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ASYMPTOTIC ACCURACY OF THE SADDLEPOINT APPROXIMATION
FOR MAXIMUM LIKELIHOOD ESTIMATION

BY JESSE GOODMANa

Department of Statistics, University of Auckland, ajesse.goodman@auckland.ac.nz

The saddlepoint approximation gives an approximation to the density of
a random variable in terms of its moment generating function. When the un-
derlying random variable is itself the sum of n unobserved i.i.d. terms, the
basic classical result is that the relative error in the density is of order 1/n.
If instead the approximation is interpreted as a likelihood and maximised as
a function of model parameters, the result is an approximation to the maxi-
mum likelihood estimate (MLE) that can be much faster to compute than the
true MLE. This paper proves the analogous basic result for the approxima-
tion error between the saddlepoint MLE and the true MLE: subject to certain
explicit identifiability conditions, the error has asymptotic size O(1/n2) for
some parameters and O(1/n3/2) or O(1/n) for others. In all three cases, the
approximation errors are asymptotically negligible compared to the inferen-
tial uncertainty.

The proof is based on a factorisation of the saddlepoint likelihood into an
exact and approximate term, along with an analysis of the approximation er-
ror in the gradient of the log-likelihood. This factorisation also gives insight
into alternatives to the saddlepoint approximation, including a new and sim-
pler saddlepoint approximation, for which we derive analogous error bounds.
As a corollary of our results, we also obtain the asymptotic size of the MLE
approximation error when the saddlepoint approximation is replaced by the
normal approximation.

1. Introduction. Let X be a random variable with density function f (x), x ∈ R. Define

(1.1) M(s) = E
(
esX)

, K(s) = logM(s),

the moment generating function (MGF) and cumulant generating function (CGF), respec-
tively, associated to X. Given x ∈ R, let ŝ be the solution to

(1.2) K ′(ŝ) = x

and set

(1.3) f̂ (x) = exp(K(ŝ) − ŝx)√
2πK ′′(ŝ)

.

We call f̂ (x) the saddlepoint approximation to the density function f (x).
In the statistical context, an important use of the saddlepoint approximation has been to

analyse sampling distributions, with X an estimator or a related statistic to be understood via
its sampling density f (x). In this setting, the natural way to assess the saddlepoint approxi-
mation is to measure how well f̂ (x) approximates f (x) as a function of x, for instance, by
determining how fast the absolute error |f̂ (x) − f (x)| or the relative error |f̂ (x)/f (x) − 1|
decay in a suitable limit, and whether this convergence is uniform.

The most prominent results of this kind concern what we will call the standard asymptotic
regime, in which the observed value X is the sample average of n i.i.d. values. In this setup,
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the saddlepoint approximation has simple n-dependence and can be computed in constant
time, whereas the true density f (x) commonly becomes intractable. The classical error esti-
mate [5] for the standard asymptotic regime states that f̂ (x)/f (x) = 1 + O(1/n) as n → ∞.
Under stronger assumptions, the ratio f̂ (x)/f (x) may remain uniformly bounded even in
the tails (see [12], Theorem 4.6.1, and [2, 10]), whereas other density approximations such
as normal approximations (see Appendix I) or Edgeworth expansions quickly lose relative
accuracy away from the mean. For many applications based on densities, these error bounds
are more than enough to justify using the saddlepoint approximation f̂ (x) as a readily com-
putable substitute for f (x).

In this paper, we shift perspectives and consider (1.3) as an approximation to the likelihood.
In this viewpoint, X represents the raw data obtained from an experiment, modelled by the
parameter θ , and the observation x is fixed. We write the density and CGF as f (x; θ), K(s; θ)

to emphasise their dependence on the parameter, and set L(θ;x) = f (x; θ). Instead of (1.3),
we form

(1.4) L̂(θ;x) = exp(K(ŝ; θ) − ŝx)√
2πK ′′(ŝ; θ)

,

the saddlepoint approximation to the likelihood, considered as a function of θ . Note that
the saddlepoint ŝ = ŝ(θ, x) is a function of both the parameter θ and the observed value x,
defined implicitly by

(1.5) K ′(ŝ(θ, x); θ) = x,

and the derivatives K ′, K ′′ are with respect to s.
Maximum likelihood inference involves maximising L(θ;x) with respect to θ to produce

the maximum likelihood estimate (MLE)

(1.6) θMLE(x) = argmax
θ

L(θ;x),

if it exists. In cases where the true likelihood L(θ;x) is intractable, but the saddlepoint likeli-
hood L̂(θ;x) can be computed, it is natural to ask what are the consequences for inference in
maximising the saddlepoint likelihood in place of the true likelihood. We term the resulting
estimate the saddlepoint MLE,

(1.7) θ̂MLE(x) = argmax
θ

L̂(θ;x),

if it exists. Our interest is in the error introduced by this approach: specifically, the error in the
saddlepoint MLE as an approximation to the true MLE, |θ̂MLE(x) − θMLE(x)|. Investigation
of approximation error has been a central issue when saddlepoint MLEs have been applied in
the literature [7, 16, 21], see Examples 21–23 in Appendix J, but no general theory is currently
available. The classical saddlepoint error estimate L̂(θ;x)/L(θ;x) = 1 + O(1/n) does not
provide easily interpretable guidance about whether θ̂MLE(x) is close to θMLE(x). Instead,
the key question is whether the gradient ∇θ log L̂(θ;x) provides a good approximation to
the true gradient ∇θ logL(θ;x) [14, 15]. The main theorems of this paper will provide sharp
asymptotic bounds for |∇θ log L̂(θ;x) − ∇θ logL(θ;x)|, and hence for the size of the MLE
approximation error |θ̂MLE(x) − θMLE(x)| under general conditions.

