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We derive a formula for optimal hard thresholding of the singular value
decomposition in the presence of correlated additive noise; although it nomi-
nally involves unobservables, we show how to apply it even where the noise
covariance structure is not a priori known or is not independently estimable.
The proposed method, which we call ScreeNOT, is a mathematically solid
alternative to Cattell’s ever-popular but vague scree plot heuristic from 1966.
ScreeNOT has a surprising oracle property: it typically achieves exactly, in
large finite samples, the lowest possible MSE for matrix recovery, on each
given problem instance, that is, the specific threshold it selects gives exactly
the smallest achievable MSE loss among all possible threshold choices for
that noisy data set and that unknown underlying true low rank model. The
method is computationally efficient and robust against perturbations of the
underlying covariance structure. Our results depend on the assumption that
the singular values of the noise have a limiting empirical distribution of com-
pact support; this property, which is standard in random matrix theory, is
satisfied by many models exhibiting either cross-row correlation structure or
cross-column correlation structure, and also by many situations with more
general, interelement correlation structure. Simulations demonstrate the ef-
fectiveness of the method even at moderate matrix sizes. The paper is supple-
mented by ready-to-use software packages implementing the proposed algo-
rithm: package ScreeNOT in Python (via PyPI) and R (via CRAN).

1. Introduction. Across a wide variety of scientific and technical fields, practitioners
have found many valuable applications of singular value thresholding (SVT). This procedure
starts from the singular value decomposition (SVD), which represents the data matrix Y as

(1.1) Y =
min(n,p)∑

i=1

yi · uiv�
i ,

using the empirical singular values {yi}min(n,p)
i=1 , and the empirical left and right singular vec-

tors of Y , denoted here ui and vi .
In such applications, it is generally claimed that the small singular values represent “noise”

and the large singular values “signal”; practitioners attempt to separate signal from noise by
setting a threshold θ (say), and using, in place of Y , the partial reconstruction containing only
would-be signal components:

(1.2) X̂θ = ∑
i

yi1{i:yi>θ} · uiv�
i .

How do practitioners determine the threshold θ? Often, by eye. They plot the ordered
singular values and spot “elbows.” Sometimes, they give this a scholarly veneer by saying
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they are using the “scree plot method”; they might even formally cite the originator of this
folk-tradition [12], which still gets more than 1000 citations yearly. According to the method
prescribed in that paper, the practitioner plots the values {yi} and uses her eyes to distinguish
between “signal” and “noise” singular values of Y .

How should they determine the threshold? Relevant theory and methodology literature
spans multiple disciplines over multiple decades; we mention only a few entry points, includ-
ing: [1–3, 11, 13, 14, 17, 19, 20, 22, 24, 25, 28, 30, 31, 34]. Progress has been made in our
understanding of the underlying problem, and many valuable quantitative approaches have
been developed—to which we here add one more. Our contribution relies on recent advances
in random matrix theory which point, we think convincingly, to the method introduced here.
This method typically offers the exact optimal loss available on each specific, finite data set
Y .

Our task formalization supposes that: (a) there is an underlying matrix X of fixed rank
r—though X and even its rank r are unknown to us; (b) only a potentially loose upper bound
on the signal rank r is known; (c) the data matrix Y has the signal + noise form Y = X + Z,
where Z is a noise matrix with a general covariance structure—also unknown to us; (d) we
use hard thresholding of singular values, exactly as in (1.2) above;1 (e) we adopt squared
error loss:2

(1.3) SE[X|θ ] = ‖X̂θ − X‖2
F .

As goal, we literally aim to choose a loss-minimizing value θopt = θopt(Y |X) solving

(1.4) SE[X|θopt] = min
θ

SE[X|θ ].
Aiming for θopt(Y |X) may seem overambitious, as we know only the data matrix Y , and not
X; wait and see.

Essentially this problem was studied previously by two of the authors in the special case
of white noise. [19] supposed that the underlying noise Z matrix has i.i.d. Gaussian zero-
mean entries and the problem is scaled so that the columns of Z have unit Euclidean squared
norm in expectation, and considered a sequence of increasingly large problems. In the square
case, when Y has as many rows as columns: the authors found results3 which, in light of
our results below, say that with eventually overwhelming probability, we have θopt = 4/

√
3.

Their analysis relied on then-recent advances in the “Johnstone spiked model” of random
matrix theory [23]; they proposed a method for white noise with unknown variance, where the
threshold formula became θopt ≈ 4/

√
3 · ymed√

n·0.6528
, where ymed denotes the median empirical

singular value of Y .4

Understanding the white noise case cannot be the end of the story. Practitioners ordinarily
do not know that their noise is white, and in fact realistic noise models can include correla-
tions between columns, rows or even general row-column combinations. Fortunately, a broad
range of noise models can be studied using appropriate advances that have been made in
random matrix theory. In this broader context, as we show a more general formula for the op-
timal threshold can be given, which of course reduces to 4/

√
3 in the above “square-matrix

in white noise” case, but which is inevitably quite a bit more sophisticated in general.

1And not some variant, such as soft thresholding or a more general shrinkage.
2‖X‖2

F = ∑
i,j X2

i,j denotes the squared Frobenius norm.
3That is, the authors of [19] adopted a slightly different viewpoint involving asymptotic MSE, and showed

that 4/
√

3 is optimal, whereas we consider here exact finite sample MSE loss, and show that with eventually
overwhelming probability, 4/

√
3 is exactly optimal on each typical realization.

4
√

0.6528 is approximately the median of the standard quarter-circle law; see the original paper.
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Section 2 below describes ScreeNOT, our proposed deployment of this formula on ac-
tual data. The acronym NOT stands for Noise-adaptive Optimal Thresholding; “adaptive”
refers to the algorithm’s optimality across a wide range of unknown noise covariances. The
prefix “Scree” reminds us that, still today, in many cases, the alternative would simply be
“eyeballing” the scree plot [12]. Cattell and his many followers clearly believed that some-
thing, some visible feature, in the scree plot, namely, in the collection of data singular values
{yi}—could tell us where the noise stopped and the signal began. But what exactly? In a
very concrete sense, the ScreeNOT algorithm shows that the information needed to separate
signal from noise truly is there in the distribution of empirical singular values, where Cattell
and his followers all hoped it would be. However, the ScreeNOT algorithm and the approach
we develop here quantitatively identify this information as a specific functional of the CDF
of singular values.

The method, once implemented, surprised us by the finite-sample optimality it exhibited;
in simulations at reasonable problem sizes it typically achieves the exact minimal loss (1.4)
for the given data set, even though the method is not entitled to know the underlying low-
rank model X or specifics of the noise model on Z; we initially expected a weaker and more
“asymptotic” optimality property, perhaps similar to the one shown in [19]. Our analysis
below proves typicality of such exact optimality in finite samples. This strong optimality is
partly due to the penetrating nature of random matrix theory; but also to the very specific
task: minimizing squared error loss (1.3) of singular value thresholding (1.2).

Underlying analysis. Hoping to make the paper helpful to prospective users of the proposed
method, we have made the Introduction and also Section 2 mostly independent of the analysis
to come; however, we now very briefly offer mathematically-oriented readers some insight
about the approach being followed in later sections and the tools being developed there.

At heart, this paper concerns the asymptotic analysis of a sequence of matrix recovery
problems where the problem sizes n and p grow to ∞ in a proportional fashion. We assume
that the matrix X has r nonzero singular values x1, . . . xr , which are fixed independently of n

and p. About the sequence of random noise matrices Z = Zn,p , we assume that the sequence
of empirical cumulative distribution functions (CDFs) of noise singular values converges to
a compactly supported distribution FZ with certain qualitative restrictions at the boundary of
the support.

Using results of Benaych-Georges and Nadakuditi [10], we obtain an expression for an
asymptotically optimal hard threshold, as a functional T (·) of the limiting CDF of noise
singular values FZ . The functional is continuous and even differentiable in certain senses.

Admittedly, the limiting CDF of noise singular values FZ is not observable to the statis-
tician, as we only observe a sample of the signal + noise singular values mixed together.
Performing a kind of amputation and prosthetic extension on the CDF FY of singular values
of Y , which we do observe, we construct a modified empirical CDF F̂n, which consistently
estimates the limiting CDF of noise-only singular values. Applying the hard threshold selec-
tion functional to this modified empirical CDF F̂n gives our proposed method, in the form
θ̂ = T (F̂n). As we show in Section 2, there is a quite explicit and computationally tractable
algorithm for computing T (F̂n), which we label ScreeNOT.

Owing to the continuity of the hard threshold functional T (·), and the consistency of the
constructed CDF, the resulting method is a consistent estimator of the underlying asymp-
totically optimal threshold T (FZ). We also prove a finite-sample optimality of the method.
Specifically, the ScreeNOT algorithm is shown to be exactly optimal for squared error loss
with high probability, in large enough finite samples, under very general model assumptions.
For generic configurations of signal singular values (xi)

r
i=1, there is, in large finite samples,

an optimal interval of thresholds, all achieving the optimal MSE at that realization; the con-
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sistency of the optimal threshold estimator implies that eventually for large enough n, with
overwhelming probability, the proposed method achieves the exact optimal MSE loss.

Contributions. The approach we develop selects an optimal threshold for singular values,
and thus selects the “signal” singular values, based on the principle of minimizing SE. Indeed,
minimizing squared error loss is a ubiquitous goal in statistical theory, and we are not the first
to consider it as a goal for threshold selection in the context of singular values. In addition
to our own just-cited work [19], prior citable work on squared error loss includes Perry [30],
Shabalin and Nobel [32] and Nadakuditi [27], although much of this concerns singular value
shrinkage rather than thresholding.5 While our approach is implemented for SE loss, we note
that it could in principle be used to develop optimal thresholding rules for other loss criteria,
such as the operator norm.

