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Sequentially Guided MCMC Proposals for
Synthetic Likelihoods and Correlated Synthetic

Likelihoods∗

Umberto Picchini†, Umberto Simola‡, and Jukka Corander§

Abstract. Synthetic likelihood (SL) is a strategy for parameter inference when
the likelihood function is analytically or computationally intractable. In SL, the
likelihood function of the data is replaced by a multivariate Gaussian density over
summary statistics of the data. SL requires simulation of many replicate datasets
at every parameter value considered by a sampling algorithm, such as Markov
chain Monte Carlo (MCMC), making the method computationally-intensive. We
propose two strategies to alleviate the computational burden. First, we introduce
an algorithm producing a proposal distribution that is sequentially tuned and
made conditional to data, thus it rapidly guides the proposed parameters towards
high posterior density regions. In our experiments, a small number of iterations
of our algorithm is enough to rapidly locate high density regions, which we use
to initialize one or several chains that make use of off-the-shelf adaptive MCMC
methods. Our “guided” approach can also be potentially used with MCMC sam-
plers for approximate Bayesian computation (ABC). Second, we exploit strategies
borrowed from the correlated pseudo-marginal MCMC literature, to improve the
chains mixing in a SL framework. Moreover, our methods enable inference for
challenging case studies, when the posterior is multimodal and when the chain is
initialised in low posterior probability regions of the parameter space, where stan-
dard samplers failed. To illustrate the advantages stemming from our framework
we consider five benchmark examples, including estimation of parameters for a
cosmological model and a stochastic model with highly non-Gaussian summary
statistics.

Keywords: Bayesian inference, cosmological parameters, intractable likelihoods,
likelihood-free.

1 Introduction

Synthetic likelihood (SL) is a methodology for parameter inference in stochastic models
that do not admit a computationally tractable likelihood function. That is, similarly
to approximate Bayesian computation (ABC, Sisson et al., 2018), SL only requires the
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ability to generate synthetic datasets from a model simulator, and statistically relevant
summary statistics of the data that capture parameter-dependent variation in an ad-
equate manner. The price to pay for its flexibility is that SL can be computationally
very intensive, since it is typically embedded into a Markov chain Monte Carlo (MCMC)
framework, requiring the simulation of multiple (often hundreds or thousands) synthetic
datasets at each proposed parameter. The goal of our work is twofold: (i) we introduce
an algorithm that sequentially produces a proposal sampler that is made conditional
to data and rapidly enables the identification of high-posterior-density regions, where
to initialize MCMC chains using off-the-shelf methods; (ii) we introduce a way to in-
crease the chains mixing, by tweaking methods that have been recently proposed in the
correlated particle filters literature. Hence both strategies aim at reducing the computa-
tional cost to perform Bayesian inference via SL. We show that our approaches facilitate
sampling when the chains are initialised at parameter values in regions of low posterior
probability, a case where SL often struggles, see the case studies in Sections 6.2 and 6.3
where the Bayesian synthetic likelihoods (BSL) of Price et al. (2018) fail when using
the adaptive MCMC proposal of Haario et al. (2001). For the case study in Section 6.3,
having strongly non-Gaussian summary statistics, we show that even a BSL version
robustified to non-Gaussian summaries fails to explore the posterior surface when ini-
tialized at challenging locations, while our proposal sampler is able to quickly converge
towards the high-density region. Our proposal sampler can be beneficial with multi-
modal targets, to inform the researcher of the existence of multiple modes using a small
number of iterations, see Section 6.4. In addition, in Section 5 we inform the reader
that for challenging problems where it is difficult to locate appropriate starting param-
eters, an alternative to our method is Bayesian optimization, which can be efficiently
used for kickstarting SL-based posterior sampling (Gutmann and Corander, 2016), and
is facilitated by the open-source ELFI software (Engine for Likelihood-Free Inference,
Lintusaari et al., 2018).

SL is described in detail in Section 2, but here we first review its features with
relevant references to the literature. SL was first proposed in Wood (2010) and replaces
the analytically intractable data likelihood p(y|θ) for observed data y with the joint
density of a set of summary statistics of the data s := T (y). Here T (·) is a function
of the data that has to be specified by the analyst and that can be evaluated for
input y, or simulated data y∗. The SL approach is characterized by the assumption
that s has a multivariate normal distribution s ∼ N (μθ,Σθ) with unknown mean μθ

and covariance matrix Σθ. These can be estimated via Monte Carlo simulations of size
M to obtain estimators μ̂M,θ, Σ̂M,θ. The resulting multivariate Gaussian likelihood

pM (s|θ) ≡ N (μ̂M,θ, Σ̂M,θ) can then be numerically maximised with respect to θ, to
return an approximate maximimum likelihood estimator (Wood, 2010). It can also be
plugged into a Metropolis-Hastings algorithm with flat priors (Wood, 2010), so that
MCMC is used as a workhorse to sample from a posterior πM (θ|s) to ultimately return
the posterior mode, and hence a maximum likelihood estimator (a purely Bayesian
approach is described below). The introduction of data summaries in the inference has
been shown to cope well with chaotic models, where the likelihood would otherwise be
difficult to optimize and the corresponding posterior surface may be difficult to explore.
More generally, SL is a tool for likelihood-free inference, just like the ABC framework
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(see reviews Sisson and Fan, 2011; Karabatsos and Leisen, 2018), where the latter can
be seen as a nonparametric methodology, while SL uses a parametric distributional
assumption on s. SL has found applications in e.g. ecology (Wood, 2010), epidemiology
(Engblom et al., 2020; Dehideniya et al., 2019), mixed-effects modeling of tumor growth
(Picchini and Forman, 2019). For a recent generalization of the SL family of inference
methods using statistical classifiers to directly target estimation of the posterior density,
see Thomas et al. (2021) and Kokko et al. (2019).

While ABC is more general than SL, it can sometimes be difficult to tune and it
typically suffers from the “curse of dimensionality” when the size of s increases, due to its
nonparametric nature. On the other hand, the Gaussianity assumption concerning the
summary statistics is the main limitation of SL. At the same time, due to its parametric
nature, SL has been shown to perform satisfactorily on problems where dim(s) is large
relative to dim(θ) (Ong et al., 2018). Price et al. (2018) framed SL within a pseudo-
marginal algorithm for Bayesian inference (Andrieu et al., 2009) and named the method
Bayesian SL (BSL). They showed that when s is truly Gaussian, BSL produces MCMC
samples from π(θ|s), not depending on the specific choice of M . However, in practice,
the inference algorithm does depend on the specific choice of M , since this value affects
the chains mixing. Unless the underlying computer model is trivial, producing the M
datasets for each θ can be a serious computational bottleneck.

In this work we design a strategy producing a proposal sampler g(·|s) that is condi-
tional to summary statistics of the data, by exploiting the Gaussian assumption for the
summary statistics in (B)SL. We call this a guided sampler, as it proposes condition-
ally to data. Moreover, our guided sampler is sequentially built, and we find that our
“sequentially Adapted and guided proposal for SL” (named ASL) is easy to construct
and adds essentially no overhead, since it exploits quantities that are anyway computed
in SL. We stress the importance of rapid convergence to the bulk of the posterior, as
while SL may require a large M to get started, once it has approached high posterior
probability regions M can be reduced substantially (in Section 6.1 we are forced to start
with M = 1,000 and after a few iterations we can revert to M = 10 or 50). Later we
briefly discuss how the proposal sampler can also be used in an ABC-MCMC algorithm.
We emphasize that our algorithm should be used to rapidly identify the high density
region of the posterior, and there initialize other algorithms to produce the actual in-
ference (e.g. using some of the several available adaptive MCMC samplers). We discuss
this aspect and suggest possibilities afterwards. In Section 6.4 we show how ASL can be
useful with multimodal targets. Furthermore, we correlate log-synthetic likelihoods us-
ing a “blockwise” strategy, borrowed from relatively recent advances in pseudo-marginal
MCMC literature. This is shown to considerably improve mixing of the chains generated
via SL, while not introducing correlation can lead to unsatisfactory simulations when
using starting parameter values residing relatively far from the representative ones.