Outline of the paper. Section 2.1 introduces further notation for the multivariate saddle-
point approximation, including conventions for row and column vectors and gradients. In
Section 2.2, we formulate the standard asymptotic regime as an explicit limiting framework
relating the distribution Xθ , its CGF K , the observed value x, and the parameter n. Section 2.3
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introduces a class of examples in this asymptotic framework. The main results, Theorems 1–
8, are stated in Section 2.4, and their interpretation is discussed in Section 2.5. Several exam-
ples from theory and the literature are discussed in detail in Appendix J; see Section 2.6 for
a brief summary.

Section 3.1 expresses the saddlepoint procedure as a combination of an exact step (tilting)
and an approximation step, and introduces a factorisation and reparametrisation of the likeli-
hood that underlie the rest of the paper. As a by-product, we obtain in Section 3.2 a “lower-
order” version of the saddlepoint approximation, satisfying analogues of Theorems 1–5 with
a different power of n; see Theorem 9.

The proofs of Theorems 1–2 are given in Section 4, along with a summary in Section 4.1
of gradients of quantities related to the saddlepoint approximation. Further proofs, examples
and technical details appear in the supplement [9], Appendices A–J.

Section 5 includes a summary, additional discussion and directions for further inquiry.

2. Main results.

2.1. Setup and notation.

2.1.1. Moment and cumulant generating functions. We consider a vector-valued random
variable X of dimension d depending on a parameter θ of dimension p, and write X = Xθ

when we wish to emphasise the dependence. We consider the values of Xθ and θ to be column
vectors, that is, d × 1 or p × 1 matrices, which we express as Xθ ∈ R

d×1, θ ∈ R ⊂ R
p×1,

where R is an open subset of Rp×1. The multivariate MGF and CGF are

(2.1) M(s; θ) = E
(
esXθ

)
, K(s; θ) = logM(s; θ).

On those occasions when we consider several random variables, we will write MX , MY and
so on to distinguish the respective generating functions.

In (2.1), s is called the dual variable to X, and we interpret it as a row vector, a 1 × d

matrix, so that sX is a scalar or 1×1 matrix. This convention emphasises that s and X, despite
being vectors of the same dimension, play quite different roles and are not interchangeable;
rather, the space of row vectors is the natural dual space to the space of column vectors. This
convention also avoids excessive use of transposes and explicit inner products.

We wish to consider M and K for complex-valued s, and to this end we must take care of
convergence issues in (2.1). Let

(2.2) Sθ = {
s ∈R

1×d : E(
esXθ

)
< ∞}

, S = {
(s, θ) : s ∈ Sθ

}
.

Writing Re(z) for the real part of the complex number z, we have |ez| = eRe(z) for z ∈ C,
so the expectation in (2.1) converges absolutely whenever Re(s) ∈ Sθ . We take the domain
of M to be {(s, θ) ∈ C

1×d ×R : Re(s) ∈ Sθ }, where Re(s) is interpreted coordinatewise for
each of the d complex entries of s. Note that for certain distributions Xθ , Sθ may reduce to
the single point 0 or otherwise become degenerate, but our assumptions will rule this out. As
soon as the interior intSθ is nonempty, M(s; θ) is analytic as a function of s ∈ intSθ .

2.1.2. Gradients, Hessians, moments and cumulants. We interpret gradient operators ∇s ,
∇θ to have the shape of the transposes of the variables. Thus ∇θK is a 1 × p row vector and
∇sK , which we write as K ′, is a d ×1 column vector. We apply this convention also to vector-
valued functions; in particular, ∇s∇θK is the (d × p)-matrix-valued function with i, j entry
∂2K

∂si∂θj
. We can write the Hessians of a scalar-valued function f (s, θ) as ∇s∇T

s f and ∇T
θ ∇θf ,

with i, j entries ∂2f
∂si∂sj

and ∂2f
∂θi∂θj

. When f = K , we write the s-Hessian as K ′′ = ∇s∇T
s K .

For other derivative conventions, see Appendix B.
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When 0 ∈ intSθ , the derivatives M ′(0; θ), M ′′(0; θ) and K ′(0; θ), K ′′(0; θ) give moments
and cumulants of X:

(2.3)
M ′(0; θ) = E(Xθ), M ′′(0; θ) = E

(
XθX

T
θ

)
,

K ′(0; θ) = E(Xθ), K ′′(0; θ) = Cov(Xθ ,Xθ).

In particular, K ′′(0; θ) must be positive semidefinite. More generally, as we shall see in Sec-
tion 3.1, K ′′(s; θ) has an interpretation as a covariance matrix for all s ∈ intSθ . It is natural
to exclude the case where this covariance matrix is singular, and indeed our hypotheses will
imply that

(2.4) K ′′(s; θ) is positive definite for all s ∈ intSθ .

As a consequence, K is strictly convex as a function of s.

2.1.3. Multivariate saddlepoint approximation. With these preparations, we can state the
multivariate saddlepoint approximation. For x ∈ R

d×1, we form the saddlepoint equation

(SE) K ′(ŝ; θ) = x

for ŝ ∈ Sθ . The strict convexity of K implies that if equation (SE) has a solution, then the
solution is unique and we call it the saddlepoint ŝ = ŝ(θ, x). We write

(2.5)
Xθ = {

x ∈ R
d×1 : ∃s ∈ Sθ solving K ′(s; θ) = x

}
, X = {

(x, θ) : x ∈ Xθ

}
,

X o = {
(x, θ) ∈ X : (

ŝ(θ, x), θ
) ∈ intS

}
.

We will not discuss under what conditions the saddlepoint equation (SE) has a solution; see,
for instance, [11], Section 2.1, or [1], Corollary 9.6. We merely remark that in many common
examples, we can solve (SE) for all x in the interior of the convex hull of the support of X,
but that this may fail if, for instance, X is nonnegative with finite mean and infinite variance.

For x ∈ intXθ , we can define the saddlepoint approximation to the likelihood,

(SPA) L̂(θ;x) = exp(K(ŝ(θ, x); θ) − ŝ(θ, x)x)√
det(2πK ′′(ŝ(θ, x); θ))

,

the multivariate analogue of (1.4). As in (1.7), the saddlepoint MLE θ̂MLE(x) is the value of
θ that maximises L̂(θ;x), if one exists, for a given observed vector x.