We especially point to [14]; in this work, Dobriban and Owen mainly study Parallel Anal-
ysis [18]—simulation-based significance testing for large singular values; they develop tools
from random matrix theory to derandomize parallel analysis.6 Beyond this, they also mention
in a final section that their tools could be adapted to produce a threshold selector minimiz-
ing the asymptotic mean squared error of the resulting approximation; and their equation (6)
provides a way to characterize such a functional.

In this paper, we make explicit (in equation (4.5) below) the functional T for threshold se-
lection with minimal asymptotic SE, and show that it is well-defined; we offer (in Section 2.3)
an explicit construction of a modified CDF F̂n to plug into T —the proposal involves singu-
lar value “ablation and prosthesis”; we develop a theoretical machinery, involving continuity
properties of T and convergence properties of F̂n, and use the machinery to prove that T (F̂n)

achieves not just asymptotic optimal loss (Theorem 1), but also (Theorem 2) that in large
finite samples it achieves the exact minimal loss with overwhelming probability.

Outline. This paper is organized as follows. In Section 2, we offer a practical, succinct de-
scription of the ScreeNOT algorithm, for the convenience of prospective users. In Section 3,
we introduce the signal + noise model used and survey relevant results from random matrix
theory. In Section 4, we state our main results regarding the optimality and stability properties
of ScreeNOT, both in finite matrix size and asymptotically as the matrix size grows to infinity.
In Section 5, we demonstrate the mathematical results in various simulations and numerical
examples; for space considerations, only a handful of figures are shown, with most simu-
lation results deferred to the Supplementary Material and available in the code supplement
[15]. The results are proved in Section 6, with some proofs referred to the Supplementary
Material [16].

Reproducibility advisory. Implementation of the proposed algorithm, scripts generating all
figures in this paper and many additional simulations have been permanently deposited and
are available at the code supplement [15].

Code packages. Ready-to-use code packages, implementing the ScreeNOT procedure in
various language are available. In Python: package ScreeNOT is available through PyPI;
in R: package ScreeNOT is available though CRAN; and Matlab source code. For details,
see the following GitHub repository: https://github.com/eladromanov/ScreeNOT. In addi-
tion, the source code has been permanently deposited and is available at the code supplement
[15].

5Singular value shrinkage is considerably more involved as it changes the data singular values rather than
selects them. The best-possible relative improvement of shrinkage over thresholding was studied in [19] in the
white noise case.

6Potential users of ScreeNOT should note that in many scientific projects the goal is determining the number
of statistically significant factors, without particular regard to the quality of squared-error approximation; it is
possible that for such a goal parallel analysis or its derandomized version [14] is preferred.

https://github.com/eladromanov/ScreeNOT
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2. The ScreeNOT procedure: User-level description. In this section, we give a brief
self-contained description of our proposed procedure.

2.1. Procedure API. ScreeNOT selects a hard threshold for singular values, which can
in finite samples give the optimal MSE approximation of a low-rank matrix from a noisy
version; the noise may be correlated, and the threshold will adapt to that appropriately.

2.1.1. Inputs. The user provides these inputs to ScreeNOT:

y: the singular values y1, . . . , ymin(n,p) of the data matrix Y ;
n, p: size parameters of the data matrix Y .
k: upper bound on the rank r of the underlying unknown signal matrix X, which is to be
recovered. This upper bound may be very loose.

2.1.2. Outputs. ScreeNOT returns θ̂ = θ̂ (Y ), the value to be used in singular value
thresholding.

To use the threshold, the user should reconstruct an approximation to the underlying signal
matrix X using the empirical singular values yi and the empirical singular vectors ui and vi

as follows:

X̂ = ∑
i

yi1{yi>θ̂} · uiv�
i .

In this reconstruction, the singular values smaller than θ̂ are judged to be noise and the cor-
responding singular decomposition components are ignored.

2.2. Example in a stylized application. We next construct a synthetic-data example, in
which we know the ground truth for demonstration purposes. The synthetic data Y = X + Z

and the invocation of ScreeNOT are based on these ingredients.

Signal X: The underlying signal matrix, unbeknownst to the hypothetical user, has rank
10, with singular values (x10, . . . , x1) = (1.0,1.15,1.3, . . . ,2.35).
Noise Z: The underlying noise, unbeknownst to the hypothetical user, follows an AR(1)

process in the row index, within each column. The AR(1) process has parameter ρ = 0.4,
and additionally each entry is divided by

√
n, so to have variance7 1/n.

Problem size: n = p = 1000
Rank bound: k = 15. The user specifies a bound of k = 15 on the possible rank of the
signal.

Figure 1 shows a so-called scree plot [12] of the first 30 empirical singular values yi . For
this particular instance, it is verified (by exhaustive search) that the minimal loss is attained by
retaining the first three principal components of Y ; in other words, thresholding at any point
θ ∈ (y3, y4) is optimal. The threshold θ̂ returned by the ScreeNOT procedure is indicated
by the green horizontal line and indeed it falls inside the optimal interval. The would-be
“elbow” in the scree plot, determined subjectively by the authors, is indicated by the grey
(lower) horizontal line; it corresponds to retaining the top 6 principal components of the data
matrix. This rule attains strictly suboptimal SE: roughly 31.3, as opposed by 26.4 attained by
ScreeNOT.

7That is, the columns of Z are independent and distributed as z/
√

n, where the random vector z has entries:

z1 = ε1 and zi = ρ · zi−1 +
√

1 − ρ2 · εi for 2 ≤ i ≤ p, where ε1, . . . , εp
i.i.d.∼ N (0,1).
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FIG. 1. Scree plot for the stylized example of Section 2.2. Horizontal axis: singular value index, where
the singular values yi of the data matrix Y are sorted in decreasing order. Vertical axis: singular values
yi . Dashed green (upper) line: the optimal threshold calculated by ScreeNOT (color online).

2.3. Internals of the procedure. We briefly describe the computational task performed
by ScreeNOT.

Step 1. Sort the singular values in nonincreasing order: y1 ≥ · · · ≥ yp .
Step 2. Compute the “pseudo singular values”:

ỹi = yk+1 + 1 − ( i−1
k

)2/3

22/3 − 1
(yk+1 − y2k+1) for i = 1, . . . , k,

and set ỹi = yi for i = k + 1, . . . , p.8

Step 3. Define the four scalar functions ϕ, ϕ̃, ϕ′, ϕ̃′ by

ϕ(y) = 1

p

n∑
i=1

y

y2 − ỹ2
i

, ϕ′(y) = − 1

p

n∑
i=1

y2 + ỹ2
i

(y2 − ỹ2
i )2

,

and

ϕ̃(y) = γ ϕ(y) + 1 − γ

y
, ϕ̃′(y) = γ ϕ′(y) − 1 − γ

y2 .

Now define

�(y) = y ·
(

ϕ′(y)

ϕ(y)
+ ϕ̃′(y)

ϕ̃(y)

)
.

Step 4. Assuming that ỹ1, . . . , ỹp are not all zero, the function y �→ �(y) can be shown to
be continuous and strictly increasing for y > ỹ1. Moreover, limy↘ỹ1 � = −∞ and �(∞) =
−2. The computed hard threshold is the unique value θ̂ satisfying

(2.1) �(θ̂) = −4.

This equation is then solved numerically, for example, by binary search.9

Step 5. The algorithm returns the value θ̂ .

8We assume 2k + 1 < p. Our proposed estimator is expected to perform poorly when k is large compared to p.
9We remark that the computational cost of this search is not considerable. For example, binary search requires

a number of iterations, which is only logarithmic in the required precision.
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(a) Solving the master equation (2.1) (b) MSE loss SE[θ |X] as a function of θ

FIG. 2. Calculation of the optimal threshold θ̂ on the stylized example of Section 2.2. (a) Left panel: Horizontal
axis: candidate thresholds θ . Vertical axis: The function �(θ). The ScreeNOT algorithm solves the equation
�(θ) = −4 for θ . Vertical green line shows the solution, denoted by θ̂ . This is the value returned by ScreeNOT.
(b) Right panel: The MSE loss function SE[θ |X] for the stylized example of Section 2.2, plotted over candidate
thresholds θ . There is an interval of values θ all achieving the lowest possible loss; the threshold θ̂ returned by
ScreeNOT (shown by the vertical green line) is located inside this optimal interval (color online).

Evidently, the procedure as stated costs O(n log(n)) flops; the dominant cost is sorting the
singular values; ordinarily of course, sorting is performed anyway as part of a standard SVD.
In that situation, the additional computational effort is O(n), which is unimportant compared
to the cost of the underlying SVD.

2.4. How the procedure works on the stylized application. Figure 2(a) shows a plot of
�(θ) as a function of θ . The horizontal blue line indicates the desired level −4. The vertical
green line indicates the crossing point, θ̂ , which is the value returned by ScreeNOT.

Figure 2(b) shows a plot of the loss SE[θ |X] versus θ . The red horizontal line shows the
optimum achievable loss. The green vertical line shows the threshold selected by the proce-
dure. It intersects the loss curve within the optimal level and the achieved loss is therefore
optimal.

3. Setup and background from random matrix theory. The rest of this paper is ded-
icated to formal analysis of the ScreeNOT algorithm. To that end, we now define a precise
signal + noise model and set up the necessary notation.