Our paper is structured as follows: in Section 2 we introduce the synthetic likelihood
approach. In Section 3 we construct the adaptive proposal distribution via ASL and in
Section 4 we construct correlated synthetic likelihoods. In Section 5 we discuss using
BOLFI and ELFI as an option for SL inference. In Section 6 we discuss four benchmark-
ing simulation studies and a fifth one is in Supplementary Material (Picchini et al.,
2022). Code can be found at https://github.com/umbertopicchini/ASL.

https://github.com/umbertopicchini/ASL
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2 Synthetic likelihood

We briefly summarize the synthetic likelihood (SL) method as proposed in Wood (2010)
and in a Bayesian context in Price et al. (2018) (the latter is detailed in Supplementary
Material). The main goal is to produce Bayesian inference for θ, by sampling from
(an approximation to) the posterior π(θ|s) ∝ p̃(s|θ)π(θ) using MCMC, where p̃(s|θ)
is the density underlying the true (unknown) distribution of s. Wood (2010) proposes
a parametric approximation to p̃(s|θ), placing the rather strong assumption that s ∼
N (μθ,Σθ). The reason for this assumption is that estimators for the unknown mean and
covariance of the summaries, μθ and Σθ respectively, can be obtained straightforwardly
via simulation, as described below. As obvious from the notation used, μθ and Σθ depend
on the unknown finite-dimensional vector parameter θ. We denote the synthetic datasets
simulated from the assumed model run at a given θ∗ with y∗1 , . . . , y

∗
M . These are such

that dim(y∗m) = dim(y) (m = 1, . . . ,M), with y denoting observed data, and therefore
s ≡ T (y). For each dataset it is possible to construct the corresponding (possibly vector
valued) summary s∗m := T (y∗m), with dim(s∗m) = dim(s). These simulated summaries
are used to construct the following estimators:

μ̂M,θ∗ =
1

M

M∑
m=1

s∗m, Σ̂M,θ∗ =
1

M − 1

M∑
m=1

(s∗m − μ̂θ∗)(s∗m − μ̂θ∗)′, (1)

with ′ denoting transposition. By defining pM (s|θ) ≡ N (μ̂M,θ, Σ̂M,θ), the SL procedure
in Wood (2010) samples from the posterior πM (θ|s) ∝ pM (s|θ)π(θ), see Algorithm 1.
A slight modification of the original approach in Wood (2010) leads to the “Bayesian
synthetic likelihood” (BSL) algorithm of Price et al. (2018), which samples from π(θ|s)
when s is truly Gaussian, by introducing an unbiased approximation to a Gaussian
likelihood. Besides this, the BSL is the same as Algorithm 1. See the Supplementary
Material for details about BSL. All our numerical experiments use the BSL formulation
of the inference problem. Notice when M is too small or θ∗ is implausible, the estimated
covariance may mis-behave, e.g. may be not positive-definite: in such case, we attempt
a “modified Cholesky factorization” of Σ̂M,θ∗ , such as the one in Cheng and Higham
(1998) (we used the Matlab implementation in Higham, 2015), or we tried to find
a “nearest symmetric-positive-definite matrix” (Higham, 1988), using the function by
D’Errico (2015).

When the simulator generating theM synthetic datasets is computationally demand-
ing, Algorithm 1 is computer intensive, as it generally needs to be run for a number
of iterations R in the order of thousands. The problem is exacerbated by the possibly
poor mixing of the resulting chain. The most obvious way to alleviate the problem is
to reduce the variance of the estimated likelihoods, by increasing M , but of course this
makes the algorithm computationally more intensive. A further problem occurs when
the initial θ∗ lies far away in the tails of the posterior. This may cause numerical prob-
lems when the initial Σ̂M,θ∗ is ill-conditioned, possibly requiring a very large M to get
the MCMC started, and hence it is desirable to have the chains approach the bulk of
the posterior as rapidly as possible.
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In the following we propose two strategies aiming at keeping the mixing rate of a
MCMC, produced either by SL or BSL, at acceptable levels and also to ease conver-
gence of the chains to the regions of high posterior density. The first strategy results in
designing a specific proposal distribution g(·) for use in MCMC via synthetic likelihood:
this is a “sequentially Adapted and guided proposal for Synthetic Likelihoods” (shorty
ASL) and is described in Section 3. The second strategy reduces the variability in the
Metropolis-Hastings ratio α by correlating successive pairs of synthetic likelihoods: this
results in “correlated synthetic likelihoods” (CSL) described in Section 4.

Algorithm 1 Synthetic likelihoods MCMC

Input: positive integers M,R. Observed summaries s. Fix starting value θ∗ or gen-
erate it from the prior π(θ). Set θ1 := θ∗. Define a proposal g(θ′|θ). Set r := 1.
Output: R correlated samples from πM (θ|s).
1. Conditionally on θ∗ generate independently from the model M summaries
s∗1, . . . , s∗M , compute μ̂M,θ∗ , Σ̂M,θ∗ from (1) and pM (s|θ∗) ≡ N (μ̂M,θ∗ , Σ̂M,θ∗).
2. Generate θ# ∼ g(θ#|θ∗). Conditionally on θ# generate independently
s#1, . . . , s#M , compute μ̂M,θ# , Σ̂M,θ# , and pM (s|θ#).
3. Generate a uniform random draw u ∼ U(0, 1), and calculate the acceptance prob-
ability

α = min

[
1,

pM (s|θ#)
pM (s|θ∗) × g(θ∗|θ#)

g(θ#|θ∗) ×
π(θ#)

π(θ∗)

]
.

If u > α, set θr+1 := θr otherwise set θr+1 := θ#, θ∗ := θ# and pM (s|θ∗) := pM (s|θ#).
Set r := r + 1 and go to step 4.
4. Repeat steps 2–3 as long as r ≤ R.

3 Guided and sequentially tuned proposals for synthetic
likelihoods

In Section 3.1 we illustrate the main ideas of our ASL method. In Section 3.2 we
specialize ASL so that we instead obtain a sequence of proposal distributions {gt}Tt=1,
as detailed in Algorithm 2. What we now introduce in Section 3.1 will also initialize the
ASL method, i.e. provide an initial g0.

3.1 Main idea and initialization

Suppose θ∗n is a posterior draw generated by some SL procedure (i.e. the standard
method from Wood, 2010 or the BSL one from Price et al., 2018) at iteration n,
e.g. θ∗n ∼ πM (θ|s). Then denote with {s∗1n , . . . , s∗Mn } a set of M summaries simu-
lated independently from the computer model, conditionally on the same θ∗n, and define

s̄∗n =
∑M

m=1 s
∗m
n /M . By the central limit theorem, for M sufficiently large s̄n has an ap-

proximately Gaussian distribution. Suppose we have at disposalN pairs {θ∗n, s̄∗n}Nn=1. We
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set dθ = dim(θ) and ds = dim(s), then (θ∗n, s̄
∗
n) is a vector having length d = dθ+ds. As-

sume for a moment that the joint vector (θ∗n, s̄
∗
n) is a d-dimensional Gaussian-distributed

vector, with (θ∗n, s̄
∗
n) ∼ Nd(m,S). We stress that this assumption is made merely to con-

struct a proposal sampler, and does not extend to the actual distribution of (θ, s). We
set a d-dimensional mean vector m ≡ (mθ,ms) and the d× d covariance matrix

S ≡
[

Sθ Sθs

Ssθ Ss

]
,

where Sθ is dθ × dθ, Ss is ds × ds, Sθs is dθ × ds and of course Ssθ ≡ S′
θs is ds × dθ.

We estimate m and S using the N available draws. That is, define xn := (θ∗n, s̄
∗
n) then,

same as in (1), we have

m̂ =
1

N

N∑
n=1

xn, Ŝ =
1

N − 1

N∑
n=1

(xn − m̂)(xn − m̂)′. (2)

Once m̂ and Ŝ are obtained, it is possible to extract the corresponding entries (m̂θ, m̂s)
and Ŝθ, Ŝs, Ŝsθ, Ŝθs. We can now use well known formulae for conditionals of a multi-
variate Gaussian distribution, to obtain a proposal distribution (with a slight abuse of
notation) g(θ|s) ≡ N (m̂θ|s, Ŝθ|s), with

m̂θ|s = m̂θ + Ŝθs(Ŝs)
−1(s− m̂s), (3)

Ŝθ|s = Ŝθ − Ŝθs(Ŝs)
−1Ŝsθ. (4)

Hence a new proposal θ∗ can be generated as θ∗ ∼ g(θ|s), and is thus “guided” by the
summaries of the data s, and gets updated as new posterior draws become available, as
further described below. Therefore, this “guided proposal” g(θ|s) can be employed in
place of g(θ′|θ) into Algorithm 1, even though we only use this proposal for a limited
number of iterations, as clarified below. Clearly the proposal function g(θ|s) is indepen-
dent of the last accepted value of θ, hence it is an “independence sampler” (Robert and
Casella, 2004), except that its mean and covariance matrix are not kept constant.

The approach outlined so far is essentially step 3 in Algorithm 2, and together
with the sequential tuning in Section 3.2, allows for a rapid convergence of the chain
towards the high posterior density region. However, this approach does not promote
tails exploration. This is not really an issue, as we can let an MCMC incorporating our
guided proposal sampler run for a small number of iterations (say 50 iterations, even if
we use more iterations for pictorial reasons), where the chain displays a high acceptance
rate, and this is useful to collect many accepted draws that we can use to initialize other
standard samplers enjoying proven ergodic properties, as detailed in next Section 3.2.
Moreover, the next section also illustrates a sampler based on the multivariate Student’s
distribution.