We will compare L̂(θ;x) and θ̂MLE(x) with the true likelihood L(θ;x) and true MLE
θMLE(x). We are assuming that X has an absolutely continuous distribution, so that the true
likelihood L(θ;x) should be taken to coincide with the density function for X. Complications
can arise if there is ambiguity in the choice of density function, for instance, if the density
function has jumps, and later we will impose decay bounds on M that will imply that X

has a continuous and, therefore, essentially unique, density function. Note, however, that the
saddlepoint approximation can be applied whether or not X has a density function, and indeed
even when X has a discrete distribution; see Theorem 8.

Throughout the paper, we will use the symbol ˆ to indicate saddlepoint approximations,
rather than estimators based on observations. Thus θMLE and θ̂MLE denote two deterministic
functions of the formal argument x, whose nature depends on our chosen parametric model.
Although we will continue to describe x as the observed value of X, we will think of x as the
arbitrary input value to the functions θMLE and θ̂MLE, rather than as the result of a random
experiment or sampling procedure. When we turn to sampling distributions in Theorems 4–5,
we will introduce further notation to encode any randomness in the observed value.
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2.2. The standard asymptotic regime. Often an approximation is given theoretical justi-
fication by proving that the approximation error becomes negligible in some relevant limit.
For the saddlepoint approximation, the most commonly treated and mathematically tractable
limiting framework is to assume that X is the sum of n unobserved i.i.d. terms,

(2.6) X =
n∑

i=1

Y (i),

where Y (1), Y (2), . . . are i.i.d. copies of a random variable Yθ whose parametric distribution
does not depend on n. We also scale the observed value x in a matching way. Thus we take

(SAR) M(s; θ) = M0(s; θ)n, K(s; θ) = nK0(s; θ), x = ny, n → ∞,

where M0 and K0, the MGF and CGF corresponding to Yθ , are fixed. Throughout the paper,
we will assume the relation x = ny implicitly. It can be helpful to interpret the value y = x/n

as the sample mean implied by an observed value x. We think of y as fixed (or varying within
a small neighbourhood) in the limit n → ∞, so that both x and X will be of order n, and
constraints on the observed value x will usually be expressed as constraints on y. We refer to
this limiting framework as the standard asymptotic regime for the saddlepoint approximation.

In the standard asymptotic regime, the saddlepoint equation (SE) simplifies to

(SESAR) K ′
0(ŝ; θ) = y.

Write ŝ0(θ, y) for the function that maps y ∈ Yθ to the solution of (SESAR), where Yθ , Y , Yo

are defined as in (2.5) with x, K replaced by y, K0. Note that when the relations (SAR) hold,
the saddlepoint ŝ(θ, x) does not depend on n, with

(2.7) ŝ(θ, x) = ŝ0(θ, y).

We sometimes write ŝ for the common value in (2.7) when the distinction is immaterial. The
domains of ŝ and ŝ0 are related by Xθ = {ny : y ∈ Yθ }, and similarly for X , X o, Y , Yo.

In the standard asymptotic regime, the saddlepoint approximation (SPA) becomes

(SPASAR) L̂(θ;x) = exp(n[K0(ŝ0(θ, y); θ) − ŝ0(θ, y)y])√
det(2πnK ′′

0 (ŝ(θ, y); θ))
.

The basic error estimate for the saddlepoint approximation states that, in the standard asymp-
totic regime and subject to certain technical assumptions, the relative error in the likelihood
is of order 1/n:

(2.8)
L̂(θ;x)

L(θ;x)
= 1 + O(1/n) as n → ∞, for fixed (y, θ) ∈ Yo.

Recall the convention that x and y are implicitly related as in (SAR), and note that the n-
dependence of L and L̂ is omitted from the notation. See (4.11) for a more precise statement.
See also Appendix I, where we compare (2.8) to its analogue for normal approximations.

REMARK. The standard asymptotic regime supposes that the observed value X is the
sum of n unobserved i.i.d. terms. That is, the likelihoods L(θ;x), L̂(θ;x) and MLEs
θMLE(x), θ̂MLE(x) pertain to a single observation, X = x, rather than n observations of the
summands Y (1), . . . , Y (n). For this reason, the parameter n should not be interpreted as a
sample size in the usual sense.

A model with k i.i.d. observations can be adapted to the framework of (SAR) by giving
each observation its own entry in the vector X; this setup is discussed further in Section 2.5.5
and Appendix J, Example 20. Note, however, that the results of this paper apply for n → ∞,
with the sample size k fixed; the joint limit n → ∞, k → ∞ is excluded from consideration.
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2.3. A class of examples. One application of saddlepoint MLEs has been to analyse cer-
tain latent identity models [21]. Each individual in a population of size N is assigned one
of � latent identities, with Uj the number of individuals having latent identity j . The counts
U1, . . . ,U� are not observed directly, and instead we observe d partial totals X1, . . . ,Xd ,
d < �. The latent identities are constructed sufficiently richly to make the relationship be-
tween latent identities and partial totals deterministic, and we can define a d × � matrix A by
Aij = 1 if individuals with latent identity j contribute to the total Xi , and Aij = 0 otherwise.
Thus the vectors of counts are related by X = AU , and the MGF for X can be computed
simply by MX(s; θ) = MU(sA; θ). However, the likelihood is difficult to compute because
the value of U cannot be recovered from observing the value of X.

In many cases, there is no natural model for the observed count vector X itself. However,
we can naturally model the latent vector U by assuming that N ∼ Poisson(λ) and that, given
N , each individual’s latent identity is chosen independently. The main parameter of inter-
est is λ, the population size intensity, and the probabilities of different latent identities are
determined by other model-specific parameters.