An asymptotic model for low-rank matrices observed in additive noise. To recap, let Xn

be an unknown n-by-p matrix, to be estimated. We observe a noisy measurement of Xn,
Yn = Xn + Zn, where Zn is a noise matrix, which is statistically independent of Xn. Our
analysis employs an asymptotic framework originating in random matrix theory, and consid-
ers a sequence of such problems n,p → ∞, with the following generative assumptions.

1. Limiting shape: the dimensions n, p tend to infinity together at a fixed ratio p/n → γ .
More concretely, fix γ ∈ (0,1] and set p = pn = �γ n�. Denoting γn = pn/n, of course,
γ ≤ γn < γ + 1

n
and γn → γ as n → ∞.

2. Fixed signal rank and singular values: The matrix Xn has fixed rank r = rank(Xn) and
fixed singular values. Specifically, let r be constant, and fix r positive and distinct numbers
x1 > · · · > xr > 0. Xn is the matrix

Xn =
r∑

i=1

xiai,nb�
i,n,
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where ai,n ∈ R
n (resp., bi,n ∈ R

p) for i = 1, . . . , r are sequences of left (resp., right) singular
vectors of Xn, obeying a generative assumption as described next. We let x = (x1, . . . , xr)

denote the vector of singular values and we refer to either the matrix X or just x as the
signal.10

3. Incoherent signal singular vectors. The vectors a1,n, . . . ,ar,n (resp., bi,n) constitute a
random, uniformly distributed orthonormal r-frame in R

n (resp., in R
p).11

4. Compactly supported, limiting bulk distribution of noise singular values. Each matrix
Zn is statistically independent of Xn. Let z1,n, . . . , zp,n denote its singular values, with em-
pirical CDF FZn , FZn(z) = p−1 ∑p

i=1 1{zi,n≤z}. There is a limiting empirical CDF (LECDF)
FZ such that FZn → FZ a.s. at continuity points.

Moreover, we assume that FZ is compactly supported12 and denote the upper edge of the
support (sometimes called the noise bulk edge) by

Z+ ≡Z+(FZ) = sup
{
z : FZ(z) < 1

}
.

We also assume that FZ is nontrivial (dFZ is not a single atom at z = 0), in other words,
Z+(FZ) > 0. Note that neither the distribution FZ nor its bulk edge Z+(FZ) are assumed to
be known to the statistician.

5. No outliers straying from the bulk. Asymptotically, no singular values of Zn can be
found above the bulk edge:

z1,n = ‖Zn‖ a.s.−→ Z+(FZ).

6. Thickness of the bulk edge. The following condition holds:

lim
y→Z+(FZ)

∫
(y − z)−2 dFZ(z) = ∞,

where the limit is taken from the right. That is, FZ puts “sufficient” mass near the upper edge
of its support. Under this condition, when the signal singular values xi are sufficiently small,
the amount of “information” one can obtain about the corresponding singular vectors ai,nb�

i,n

from the leading singular vectors of Yn also vanishes.
This assumption is by no means esoteric. For example, suppose that FZ has a continuous

density fZ in a neighborhood of z+ = Z+(FZ), where it behaves like fZ(z) ∼ C(z − z+)α

as z → z+; here, α > 0 is some exponent. Then this condition holds whenever α ≤ 1. In
Section 3.2, we mention a broad class of noise matrices Zn for which this property holds
with α = 1/2.

Class of estimators and performance measure. Our goal is to estimate Xn. We consider the
family of singular value hard-thresholding estimators: X̂θ = X̂θ (Yn), where

(3.1) X̂θ =
p∑

i=1

yi,n1{yi,n>θ} · ui,nv�
i,n,

10The assumption that the xi ’s are all distinct is standard in the literature on singular value shrinkage in the spiked
model. When there are multiplicities, the SVD of Xn is not uniquely defined and, consequently, some framing
constructs we use in this paper become inapplicable. The reframings adapted to such degenerate situations are
beyond our scope. At any rate, the distinctness condition is generic in the space of matrices.

11In other words, a1,n, . . . ,ar,n are sampled from the O(n)-invariant distribution on the Stiefel manifold Vr(R
n).

Equivalently, one can assume that ai,n and bi,n are any arbitrary sequences of orthonormal r-frames, and the
distribution of Zn is invariant to multiplication by O(n) to the left and by O(p) to the right.

12This assumption might seem unnatural to many statisticians when they first encounter it; but note that if Zn is
a standard Gaussian white noise, then even though the distribution of matrix entries is not compactly supported,
the limiting bulk distribution of singular values is compactly supported in [(1 − √

γ ), (1 + √
γ )].
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where Yn = ∑p
i=1 yi,nui,nv�

i,n is a SVD. To ensure that the vectors {ui,n,vi,n} are well-
defined, even when there are multiplicities in the spectrum, the right singular vectors vi,n

corresponding to a degenerate singular value of Yn are chosen to be a random (Haar dis-
tributed) orthonormal basis for the corresponding (right) singular subspace. (Accordingly,
the corresponding ui,n’s constitute a random orthonormal basis for the corresponding left
singular subspace.) We measure the error with respect to Frobenius norm (squared error),13

where we denote

(3.2) SEn[x|θ ] = ∥∥Xn − X̂θ (Yn)
∥∥2
F .

Our task is to choose θ , so as to make SEn[x|θ ] as small as possible, in an appropriate sense
(note that SEn[x|θ ] is a random variable—we do not take the expectation of Xn and Yn). The
best possible performance is given by the oracle loss,

(3.3) SE∗
n[x] = min

θ≥0
SEn[x|θ ],

which is the best loss one can achieve over the family of singular value hard-threshold es-
timators, even knowing the true signal Xn. Our goal in this paper is to develop a threshold
selector that “typically for large n” attains the oracle loss SE∗

n[x]. Note that the oracle loss
SE∗

n[x] is also a random variable, and it is not a priori clear how to estimate it. An important
observation is that the (random) function θ �→ SEn[x|θ ] is piecewise constant, with finitely
many jumps (specifically, these are at the singular values of Yn: y1,n, . . . , yp,n). In particular,
the minimum of SEn[x|θ ] is attained not strictly at a point, but on an interval (or a union of
intervals).

3.1. Background from random matrix theory.

The spiked model. Our perspective on the matrix denoising problem extends the one pro-
posed by Perry [30] and Shabalin and Nobel [32]. In the model they proposed, which was
inspired by Johnstone’s spiked covariance model [23], one works under the same model
Yn = Xn + Zn as described above, but specifically assumes that the noise matrix Zn is
column-normalized and white, namely, that its entries are properly scaled i.i.d. random vari-
ables. This model’s close sibling, the spiked model for high-dimensional covariance, has been
extensively studied in the probability and statistics literature, to such an extent that we can-
not point to all of the existing literature here. Seminal works such as [5, 9, 29] and others
have shown that the randomness in the spiked model can be neatly described in terms of the
so-called BBP phase transition, similar to the one discovered in [8] and of the displacement
of the sample eigenvalues relative to the population eigenvalues, and of the rotation of the
sample eigenvectors relative to the populations eigenvectors.

In the matrix denoising setup that we consider here, the model described by our assump-
tions above has been studied in [10], and the same three underlying phenomena were identi-
fied and quantified:

1. BBP phase transition: Let z+ = Z+(FZ) denote the noise bulk edge. There is a func-
tional X+(FZ, γ ) that depends on the LECDF FZ and the asymptotic shape γ that defines
an important threshold phenomenon in the behavior of limiting empirical singular values.
Setting x+ = X+(FZ, γ ), then for any i = 1, . . . , r where xi ≤ x+,

(3.4) yi,n
a.s.−→ z+, n → ∞.

In short, sufficiently small signal singular values xi do not produce outliers beyond the noise
bulk edge. As we are about to see, the situation for xi > x+ is quite different. The split

13Recall that for a matrix A, ‖A‖2
F = ∑

i,j |Ai,j |2.
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between xi ≷ x+ is sometimes called the Baik–Ben Arous–Péché (BBP) phase transition,
after the original example of this type [8].

2. Limiting location of outlier singular values: The limiting value of yi,n is not its un-
derlying population counterpart xi . There is instead a functional Y(x;FZ,γ ), depending on
FZ and γ , describing this limiting behavior. The function of x obtained by fixing FZ and
γ —Y(x) ≡ Y(x;FZ,γ )—explains how the asymptotic limit varies with theoretical singular
value x. For any i = 1, . . . , r where xi ≥ x+ ≡ X+,

(3.5) yi,n
a.s.−→ yi,∞ = Y(xi), n → ∞.

The function x �→ Y(x) is strictly increasing and one-to-one between [x+,∞) and [z+,∞).
3. No limiting cross-correlation of noncorresponding principal subspaces: For i �= j , the

empirical dyad un,iv�
n,i ultimately decorrelates from each of the noncorresponding population

dyads an,j b�
n,j . For any i, j = 1, . . . , r such that i �= j ,

(3.6) 〈an,i ,un,j 〉 · 〈bn,i ,vn,j 〉 a.s.−→ 0, n → ∞.

4. Limiting cross-correlation of corresponding principal subspaces: Suppose the signal
singular values (xi)

r
i=1 are distinct. The empirical dyad un,iv�

n,i does correlate with its
theoretical counterpart an,ib�

n,i , but not perfectly. The limit is described by a functional
C(x;FZ,γ ) depending on x, FZ and γ . Fixing once again FZ and γ , we get a function
of x, C(x) ≡ C(x;FZ,γ ), such that, with x+ = X+(FZ, γ ),

(3.7) 〈an,i ,un,i〉 · 〈bn,i,vn,i〉 a.s.−→
{
C(xi) xi > x+,

0 xi ≤ x+.