3.2 Sequential approach

The construction outlined above is only the first step of our guided adaptive sampler for
synthetic likelihoods (ASL) methodology, and we now detail it to ease the actual imple-
mentation in a sequential way. We define a sequence of T +1 “rounds” over which T +1
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kernels {gt}Tt=0 are sequentially constructed. In the first round (t = 0), we construct g0
using the output of K � N MCMC iterations, obtained using e.g. a Gaussian random
walk. We may consider K as burnin iterations. Once (2)–(3)–(4) are computed using
the output {θ∗k, s̄∗k}Kk=1 of the burnin iterations, we obtain the first adaptive distribution
denoted g0(θ|s) as illustrated in Section 3.1. We store the draws as D := {θ∗k, s̄∗k}Kk=1 and
then employ g0 as a proposal density in further N MCMC iterations, after which we per-
form the following steps: (i) we collect the newly obtained batch of N pairs {θ∗n, s̄∗n}Nn=1

(where, again, θ∗n ∼ πM (θ|s) and s̄∗n is the sample mean of the already accepted simu-
lated summaries generated conditionally to θ∗n) and add it to the previously obtained
ones as D := D ∪ {θ∗n, s̄∗n}Nn=1. Then (ii) similarly to (2) we compute the sample mean
m̂0:1 = (m̂0:1

θ , m̂0:1
s ) and corresponding covariance Ŝ0:1, except that here m̂0:1 and Ŝ0:1

use the K+N pairs in D. (iii) Update (3)–(4) to m̂0:1
θ|s and Ŝ0:1

θ|s , and obtain g1(θ|s). (iv)
Use g1(θ|s) for further N MCMC moves, stack the new draws into D := D∪{θ∗n, s̄∗n}Nn=1,
and using the K + 2N pairs in D proceed as before to obtain g2, and so on until the
last batch of N iterations generated using gT is obtained.

From the procedure we have just illustrated, the sequence of Gaussian kernels has
gt = gt(θ|s) ≡ N (m̂0:t

θ|s, Ŝ
0:t
θ|s), with m̂0:t

θ|s and Ŝ0:t
θ|s the conditional mean and covariance

matrix given by

m̂0:t
θ|s = m̂0:t

θ + Ŝ0:t
θs (Ŝ

0:t
s )−1(s− m̂0:t

s ), (5)

Ŝ0:t
θ|s = Ŝ0:t

θ − Ŝ0:t
θs (Ŝ

0:t
s )−1Ŝ0:t

sθ . (6)

The proposal function gt uses all available present and past information, as these are
obtained using the most recent version of D, which contains information from the pre-
vious t− 1 rounds in addition to the latest batch of N draws. Compared to a standard
Metropolis random walk, the additional computational effort to implement our method
is negligible, as it uses trivial matrix algebra applied on quantities obtained as a by-
product of the SL procedure, namely the several pairs {θ∗n, s̄∗n}. Notice (5)–(6) reduce
to m̂0:t

θ|s ≡ m̂0:t
θ and Ŝ0:t

θ|s ≡ Ŝ0:t
θ respectively as soon as m̂0:t

s = s. The latter condition
means that the chain is close to the bulk of the posterior and accepted parameters
simulate summaries distributed around the observed s. Therefore, when the chain is far
from its target, the additional terms in (5)–(6) can help guide the proposals thanks to
an explicit conditioning to data.

An alternative to Gaussian proposals are multivariate Student’s proposals. We build
on the result found in Ding (2016) allowing us to write θ∗n ∼ gt(θ|s), and here gt(θ|s) is
a multivariate Student’s distribution with ν degrees of freedom, and in this case θ∗n can
be simulated using

θ∗n = m̂0:t
θ|s +

(√
ν + δn
ν + ds

(Ŝ0:t
θ|s)

1/2

)(
Zn/

√
χ2
ν+ds

ν + ds

)
(7)

with χ2
ν+ds

an independent draw from a Chi-squared distribution with ν + ds degrees

of freedom, δn = (s − m̂0:t
s )(Ŝ0:t

s )−1(s − m̂0:t
s )′ and Zn a dθ-dimensional standard mul-

tivariate Gaussian vector that we simulate at each iteration n and is independent of
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χ2
ν+ds

/(ν + ds). For simplicity, in the following we do not make distinction between the
Gaussian and the Student’s proposals, and the user can choose any of the two, as they
are anyway obtained from the same building-blocks (2)–(6).

As customary in Metropolis-Hastings, when a proposal is rejected at a generic itera-
tion n, the last accepted pair should be stored as (θn, s̄n). However, should the rejection
rate be high (notice we have never incurred into such situation when sampling via ASL),
the covariance Ŝ0:t

θs would be computed on many identical repetitions of the same (θ, s̄)-
vectors, this causing numerical instabilities. Therefore, anytime a rejection takes place,
we can perform the following when storing the output of the n-th MCMC iteration:

if proposal θ# ∼ g(θ|s) has been rejected at iteration n: resample independently M times
with replacement from the last accepted set of summaries (s∗1, . . . , s∗M ) (produced from
the last accepted θ∗), to obtain the bootstrapped set (s̃∗1, . . . , s̃∗M ). We use the latter

set to compute ¯̃s∗ =
∑M

m=1 s̃
∗m/M . Hence, at iteration n (and only when proposal θ# ∼

g(θ|s) is rejected) we store D := D ∪ {θ∗n, ¯̃s∗n}, instead of D := D ∪ {θ∗n, s̄∗n}.

This way, the averaged summaries stored in set D still consist of averages of accepted
summaries (as usual), with the benefit that when the acceptance rate is low (which
anyway never occurred to us with ASL) Ŝ0:t

θs is computed on a set D that has more
varied information, thanks to resampling. This consideration is expressed in step 5 of
Algorithm 2. Algorithm 2 constructs the sequence {gt(θ|s)}Tt=1 for a SL procedure, and
this constitutes our ASL approach. An advantage of ASL is that it is self-adapting.

Algorithm 2 ASL: synthetic likelihoods with a sequentially adapted and guided pro-
posal

1: Input: K pairs {θ∗k, s̄∗k}Kk=1 from burnin. Positive integers N and T . Initialize D :=
{θ∗k, s̄∗k}Kk=1.

2: Output: θ1, . . . , θT . Then θT should be used as starting point for another adaptive
MCMC algorithm.

3: Construct the proposal density g0 using {θ∗k, s̄∗k}Kk=1 and (2)–(3)–(4) (and optionally
propose from (7)). Set θ0 := θ∗K .

4: for t = 1 : T do
5: Starting at θt−1 run N MCMC iterations (SL or BSL) using gt−1, producing

{θ∗n, s̄∗n}Nn=1. If the current proposal has been rejected at iteration n, the s̄∗n may
instead be computed as ¯̃s∗n (see main text).

6: Form D := D ∪ {θ∗n, s̄∗n}Nn=1, compute (m̂0:t, Ŝ0:t) on D, update (m̂0:t
θ|s, Ŝ

0:t
θ|s) to

construct gt.
7: Set θt := θ∗N .
8: end for
9: Return θ1, . . . , θT to be provided as input to another adaptive MCMC algorithm

for BSL or CSL.

A disadvantage is that, since the adaptation results into an independence sampler, it
does not explore a neighbourhood of the last accepted draw, and newly accepted N
draws obtained at stage t might not necessarily produce a rapid change into mean and
covariance for the proposal function gt+1 (should a rapid change actually be required
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for optimal exploration of the parameter space). This is why in our applications we
always use N = 1. That is, the proposal distribution is updated at each iteration by
immediately incorporating information provided by the last accepted draw. As clear
from the output of Algorithm 2, we recommend to use T iterations of ASL to return
i) θT which is then used as starting parameter value for a run of BSL (or CSL see
Section 4) together with a standard MCMC proposal sampler; and ii) the sequence
θ1, . . . , θT (notice this excludes the initial burnin of K iterations) of which we compute
the sample covariance matrix, and the latter is used to initiate the adaptive MCMC
algorithm of Haario et al. (2001), this one having proven ergodic properties (see the
Supplementary Material for details on how this is performed). The above means that
the inference results we report are based on draws using Haario et al. (2001) (thanks to
the useful initialization via ASL). However, after the T ASL iterations, besides Haario
et al. (2001) other adaptive MCMC algorithms with proven ergodic properties could
be used: possibilities are e.g. Andrieu and Thoms (2008) or Vihola (2012). Moreover,
an interesting use of ASL arises with multimodal targets: if several chains are run in
parallel and are initialised at different parameter values, the nature of ASL to rapidly
“jump” to high density regions can point the researcher to the existence of multiple
modes within few iterations of ASL (this is illustrated in Section 6.4).

