λ = 100
0.014 0.014 0.015 0.015 0.017 0.017 0.018 0.018
(0.005) (0.006) (0.010) (0.010) (2e-04) (3e-04) (−0.007) (−0.007)

Table 3: Simulation results: The Mean Absolute Deviation and Bias (in parenthesis) for
parameters expit(β1) and expit(β1 + 1.28σ) based on 100 Monte-Carlo replications.

JAGS) are all implemented in R (MCMC iterations is 5000, with the first 500 as burn-
in) while the core function in JAGS has been optimized for mass use and is written in
C++, which is much faster than R.

We summarize the mean absolute deviation (MAD) and the bias of the posterior
medians for each parameter of interest based upon 100 Monte-Carlo replications in
Tables 3 and 4. We find that both the MAD and bias decrease as either k or λ increases
in most cases. The estimation accuracy of all four methods are comparable in most
cases. Both the normal approximation and sufficient reduction seem to work quite well,
especially for larger values of k and λ. When λ is small, e.g., first row of Table 3,
normal approximation works better than ARS and SR, and this advantage becomes less
noticeable as the λ increases. This is expected because λ is the mean parameter for ni,
which controls the accuracy of the normal approximation to a binomial likelihood with
ni trials. In other words, a smaller λ value leads to a worse normal approximation and
SR will perform even worse because of the additional loss of information. Similar findings
have been observed in Tan (2021) and Goplerud (2021) when normal approximation is
used in variational inference.

We also use wall time, the elapsed time the computer used to execute the program,
to quantify the computational efficiency for three methods. The mean wall time for each
of the three methods is summarized in Table 5. We find that the sufficient reduction
method is faster than the normal approximation and both of those are faster than the
adaptive-rejection method we implemented. Wall time for the SR method improves over
the normal approximation as k grows, as expected.

Next we relate the average running time in Table 5 to the computational complexity
of normal approximation and SR methods. We assume p is fixed. For the normal approx-
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exp(β2) exp(β3)

JAGS ARS
Normal Sufficient

JAGS ARS
Normal Sufficient

Approx. Reduc. Approx. Reduc.

k = 100

λ = 25
0.171 0.170 0.162 0.161 0.247 0.246 0.232 0.232
(−0.043) (−0.044) (−0.068) (−0.068) (0.051) (0.051) (0.056) (0.057)

λ = 50
0.167 0.166 0.158 0.158 0.265 0.264 0.252 0.253
(−0.020) (−0.020) (−0.037) (−0.037) (0.046) (0.045) (0.047) (0.047)

λ = 100
0.163 0.162 0.157 0.156 0.266 0.266 0.259 0.258
(0.005) (0.006) (−0.004) (−0.005) (0.013) (0.013) (0.015) (0.015)

k = 300

λ = 25
0.097 0.097 0.100 0.100 0.143 0.142 0.133 0.132
(−0.047) (−0.047) (−0.069) (−0.068) (0.009) (0.009) (0.016) (0.016)

λ = 50
0.097 0.098 0.093 0.093 0.161 0.161 0.154 0.153
(−0.002) (−0.002) (−0.019) (−0.020) (0.018) (0.018) (0.022) (0.022)

λ = 100
0.095 0.095 0.092 0.092 0.145 0.145 0.142 0.141
(−0.006) (−0.006) (−0.017) (−0.017) (0.013) (0.013) (0.016) (0.016)

k = 500

λ = 25
0.080 0.080 0.086 0.086 0.127 0.125 0.117 0.117
(−0.046) (−0.046) (−0.069) (−0.069) (0.021) (0.021) (0.028) (0.028)

λ = 50
0.078 0.078 0.076 0.076 0.113 0.113 0.107 0.107
(−0.009) (−0.009) (−0.026) (−0.026) (0.009) (0.009) (0.014) (0.014)

λ = 100
0.072 0.072 0.0711 0.071 0.114 0.113 0.110 0.110
(−0.008) (−0.008) (−0.019) (−0.019) (−0.025) (−0.024) (−0.022) (−0.021)

Table 4: Simulation results: The Mean Absolute Deviation and Bias (in parenthesis) for
parameters exp(β2) and exp(β3) based on 100 Monte-Carlo replications.

k λ Normal SR ARS

100
25 152 121 2064
50 294 233 4149
100 270 220 4163

300
25 453 214 6256
50 488 209 6300
100 1293 441 12077

500
25 1008 431 9965
50 1053 440 10496
100 1111 472 10770

Table 5: Simulation results: Mean Wall Time (in seconds) for proposed normal approx-
imation method (Normal), sufficient reduction (SR) and ARS.