To match this model to the setup of (SAR), we make the change of variables λ = nλ̃.
Note that N ∼ Poisson(λ) has the same distribution as the sum of n i.i.d. Poisson(λ̃) random
variables, so that U and hence X can be written as a sum of n i.i.d. terms. The scaling
parameter n is chosen so that y = x/n is of order 1 (if the observed data vector x is given, in
the limit of large observed counts) or so that λ̃ = λ/n is of order 1 (if we consider sampling
distributions, in the limit of large population size intensities). In either case, x, n and λ will be
all of the same asymptotic order. For further details, see Examples 19 and 21 in Appendix J.

2.4. Main results. Theorem 1 states a general asymptotic error bound for the gradients
of the true and saddlepoint log-likelihoods. The error bound for the MLE depends on the
structure of the model, and we distinguish two cases, which we call fully identifiable (The-
orems 2–5) and partially identifiable (Theorem 6). Theorem 7 states the corresponding error
bounds for normal approximations. Almost the same results apply to integer-valued random
variables, and Theorem 8 shows how the assumptions should be modified for this setting.

2.4.1. Approximation error in the log-gradient. Because we wish to understand the true
and approximate likelihoods as functions of θ , our central objects of study will be ∇θ logL

and ∇θ log L̂ rather than L and L̂. We therefore prove a general bound analogous to (2.8).
As we will see in Section 3.1, L and its derivatives can be expressed as integrals involving

M0(s + iϕ; θ) and its derivatives, where s is fixed and ϕ is integrated over R1×d . To ensure
that these integrals converge, we make the following technical assumptions on the growth or
decay of M0 and its derivatives:

there is a continuous function δ : intS → (0,∞) such that∣∣∣∣M0(s + iϕ; θ)

M0(s; θ)

∣∣∣∣ ≤ (
1 + δ(s, θ)|ϕ|2)−δ(s,θ) for all ϕ ∈ R

1×d, (s, θ) ∈ intS,
(2.9)

there is a continuous function γ : intS → (0,∞) such that∣∣∣∣ ∂k+�M0

∂θi1 · · · ∂θik∂sj1 · · · ∂sj�

(s + iϕ; θ)

∣∣∣∣ ≤ γ (s, θ)
(
1 + |ϕ|)γ (s,θ)

for all ϕ ∈R
1×d and (s, θ) ∈ intS,

for k ∈ {0,1}, 1 ≤ k + � ≤ 6 and for k = 2, 0 ≤ � ≤ 2,

and each of these partial derivatives is continuous in all its variables.

(2.10)
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These assumptions are relatively mild: (2.9) asserts that ϕ �→ |M0(s + iϕ; θ)/M0(s; θ)|,
which always attains its maximum at ϕ = 0, has a nondegenerate critical point at ϕ = 0
(and in particular, (2.9) implies (2.4)) and decays at least polynomially as |ϕ| → ∞. Simi-
larly, (2.10) asserts that the partial derivatives grow at most polynomially in ϕ. Note that the

expression in (2.9) means ∂�M0
∂s1···∂s�

when k = 0, and similarly when � = 0.

THEOREM 1 (Gradient error bound). If (SAR) and (2.9)–(2.10) hold, then

(2.11) ∇θ log L̂(θ;x) = ∇θ logL(θ;x) + O(1/n) as n → ∞
for (y, θ) ∈ intYo fixed. Moreover, given a compact subset C ⊂ intYo, there exists n0 ∈ N

such that the bound in the term O(1/n) is uniform over n ≥ n0 and (y, θ) ∈ C.

Note that Theorem 1 includes the implicit assertion that the likelihoods and their gradients
exist for n sufficiently large. However, the likelihoods may be ill-behaved for small n: see
Example 32 in Appendix J. Note also our convention from (SAR) that x = ny.

In the rest of our results, we apply the gradient error bound from Theorem 1 (or rather,
its more precise analogues: see Corollary 12 and equation (4.10)) in the neighbourhood of a
local maximiser.

2.4.2. MLE error, posterior and sampling distributions in the fully identifiable case. In
the limit n → ∞, the asymptotic behaviour of the MLE, and of other quantities derived from
the likelihood, depends on the asymptotic shape of the likelihood function near its maximum.
The simplest case occurs when this maximum occurs due a nondegenerate maximum for the
leading-order exponential factor in (SPASAR). Concretely, if we set x = ny0, y = y0 and take
the limit n → ∞ with y0 fixed, then the leading-order behaviour of the log-likelihood comes
from the function

(2.12) θ �→ K0
(
ŝ0(θ, y0); θ) − ŝ0(θ, y0)y0.

The results in this section apply when (2.12) has a nondegenerate local maximum at θ0.

THEOREM 2 (MLE error bound—fully identifiable case). Let s0, θ0, y0 be related by

(2.13)
y0 = K ′

0(s0; θ0) with (s0, θ0) ∈ intS or equivalently

s0 = ŝ0(θ0, y0) with (y0, θ0) ∈ Yo,

and suppose that (SAR) and (2.9)–(2.10) hold. Suppose also that

∇θK0(s0; θ0) = 0 and that(2.14)

H = ∇T
θ ∇θK0(s0; θ0)

− (∇s∇θK0(s0; θ0)
)T

K ′′
0 (s0; θ0)

−1(∇s∇θK0(s0; θ0)
)

is negative definite.

(2.15)

Then there exist n0 ∈ N and neighbourhoods U ⊂ R of θ0 and V ⊂ R
d×1 of y0 such that,

for all n ≥ n0 and y ∈ V , the functions θ �→ L̂(θ;x) and θ �→ L(θ;x) have unique local
maximisers in U . Moreover, writing these local maximisers as θ̂MLE in U(x) and θMLE in U(x),

(2.16)
∣∣θ̂MLE in U(x) − θMLE in U(x)

∣∣ = O
(
1/n2)

as n → ∞,

uniformly over n ≥ n0, y ∈ V .
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The assumptions of Theorem 2 can be understood as follows. We shall show that, when
(2.13) holds, the expressions in (2.14)–(2.15) are the gradient and Hessian, respectively, of
(2.12); see the differentiation formulas in (4.1)–(4.3) and [9], (B.13)–(B.14). Thus (2.14)–
(2.15) state that θ0 should be a nondegenerate local maximiser of (2.12).