We now give formulas for X+ and the mappings Y(·) and C(·), as computed in [10]. For a
CDF H , let

(3.8) ϕ(y;H) =
∫

y

y2 − z2 dH(z),

which defines a smooth function on y > Z+(H). Its derivative is

(3.9) ϕ′(y;H) = −
∫

y2 + z2

(y2 − z2)2 dH(z).

Also define

(3.10) ϕ̃γ (y;H) = γ ϕ(y;H) + (1 − γ )

y
, ϕ̃′

γ (y;H) = γ ϕ′(y;H) − 1 − γ

y2 .

Note that ϕ̃γ (y;H) is simply ϕ(y; H̃γ ), where H̃γ (z) = γH(z) + (1 − γ )1{z≥0}. This so-
called companion CDF H̃γ describes the same distribution of nonzero singular values as H ,
diluted by “zero padding” and has the following interpretation: if Zn is a sequence of n-by-p
matrices with a limiting singular value distribution H , then Z�

n has a limiting singular value
distribution H̃γ .14 Let

(3.11)
Dγ (y;H) ≡ ϕ(y;H) · ϕ̃γ (y;H),

D′
γ (y;H) ≡ ϕ′(y;H) · ϕ̃γ (y;H) + ϕ(y;H) · ϕ̃′

γ (y;H).

14Practitioners will recognize that computer software often offers two options for SVD outputs, a “fat” output
with zero padding and a “thin” output with those superfluous zeros stripped away. If H denotes the LECDF of the
“thin” output singular values, then H̃ is the corresponding LECDF of the “fat” outputs.
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To ease the notation in coming paragraphs, we put for short Dγ (y) = Dγ (y;FZ,γ ), and
similarly for ϕ(y), ϕ̃γ (y). Let z+ = Z+(FZ) denote the bulk edge. The BBP phase transition
location x+ = X+(FZ, γ ) is given by

(3.12) x+ = lim
y→z+

(
Dγ (y)

)−1/2
,

equivalently, 1/x2+ = limy→z+ Dγ (y). It is easy to verify that ϕ(y), ϕ̃γ (y) and Dγ (y) are
nonnegative, strictly decreasing functions of y > z+, each tending to 0 as y → ∞. Thus,
Dγ (·) maps the interval (z+,∞) bijectively into (x+,0); denote by D−1

γ (·) ≡ D−1
γ (·;FZ) the

inverse mapping.
We finally can give formulas for the fundamental phenomenological limits described ear-

lier. The limiting empirical signal singular value yi,∞ = Y(xi) ≡ Y(xi;FZ,γ ) obeys

(3.13) Y(x) =D−1
γ

(
1

x2

)
for x > x+,

equivalently, Dγ (Y(x)) = 1/x2. The asymptotic cosine C(x) ≡ C(x;FZ,γ ) is given by

(3.14) C(x) = − 2

x3 · 1

D′
γ (Y(x))

for x > x+.

One may readily verify that C(x) ≥ 0 for all x > x+.15

We sometimes adopt the implicit parameterization of C(x) in terms of y = Y(x):

(3.15) C(x) = −2 · (Dγ (y))3/2

D′
γ (y)

where y = Y(x) and x > x+.

Existence of a BBP phase transition. Recall that x+ = X+(FZ, γ ) gives the threshold
such that whenever xi ≤ x+, one does not observe an outlier singular value away from
the bulk of Y . Not all noise distributions display this phase transition phenomenon, that
is, they may not exhibit x+ > 0: indeed, by equation (3.12), X+ > 0 if and only if
limy→Z+(FZ)Dγ (y;FZ) < ∞, equivalently, limy→Z+(FZ)

∫
(y−z)−1 dFZ(z) < ∞. This con-

dition entails that near its own bulk edge, FZ is not “thick.” For example, when FZ has a
density in a neighborhood of z+ = Z+(FZ) that behaves as fZ(z) ∼ C(z − z+)α , this con-
dition is satisfied whenever α > 0. For example, the family of noise distributions described
in Section 3.2 is of this type (with α = 1/2); they all display a BBP phase transition. More-
over, Assumption 6 gives limy→z+ D′

γ (y;FZ) = −∞. From equation (3.15), this means that
if x+ ≡ X+(FZ, γ ) > 0, then C(x) = 0 as x → x+ from the right. Curiously, when x+ = 0,
this does not have to be the case. For instance, when dFZ = δ1 and γ = 1, an easy com-

putation shows x+ = 0 and C(x) = y3

y(y2+1)
, where y = Y(x) and Z+(FZ) = 1. We see that

limx→x+ C(x) = 1/2: this means that an arbitrarily small signal already creates a very strong
bias in the direction of the principal singular vectors of Yn.

15Note that in [10], equation (3.7) is only stated as |〈an,i ,un,i〉 · 〈bn,i ,vn,i〉| a.s.−→ C(xi) (assuming xi > x+),
with the absolute value. One may readily verify that the limiting cross-correlation must, in fact, be nonnegative:
Start with

yi,n = u�
i,nYnvi,n = u�

i,nXnvi,n + u�
i,nZnvi,n ≤ u�

i,nXnvi,n + ‖Zn‖.

By equation (3.6), u�
i,nXnvi,n ∼ xi〈an,i ,un,i〉 · 〈bn,i ,vn,i〉, while ‖Zn‖ → z+, yi,n → yi,∞ ≥ z+. The conclu-

sion follows.
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Notation. Throughout the paper, we use the notation

yi,∞ =
{
Y(xi) when xi > X+,

Z+(FZ) when xi ≤ X+.

By the results of [10], the singular values of Yn, y1,n ≥ · · · ≥ yp,n, satisfy yi,n
a.s.−→ yi,∞

for any fixed index i (for i > r this is an easy consequence of the interlacing inequality for
singular values).

3.2. Noise matrices with correlated columns. We conclude this section by mentioning an
important family of noise matrices satisfying our assumptions, namely, noise matrices with
independent rows, having cross-column correlations. We consider noise matrices of the form
Zn = WnS

1/2
n , where (Wn) and (Sn) are sequences of matrices obeying:

• Wn is an n-by-p matrix with i.i.d. elements. Specifically, let W denote a random variable
with moments

E(W) = 0, E
(
W 2) = 1, E

(
W 4)

< ∞.

The entries of Wn are i.i.d., with law (Wn)ij
d= n−1/2W , that is, scaled to variance 1/n.

Finiteness of the fourth moment of W is essential; see [6].
• (Sn) is a sequence of nonrandom p-by-p matrices. Let λ1(Sn) ≥ · · · ≥ λp(Sn) be the eigen-

values of Sn, and denote by FSn(λ) = p−1 ∑
i=1 1{λi(Sn)≤λ} the empirical CDF of its eigen-

values. We assume that the sequence (FSn) converges to a compactly supported LECDF
FS . Moreover, denoting the upper and lower edges of the support by

λ+(FS) = sup
{
λ : FS(λ) < 1

}
, λ−(FS) = inf

{
λ : FS(λ) > 0

}
,

we assume that λ1(Sn) → λ+(FS) and λp(Sn) → λ−(FS).

We refer to a random matrix ensemble of the form above as a noise matrix with cor-
related columns. They appear, for example, in the following scenario: We observe n i.i.d.
p-dimensional samples yi = xi + zi , where xi are instances of a signal vector, assumed to
be supported in an r-dimensional subspace, and zi = S

1/2
n wi is a vector of correlated noise,

with covariance Cov(wi ) = Sn. Let Yn be the n-by-p matrix, whose rows are n−1/2y�
i (de-

fine Xn, Wn and Zn similarly). Then Yn = Xn + Zn = Xn + WnS
1/2
n , where rank(Xn) ≤ r ,

by assumption. For any estimator X̂ = X̂(Yn), let x̂1, . . . , x̂n be the rows of the matrix n · X̂.
Then the Frobenius loss is just the average L2 loss in estimating the signal samples xi by the
vectors x̂i : ‖Xn − X̂(Yn)‖2

F = n−1 ∑n
i=1 ‖xi − x̂i‖2

2.
Much is known about the singular values of Zn:

1. Limiting singular value distribution: FZn converges weakly almost surely to a com-
pactly supported law FZ . This limiting law is defined in terms of its Stietljes transform,16

m(y) = ∫
(z2 − y)−1 dFZ(z); m(y) is the unique Stieltjes transform satisfying

m(y) =
∫ 1

t (1 − γ − γym(y)) − y
dFS(t) for all y ∈ C \R.

16m(y) is in fact the Stieltjes transform of the limiting eigenvalue distribution of Z�Z:

m(y) =
∫

(z − y)−1 dFZ�Z(z) =
∫ (

z2 − y
)−1

dFZ(z).
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2. Extreme singular values: The largest and smallest singular values of Zn converge al-
most surely to the upper and lower edges of the support of the limiting law17 FZ :

Z+(FZn)
a.s.−→ Z+(FZ), Z−(FZn)

a.s.−→ Z−(FZ).