imation method in Section 2.1, its computational complexity in theory is O(k3 + λk),
where the k3 term comes form the matrix inversion of k by k matrices in Proposition 1,
and the λk term comes from the matrix multiplication for ni times where ni is generated
following a Poisson distribution with mean parameter of λ in this simulation. For the
SR method, its computational complexity is O(k2+λk), where the k2 term comes from
the matrix multiplication in Equation (9). It is hence clear that the computational gain
of the proposed SR method is mainly driven by avoiding inverting k×k matrices, which
becomes substantial as k becomes large. These results are reflected in Table 5, e.g., the
time saving of SR over normal approximation improves as k becomes larger because
both k2 and k3 dominate the λk term. When k is small (e.g., 100), the computational
time nearly doubles as λ changes from 25 to 50 as expected. On the other hand, when k
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is large (e.g., 500), increasing λ from 25 to 100 does not quite change the computational
time. For other entries in the table (e.g., k = 300), the results are less interpretable
probably because the terms associated with k3 and λk are at comparable orders.

5 Extension to a two-level logistic mixed regression
model

5.1 Model setup

In this section, we further demonstrate the proposed normal approximation and suffi-
cient reduction ideas with a two-level logistic regression model as follows,

Yij ∼ Bernoulli(pij), logit(pij) = Xijβ + ui, ui
⊥∼ N(Siγ, τ

−1), (11)

where Yij is a binary response variable for jth subject within cluster i with j =
1, 2, . . . , ni, i = 1, 2, . . . , k, Xij is a 1× p vector of subject-level covariates, and ui

is a normal random effect for the ith cluster with a precision parameter τ . We center
ui on Siγ where Si is an 1× q vector of unique covariate information for cluster i, γ is
the associated coefficient parameter, and β is the 1×p vector of regression coefficients
at the observational unit level.

We use independent normal priors for the regression parameters β and γ and consider
a gamma prior for τ as follows,

β ∼ Np(B,C) γ ∼ Nq(B0, C0), τ ∼ Gamma(a/2, b/2).

Then the joint posterior is proportional to

exp

⎧⎨
⎩

k∑
i=1

ni∑
j=1

yij(Xijβ + ui)− log(1 + exp(Xijβ + ui))

⎫⎬
⎭

× exp

{
−

k∑
i=1

τ(ui − Siγ)
2

2

}
τk/2

× exp

{
− (β −B)′C−1(β −B)

2
− (γ −B0)

′C−1
0 (γ −B0)

2

}
τa/2−1 exp

{
−bτ

2

}
.

(12)

To further simplify the algebra, we introduce some matrix notation. Let u = (u1, . . . , uk)
′

such that u ∼ Nk(Sγ, Ikτ
−1), where S = (S1, . . . , Sk). Let N =

∑k
i=1 ni be the

total number of observations, X = (X ′
11, X

′
12, . . . , X

′
knk

)′ be an N×p matrix, and
y = (y11, y12, . . . , yknk

)′ be an N×1 vector of responses of yijs. Finally, we define
Zij as a 1 × k vector of zeros except the ith entry is one for i = 1, . . . , k, and let
Z = (Z ′

11, Z
′
12, . . . , Z

′
knk

)′ be an N×k matrix. Then the joint posterior kernel in (12)
can be rewritten as

exp

{
y′(Xβ + Zu)− τ(u− Sγ)′(u− Sγ)

2
− (β −B)′C−1(β −B)

2
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− (γ −B0)
′C−1

0 (γ −B0)

2

}

× exp

⎧⎨
⎩−

k∑
i=1

ni∑
j=1

log(1 + exp(Xijβ + Ziju))

⎫⎬
⎭ τa/2+k/2−1 exp

{
−bτ

2

}
. (13)

Based on this joint posterior kernel, we can easily obtain the conditional distribution of
τ and γ given other parameters as follows,

τ | else ∼ Gamma

(
a+ k

2
,
b+ (u− Sγ)′(u− Sγ)

2

)
,

γ | else ∼ Nq

(
(S′S + C−1

0 )−1(S′Sγ̂ + C−1
0 B0), (S

′S + C−1
0 )−1

)
. (14)

The conditional distribution for (β, u) is proportional to

exp

{
y′(Xβ + Zu)− τ(u− Sγ)′(u− Sγ)

2
− (β −B)′C−1(β −B)

2

}

× exp

⎧⎨
⎩−

k∑
i=1

ni∑
j=1

log(1 + exp(Xijβ + Ziju))

⎫⎬
⎭ , (15)

which is not recognizable. In the literature, it is common to use a Metropolis sampling
or adaptive-rejection sampling approach to sample from this type of distribution; it is
our goal in the next section to explore the possibility of a normal approximation.