More directly, we can interpret θ0 as the limiting local maximiser for the likelihood of
an observation x = ny0, in the limit n → ∞ with y0 fixed. In such a limit, an observed
value x = ny0 for X amounts to an observed value y0 for the true mean of the summands
Y (1), . . . , Y (n) from (2.6). Thus (2.13)–(2.15) state that we should be able to recover the
asymptotic (local) MLE θ0 based solely on the implied sample mean y0. We might describe
(2.13)–(2.15) as saying that the model is fully identifiable at the level of the sample mean.

In particular, Theorem 2 applies in the well-specified case where the observed value is
itself drawn according to the model with true parameter θ0, where (0, θ0) ∈ intS . Then, set-
ting s0 = 0 and y0 = K ′

0(0; θ0) = E(Yθ0), the conditions (2.13)–(2.14) hold identically, while
(2.15) reduces to the condition that the d × p matrix ∇s∇θK0(0; θ0) should have rank p.
Because Xθ0/n → y0 and P(Xθ0/n ∈ V ) → 1 as n → ∞, the conclusions of Theorem 2 will
hold with high probability with x replaced by Xθ0 .

To place the MLE approximation error O(1/n2) in context, we can compare it to the
inferential uncertainty inherent in the model. The next three theorems give the asymptotics,
either Bayesian or frequentist, that result from taking n → ∞.

In a Bayesian framework, let the parameter 
 be drawn according to a prior π
 on R. For a
given observed value x, we will consider the posterior distribution π
|U,x on a neighbourhood
U ⊂ R with π
(U) > 0, defined by the Radon–Nikodym derivative

(2.17)
dπ
|U,x

dπ


(θ) = L(θ;x)1{θ∈U}
C

, C = CU,x =
∫
U

L(θ;x)dπ
(θ).

We construct the saddlepoint posterior distribution on U , π̂
|U,x , by replacing L with L̂:

(2.18)
dπ̂
|U,x

dπ


(θ) = L̂(θ;x)1{θ∈U}
Ĉ

, Ĉ =
∫
U

L̂(θ;x)dπ
(θ).

THEOREM 3 (Posterior distributions). Let (s0, θ0, y0) be related as in (2.13)–(2.14), and
suppose that (SAR), (2.9)–(2.10) and (2.15) hold. Suppose also that the prior distribution π


has a probability density function that is continuous and positive at θ0. Fix y = y0, x = ny0.
Then there exists a neighbourhood U ⊂ R of θ0 such that

(2.19) under π
|U,x or π̂
|U,x ,
√

n(
 − θ0)
d→ N

(
0,−H−1)

as n → ∞,

where H is the negative definite matrix from (2.15).

In particular, Theorem 3 shows that both the true and saddlepoint likelihoods lead to the
same asymptotic posterior. The proof will follow from a stronger statement, Proposition 18
in Appendix F, that removes the assumption y = y0.

Theorems 2 and 3 concern the deterministic functions that map an observed value x to the
corresponding MLE or posterior distribution, via either the true likelihood or the saddlepoint
approximation. In this description, the observed value x has been treated as deterministic,
separate from any consideration of the random process that might have generated this obser-
vation. The next theorem describes the sampling distribution when the observation is itself a
random variable χn.

THEOREM 4 (Sampling distributions). Let (s0, θ0, y0) be related as in (2.13)–(2.14),
and suppose that (SAR), (2.9)–(2.10) and (2.15) hold. Let U be the neighbourhood of θ0
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given by Theorem 2. Suppose also that χn ∈ R
d×1 are random variables satisfying

(2.20)
χn − ny0√

n

d−→ N (0,�) as n → ∞,

where � ∈ R
d×d is a positive semidefinite matrix. Then:

(a) The joint sampling distribution of the true and saddlepoint MLEs satisfies

(2.21)
(√

n
(
θMLE in U(χn) − θ0

)
,
√

n
(
θ̂MLE in U(χn) − θ0

)) d−→ (Z,Z) as n → ∞
with

(2.22) Z ∼ N
(
0,H−1BT A−1�A−1BH−1)

,

where we have abbreviated A = K ′′
0 (s0; θ0), B = ∇s∇θK0(s0; θ0), and H is the negative

definite matrix from (2.15).
(b) If in addition s0 = 0, y0 = K ′

0(0; θ0) and � = K ′′
0 (0; θ0), then the limiting distribution

has

(2.23) Z ∼ N
(
0,−H−1)

.

Theorems 2 and 4(b) apply in particular in the well-specified case where the observed data
are drawn according to the model distribution Xθ0 , with s0 = 0 and y0 = E(Yθ0).

THEOREM 5 (Sampling distribution in the well-specified case). Let θ0 ∈ R be such that
(0, θ0) ∈ intS , and set s0 = 0. Suppose that (SAR) and (2.9)–(2.10) hold and that

(2.24) B = ∇s∇θK0(0; θ0) has rank p.

Then:

(a) The matrix H from (2.15) reduces to H = −BT K ′′
0 (0; θ0)

−1B and is negative definite.
(b) With observed data Xθ0 , both θMLE in U(Xθ0) and θ̂MLE in U(Xθ0) are consistent and

asymptotically normal estimators of θ0 in the limit n → ∞, with

(2.25)
(√

n
(
θMLE in U(Xθ0) − θ0

)
,
√

n
(
θ̂MLE in U(Xθ0) − θ0

)) d−→ (Z,Z) as n → ∞,

where Z ∼ N (0,−H−1). Moreover,

(2.26)
∣∣θ̂MLE in U(Xθ0) − θMLE in U(Xθ0)

∣∣ = OP

(
1/n2)

as n → ∞.

(c) With 
 = θMLE in U(Xθ0) or 
 = θ̂MLE in U(Xθ0), the Hessians 1
n
∇T

θ ∇θ logL(
;Xθ0),
1
n
∇T

θ ∇θ log L̂(
;Xθ0) and −(∇s∇θK0(0;
))T K ′′
0 (0;
)−1(∇s∇θK0(0;
)) are consistent

estimators of H .