In our experiments we use a relatively small number of burnin iterations K (say
K = 200 or 300), and when ASL is started we immediately observe a large “jump”
towards the posterior mode. Importantly, rapid convergence via ASL also helps reducing
the computational effort by re-tuning M : in fact, while a large value of M can be
necessary when setting θ0 in tail regions of the posterior, once the chain has converged
towards the bulk of the posterior it is possible to reduce M substantially. See the g-
and-k example in Section 6.1, where it is necessary to start with M = 1,000, and after
using ASL for a few iterations we can revert to M = 10 or 50.

Our ASL strategy is inspired by the sequential neuronal likelihood approach found
in Papamakarios et al. (2019). In Papamakarios et al. (2019) N MCMC draws ob-
tained in each of T stages sequentially approximate the likelihood function for models
having an intractable likelihood, whose approximation at stage t is obtained by train-
ing a neuronal network (NN) on the MCMC output obtained at stage t − 1. Their
approach is more general (and it is aimed at approximating the likelihood, not the
MCMC proposal), but has the disadvantage of requiring the construction of a NN, and
then the NN hyperparameters must be tuned at every stage t, which of course requires
domain knowledge and computational resources. Our approach is framed specifically for
inference via synthetic likelihoods, which is a limitation per-se, but it is completely self-
tuning, with the possible exception of the burnin iterations where an initial covariance
matrix must be provided by the user, though this is a minor issue when the number
of parameters is limited. Notice, a possible interesting application of our guided sam-
pler could be envisioned with ABC-MCMC algorithms (Marjoram et al., 2003). Even
though ABC-MCMC is typically run by simulating a single vector of summary statis-
tics at a given θ (though it is also possible to consider pseudo-marginal versions, as
in Picchini and Everitt, 2019), nothing prevents to run ASL for a few iterations in an
ABC-MCMC context, by simulating multiple summaries at each θ as in SL, and then
revert to simulating a single summary vector once the chain has reached the bulk of the
ABC posterior.
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4 Correlated synthetic likelihood

Following the success of the pseudo-marginal method (PM), returning exact Bayesian
inference whenever a non-negative and unbiased estimate of an intractable likelihood
is available (Beaumont, 2003, Andrieu et al., 2009, Andrieu et al., 2010), there has
been much research aimed at increasing the efficiency of particle filters (or sequential
Monte Carlo) for Bayesian inference in state-space models, see Schön et al. (2018) for
an approachable review. A recent important addition to PM methodology, improving
the acceptance rate in Metropolis-Hastings algorithms, considers inducing some cor-
relation between the likelihoods appearing in the Metropolis-Hastings ratio. The idea
underlying correlated pseudo-marginal methods (CPM), as initially proposed in Dahlin
et al. (2015) and Deligiannidis et al. (2018), is that having correlated likelihoods will
reduce the stochastic variability in the acceptance ratio. This reduces the stickiness
in the MCMC chain, which is typically due to excessively varying likelihood approxi-
mations, when these are obtained using a “too small” number of Monte Carlo draws
(named “particles”). In fact, while the variability of these estimates can be mitigated
by increasing the number of particles, of course this has negative consequences on the
computational budget. Instead CPM strategies allow for considerably smaller number
of particles when trying to alleviate the stickiness problem, see for example Golightly
et al. (2019) for applications to stochastic kinetic models, and Wiqvist et al. (2021) and
Botha et al. (2021) for stochastic differential equation mixed-effects models. Interest-
ingly, implementing CPM approaches is trivial. Deligiannidis et al. (2018) and Dahlin
et al. (2015) correlate the estimated likelihoods at the proposed and current values of
the model parameters by correlating the underlying standard normal random numbers
used to construct the estimates of the likelihood, via a Crank-Nicolson proposal. We
found particular benefit with the “blocked” PM approach (BPM) of Tran et al. (2016)
(see also Choppala et al., 2016 for inference in state-space models), which we now de-
scribe in full generality, i.e. regardless of our synthetic likelihoods approach which is
instead considered later.

Denote with U the vector of all “auxiliary variables”, i.e. pseudorandom numbers
(typically standard Gaussian or uniform) that are necessary to produce a non-negative
unbiased likelihood approximation p̂(y|θ,U) at a given parameter θ for data y. Notice U
should contain the pseudo-random numbers that are used to “forward simulate” from
a model, but can include also other auxiliary variables, for example the pseudo-random
numbers that are generated when performing the resampling step in sequential Monte
Carlo. In Tran et al. (2016) the set U is divided into G blocks U = (U(1), . . . , U(G)),
and one of these blocks is updated jointly with θ in each MCMC iteration as described
below. Let p̂(y|θ,U(i)) be the estimated unbiased likelihood obtained using the ith block
of random variates U(i), i = 1, . . . , G. Define the joint posterior of θ and U as

π(θ,U|y) ∝ p̂(y|θ,U)π(θ)
G∏
i=1

pU (U(i)), (8)

where θ and U are a-priori independent and

p̂(y|θ,U) :=
1

G

G∑
i=1

p̂(y|θ,U(i)) (9)
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is the average of the G unbiased likelihood estimates and hence also unbiased. We then
update the parameters jointly with a randomly-selected block U(K) in each MCMC it-
eration, with Pr (K = k) = 1/G for any k = 1, . . . , G. “Updating a randomly selected
block” means that only for that picked block U(k) new pseudorandom values are pro-
duced (and hence are “refreshed”) while for the other blocks these variates are kept
fixed to the previously accepted values. Using this scheme, the acceptance probability
for a joint move from the current set (θc,Uc) to a proposed set (θp,Up) generated using
some proposal function g(θp,Up|θc,Uc) = g(θp|θc)g(Up|Uc), is

α = min

⎧⎨
⎩1,

p̂
(
y|θp,Uc

(1), . . . ,U
c
(k−1),U

p
(k),U

c
(k+1), . . . ,U

c
(G)

)
π (θp)

p̂
(
y|θc,Uc

(1), . . . ,U
c
(k−1),U

c
(k),U

c
(k+1), . . . ,U

c
(G)

)
π (θc)

g (θc|θp)
g (θp|θc)

⎫⎬
⎭ . (10)

Hence in case of proposal acceptance we update the joint vector (θc,Uc) := (θp,Up)
and move to the next iteration, where Up = (Uc

(1), . . . ,U
c
(k−1),U

p
(k),U

c
(k+1), . . . ,U

c
(G)).

The resulting chain targets (8) (Tran et al., 2016). Notice the random variates used to
compute the likelihood at the numerator of (10) are the same ones as for the likelihood
at the denominator except for the k-th block, hence G − 1 blocks are shared between
the numerator and denominator. Perturbing only a small fraction of the pseudo-random
numbers induces beneficial correlation between subsequent pairs of likelihood estimates,
as in this case the variance of α gets smaller compared to having all entries in U
getting updated at each iteration. Also, we considered g(Up|Uc) ≡ pU (U

p
(k)) hence the

simplified expression (10). The correlation between log p̂ (y|θp,Up) and log p̂ (y|θc,Uc)
is approximately ρ = 1 − 1/G (Tran et al., 2016), so the larger the number of groups
G that can be formed and the higher the correlation (at least theoretically). Also, note
that the G approximations p̂(y|θ,U(i)) can be run in parallel on multiple processors
when these likelihoods are approximated using particle filters.

We now consider synthetic likelihoods. Denote with Uj the vector of auxiliary vari-
ables employed when producing the j-th model simulation (j = 1, . . . ,M). Denote
with (U1, . . . , UM ) the vector stacking the variates generated across all M model sim-
ulations. We distribute those variates across G blocks: assume for simplicity that M
is a multiple of G, so that for example the i-th block U(i) could be the collection
of the pseudo-random numbers used in a small subset of the M model simulations,
so that

∑G
i=1 dim(U(i)) = dim(U1, . . . , UM ) and U(i)

⋂
U(i′) = {∅}, i 
= i′. That is

(U(1), . . . , U(G)) is a partition of (U1, . . . , UM ). Same as before, in each MCMC iteration
we “refresh” the variates from a randomly sampled block, while the other variates are
kept fixed to the previously accepted values. In our synthetic likelihood approach we do
not make use of (9) and take instead p(s|θ,U) without decomposing this into a sum of
G contributions. We do not in fact compute separately the p(s|θ,U(i)), since we found
that in order for each p(s|θ,U(i)) to behave in a numerically stable way, a not too small
number of simulations M(i) should be devoted for each sub-likelihood term, or otherwise
the corresponding estimated covariance may misbehave (e.g., may result not positive-
definite). Therefore, in practice, we just obtain the joint p(s|θ,U), and (10) becomes

α = min

⎧⎨
⎩1,

p
(
s|θp,Uc

(1), . . . ,U
c
(k−1),U

p
(k),U

c
(k+1), . . . ,U

c
(G)

)
π (θp)

p
(
s|θc,Uc

(1), . . . ,U
c
(k−1),U

c
(k),U

c
(k+1), . . . ,U

c
(G)

)
π (θc)

g (θc|θp)
g (θp|θc)

⎫⎬
⎭ , (11)
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which we therefore call “correlated synthetic likelihood” (CSL) approach. From the
analytic point of view our correlated likelihood p(s|θ,U) is the same unbiased approx-
imation given in Price et al. (2018) (also in Supplementary Material), hence CSL uses
the BSL approach, the only difference with BSL being that the numerator and denom-
inator of (11) have G− 1 blocks in common, while in BSL all pseudo-random numbers
are refreshed at each iteration for each new likelihood.