3. Behavior at the edge of the bulk: On R \ {0}, the limiting law FZ is absolutely con-
tinuous with respect to Lebesgue measure. Denoting by fZ the corresponding density, we
have fZ(z) ∼ C ·√|z −Z+(FZ)| as z ↗ Z+(FZ). This is the same behavior as a Marčenko–
Pastur law, corresponding to Sn = I . This edge behavior will motivate one of our strategies
for estimating FZn from the observed singular values FYn (imputation, see Section 4.2); this
is an important step in the ScreeNOT algorithm. Also, note that in particular, the limiting
noise CDF FZ satisfies Assumption 6.

4. CLT for linear spectral statistics: Denote

y = (1 − √
γ )2 · λ−(FS), y = (1 + √

γ )2 · λ+(FS).

Note that y1/2 ≤ Z−(FZ) ≤ Z+(FZ) ≤ y1/2. Let g be analytic on an open domain in C

containing the closed interval [y, y]. Set

�n[g] =
∫

g
(
z2)

(dFZ − dFZn)(z),

which is a random variable.18 Then the sequence p ·�n[g] is tight. If, moreover, E(W 4) = 3,
then p · �n[g] converges in law to a Gaussian random variable.

For properties (1) and (2), we refer to [6] and the references therein (see also the book [4]).
Property (3) is proved in [33]. Property (4) is proved in [7]. In Figure 3 we plot the em-
pirical singular value distribution of several noise matrices, sampled according to the model
described above with different choices for the covariance matrix Sn.

FIG. 3. Several empirical noise singular value distributions that come from the model in Section 3.2. Left to
right: covariance eigenvalue distribution: (i) dFS = δ1 (giving a Marčenko–Pastur bulk); (ii) An equal mix of
two atoms, dFS = 1

2 δ1 + 1
2 δ10; (iii) FS uniform on [1,10]. Top: shape γ = 1; bottom: γ = 0.5. Each plot is the

histogram of singular values from a single random n × p matrix, with p = 3000 and n = p/γ .

17Below, Z−(FZn
) denotes the smallest singular value of Zn. Recall that we assume p ≤ n.

18A random variable of the form
∫

h(z)FZn
(z) = p−1 ∑n

i=1 h(zi,n) is called a linear spectral statistic.
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As a final remark, we mention that when the covariance matrix Sn is invertible and known
(or can be consistently estimated with respect to the operator norm), estimating Xn using
the leading singular vectors of Yn is suboptimal. Instead, it is better to first “whiten” the
noise, that is, compute Yw

n = YnS
−1/2
n = XnS

−1/2
n +Wn. Letting uw

i,n and vw
i,n be respectively

the left and right singular vectors of Yn, we can “recolor” the right singular vectors, vc
i,n =

S
1/2
n vw

i,n/‖S1/2
n vw

i,n‖. Under a uniform prior on the signal singular vectors, as we assume in
this paper, and when Wn is i.i.d. Gaussian, the correlations between the signal singular vectors
and empirical singular vectors can be shown to be stronger in the whiten-then-recolor scheme
(see [21, 26] for details),

lim
n→∞

〈
ai,n,uw

i,n

〉〈
bi,n,vc

i,n

〉 ≥ lim
n→∞〈ai,n,ui,n〉〈bi,n,vi,n〉.

4. Results.

Outline. We start by developing a theory for optimal hard thresholding, under the assump-
tion that the noise singular value distribution FZ is known. We show that there is an asymp-
totically uniquely admissible hard threshold Tγ (FZ), which is given as a certain functional
Tγ of the asymptotic aspect ratio γ and the limiting noise CDF FZ . Relying on the fact that
SEn[x|θ ] can only take a finite number of values as θ varies, we show that thresholding at
Tγ (FZ) has rather strong optimality properties: it, in fact, attains oracle loss, at finite n, with
probability increasing to 1 as n → ∞. We then move onto the practical setting of interest,
in which FZ is unknown. We propose a method for consistently estimating Tγ (FZ) from
the observed data Yn. We do this by applying the optimal threshold functional Tp/n(·) on a
judiciously transformed version of FYn , the empirical singular value distribution of Yn. The
continuity of the functional with respect to the CDF and the shape parameter then implies
that the resulting quantity is a consistent estimator for Tγ (FZ); the optimality properties of
the adaptive algorithm then follow from the previously developed theory. Unless otherwise
stated, we always operate under assumptions (1)–(6) of Section 3.

4.1. A theory for optimal singular value thresholding. Consider the function θ �→
ASE[x|θ ] defined for θ > 0 by

(4.1) ASE[x|θ ] =
r∑

i=1

R(xi |θ) where R(xi |θ) = 1{yi,∞≤θ} · R0(xi) + 1{yi,∞>θ} · R1(xi),

and

(4.2) R0(x) = x2, R1(x) =
{
x2 +Y(x)2 − 2xY(x)C(x) if x > x+,

x2 + z2+ if x ≤ x+.

Recall that yi,∞ = z+ (≡ Z+(FZ)) when xi ≤ x+ (= X+(FZ, γ )) and yi,∞ = Y(xi) when
x > x+. Define also

(4.3) ASE∗[x] =
r∑

i=1

R∗(xi) where R∗(xi) = min
{
R0(xi),R1(xi)

}
.

Clearly, R∗(x) ≤ R(x|θ) for any x and θ , which means ASE∗[x] ≤ ASE[x|θ ].
It is easy to verify that for almost every θ > Z+(FZ), the loss of thresholding at the fixed

point θ converges: limn→∞ SEn[x|θ ] = ASE[x|θ ] almost surely; see Lemma 7 for a precise
statement. We start by finding the threshold that attains minimum asymptotic loss.
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DEFINITION 1 (Optimal threshold functional). For a compactly supported CDF H and
γ ∈ (0,1], let

(4.4) �γ (y;H) = y · D
′
γ (y;H)

Dγ (y;H)
= y ·

(
ϕ′(y;H)

ϕ(y;H)
+ ϕ̃′

γ (y;H)

ϕ̃γ (y;H)

)
;

this is well-defined for y > Z+(H). Define the functional of H ,

(4.5) Tγ (H) = inf
{
y : y > Z+(H) and �γ (y;H) ≥ −4

}
.

We call this the optimal threshold functional.

LEMMA 1. The following holds:

1. For any H and γ , y �→ �γ (y;H) is negative and increasing, with �γ (∞) = −2.
2. Assume that H is compactly supported and satisfies limy→Z+(H)

∫
(y − z)−2 dH(z) =

∞ (note that, by assumption, H = FZ satisfies this). Then Tγ (H) is the unique number
> Z+(H) satisfying �γ (Tγ (H);H) = −4.

3. Thresholding at θ∗ = Tγ (FZ) minimizes the asymptotic loss:

ASE
[
x|θ∗] = min

θ
ASE[x|θ ] = ASE∗[x].

Moreover, θ∗ is the unique threshold for which the above holds universally, for all signals x.

Lemma 1 is proved in Section 6.1.
Note that θ �→ ASE[x|θ ] is piecewise constant, with jumps at y1,∞, . . . , yr,∞. This means

that its minimum is actually attained on an interval.

DEFINITION 2 (The asymptotic optimal interval). Let

(4.6) �(x) = max
{
yi,∞ : yi,∞ < Tγ (FZ)

}
, �(x) = min

{
yi,∞ : yi,∞ > Tγ (FZ)

}
.

Note that since Tγ (FZ) > z+ = Z+(FZ, γ ) and yr+1,∞ = z+, we always have, by definition,
�(x) ≥ z+. Moreover, if y1,∞ ≤ Tγ (FZ) then we define �(x) = ∞.

LEMMA 2.

1. Throughout the interval θ ∈ (�(x),�(x)), ASE[x|θ ] is constant. Moreover, it attains
its minimum there; if θ0 ∈ (�(x),�(x)), then

ASE[x|θ0] = min
θ≥0

ASE[x|θ ] = ASE∗[x].

2. Any θ1 > Z+(FZ) outside [�(x),�(x)] has

ASE[x|θ1] > ASE∗[x].
3. Unique asymptotic admissibility: Tγ (FZ) is in the interior of the asymptotic optimal

interval. In fact, it is the only threshold, which has optimal asymptotic loss simultaneously
for all signals x: ⋂

x signal

(
�(x),�(x)

) = {
Tγ (FZ)

}
.

Lemma 2 is proved in Section 6.1.
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The scree plot heuristic: A quantitatively interpretation. Under our signal model, one could
think of a “natural” quantification of Cattell’s scree plot heuristic. Roughly, it hopes to thresh-
old the data singular values slightly above the pure-noise bulk edge. If this hope is fulfilled,
the excess ASE incurred, compared to the minimal attainable ASE, is

lim
δ→0

ASE[x|z+ + δ] − ASE∗[x] = ∑
i:yi,∞∈(z+,Tγ (FZ))

(
R1(xi) − R0(xi)

)
.

The excess ASE is proportional to the number of barely/moderately emergent signal singular
values, namely, such that yi,∞ > z+ (so that they can be observed as outliers in the spectrum
of Yn) but yi,∞ < Tγ (FZ) (meaning that the corresponding empirical singular vectors are too
“noisy” so to be useful in estimating Xn). Clearly, in the worst-case scenario, the signal x
consists entirely of barely emergent singular values, so that the excess ASE is proportional to
r = rank(Xn). For a concrete example, consider x that consists of r distinct singular values,
located just slightly above x+; in that case, the excess ASE is r · (R1(x+)−R0(x+)) = r · z2+.

It is clear at this point that thresholding at any point in the interior of the asymptotic optimal
interval achieves the best asymptotic loss, among all other fixed hard thresholds. Our main
result states that, remarkably, one cannot come up with a consistently better thresholding
strategy, even if given access to the true unknown signal Xn.