A key conclusion from these results is that the approximation error in using the saddlepoint
MLE in place of the true MLE is negligible, in the limit n → ∞ as in (SAR), compared to the
underlying inferential uncertainty. Namely, according to Theorem 2, the difference between
the true and saddlepoint MLEs is of order 1/n2. Asymptotically, this approximation error is
much smaller than the spatial scale 1/

√
n corresponding to either sampling variability of the

MLE (in the frequentist setup of Theorems 4–5) or posterior uncertainty of the parameter (in
the Bayesian setup of Theorem 3). To the extent that the assumptions of (SAR) and Theo-
rems 1–5 apply in a given application, the saddlepoint likelihood and saddlepoint MLE may
therefore be appropriate as readily calculated substitutes for the true likelihood and MLE.
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2.4.3. MLE error in the partially identifiable case. Theorems 2–5 apply to models that
are fully identifiable at the level of the sample mean. However, many reasonable models
lack this property, notably when some parameters affect the variance only. Then lower-order
contributions to (SPASAR) become relevant, and the scaling of the MLE approximation error
changes. The following theorem is the analogue of Theorem 2 in this case, for the well-
specified setting (see Section 2.5.4) where s0 = 0.

THEOREM 6 (MLE error bound—partially identifiable case). Suppose we can split the
parameter vector as

(2.27) θ =
(
ω

ν

)
such that K ′

0(0; θ) = E(Yθ ) depends only on ω,

where ω ∈ R
p1×1, ν ∈ R

p2×1, p1 + p2 = p. Let θ0 = ( ω0
ν0

)
be such that (0, θ0) ∈ intS , and

suppose that (SAR) and (2.9)–(2.10) hold. Suppose further that the d × p1 matrix Bω =
∇s∇ωK0(0; θ0) has rank p1.

Introduce the “partially linearised” model in which �w,ν ∈ R
d×1 is normally distributed

with mean vector Bωw and covariance matrix K ′′
0

(
0; ( ω0

ν

))
, where the parameters are

w ∈ R
p1×1 and ν ∈ R

p2×1. Consider ξ0 ∈ R
d×1, and suppose that (w, ν) = (w0, ν0) is a

nondegenerate local MLE for the observation �w,ν = ξ0. Make the change of variables

(2.28) x = nK ′
0

(
0;

(
ω′
ν0

))
+ √

nξ, y = x/n = K ′
0

(
0;

(
ω′
ν0

))
+ ξ/

√
n,

where ω′ ∈R
p1×1, ξ ∈ R

d×1. Then:

(a) There exist n0 ∈ N and neighbourhoods U,U ′ ⊂ R of θ0 and Ṽ ⊂ R
d×1 of ξ0 such

that, whenever n ≥ n0,
(
ω′
ν0

) ∈ U ′, ξ ∈ Ṽ and (2.28) holds, the functions θ �→ L̂(θ;x) and
θ �→ L(θ;x) have unique local maximisers in U . Moreover, writing these local maximisers
as θ̂MLE in U(x) = ( ω̂MLE in U (x)

ν̂MLE in U (x)

)
and θMLE in U(x) = ( ωMLE in U (x)

νMLE in U (x)

)
,

(2.29)

∣∣ω̂MLE in U(x) − ωMLE in U(x)
∣∣ = O

(
1/n3/2)

,∣∣ν̂MLE in U(x) − νMLE in U(x)
∣∣ = O(1/n)

as n → ∞,

uniformly over n ≥ n0, ξ ∈ Ṽ .
(b) Suppose in addition that

(2.30) B̃T
ω Ã−1 ∂K ′′

0

∂νj

(0; θ)J̃ = 0 for all θ and for j = 1, . . . , p2,

where we have abbreviated Ã = K ′′
0 (0; θ)−1, B̃T

ω = ∇s∇ωK ′′
0 (0; θ) and J̃ = Ã−1 −

Ã−1B̃ω(B̃T
ω Ã−1B̃ω)−1B̃T

ω Ã−1. Suppose also that (2.10) holds for k ≤ 2, 1 ≤ k + � ≤ 7 and
for k = 3, � ≤ 4. Then

(2.31)
∣∣ω̂MLE in U(x) − ωMLE in U(x)

∣∣ = O
(
1/n2)

as n → ∞,

uniformly over n ≥ n0, ξ ∈ Ṽ .

In Theorem 6, we are assuming, roughly, that ω is identifiable at the level of the sample
mean but ν is not. Thus with ν = ν0 fixed, the function (s,ω) �→ K0

(
s; ( ω

ν0

))
satisfies the

assumptions of Theorems 2–5 with s0 = 0, y0 = K ′
0(0; θ0), whereas for the function (s, ν) �→

K0
(
s; (ω0

ν

))
the analogue of the matrix H from (2.15) vanishes identically. As a result, the

inferential uncertainty for ν need not decrease as n → ∞; see Example 28 in Appendix J
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for an instance of this. However, Theorem 6 shows that the MLE approximation error is still
negligible in the limit n → ∞.

The change of variables (2.28) is the same one used in Edgeworth expansions, with a
separation of scales between the mean, parametrised by ω′, and lower-order fluctuations,
parametrised by ξ . The partially linearised model �w,ν arises from Xθ under this rescaling in
the limit n → ∞, and in [9], (H.4)–(H.5), we give explicit conditions equivalent to the MLE
assumption from Theorem 6.

2.4.4. Normal approximations. Given a complicated parametric model Xθ , a different
and more elementary approach is to replace Xθ by the normal random vector X̃θ having
the same mean and variance as functions of θ . Note that the combination of (SAR) and
(2.28) is the standard asymptotic setting in which to apply the (local) central limit theorem,
suggesting that this approximation is reasonable. We might therefore expect the MLE for
observing X̃θ = x to be a reasonable approximation to the MLE for observing Xθ = x. The
following theorem states the asymptotic size of the resulting MLE approximation error.