In our experiments we show that using the acceptance criterion (11) into Algorithm 1
(regardless of the use of our ASL proposal kernel) is of benefit to ease convergence
and also increase chains mixing. Moreover, it comes with no computational overhead
compared to not using correlated synthetic likelihoods. The only potential issue would
be some careful extra coding and the need to store (U(1), . . . ,U(G)) in memory, which
could be large dimensional with complex model simulators.

5 Algorithmic initialization using BOLFI and ELFI

This section does not contain novel material, but it is useful to inform modellers using
SL approaches of alternative strategies to initialize SL algorithms. We consider the case
where obtaining a reasonable starting value θ1 for θ by trial-and-error is not feasible,
due to the computational cost of evaluating the SL density at many candidates for θ1.
At minimum, we need to find a value θ1 such that the corresponding SL density (the
biased pM or the unbiased one in the sense of Price et al., 2018) has a positive definite
covariance matrix Σ̂. This is not ensured when the summaries are simulated from highly
non-representative values of θ, which would result in an MCMC algorithm that halts.
The issue is critical, as testing many values θ1 can be prohibitively expensive, both
because the dimension of θ can be large and because the model itself might be slow to
simulate from.

An approach developed in Gutmann and Corander (2016) uses Bayesian optimiza-
tion when the likelihood function is intractable but realizations from a stochastic model
simulator are available, which is exactly the framework that applies to ABC and SL.
The resulting method, named BOLFI (Bayesian optimization for likelihood-free infer-
ence), locates a θ that either minimizes the expected value of logΔ, where Δ is some
discrepancy between simulated and observed summary statistics, say Δ =‖ s∗ − s ‖
for some distance ‖ · ‖, or alternatively can be used to minimize the negative log-SL
expression. For example, ‖ · ‖ could be the Euclidean distance ((s∗ − s)′(s∗ − s)′)1/2,
or a Mahalanobis distance ((s∗ − s)′A(s∗ − s)′)1/2 for some square matrix A weighting
the individual contributions of the entries in s∗ and s (see Prangle et al., 2017). The
appeal of BOLFI is that (i) it is able to rapidly focus the exploration in those regions
of the parameter space where either Δ is smaller, or the SL is larger, and (ii) it is
implemented in ELFI (Lintusaari et al., 2018), the Python-based open-source engine
for likelihood-free inference. Hence, when dealing with expensive simulators, BOLFI is
ideally positioned to minimize the number of attempts needed to obtain a reasonable
value θ1, to be used to initialize the synthetic likelihoods approach. BOLFI replaces the
expensive realizations from the model simulator with a “surrogate simulator” defined
by a Gaussian process (GP, Rasmussen and Williams, 2006). Using simulations from
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the actual (expensive) simulator to form a collection of pairs such as (θ, logΔ), the GP
is trained on the generated pairs and the actual optimization in BOLFI only uses the
computationally cheap GP simulator. This means that the optimum returned by BOLFI
does not necessarily reflect the best θ generating the observed s. It is possible to use
the BOLFI optimum to initialize some other procedure within ELFI, such as Hamilto-
nian Monte Carlo via the NUTS algorithm of Hoffman and Gelman (2014). However,
the ELFI version of NUTS uses, again, the GP surrogate of the likelihood function.
Once the BOLFI optimum is obtained, it can be used to initialise (B)SL MCMC which
still uses simulations from the true model, and these may be expensive, but at least
are initialised at a θ which should be “good enough” to avoid a long and expensive
burnin. Illustrations of BOLFI are in Sections 6.1 and 6.2. A more recent contribution,
exploiting GPs to predict a log-SL, is in Järvenpää et al. (2020).

6 Simulation studies

Here follow four simulation studies. A fifth one, using a “perturbed” α-stable model
built to pose a challenge to CSL, is in Supplementary Material. In all the considered
examples we useN = 1, i.e. the ASL proposal kernel is updated at each iteration. Within
ASL we always use a Gaussian proposal based on (5)–(6), and never the multivariate
Student’s one.

6.1 g-and-k distribution

The g-and-k distribution is a standard toy model for case studies having intractable
likelihoods (e.g. Allingham et al., 2009; Fearnhead and Prangle, 2012), in that its simu-
lation is straightforward, but it does not have a closed-form probability density function
(pdf). Therefore the likelihood is analytically intractable. The g-and-k distributions is
a flexibly shaped distribution that is used to model non-standard data through a small
number of parameters. It is defined by its quantile function, see Prangle (2017) for an
overview. Essentially, it is possible to generate a draw Q from the distribution using the
following scheme

Q = A+B

[
1 + c

1− exp(−g · u)
1 + exp(−g · u)

]
(1 + u2)k · u, (12)

where u ∼ N(0, 1), A and B are location and scale parameters and g and k are related
to skewness and kurtosis. Parameters restrictions are B > 0 and k > −0.5. We assume
θ = (A,B, g, k) as parameter of interest, by noting that it is customary to keep c fixed
to c = 0.8 (Drovandi and Pettitt, 2011; Rayner and MacGillivray, 2002). We use the
summaries s(w) = (sA,w, sB,w, sg,w, sk,w) suggested in Drovandi and Pettitt (2011),
where w can be observed and simulated data y and y∗ respectively:

sA,w = P50,w, sB,w = P75,w − P25,w,

sg,w = (P75,w + P25,w − 2sA,w)/sB,w,

sk,w = (P87.5,w − P62.5,w + P37.5,w − P12.5,w)/sB,w,
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where Pq,w is the qth empirical percentile of w. That is sA,w and sB,w are the median
and the inter-quartile range of w respectively. We use the simulation strategy outlined
above to generate data y, consisting of 1,000 independent samples from the g-and-k
distribution using parameters θ = (A,B, g, k) = (3, 1, 2, 0.5). We place uniform priors
on the parameters: A ∼ U(−30, 30), B ∼ U(0, 30), g ∼ U(0, 30), k ∼ U(0, 30).

We run five inference attempts independently, always starting at θ0 = (7.389, 7.389,
2.718, 1.221) and using the same data. For all experiments, M = 1,000 model simula-
tions are produced at each proposed parameter and we found this value of M to be
necessary given the used starting parameters, or we would not collect enough parame-
ter moves. However if we instead initialize the simulations close to the true values then
a considerably smaller M can be employed (this is discussed later), which shows that
our contribution on accelerating convergence to the high posterior probability region is
important. We start by running K = 200 burnin iterations, during which we advance
the chain by proposing parameters using a Gaussian random walk acting on log-scale,
i.e. on log θ, with a constant diagonal covariance matrix having standard deviations
given by [0.025, 0.025, 0.025, 0.025] for (logA, logB, log g, log k) respectively. Given the
short burnin, in the first K iterations we implement a Markov-chain-within-Metropolis
strategy (MCWM, Andrieu et al., 2009) to increase the mixing of the algorithm before
our sequentially guided ASL strategy starts (shortly, MCWM differs from a standard
Metropolis-Hastings algorithm in that the stochastic likelihood approximation in the
denominator of the Metropolis-Hastings ratio is re-evaluated at the last accepted pa-
rameter value, instead of using the value of the previously accepted synthetic likelihood).
Notice the use of MCWM is strictly limited to the burnin iterations, since MCWM dou-
bles the execution time and its theoretical properties are not well understood. At itera-
tion K +1, our ASL Algorithm 2 starts and is let run for 300 iterations (notice a much
smaller number of iterations than 300 can be used, say 50. We chose 300 for pictorial
reasons as the effect of ASL gets better noticed in figures). Afterwards BSL inherits the
last draw accepted by ASL and reverts to using the adaptive Metropolis random walk
proposal of Haario et al. (2001), thereafter denoted “Haario”, which is used for further
2,800 iterations and is adapted as described in Supplementary Material. Therefore the
total length of the chain is 3,300 (K = 200 iterations, then 300 ASL iterations then
2,800 further iterations). The covariance matrix in the adaptive proposal of “Haario” is
updated every 30 iterations. The five independent inference attempts are in Figure 1a.
We notice that during the burnin the chains are still quite far from the ground truth.
However, as soon as ASL kicks in (iteration 201), we notice a large jump towards the
true parameters. The proposal in the ASL algorithm produces a high acceptance rate
which although it induces very local moves, it never gets stuck and thus provides useful
information to initialize the covariance matrix in “Haario”.