5.2 Normal approximation and sufficient reduction

We first consider the normal approximation for (15). By some calculation (details pro-
vided in Supplementary File Section S3), we have the following normal approximation
results for the conditional distributions of β and u,

β | else ∼ Np

(
μβ , (X

′Dπ̃(1−π̃)X + C−1)−1
)
, (16)

u | else ∼ Nk

(
μu, (Z

′Dπ̃(1−π̃)Z + τIk)
−1

)
, (17)

where

μβ = (X ′Dπ̃(1−π̃)X + C−1)−1
(
X ′Dπ̃(1−π̃)Xβ̃ + C−1B +X ′Dπ̃(1−π̃)Z(ũ− u)

)
μu = (Z ′Dπ̃(1−π̃)Z + τIk)

−1
(
Z ′Dπ̃(1−π̃)Zũ+ τSγ + Z ′Dπ̃(1−π̃)X(β̃ − β)

)
,

and Dπ̃(1−π̃) = diag{expit(Xij β̃ij +Zij ũij) : j = 1, 2, . . . , ni, i = 1, 2, . . . , k}, where the

definitions of β̃ and ũ are given in Supplementary File Section S3. Based on this result,
we can easily design a block Gibbs sampling algorithm that allows us to directly sample
from β, u together with γ and τ using (14).

Next we consider the sufficient reduction by letting ni → ∞ for each i = 1, . . . , k and
having k → ∞. Under this setting, we would expect the dimension for u is large, such
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that a direct sampling from its distribution is expensive. Similarly with the definition
of (T1, T2) in Section 2.2, we define a new set of statistics as follows,

T1(u) = (S′S)−1S′u, T2(u) = u′(Ik − S(S′S)−1S′)u,

T3(u) = (X ′Dπ̃(1−π̃)X + C−1)−1(X ′Dπ̃(1−π̃)Z)u.

Here T = (T1, T2, T3) can be viewed as “sufficient reduction” for u. Then the conditional
distributions for τ , γ, and β are

τ | else ∼ Gamma

(
a+ k

2
,
b+ T2(u) + (T1(u)− γ)′S′S(T1(u)− γ)

2

)
,

γ | else ∼ Nq

(
(τS′S + C−1

0 (τS′ST1(u) + C−1
0 B0), (τS

′S + C−1
0 )−1

)
,

β | else ∼ Np

(
(X ′Dπ̃(1−π̃)X + C−1)−1(X ′Dπ̃(1−π̃)(Xβ̃ + Zũ) + C−1B)− T3(u),

(X ′Dπ̃(1−π̃)X + C−1)−1
)
. (18)

We will also need a conditional distribution of T | else to form a Gibbs sampler for
our SR method. Similarly with Proposition 2, we consider a normal approximation for
their joint conditional distribution. This approximation intuitively makes sense because
T1 and T3 are affine transformations of a multivariate normal distribution, and T2 is
a weighted sum of squares of normally distributed random variables. We present the
means and covariances for (T1, T2, T3) in Supplementary File Section S3.2.

In terms of computational complexity, normal approximation is at O(N2 + k3) and

SR is at O(N2 + k2) = O(N2) since N =
∑k

i=1 ni. Therefore we expect a substantial
computational saving when k is large and ni’s are fixed.

5.3 Cow abortion data analysis

We use the developed methodology to analyze cow abortion data. This data set consist
of 13145 cows across 9 herds, where the herds vary in size from 116 to 2711 cows,
with a mean (median) herd size of 1460 (1490) cows, and a standard deviation of
approximately 719 cows. The data were previously analyzed by Hanson et al. (2003),
and the main interest here is to model the probability of a spontaneous abortion in dairy
cows given two covariates, the gravidity (GR) and days open (DO). Here gravidity refers
to the number of times the cow was pregnant before the current pregnancy (mean is 3.2
pregnancies, median is 3, and the standard deviation is 1.5) and days open is the number
of days between the most recent birth and conception (mean is 95.6 days, median is 79,
and the standard deviation is 48.4). We consider the following two-level logistic model,

Yij ∼ Bernoulli(pij), logit(pij) = XDO,ijβ1 +XGR,ijβ2 + ui, ui
i.i.d.∼ N(γ, τ−1),

where Yij is a binary response with 1 indicating a recorded abortion for jth cow in the ith

herd for all j cows (j = 1, 2, . . . , ni) in herd i (i = 1, 2, . . . , 9). Since both covariates that
we consider are quantitative, we standardize them prior to analysis. We then consider
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Figure 4: Posterior Densities of Quantities of Interest in the Cow Abortion Example.

the following independent priors for the parameters. A detailed discussion of the choice
of prior is provided in Supplementary File Section S3.3.