THEOREM 7 (MLE error bound—normal approximations). Let L̃(θ;x) denote the like-
lihood function for the normal approximation model X̃θ ∼ N (K ′(0; θ),K ′′(0; θ)). Then, un-
der the hypotheses of Theorem 6(a), there exist n0 ∈ N and neighbourhoods U,U ′ ⊂ R of θ0

and Ṽ ⊂ R
d×1 of ξ0 such that, whenever n ≥ n0,

(
ω′
ν0

) ∈ U ′, ξ ∈ Ṽ and (2.28) holds, the func-

tion θ �→ L̃(θ;x) has a unique local maximiser in U . Moreover, writing this local maximiser
as θ̃MLE in U(x) = ( ω̃MLE in U (x)

ν̃MLE in U (x)

)
,

(2.32)

∣∣ω̃MLE in U(x) − ωMLE in U(x)
∣∣ = O(1/n),∣∣ν̃MLE in U(x) − νMLE in U(x)
∣∣ = O(1/

√
n)

as n → ∞,

uniformly over n ≥ n0, ξ ∈ Ṽ .

In both Theorems 6 and 7, the change of variables (2.28) requires the implied sample mean
y to lie in a narrow “tube” of diameter of order 1/

√
n around the p1-dimensional surface of

possible model means, parametrised by ω′ �→ K ′
0

(
0; (

ω′
ν0

))
. In Theorem 6, this restriction does

not seem entirely essential, and we conjecture that a similar result holds for the case s0 �= 0.
Theorem 7, by contrast, can have no such analogue, even in the fully identifiable case p1 = p,
p2 = 0. Indeed, away from their shared surface of possible model means, the models θ �→ Xθ

and θ �→ X̃θ may be completely different, and there is no reason to expect any relationship
between their MLEs; see, for instance, Example 24 in Appendix J.

2.4.5. The integer-valued case. Finally, all of these results apply to integer-valued ran-
dom variables. As we shall discuss in Section 2.5.2, however, it would be natural to make
different and more flexible assumptions in the integer-valued case.

THEOREM 8. Let Xθ have values in Z
d×1 and set L(θ;x) = P(Xθ = x), with the re-

striction x ∈ Z
d×1. Then the results of Theorems 1–7 hold, with the assumption (2.9) re-

placed by the assumption that |M0(s + iϕ; θ)| < M0(s; θ) for all (s, θ) ∈ intS and ϕ ∈
[−π,π ]1×d \ {0}.

In Theorem 8, the assumption |M0(s + iϕ; θ)| < M0(s; θ) can be interpreted as a “nonlat-
tice” condition on the distribution Yθ . For instance, the condition fails if Yθ has an entry with
only odd values. On the other hand, the condition holds if, for some n ∈ N, P(Xθ = x) > 0 for
all x ∈ {0,1}d×1. Meanwhile, because M0(s + iϕ; θ) is periodic in ϕ, (2.10) can be verified
by showing that the relevant partial derivatives are continuous.
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2.5. Discussion.

2.5.1. Application and scope of the results. The results in this paper show that the sad-
dlepoint MLE offers a high degree of asymptotic accuracy, considered as a substitute for the
true MLE. Most notably, when we consider the limit n → ∞, the approximation error in us-
ing the saddlepoint MLE, of size O(1/n2), O(1/n3/2) or O(1/n), is negligible compared to
the inferential uncertainty, of order 1/

√
n or larger, inherent in the MLE.

The scope for applying saddlepoint methods is reasonably wide: it is enough to know the
moment generating function M (either exactly or numerically to high precision on a com-
puter). Provided we know M , the saddlepoint approximation can be computed quickly, uni-
formly in n, whereas the true likelihood often becomes increasingly intractable for larger n.
The model need not even fall into the standard asymptotic regime described here, as in [16],
see Example 23 from Appendix J; indeed, we have followed Butler in thinking of (SPASAR)
as the special case of (SPA) where X is a sum of n i.i.d. terms, rather than thinking of (SPA)
as the special case of (SPASAR) where n = 1; see [4], Section 2.2.2. In all cases, the usual
suite of likelihood-based approaches can be applied, using the saddlepoint likelihood as a
substitute for the true likelihood.

The encouraging asymptotic results from Theorems 1–8 should, like many limiting state-
ments, be interpreted with some caution in practice. Whereas the theorems apply when, for
instance, we have a sequence of observed values xn with yn = xn/n → y0 as n → ∞, a
typical application yields a single observed value x, with n fixed. Even if we interpret the
observed value as being part of an infinite sequence, we may not have access to the limiting
implied sample mean y0 (as in Theorems 2–5) or the limiting rescaled deviation ξ0 (as in
Theorems 6–7), nor the corresponding parameter θ0. Thus, in practice, rather than verifying
that the Hessians from (2.15) or (H.5) are nonsingular at a specified base point θ0, it may
be more relevant to enquire whether these Hessians are nearly singular near the computed
saddlepoint MLE θ̂MLE(x). However, such complications are not specific to the saddlepoint
approximation; the same dilemma applies whenever we appeal to an asymptotic result to
interpret a fixed data set.

Note also that this paper is concerned primarily with approximation accuracy. Theorems 1–
8 guarantee under broad conditions that the saddlepoint log-likelihood, its gradient, and the
resulting MLE are close to the true values, provided only that n is large. However, large n

does not guarantee that the true or saddlepoint MLE values will be close to an underlying true
parameter (if one exists) in the partially identifiable case from Sections 2.4.3–2.4.4. Such a
guarantee would typically come from having k i.i.d. observations, with k large. Section 2.5.5
outlines how repeated observations can be implemented in our notation, but the theorems
consider the number of i.i.d. observations to be fixed. This paper excludes from consideration
the double limit n → ∞, k → ∞.