THEOREM 1.

1. Almost surely,

lim
n→∞ SE∗

n[x] = ASE∗[x].

2. Let θ ∈ (�(x),�(x)) be in the interior of the asymptotic optimal interval, and θn be
any sequence of thresholds (possibly depending on Yn) such that θn

a.s.−→ θ . Then

SEn[x|θn] a.s.−→ ASE∗[x].

Our next result states that thresholding inside the asymptotic optimal interval in fact
achieves oracle risk with high probability, for finite n.

THEOREM 2. Suppose that Tγ (FZ) /∈ {y1,∞, . . . , yr,∞}.19 Then:

1. Let θ0 ∈ (�(x),�(x)) and θn be a sequence with θn
a.s.−→ θ0. Then

P
{∃N s.t. ∀n ≥ N : SEn[x|θn] = SE∗

n[x]} = 1.

2. Let θ1 /∈ [�(x),�(x)] and θn
a.s.−→ θ1. There exists δ > 0, δ = δ(x;FZ,γ ) such that

P
{∃N s.t. ∀n ≥ N : SEn[x|θn] > SE∗

n[x] + δ
} = 1.

Theorems 1 and 2 are proved in Section 6.2.

19We need to exclude the case Tγ (FZ) ∈ {y1,∞, . . . , yr,∞} for this reason: If yi,∞ = Tγ (FZ) for some i, then
thresholding either slightly above or below yi,n (but still inside the asymptotic optimal interval) will achieve the
same (optimal) asymptotic risk. However, we cannot deduce that for finite n, one of those options is, necessarily,
consistently better than the other, thereby achieving oracle risk exactly.
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4.2. The ScreeNOT algorithm. In practice, the noise distribution FZ is generally un-
known to the statistician. Theorems 1 and 2, along with the unique admissibility property
of Lemma 2, tell us that our goal should be to estimate the optimal threshold Tγ (FZ).

We start by showing that the functional (γ,H) �→ Tγ (H) is continuous with respect to
weak convergence of CDFs, with the additional requirement that the edge of the support
converges as well:

LEMMA 3 (Continuity of the optimal threshold functional). Suppose that H is compactly
supported and satisfies the condition limy→Z+(H)

∫
(y − z)−2 dH(z) = ∞. Let Hn be a se-

quence of CDFs such that:

1. Hn converges weakly to H , denoted Hn
d−→ H .

2. Z+(Hn) → Z+(H).

Then Tp/n(Hn) → Tγ (H).

The proof of Lemma 3 appears in the Supplementary Material, Section 4.
Recall that the empirical singular value distribution of the noise matrix, FZn , converges,

by assumption, weakly almost surely to FZ , with Z+(FZn)
a.s.−→ Z+(FZ). The matrix noise

Zn, and consequently, FZn , is of course unknown to the statistician. However, since Yn is a
rank-r additive perturbation of Zn, the interlacing inequalities for singular values imply, for
example, the convergence of CDFs in Kolmogorov–Smirnov distance ‖FYn − FZn‖KS → 0
(see, e.g., the statement and proof of Lemma 4 below), and hence also in weak convergence.
The obstacle preventing the would-be use of Tp/n(FYn) to estimate Tγ (FZ) lies with the fact
that T is not continuous in Kolmogorov–Smirnov metric convergence or other topologies
involving CDF convergence such as weak convergence. More concretely, Tp/n(FYn) can be
very different than Tγ (FZ) because the top mass points of FYn do not converge to the bulk

edge FZ .20 Indeed, recall that Z+(FYn) = y1,n
a.s.−→ y1,∞, which is > Z+(FZ) when x1 >X+.

To get a reasonable simulacrum of FZn built from knowledge only of FYn , we perform
“surgery” on FYn , “amputating” the top k mass points and fitting a “prosthesis” to replace
them. Post-surgery, we get an estimate for the unknown empirical noise CDF FZn .

As indicated in Section 2 above, the user of our proposed procedure supplies an upper
bound (which can be potentially very loose) k ≥ r on the rank of the unknown low-rank
matrix.

We could, in principle, propose any one of the following “pseudo-noise” CDFs, derived
from FYn :

• Transport to zero: We construct a CDF, F 0
n,k , obtained by removing the k largest singular

values of Yn, and adding k additional zeros. That is,

F 0
n,k(y) = 1

p

p∑
i=k+1

1{yi,n≤y} + k

p
1{y≥0}.

• “Winsorization” (clipping): As in the previous construction, we remove the leading k sin-
gular values. Instead of adding k zeroes, we add k copies of yk+1,n. Equivalently, we “clip”
the large singular values of Yn to be at most the size of yn,k+1. That is,

Fw
n,k(y) = 1

p

p∑
i=k+1

1{yi,n≤y} + k

p
1{yk+1,n≤y}.

20Of course, this does not prevent convergence of ECDFs. Recall that FYn

d−→ FZ means that for bounded and
continuous functions f ,

∫
f (z) dFYn

(z) → ∫
f (z) dFZ(z).
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• “Imputation” (reconstruction of the missing upper tail): After removing the top k singular
values of Yn, we try to construct the noise tail in a principled way. Recall that when Zn

is a noise matrix with correlated columns, as described in Section 3.2, FZ has a density
near z+ = Z+(FZ) that behaves as fZ(z) ∼ C(z+ − z)1/2 as z → z+ ([33]). Using the
heuristic,21

 − 1

p
≈

∫ Z+(FZ)

z,n

fZ(z) dz ≈
∫ z+

z,n

C(z+ − z)1/2 dz = C′(z+ − z,n)
3/2,

we can estimate the distance between singular values in the upper tail as

z,n − zt,n ≈ C′′
[(

t − 1

p

)2/3
−

(
 − 1

p

)2/3]
.

Taking y,n ≈ z,n for  ≥ r + 1, we propose to estimate the unknown constant as

C′′ = y2k+1,n − yk+1

(2k/p)2/3 − (k/p)2/3 ,

assuming 2k+1 < p (when k is not very small compared to p, there is no reason to believe
this heuristic should give good results). We “reconstruct” the missing upper tail as

ỹi,n = yk+1,n + C′′
[(

k

p

)2/3
−

(
i − 1

p

)2/3]
= yk+1,n + 1 − ( i−1

k
)2/3

22/3 − 1
(y2k+1,n − yk+1,n).

The CDF we use is then

F i
n,k(y) = 1

p

p∑
i=k+1

1{yi,n≤y} + 1

p

k∑
i=1

1{ỹi,n≤y}.

The label i on F i
n,k stands for “imputation,” a standard terminology in statistical practice

for filling in utterly missing data with plausible pseudo-data. Numerical results in Section 5
suggest that in many cases, the “imputation” method gives significantly better results than
truncation or Winsorization at finite n. It is also more psychologically “supportive,” which
is why we recommended it to practitioners in Section 2 above. However, our formal results
hold for all three methods. Importantly, the list of strategies above is by no means exhaustive.
Indeed, any sequence of CDFs F�

n that satisfies the conditions of Lemma 3 may be used in-
stead, yielding an asymptotically consistent estimate of the optimal threshold. Furthermore,
our “imputation” procedure is not claimed to be optimal; possibly, other strategies will out-
perform those we suggest in finite problem sizes.

LEMMA 4. Suppose that k = kn satisfies kn ≥ r and kn/p → 0 (in particular, k can be
any constant ≥ r). Then for any choice � ∈ {0,w, i}:

1. Almost surely, F�
n,k

d−→ FZ .

2. Z+(F �
n,k)

a.s.−→ Z+(FZ).
3. We have the following bound on the Kolmogorov–Smirnov distance between F�

n,k

and FZn : ∥∥F�
n,k − FZ

∥∥
KS = sup

z

∣∣F�
n,k(z) − FZn(z)

∣∣ ≤ k

p
.

21The exponent α = 1/2 was chosen as typical of bulk-edge distributions in random matrix theory. If there is
reason to believe that the behavior at the bulk edge follows a different power law fZ(z) ∼ (z+ − z)α , a corre-
spondingly different exponent can be used instead.
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The proof of Lemma 4 is deferred to the Supplementary Material, Section 4.
The following theorem states the optimality properties of the proposed ScreeNOT algo-

rithm. It is an immediate corollary of Theorems 1, 2 and Lemma 4.

THEOREM 3. Suppose that k = kn satisfies kn ≥ r and kn/p → 0. For any � ∈ {0,w, i},
θ̂n = Tp/n(F

�
n,k) satisfies:

1. θ̂n
a.s.−→ Tγ (FZ).

2. SEn[x|θ̂n] a.s.−→ ASE∗[x].
3. Assume that Tγ (FZ) /∈ {y1,∞, . . . , yr,∞}. Then

P
{∃N s.t. ∀n ≥ N : SEn[x|θn] = SE∗

n[x]} = 1.

Regarding the assumption in item 3 above, we note the following.

LEMMA 5. The condition Tγ (FZ) /∈ {y1,∞, . . . , yr,∞} is generic, that is, in the space of
possible singular value r-vectors x, this condition holds on an open dense set.

PROOF. Fix the noise bulk FZ ; then θ∗ = Tγ (FZ) is a constant not varying as the un-
derlying signal x changes. Moreover, it always strictly exceeds the bulk edge Z+(FZ). So,
x∗ = Y−1(θ∗;FZ,γ ) is a uniquely defined constant, which exceeds X+(FZ, γ ). The set of
vectors x with all entries distinct from x∗ is open and dense. �

4.3. Stability of ScreeNOT. One wonders how fast Tp/n(F
�
n,k) converges to the limit

Tγ (FZ). We show that for noise matrices with correlated columns, the model described in
Section 3.2, the typical deviations are of order O(k/p). We start with a “quantitative” ver-
sion of Lemma 3.