We now avoid using our guided ASL and run BSL using again MCWM during
the burnin iterations and the adaptive “Haario” strategy for the remaining iterations,
with results in Figure 1b. This shows the difficulty of running BSL when starting pa-
rameters are in the tails of the posterior, where several runs completely fail and only
occasionally they manage to reach the bulk of the posterior. Furthermore, the patterns
are very sticky. This is because the adaptive “Haario” proposal tunes the covariance
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of the Gaussian random walk sampler on the previous history of the chain, which be-
comes problematic if many rejections occur, as in this case the covariance shrinks, thus
making the recovery difficult. This is why the high acceptance rate of ASL, coupled
to the rapid convergence towards the posterior’s bulk, helps collecting moves that are
useful for the learning of the covariance matrix for the adaptive random walk pro-
posal.

We mentioned that if a starting parameter value is chosen closer to the ground truth
value a smaller M can be employed (and recall from Figure 1b that with a standard
adaptive proposal method BSL failed even with M = 1,000). As an example, we take
the sample mean of the acceptances produced via ASL from iteration 200 to 500, and
use this sample mean to initialize BSL when using the “Haario” proposal with as little
as M = 50: the mixing of BSL in this case is very satisfactory (results shown in the
Supplementary Material) and actually even using M = 10 allows good mixing but
slightly worse tail performance. Therefore, ASL can be really useful in enabling standard
BSL to be used with considerable computational savings (5,000 iterations of BSL can
be performed in under a minute when M = 50).

Using correlated synthetic likelihood without ASL

Here we consider the correlated synthetic likelihood (CSL) approach outlined in Sec-
tion 4, without the use of our ASL approach for proposing parameters, to better ap-
preciate the individual effect of using correlated likelihoods. Notice (12) immediately
suggests how to implement CSL, since the u appearing in (12) can be thought as a scalar
realization of the U variate in Section 4. We initialised parameters at the same starting
values as in the previous experiments, across five independent inference attempts. We
used CSL throughout, including the burnin phase, that is we do not employ MCWM
during the burnin. After 200 burnin iterations with fixed covariance matrix, we pro-
pose parameters using “Haario”. We illustrate results obtained with G = 100 blocks,
which should imply a theoretical correlation of ρ = 1−1/100 = 0.99 between estimated
synthetic loglikelihoods, see Figure 2. Figure 2 shows that, while two attempts failed
(essentially because the 200 burnin iterations did not produce any acceptance), the re-
maining attempts managed to reach the ground-truth values. Recall that when using
BSL without induced correlation (and employing the same “Haario” proposal sampler)
we produced Figure 1b. The benefits of recycling pseudo-random variates are notice-
able. Similar plots, but using G = 50, are in Supplementary Material. The comparison
between the two cases G = 50 and G = 100 shows that inducing higher correlation (i.e.
G = 100) allow faster convergence to ground-truth parameters, however at the same
time the mixing is reduced due to a reuse of perhaps too many U -variates, whereas with
G = 50 the chains appear to mix better.

Initialization using ELFI and BOLFI

Here we show results from the BOLFI optimizer (discussed in Section 5) to find a
promising area in the posterior region and hence provide a useful starting value for SL.
We use the ELFI software. In this particular example BOLFI uses a Gaussian Process
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Figure 1: g-and-k: (a) five inference runs using BSL with ASL sampler employed from
iteration 200 to 500. We display the first 1,000 iterations to emphasize the effect of the
ASL adaption. The black dashed lines mark ground-truth parameters. (b) five inference
runs of BSL (only the first 1,000 iterations are displayed for comparison with Figure 1a).
Here BSL uses the sampler of Haario et al. (2001) from iteration 200 onward.
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Figure 2: g-and-k: 1,000 iterations from CSL, using G = 100 groups. The black dashed
lines mark ground-truth parameters. Solid horizontal lines correspond to failed attempts.

(GP) to learn the possibly complex and nonlinear relationship between discrepancies (or
log-discrepancies) logΔ and corresponding parameters θ. We found that for this specific
example, where we set very wide and vague priors, we could not infer the parameters
using BOLFI with the LCB (lower confidence bound) acquisition function regardless the
value set for J1. This is because while in previous inference attempts we used MCMC
methods to explore the posterior and having very vague priors was still feasible, here
having initial samples provided by very uninformative priors is not manageable. In this
section we use A ∼ U(−10, 10), B ∼ U(0, 10), g ∼ U(0, 10), k ∼ U(0, 10). These priors
are narrower than in previous attempts but are still wide and uninformative enough
to make this experiment interesting and challenging. Once the J1 training samples are
obtained, BOLFI starts optimizing parameters by iteratively fitting a GP and proposing
points θ(j) such that each θ(j) attempts at reducing logΔ, j = 1, . . . , J2. We first consider
J2 = 500 and then J2 = 800. The clouds of points in Figure 3 represent all J1 + J2
values of log-discrepancies logΔ (for (J1, J2) = (20, 500) and (J1, J2) = (100, 500))
and corresponding parameter values. The smallest values of logΔ cluster around the
ground-truth parameters which we recall are A = 3, B = 1, g = 2, k = 0.5. The values
of the optimized discrepancies are in Supplementary Material. Even with a very small
J1 the obtained results appear very promising. Also, even though the estimates for k
seem to be bounded by the lower limit we set for its prior, we can clearly notice a trend,
in that smaller values for k return smaller discrepancies. BOLFI can be an effective tool
to initialize an MCMC procedure for synthetic likelihoods.
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Figure 3: g-and-k: log-discrepancies for the tested parameters using BOLFI with J1 = 20
(top) and J1 = 100 (bottom). From left to right: plots for A, B, g and k respectively.

6.2 Supernova cosmological parameters estimation with twenty
summary statistics

We present an astronomical example taken from Jennings and Madigan (2017). There,
the ABC algorithm by Beaumont et al. (2009) was used for likelihood-free inference.
The algorithm in Beaumont et al. (2009) is a sequential Monte Carlo (SMC) sampler,
hereafter denoted ABC-SMC, which propagates many parameter values (“particles”)
through a sequence of approximations of the posterior distribution of the parameters.
The sequence of approximations depends on the sequence of tolerances ε1:T , where T is
the final iteration of the procedure. The different approaches used in order to create the
series of decreasing tolerances (Beaumont et al., 2009; Del Moral et al., 2012), together
with the choice for T , can lead to inefficient sampling (Simola et al., 2020). For this rea-
son, rather than using the ABC-SMC algorithm, we employed one of its extensions, the
“adaptive ABC Population Monte Carlo” (hereafter aABC-PMC) found in Simola et al.
(2020). When using the aABC-PMC algorithm both the series of decreasing tolerances
and T are automatically selected, by looking at the online behaviour of the approxi-
mations to the posterior distribution (aABC-PMC is also implemented in ELFI). Our
goal is to show how synthetic likelihoods may be as well used in order to tackle the
inferential problem, and a comparison with aABC-PMC and BOLFI is presented. In
Jennings and Madigan (2017) the analysis relied on the SNANA light curve analysis
package (Kessler et al., 2009) and its corresponding implementation of the SALT-II light
curve fitter presented in Guy et al. (2010). A sample of 400 supernovae with redshift
range z ∈ [0.5, 1.0] are simulated and then binned into 20 redshift bins. However, for this
example, we did not use SNANA and data is instead simulated following the procedure
in Supplementary Material. The model that describes the distance modulus as a func-
tion of redshift z, known in the astronomical literature as Friedmann–Robertson-Model
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(Condon and Matthews, 2018), is:

μi(zi; Ωm,ΩΛ,Ωk, w0, h0) ∝ 5 log10

(
c(1 + zi)

h0

)∫ zi

0

dz′

E(z′)
, (13)

where E(z) =
√
Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛe

3
∫ z
0
dln(1+z′)[1+w(z′)].