β ∼ N2

((
0
0

)
,

(
10 0
0 10

))
, γ ∼ N (−2, 10) , τ ∼ gamma (1, 0.05) .

We implemented four methods to analyze these data: (i) the adaptive rejection sampling
used in JAGS, which will serve as the benchmark for comparison; (ii) the proposed
normal approximation within the Gibbs sampling; (iii) sufficient reduction method; and
(iv) a Metropolis Hasting algorithm by using the normal approximation as a proposal
distribution. Method (iv) is new to the presentation. For each of those methods, we ran
three Markov Chains, each with 10,000 iterations and the first 3,000 were discarded as
burn-in.

We focus on four quantities of interest, (a) expit(γ), which is the probability of
an average cow (taking average values for cow’s days open and gravidity) abortion;
(b) expit(γ + 1.65σ), which is the 95th percentile for the probability of abortion for
the average cow, (c) exp(β1), the odds ratio for days open; and (d) exp(β2), the odds
ratio for gravidity. We summarize the posterior densities for those four quantities in
Figure 4, it is clear that the posterior densities obtained from all four methods are
almost identical, which confirms the excellent approximating accuracy for our proposed
three methods. The good normal approximation performance is probably due to the
large values of ni (number of cows for each herd), e.g., the smallest herd has 116 cows.



432 Normal Approximation for Bayesian Models

Parameter Method 2.5%tile median 97.5%tile mean sd

expit(γ)

Normal Appx 0.12 0.14 0.16 0.14 0.01
Suf. Reduc. 0.12 0.14 0.17 0.14 0.01
JAGS 0.12 0.14 0.16 0.14 0.01
M-H 0.11 0.14 0.16 0.14 0.01

expit(γ + 1.65σ)

Normal Appx 0.17 0.20 0.27 0.20 0.03
Suf. Reduc. 0.17 0.20 0.28 0.21 0.03
JAGS 0.17 0.20 0.27 0.20 0.03
M-H 0.17 0.20 0.28 0.21 0.03

exp(β1)

Normal Appx 0.99 1.04 1.09 1.04 0.03
Suf. Reduc. 0.99 1.04 1.09 1.04 0.03
JAGS 0.99 1.04 1.09 1.04 0.03
M-H 0.99 1.04 1.09 1.04 0.03

exp(β2)

Normal Appx 0.98 1.03 1.08 1.03 0.03
Suf. Reduc. 0.98 1.03 1.08 1.03 0.03
JAGS 0.98 1.03 1.09 1.03 0.03
M-H 0.98 1.03 1.08 1.03 0.03

Table 6: Posterior Estimates and Quantities using Cow Abortion Data.

We also present the summary statistics for the quantities of interest in Table 6. Since
we have standardized the covariates, the interpretation of the odds ratios is based on a
one standard deviation increase in the covariate. For example, exp(β1), represents the
change in the odds of spontaneous abortion between two cows with identical gravidity
values, but one cow has a days open value that is 48.4 days longer than the other.
Similarly, exp(β2), is the change in odds of spontaneous abortion between two cows with
identical days open, but one standard deviation more in gravidity value, approximately
1.5 more previous pregnancies.

The computational time (in seconds) is 725 for normal approximation, 873 for suffi-
cient reduction, and 948 for the Metropolis Hasting algorithm using the normal approx-
imation as a proposal. Sufficient reduction is slower than normal approximation in this
example since k = 9 is quite small. The M-H algorithm takes the longest time because
it requires calculating the normal approximation as a middle step.

6 Discussion

In this paper, we explored the idea of large sample approximation for enhanced MCMC
sampling in two GLMMs. This was implemented by replacing the usual Metropolis–
Hastings and adaptive-rejection sampler with a direct sampling from a normal distribu-
tion within the Gibbs sampler. In the future, it will be of interest to extend the idea of
normal approximation and sufficient reduction for more complex models, e.g., general
forms of GLMM and additional hierarchies in the model. Computationally, as complex-
ity grows, it will be of interest to implement the proposed method in a more efficient
software platform such as C++ and to develop faster algorithms for precision matrix
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calculation. Missing from our presentation so far is an investigation of the effects of “big
data” values for k on various methods, including those not considered here. We plan
to investigate potential improvements for data sets with values of k that are orders of
magnitude larger than those considered here.

Supplementary Material

Web-based Supplementary File for “Normal approximation for Bayesian mixed effects
binomial regression model” (DOI: 10.1214/00-BA1312SUPP; .pdf). The supplementary
material contains technical details and proofs that the full conditionals for u and for
T (u) are asymptotically normal, as well as details for the more complex model.
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