LEMMA 6. Adopt the setting of Lemma 3. Set

�1,n = ∣∣ϕ(
Tγ (H);H ) − ϕ

(
Tγ (H);Hn

)∣∣, �2,n = ∣∣ϕ′(Tγ (H);H ) − ϕ′(Tγ (H);Hn

)∣∣,
where ϕ and ϕ′ are given in equations (3.8) and (3.9). Then∣∣Tγ (H) − Tp/n(Hn)

∣∣ =O
(
�1,n + �2,n +

∣∣∣∣pn − γ

∣∣∣∣).

Lemma 6, along with the Kolmogorov–Smirnov distance bound from Lemma 4 and the
tightness result for linear spectral statistics from [7] (see Section 3.2), gives the following.

PROPOSITION 1. Suppose that (Zn) is a sequence of noise matrices with correlated
columns, as described in Section 3.2, and let FS denote the LECDF of eigenvalues of
the cross-column covariances Sn. Assume, in addition, that Tγ (FZ) > y1/2 = (1 + √

γ ) ·√
λ+(FS).22 Suppose that k ≥ r with k/p → 0. Then for any � ∈ {0,w, i},∣∣Tγ (FZ) − Tp/n

(
F�

n,k

)∣∣ =OP

(
k + 1

p

)
.

Lemma 6 and Proposition 1 are proved in the Supplementary Material, Section 4.

22This additional assumption is used due to a technical requirement in the results of [7]. We suspect that it can
be removed.
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5. Numerical experiments. The Supplementary Material contains comprehensive ex-
periments conducted on a large variety of noise distributions. For space constraints, we in-
clude just a sample of these results—specifically, for white noise (Marčenko–Pastur LECDF)
with γ = 0.5. Simulation results and code reproducing all figures here and in the Supplemen-
tary Material is available at [15]; see Section 5 of the Supplementary Material for full details
on each experiment reported here.

In Figure 4(a), we plot the function θ �→ SEn[x|θ ] for a single fixed problem instance.
The vertical lines correspond to thresholds θ , taken to be either the true optimal threshold
θ = Tγ (FZ), its estimated versions θ = Tγ (F �

n,k), � ∈ {0,w, i} or the noise (asymptotic) bulk

(a) A single problem instance, corresponding to
the rank r = 5 signal x = (0.5,1.0,1.3,2.5,5.2).
Shown are the functions SEn[x|θ ] and ASE[x|θ ]
on top of each other. Here, γ = 0.5, p = 500 and
n = p/γ . We indicate the locations of Z+,
Tγ (FZ) and the estimates Tp/n(F

�
n,k) for

� ∈ {0,w, i}, with k = 4r = 20.

(b) For various choices of p and 50 denoising
experiments, shown are the fraction of
experiments where each threshold ∈ {Tγ (FZ),

Tp/n(F
0
n,k), Tp/n(F

w
n,k), Tp/n(F

i
n,k)} attains

oracle loss. Here, x = (0.5,1.0,1.3,2.5,5.2) so
that r = 5 and k = 4r = 20.

(c) Oracle loss SE∗
n[x] compared with SEn[x|θ̂ ]

for the choices θ̂ ∈ {Tγ (FZ),Tp/n(F
0
n,k),

Tp/n(F
w
n,k), Tp/n(F

i
n,k)}, for a single spike. We

let the spike intensity x vary and plot
SEn[x|t̂]/SE∗

n[x] for each choice of estimator.
The ratios shown are averages across 20
experiments.

(d) Convergence rate of Tp/n(F
�
n,k) toward

Tγ (FZ). Here, r = 10, x = (1, . . . ,10), k = 20.
Shown is the relative absolute error
|Tp/n(F

�
n,k) − Tγ (FZ)|/Tγ (FZ), plotted in

logarithmic scale, as p increases and n = p/γ .
Each point corresponds to the the average error
across 50 experiments.

FIG. 4. Monte Carlo simulation results.
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edge, θ = Z+(FZ), which is the “natural” implementation of Cattell’s scree plot heuristic in
the spiked model. The error landscape SEn[x|θ ] is seen to be a step function, and on this
particular instance, all the proposed thresholding strategies fall inside the interval where it
attains its global minimum; hence, they attain the oracle risk. In contrast, thresholding at the
bulk edge results in a strictly suboptimal squared error.

Figures 4(b) and 4(c) compare the relative efficacy of the proposed threshold estima-
tion strategies. In both experiments, thresholding at the exact optimal threshold θ = Tγ (FZ)

(which is a priori unknown) yields the best results; among the proposed strategies, “imputa-
tion” θ = Tγ (F i

n,k) appears to give the best results for finite problem dimensions. Figure 4(d)
demonstrates the superior finite-n error of “imputation” in estimating the optimal threshold
Tγ (FZ).

6. Proofs.

6.1. The asymptotic loss at a fixed threshold. To simplify notation, throughout this sec-
tion FZ and γ will be held fixed, and left implicit in the notation where possible. In particular,
we set z+ =Z+(FZ), x+ =X+(FZ, γ ) throughout, and we suppress mention of FZ and γ in
entities like C, Y , D.

We start by investigating limn→∞ SEn[x|θ ] for fixed θ . Note that when θ < z+, it is clear
that limn→∞ SEn[x|θ ] = ∞; the reason being that, for small enough ε > 0, with probability
1, (1 − FZ(θ + ε)) · n = �(n) empirical singular values yi,n exceed the threshold θ , so that
rank(X̂θ (Yn)) increases indefinitely. (This argument will be made more precise later.)

The following is an easy calculation.

LEMMA 7. For any θ > z+, almost surely,

1.

lim inf
n→∞ SEn[x|θ ] ≥ ASE∗[x].

2. If, in addition, θ /∈ {y1,∞, . . . , yr,∞}, then

lim
n→∞ SEn[x|θ ] = ASE[x|θ ].

The quantities ASE[x|θ ] and ASE∗[x] appear in equations (4.1) and (4.3), respectively.

PROOF. Since θ > z+ and yr+1,n
a.s.−→ yr+1,∞ = z+, we see that with probability 1, for

large enough n, X̂t (Yn) = ∑r
i=1 yi,n1{yi,n>θ} · ui,nv�

i,n. Thus, for large enough n,

SEn[x|θ ] =
∥∥∥∥∥

r∑
i=1

xi · ai,nb�
i,n −

r∑
i=1

yi,n1{yi,n>θ} · ui,nv�
i,n

∥∥∥∥∥
2

F

=
2∑

i=1

(
x2
i + y2

i,n1{yi,n>θ}
) +

r∑
i=1

r∑
j=1

xiyi,n1{yi,n>θ} · 〈ai,n,uj,n〉〈bi,n,vj,n〉.

The lemma follows by recalling (i) that yi,n
a.s.−→ yi,∞ for all i = 1, . . . , r , where yi,∞ = Y(xi)

if xi > x+ and yi,∞ = z+ < θ whenever xi ≤ x+, (ii) that

〈ai,n,uj,n〉〈bi,n,vj,n〉 →
{
C(xi) when i = j and xi > x+,

0 otherwise

and (iii) that 1{yi,n>θ}
a.s.−→ 1{yi,∞>θ} whenever θ �= yi,∞. �
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Our goal for the moment is to characterize the minimum of ASE[x|θ ] with respect to
thresholds θ strictly above the noise bulk edge, θ > z+. This will give us the optimal fixed
threshold, in the sense of minimal asymptotic loss (though, at this point, we cannot exclude
the possibility that thresholding precisely at θ = z+ might achieve better asymptotic risk).

Recall, by equations (4.1) and (4.3), that the asymptotic loss decouples across the signal
spikes as

ASE[x|θ ] =
r∑

i=1

R(xi |θ), ASE∗[x] =
r∑

i=1

R∗(xi).

Assuming that θ > z+, we have R(x|θ) = R∗(x) = x2 when x ≤ x+, while for x > x+,

R(x|θ) = 1{Y(x)≤θ} · R0(x) + 1{Y(x)>θ} · R1(x), R∗(x) = min
{
R0(x),R1(x)

}
,

with

R0(x) = x2, R1(x) = x2 +Y(x)2 − 2xY(x)C(x).

If we were able to find θ > z+ such that R(x|θ) = R∗(x) for all x > x+, then clearly
it achieves minimal asymptotic loss. To do that, it is convenient to introduce a re-
parameterization y = Y(x), where recall that Y(·) is an increasing bijection, mapping
(x+,∞) to (z+,∞). Using equations (3.13) and (3.14), assuming x > x+, we get

x2 = (
D(y)

)−1
, C(x) = −2

(D(y))3/2

D′(y)
,

so that

R1(x) − R0(x) = y2 − 2xyC(x) = y2 + 4y · D(y)

D′
γ (y)

= y2
(

1 + 4

�γ (y)

)
,

where

�γ (y) = y · D
′(y)

D(y)

is as defined in equation (4.4). Since �γ (·) is negative (D is positive and decreasing), we
conclude that

(6.1) R∗(x) = 1{�γ (y)≤−4} · R0(x) + 1{�γ (y)>−4} · R1(x).

The next lemma establishes some essential properties of �γ (y).