The cosmological parameters involved in (13) are five. The first three parameters
are the matter density of the universe, Ωm, the dark energy density of the universe,
ΩΛ and the radiation and relic neutrinos, Ωk. A constraint is involved when dealing
with these three parameters, which is Ωm + ΩΛ + Ωk = 1 (Genovese et al., 2009; Tri-
pathi et al., 2017; Usmani et al., 2008). The final two parameters are, respectively, the
present value of the dark energy equation, w0, and the Hubble constant, h0. A com-
mon assumption involves a flat universe, leading to Ωk = 0, as shown in Tripathi et al.
(2017); Usmani et al. (2008). As a result, (13) simplifies and in particular E(z) can be

written as E(z) =
√
Ωm(1 + z)3 + (1− Ωm)e3

∫ z
0

dln(1+z′)[1+w(z′)], where we note that

ΩΛ = 1 − Ωm. Same as in Jennings and Madigan (2017), we work under the flat uni-
verse assumption. Concerning the Dark Energy Equation of State (EoS), w(·), we use
the parametrization proposed in Chevallier and Polarski (2001) and in Linder (2003):

w(z) = w0 + wa(1− a) = w0 + wa
z

1 + z
. (14)

According to (14), w is assumed linear in the scale parameter. Another common assump-
tion relies on w being constant; in this case w = w0. We note that several parametriza-
tions have been proposed for the EoS (see for example Huterer and Turner (2001),
Wetterich (2004) and Usmani et al. (2008)). For the present example, ground-truth
parameters are set as follow: Ωm = 0.3, Ωk = 0, w0 = −1.0 and h0 = 0.7.

In the present study h0 is assumed known. Similarly to Jennings and Madigan (2017),
we aim at inferring the cosmological parameters θ = (Ωm, w0). The distance function
used to compare μ with the “simulated” data μsim(z) is:

ρ(μ, μsim(z)) =
∑
i

(μi − μsim(zi))
2. (15)

We recall that the aABC-PMC algorithm in Simola et al. (2020) uses a series of
automatically selected decreasing tolerances ε1:T , each inducing a better approximation
to the true posterior distribution as t ∈ [1, T ] increases. When the stopping rule, based
on the improvement between two consecutive posterior distributions is satisfied, the
procedure automatically halts. While the ABC posterior based on ε1 uses the prior
distribution as proposal function, for t > 1 the aABC-PMC uses the previous iteration’s
ABC posterior to produce candidates, just like regular ABC-PMC or other sequential
ABC procedures. In this work, as done also by Jennings and Madigan (2017), we follow
Beaumont et al. (2009) regarding the selection of the perturbation kernel, which is a
Gaussian distribution centered to the selected particle and having variance equal to
twice the weighted sample variance of the particles selected in the previous iteration.
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The specifications for the aABC-PMC algorithm are found in Simola et al. (2020).
For all experiments, we set priors Ωm ∼ Beta(3, 3), since Ωm must be in (0, 1), and
w0 ∼ N (−0.5, 0.52).

Inference

We describe how to forward simulate from the model in Supplementary Material. We
take s = (μ1, . . . , μ20) as “observed” summary statistics corresponding to the stochastic
input generated as described in Supplementary Material. Notice, in our case s is the
trivial summary statistic, in that (μ1, . . . , μ20) is the data itself. We investigate the as-
sumption in the Supplementary Material and find that this is statistically supported, at
least for summaries simulated at ground-truth parameter values. However, notice that a
different behaviour might occur at other values of θ, for example at those values far from
the ground truth. We found it impractical to consider M in the order of thousands, how-
ever using a smaller value of, say, M = 100 would produce an ill-conditioned covariance
matrix. To overcome this problem we found it essential to use a shrinkage estimator of
Σ̂M,θ, such as the one due to Warton (2008) and employed in a BSL context in Nott
et al. (2019). This way we managed to use as little as M = 100 model simulations. In
this section we denote the BSL approach using shrinkage as “sBSL”. We compare sBSL
with the correlated synthetic likelihoods approach plugged into ASL, and denote this
method “ACSL” (we employed shrinkage also within ACSL). We always use M = 100,
and within ACSL we experiment with several numbers of blocks, namely G = 5 and 10.
For all methods, starting parameter values are (Ωm = 0.90, w0 = −0.5), see the Supple-
mentary Material for further details on the MCMC settings. We first note that sBSL is
unable to move away from the starting parameter values, and hence this attempt is a
failure. Introducing correlation between synthetic loglikelihoods is a key feature for the
success of ACSL in this case study.

Traceplots for 11,200 draws from ACSL when G = 5, 10 are in Supplementary Ma-
terial. Having G > 1 helps proposals acceptance during the burnin period, so that when
ACSL starts it is provided with useful information from the burnin. The output of
aABC-PMC is produced by 1,000 particles (the final tolerance that is automatically
selected by the algorithm after T = 9 iterations is ε9 = 30.5). For comparison with
aABC-PMC inference, where the latter is produced by a “cloud” of particles, we thin
the output of the single chains of BSL and ACSL: we take the last 10,000 draws from
ACSL and sBSL and retain every 10th draw, thus obtaining 1,000 draws that are used
to report inference in Table 1. We remind the reader that sBSL fails when initialised at
the same starting parameters used for ACSL: therefore to enable some comparison we
start sBSL at the ground-truth parameters (this case is denoted sBSLtruth in the table).
Regarding BOLFI, posterior samples were produced by first obtaining 2,000 “acquisi-
tion points” in ELFI (over which a GP model is fitted), then 10,000 draws are produced
via MCMC, and finally chains were thinned to obtain 1,000 draws used for statistical
inference. Comparisons between all methods are in Table 1 and Figure 4. Inference re-
sults for sBSLtruth, ACSL (both attempts) and BOLFI are similar, however the effective
sample size (ESS) for BOLFI is the highest, while the ESS for sBSLtruth is much lower
than for ACSL, as reported in Table 1. While for this case study the exact posterior is
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unknown, we can speculate that discrepancies in terms of posterior variability between
the results obtained with aABC-PMC and those obtained with the other methods can
likely be explained by the use of the 20-dimensional summary statistics. For a study on
the impact of the summaries dimension in an ABC analysis we refer the reader to Blum
et al. (2013). As a further remark, it is important to remember that, unlike standard
BSL, ACSL was able to get initialised relatively far from ground-truth parameters and
still able to return reasonable inference.

Figure 4: Supernova model. Contour-plot for aABC-PMC method (solid black line),
compared with the contour-plots for the remaining methods (dashed red line). In red
dashed lines, BOLFI (top left), ACSL with G = 5 (top right), ACSL with G = 10
(bottom left) and sBSLtruth (bottom right).

6.3 Simple recruitment, boom and bust with highly skewed
summaries

Here we consider an example that is discussed in Fasiolo et al. (2018) and An et al.
(2020) as it proved challenging due to the highly non-Gaussian summary statistics. The
recruitment boom and bust model is a discrete stochastic temporal model that can be
used to represent the fluctuation of the population size of a certain group over time.
Given the population size Nt and parameter θ = (r, κ, α, β), the next value Nt+1 has
the following distribution

Nt+1 ∼
{
Poisson(Nt(1 + r)) + εt, if Nt ≤ κ

Binom(Nt, α) + εt, if Nt > κ
,

where εt ∼ Pois(β). The population oscillates between high and low level population
sizes for several cycles. Same as in An et al. (2020), true parameters are r = 0.4,
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truth aABC-PMC sBSLtruth sBSL ACSL, G = 5 ACSL, G = 10 BOLFI
Ωm 0.3 0.31 (0.071, 0.54) 0.313 (0.136, 0.474) NA 0.316 (0.133, 0.490) 0.317 (0.129, 0.488) 0.289 (0.0765, 0.467)
w0 −1 −1.05 (−1.95, −0.52) −1.014 (−1.517, −0.580) NA −1.028 (−1.574, −0.607) −1.047 (−1.502, −0.563) −0.99 (−1.540, −0.545)

minESS – 301 NA 781 681 831

Table 1: Supernova model: posterior means (95% high-posterior-density interval) resulting from 1,000 thinned posterior draws
from several methods. All chains are initialised at (Ωm = 0.90, w0 = −0.5), except for sBSLtruth which is sBSL initialised at
ground-truth parameters. The “NA” for sBSL means that the MCMC was unable to move away from the starting location.
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κ = 50, α = 0.09 and β = 0.05 and we assume N1 = 10 a fixed and known constant.
This value of β is considered as it gives rise to highly non-Gaussian summaries, and
hence it is of interest to test our methodology in such scenario. In fact, the smaller the
value of β, the more problematic it is to use synthetic likelihoods. An illustration of
the summaries distribution at the true parameters values is in Supplementary Material,
together with the prior specifications, the summary statistics employed and other model
specifications.