LEMMA 8. Let H be a compactly supported CDF, with Z+(H) > 0. Let γ ∈ (0,1], and
let �γ (y;H) be defined as in equation (4.4). Then:

1. The function y �→ �γ (y;H) is strictly increasing on y ∈ (Z+(H),∞), with
limy→∞ �γ (y;H) = −2.

2. Assume that

lim
y→Z+(FZ)

∫
(y − z)−2 dH(z) = ∞.

(This is Assumption 6 for H = FZ .) Then limy→Z+(H) �γ (y;H) = −∞, and there is a
unique point y∗ ∈ (Z+(FZ),∞) such that �γ (y;H) = −4.

The proof of Lemma 8 appears in Section 1 of the Supplementary Material. An illustration
of this lemma and its consequences appear in Figure 5 below.
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FIG. 5. A numerical illustration of Lemma 8 and its consequences. Assuming a rank-1 signal X = x · a1,nb�
1,n,

set R0(x) = ‖X‖2
F = x2 and R1(x) = limn→∞ ‖X − y1,na1,nb�

1,n‖2
F . The point x∗ = Y−1(Tγ (FZ)) is the

unique crossing point R0(x∗) = R1(x∗). When x < x∗, the principal components of Y are “too noisy,” so that es-
timating X̂ = 0 gives better squared error; when x > x∗, the situation reverses. At each plot, R0(x) and R1(x) are
plotted as x varies, for finite n, fixed signal components a1,nb�

1,n and a single instance of Zn. The dashed vertical
line is an estimate of x∗, obtained by applying the functional Tp/n(·) on FZn

, as well as computing the inverse

map Y−1(Tp/n(FZn
)) numerically from FZn

. In all cases, p = 500 and n = p/γ . From left to right, top to bot-

tom: (i) Marčenko–Pastur law with shape γ = 1; (ii) noise matrix with correlated columns, with FS = 1
2 δ1 + 1

2 δ10
and γ = 0.5; (iii) likewise, with FS = Unif[1,10]; (iv) FZ = δ1 and γ = 1 (specifically, Zn = I ).

Proof of Lemma 1. The lemma follows as a straightforward corollary of Lemma 8. Lemma 8
implies that there is a unique number Tγ (FZ) > Z+(FZ) such that �γ (Tγ (FZ);FZ) = −4.
Since y �→ �γ (y;FZ) is increasing, plugging into equation (6.1),

(6.2) R∗(x) = R
(
x|Tγ (FZ)

) = 1{y≤Tγ (FZ)} · R0(x) + 1{y>Tγ (FZ)} · R1(x),

where x > X+ and y = Y(x). We conclude that ASE∗[x] = ASE[x|Tγ (FZ)]. This is the mini-
mum of ASE[x|θ ] over all θ ≥ 0 since clearly ASE[x|θ ] ≥ ASE∗[x] by definition. Moreover,
for any θ �= Tγ (FZ), we can find some y > Z+(FZ) such that either θ < y < Tγ (FZ) or
Tγ (FZ) < y < θ . Taking x = Y−1(x), we find that R(x|θ) > R(x|Tγ (FZ)) = R∗(x), since
there is a unique crossing point x > X+ with R0(x) = R1(x) (because y �→ �γ (y;FZ) is
strictly increasing). Thus, we can construct a signal x for which ASE[x|θ ] > ASE∗[x] and,
therefore, Tγ (FZ) is the unique threshold, which minimizes ASE[x|θ ] universally for all x.

Proof of Lemma 2. Part (1) of Lemma 2 follows from Lemma 1, along with the observation
that if Y(x) = Tγ (FZ), then R0(x) = R1(x) = R∗(x); this means that regardless of whether
we threshold slightly above or below Y(x), we get the same asymptotic loss. Part (2) follows
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by the same argument as in the proof of Lemma 1, in the paragraph above. Finally, part (3)
follows right from the definition of �(x) and �(x).

6.2. Achieving oracle loss. We move on to study the oracle loss SE∗
n[x]. This random

variable depends on both Xn and the noise Zn. Denote

(6.3) X̂[k] =
k∑

i=1

yn,iui,nv�
i,n, k = 0, . . . , p.

That is, X̂[k] is obtained from Y by keeping only the top k = 0, . . . , p singular values (equiva-
lently, hard thresholding at t = yk+1,n, in case one has yk+1,n < yk,n). Any hard thresholding
estimator X̂θ obviously corresponds to some X̂[k] (however if there are multiplicities, possi-
bly not every X̂[k] is representable by some threshold θ ); thus,

SE∗
n[x] ≥ min

0≤k≤p
‖X − X̂[k]‖2

F .

We first show that keeping too many singular values is consistently suboptimal.

LEMMA 9. Set M = r + 1 + �ASE∗[x]
z2+

�. Then

P

{
∃N s.t. ∀n ≥ N : SE∗

n[x] < min
k≥M

‖X − X̂[k]‖2
F

}
= 1.

The proof of Lemma 9 is the deferred to the Supplementary Material, Section 2. Lemma 9
tells us that to study the oracle loss SE∗

n[x] as n → ∞, we only need, essentially, to study the
risk of a fixed collection of estimators, the number of whom does not depend on n; specifi-
cally, X[k] for 0 ≤ k < M obtain formulas for limn→∞ ‖Xn − X̂[k]‖2

F . We need to compute
the limiting correlations between the underlying signal dyads, a1,nb�

1,n, . . . ,ar,nb�
r,n and the

corresponding empirical dyads ui,nv�
i,n, for all 1 ≤ i < M . For empirical spikes up to i = r ,

these limiting correlations are computed in [10] (recall equation (3.7)).
The next result shows that, as one would expect, the j th singular vectors of Y , for any

bounded j ≥ r + 1, are asymptotically uncorrelated with the signal singular vectors.

PROPOSITION 2. For any 1 ≤ i ≤ r and fixed j �= i (not necessarily j ≤ r), one has

〈an,i ,un,j 〉 · 〈bn,i,vn,j 〉 a.s.−→ 0.

The proof of Proposition 2 is deferred to Section 3 of the Supplementary Material. Note
that Proposition 2 implies that for any fixed M (meaning M cannot depend on n), the event{∀1 ≤ i ≤ r,1 ≤ j ≤ M,j �= i : 〈an,i ,un,j 〉 · 〈bn,i,vn,j 〉 −→ 0

}
holds with probability 1. The following lemma is an immediate corollary.

LEMMA 10. For any k ≥ r ,

‖X − X̂[k]‖2
F

a.s.−→
r∑

i=1

[
x2
i + y2

i,∞ − 2xi · yi,∞ · C(xi)
] + (k − r)z2+,

where, by way of notation, we use C(xi) = 0 for xi ≤ x+. In particular,

P

{
∃N s.t. ∀n ≥ N : SE∗

n[x] < min
k≥r+1

‖X − X̂[k]‖2
F

}
= 1.
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PROOF. The calculation is straightforward, as in the proof of Lemma 7. For the last part,
simply recall that

SEn

[
x|Tγ (FZ)

] a.s.−→ ASE∗[x] ≤
r∑

i=1

[
x2
i + y2

i,∞ − 2xi · yi,∞ · C(xi)
]
.

�

We are ready to prove Theorems 1 and 2.

Proof of Theorem 1. By Lemmas 9 and 10, almost surely, there exists N such that ∀n ≥ N ,

SE∗
n[x] ≥ min

0≤k≤r
‖X − X̂[k]‖2

F .

Part (1) then follows from the observation that min0≤k≤r ‖X − X̂[k]‖2
F

a.s.−→ ASE∗[x], as can

be deduced from the calculations of Section 6.1, together with SEn[x|Tγ (FZ)] a.s.−→ ASE∗[x].
We now prove (2). Let us assume, for ease of notation, that Tγ (FZ) /∈ {y1,∞, . . . , yr,∞}. In
that case, the asymptotic optimal interval is just the interval between two consecutive spikes,
say,

�(x) = yk∗+1,∞, �(x) = yk∗,∞,

where y0,∞ = ∞. Note that if Tγ (FZ) = yk,∞ for some k ≥ 1, then �(x) = yk+1,∞,
�(x) = yk−1,∞. With probability one, for large enough n, Xθn = X̂[k∗]. Now, recall that

‖Xn − X̂[k∗]‖2
F

a.s.−→ ASE∗[x].
Proof of Theorem 2. Let k∗ be as in the proof of Theorem 1. We know, from Lemmas 9, 10
and the definition of the asymptotic optimal interval, that ‖X − X̂[k∗]‖2

F

a.s.−→ ASE∗[x] and
that almost surely, lim infn→∞ mink �=k∗ ‖X − X̂[k]‖2

F > ASE∗[x] (here is where we assume
that there is no yi,∞ that equals Tγ (FZ)). Thus,

P

{
∃N s.t. ∀n ≥ N : SE∗

n[x] = ‖X − X̂[k∗]‖2
F < min

k �=k∗ ‖X − X̂[k]‖2
F

}
= 1.

The proof follows by noting that: (i) If θ ∈ (�(x),�(x)), then with probability 1, for all large
enough n, X̂θn = X̂[k∗]; (ii) If θ /∈ [�(x),�(x)], then with probability 1, for large enough n,
X̂θn �= X̂[k∗].
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SUPPLEMENTARY MATERIAL

Proofs and additional empirical results (DOI: 10.1214/22-AOS2232SUPP; .pdf). To
keep within the space constraints, the proofs of several technical claims are deferred to the
Supplementary Material. In addition, in the Supplementary Material we provide extensive
numerical experiments validating different aspects of our results under various noise distri-
butions.
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