We experiment with two sets of values for the starting parameters: set 1 has r = 0.8,
κ = 65, α = 0.05, β = 0.07; set 2 has a more extreme set of values, given by r = 1,
κ = 75, α = 0.02, β = 0.07. We always use M = 200 (also considered in An et al.,
2020). In this case-study we could not experiment with the correlated synthetic likeli-
hoods approach, since the state-of-art generation of Poisson draws requires executing a
while-loop, where uniform draws are simulated at each iteration. Therefore it is not
known in advance how many uniform draws it is necessary to store, and the implemen-
tation of correlated SL results inconvenient. When parameters are initialised in set 1,
a burnin of 200 iterations aided by MCWM is considered (MCWM is not used after
burnin). When initialising from set 2, we use a longer burnin of 500 iterations. During
the burnin, as usual we propose parameters using a Gaussian random walk proposal with
constant diagonal covariance matrix with diagonal elements [0.0052, 0.52, 0.0012, 0.0012].
For ASL the burnin was followed by 300 iterations (again this can be set much smaller)
using the guided proposals approach, and then further 1,200 iterations using “Haario”.
BSL was found to diverge to wrong regions of the posterior surface with chains stuck
for long periods, for both attempted starting parameters. We therefore implemented the
semi-parametric BSL approach from An et al. (2020), thereafter “semiBSL”: semiBSL
is a robustified version of BSL to address the case of non-Gaussian-distributed sum-
mary statistics. However, also semiBSL failed when parameters were initialized in the
tails of the posterior (i.e. when using the same starting parameters considered above for
ASL), meaning that chains were unable to mix, and were stuck in wrong regions, see
the Supplementary Material for details. This shows that even a “robustified” version of
synthetic likelihoods can be fragile to bad initializations. Therefore, results we report
in Figure 5b for both standard BSL and semiBSL are based on chains initialized at the
ground-truth parameter values. With ASL, at the end of the initial 500 burnin iterations
we notice the characteristic “jump” towards the true parameter values, see Figure 5a.
Therefore, ASL is able to produce inference also when initialised at parameters in the
tails of the posterior surface, while BSL and semiBSL cannot, at least for this example.
Traces for the failing semiBSL initialised at set 2 are in the Supplementary material.
Similarly to the supernova model, we now compute minESS values. Using 1,000 poste-
rior draws from the run initialised at set 2, we have that with ASL minESS is 49. For
BSL, when starting at ground-truth, we have minESS = 35 and for semiBSL minESS =
41. Therefore, the values for semiBSL and ASL are quite similar, despite the fact that
ASL is initialised at a less favorable location.
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Figure 5: Boom-and-bust: (a) traces for ASL initialised at set 2. Dashed lines are true
parameter values. (b) marginal posteriors from 1,000 draws produced with initialisation
via ASL (solid) with starting parameters in set 2; with BSL (dashed) and semiBSL
(dotted) both initialised at ground truth parameters (vertical lines).

6.4 A multimodal surface

We show how to run multiple chains employing ASL to rapidly alert the researcher
of the existence of multiple modes, at a small computational cost. The toy model is
admittedly very simple, but the experiment is expressive enough for our take-home
message. We consider a likelihood consisting of a two-components Gaussian mixture
x ∼ 0.5N (μ1,Σ1) + 0.5N (μ2,Σ2), where each component is two-dimensional. We con-

sider 5,000 observations generated by such mixture with ground truth μ1 = (μ
(1)
1 , μ

(2)
1 ) =

(−5, 10), μ2 = (μ
(1)
2 , μ

(2)
2 ) = (30, 20) and covariance matrices Σ1 and Σ2 both having

diagonal entries (42, 42), however Σ1 is diagonal while Σ2 has off-diagonal entries both
equal to 12. Data are exemplified in Figure 6(a). We assume μ1 and μ2 as the only un-
knowns, and everything else is fixed to ground-truth values. We set independent priors

μ
(1)
1 ∼ N (−5, 22), μ

(2)
1 ∼ N (10, 22), μ

(1)
2 ∼ N (30, 22), μ

(2)
2 ∼ N (20, 22). In our experi-

ments, summary statistics of simulated data are the estimated means of the two mixture
components, as obtained by fitting a two-components Gaussian mixture (with known
covariances set to ground-truth). Observed summaries are always s = (−5, 10, 30, 20),
that is the ground truth means. We used common strategies to get around the well-
known “label-switching” issue affecting mixture models: that is whenever during MCMC

a vector (μ
(1)
1 , μ

(2)
1 , μ

(1)
2 , μ

(2)
2 ) is proposed, we sort its entries across the mixture com-

ponents so that the proposed vector has components rearranged to have μ
(1)
1 < μ

(1)
2

and μ
(2)
1 < μ

(2)
2 . Since we work in the context of synthetic likelihoods, once a simulated

dataset is produced at the proposed parameters, we fit a two-components Gaussian mix-
ture to the data as previously mentioned, and the four corresponding estimated means
(which are used as summary statistics) are sorted in the same way as the proposed
parameters. We use M = 10 to approximate the synthetic likelihood and design the
following experiment. For a fixed dataset with observed summaries s = (−5, 10, 30, 20)
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we run 100 independent chains initialised at random locations. We set up a very short
burnin consisting of 49 iterations where as usual MCWM is used and a Gaussian random
walk sampler is employed, where the noise in the random walk has standard deviation
set to 0.2 for each proposed entry in μ1 and μ2. This means that during burnin we inten-
tionally induce slow exploration of the posterior surface. We show that, as soon as ASL
starts, most chains quickly reach the high-density region of the posterior. Figure 6(b)
shows 100 starting values that were randomly sampled uniformly in the 4-dimensional
hypercube [−30, 50]4. We notice that after 49 iterations using random walk proposals
the draws are still fairly close to the starting value, however one further iteration af-
terwards, when ASL is initialised, a rapid jump is performed towards the high density
region. The clustering of the ASL draws should signal the researcher the existence of
more than one mode, and hence inform her of the opportunity to initialise more than
one chain for a full-fledged Bayesian inference, by picking the starting values in the
clusters determined by ASL.

Figure 6: Gaussian-mixture: (a) 5,000 data-points from the likelihood model and contour
lines for the latter; (b) contour lines for the likelihood model; black circles are the 100
starting values for the corresponding 100 chains; magenta circles correspond to iteration
49 (last burnin iteration) for each chain; the green asterisks correspond to iteration 50
for each chain, that is the first ASL iteration.

7 Discussion

We have introduced several ways to improve the performance of the computing-intensive
synthetic likelihood framework. Firstly, we have developed a sequential strategy to learn
a “guided by data” proposal distribution for SL. The resulting sequentially adaptive and
guided SL sampler (ASL) helped the chain to rapidly approach the ground truth param-
eter values. Importantly, for two of the considered case studies (supernova cosmological
parameters and recruitment boom-and-bust model), standard SL methods failed when
initialized at remote parameter values and when the standard adaptive MCMC strat-
egy by Haario et al. (2001) was employed, whereas ASL helped the chains to rapidly
converge to high-posterior regions (remarkably, this happened even for the markedly
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non-Gaussian summary statistics considered in Section 6.3). In addition, we have shown
how to introduce correlation between successive estimates of the synthetic likelihood,
calling this approach “correlated synthetic likelihoods”. This should help reducing the
variance in the acceptance ratio of Metropolis-Hastings, and indeed we have noticed an
increase in the mixing of the chains. We have shown how this correlated SL approach
(CSL) can be of help when SL is initialized in the tails of the posterior and how bene-
ficial CSL is in terms of chains mixing. However, CSL is not a silver bullet, and it does
not necessarily have to succeed at completely eliminating the possibility for SL getting
stuck when badly initialized. However, when it can be implemented, there is no obvious
reason to prefer standard SL to CSL. At worst, we conjecture that for very nonlinear
transformations of the data following the construction of possibly complex summary
statistics (and hence complex transformations of the pseudo-random variates), it may
happen that the correlation between successive likelihoods gets destroyed, thus trans-
forming CSL into standard SL. We have challenged CSL with a “perturbed α-stable
model” (in Supplementary Material) and even in this case CSL has shown beneficial.
Finally, for the g-and-k and supernova examples, we have illustrated how the problem
of a difficult initialization for SL can be tackled by using a Bayesian optimization-based
approach to likelihood-free inference (Gutmann and Corander, 2016), available in the
ELFI software (Lintusaari et al., 2018). However, we note further that the BOLFI im-
plementation uses the LCB (lower confidence bound) acquisition function which can be
prone to over-explore boundaries of parameter spaces and may in some cases result in a
poorly resolved surrogate model. An improved acquisition function based on expected
integrated variance introduced by Järvenpää et al. (2019) has been shown to lead to
more accurate posterior approximation and it is also available in ELFI, although it is
typically rather expensive computationally. As a summary, we believe that when a rea-
sonable starting region where to set an initial θ is unknown, BOLFI can likely much
more rapidly screen the posterior surface in the search for a promising starting region
than a random walk proposal. On the other hand, when the dimension of θ is small
as it is often the case in BSL applications (say ≤ 7 parameters), then our approach of
producing a small number of random walk proposals followed by a short run of ASL
can also be more computationally convenient and generally easy to implement.

The steps taken in this work thus broaden the scope of usage of synthetic likelihood
methods and open up new venues for further research on improving applicability of
intractable inference.

Supplementary Material

Supplementary Material for “Sequentially guided MCMC proposals for synthetic likeli-
hoods and correlated synthetic likelihoods” (DOI: 10.1214/22-BA1305SUPP; .pdf).
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