Finally, we note that our results concern local maxima and local neighbourhoods in param-
eter space. The true likelihood L(θ;x) may have a complicated global structure as a function
of θ , with multiple local maxima, and the saddlepoint approximation cannot do better than
faithfully replicating this complicated structure. Moreover, the saddlepoint approximation
might have greater error in distant parts of parameter space, so that the saddlepoint MLE
might fail to exist globally even if the true likelihood has a global maximum; see Example 30
in Appendix J. This possibility does not usually arise in practice but seems difficult to rule out
a priori. We note, however, that the uniformity assertions in Theorems 1–8 robustly handle
variability in the observed values: if we assume that x is drawn from the distribution Xθ0 , the
law of large numbers means that y = Xθ0/n will lie in a neighbourhood of y0 = E(Yθ0) for n

large enough.
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2.5.2. Integer-valued versus continuous distributions. On the face of it, the discrete The-
orem 8 parallels quite closely the continuous Theorems 1–7; the conclusions are identical,
and the hypotheses are quite similar. There is however an important contextual difference:
in the discrete case, the restriction to intS and Yo excludes values of interest. For instance,
suppose X represents count data, X ∈ Z

d×1+ . If we observe a count of 0 (or an observed vector
including one or more zero counts), then we will be unable to find the saddlepoint ŝ. Even
if we circumvent this issue by interpreting ŝ as the limit s → −∞, the resulting saddlepoint
approximation will still diverge, and no MLE can be computed.

This distinction arises in part because, as we shall discuss in Section 3.1, the saddlepoint
approximation is fundamentally a (normal) density approximation, and it can be problematic
when applied as an approximation for a probability mass function. It is the author’s intention
to return to this topic in future research.

2.5.3. Heuristic for the true MLE and saddlepoint MLE. We give a heuristic argument
for how the size of the gradient error from Theorem 1 leads to the size of the MLE error in
Theorem 2. Namely, fix x = ny0 and assume as a simplification that

• the function θ �→ K0(ŝ0(θ, y0); θ) − ŝ0(θ, y0)y0 from (2.12)—which by (2.14)–(2.15) has
a nondegenerate local maximum at θ = θ0—is purely quadratic around its maximum value,
say θ �→ a + 1

2(θ − θ0)
T H(θ − θ0) where H is negative definite;

• the function θ �→ −1
2 log detK ′′

0 (ŝ(θ, y0); θ) is purely affine, say θ �→ b + u(θ − θ0) for
some fixed u ∈ R

1×p; and
• the difference ∇θ log L̂(θ;x) − ∇θ logL(θ;x) from Theorem 1 has the form 1

n
v for some

fixed v ∈ R
1×p .

Under these assumptions,

(2.33) log L̂(θ;x) = na + 1

2
n(θ − θ0)

T H(θ − θ0) − d

2
log(2πn) + b + u(θ − θ0),

where d is the dimension of the vectors X, x. We can complete the square to find

(2.34)
log L̂(θ;x) = 1

2
n

(
θ − θ0 + 1

n
H−1uT

)T

H

(
θ − θ0 + 1

n
H−1uT

)
− 1

2n
uH−1uT + na − d

2
log(2πn) + b.

Thus the saddlepoint MLE comes to

(2.35) θ̂MLE(x) = θ0 − 1

n
H−1uT .

For the true likelihood, define the constants cn = log L̂(θ0;x) − logL(θ0;x). Then

(2.36)
logL(θ;x) = na + 1

2
n(θ − θ0)

T H(θ − θ0) − d

2
log(2πn)

+ b + u(θ − θ0) − cn − 1

n
v(θ − θ0).

Comparing (2.36) with (2.33), we see that changing from L̂ to L amounts to replacing u by
u − 1

n
v and subtracting a constant term cn. We can again complete the square to find

(2.37)

logL(θ;x)

= 1

2
n

(
θ − θ0 + 1

n
H−1uT − 1

n2 H−1vT

)T

H

(
θ − θ0 + 1

n
H−1uT − 1

n2 H−1vT

)

− 1

2n

(
u − 1

n
v

)
H−1

(
u − 1

n
v

)T

+ na − d

2
log(2πn) + b − cn
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leading to

(2.38) θMLE(x) = θ0 − 1

n
H−1uT + 1

n2 H−1vT ,

with an extra term of order 1/n2 in accordance with Theorem 2.
Note that order 1/n2 is better than what follows from the likelihood error bound (2.8)

alone; knowing only that log L̂ and logL differ by O(1/n), we could conclude at best that
θ̂MLE and θMLE differ by O(1/n), since that is the size of the region in which the functions
remain within O(1/n) of their maximum even in the fully identifiable case. In the heuristic
calculation above, however, the size of cn (the log-likelihood approximation error at θ = θ0)
was irrelevant to the size of the MLE error. So indeed was the term −d

2 log(2πn) in log L̂.
In fact, even if we drop all terms arising from the factor (det(2πK ′′(ŝ(θ, x); θ)))−1/2 in the
saddlepoint approximation L̂, the heuristic suggests that the resulting MLE approximation
would still be within O(1/n) of the true MLE. This intuition is correct; see Theorem 9.

2.5.4. The well-specified case. In Theorems 2–4, some simplification occurs if

(2.39) y0 = E(Yθ0),

that is, if the limiting implied sample mean matches with the model mean for some param-
eter value. In this case, we might say that the model is “well-specified at the level of the
mean.” By the law of large numbers, this condition holds under the usual assumption of well-
specifiedness where the observed value x is itself drawn randomly with the distribution Xθ0 ,
because then Xθ0/n → E(Yθ0) as n → ∞.

If (2.39) holds and (0, θ0) ∈ intS , we see from (2.3) that s0 = 0 is the solution of the
saddlepoint equation K ′

0(s0) = y0. Since K0(0; θ) = 0 for all θ , it follows that

(2.40) ∇θK0(0; θ0) = 0, ∇T
θ ∇θK0(0; θ0) = 0.

Thus the condition (2.14) holds automatically, and the matrix H from (2.15) simplifies to

(2.41) H = −(∇s∇θK0(0; θ0)
)T

K ′′
0 (0; θ0)

−1(∇s∇θK0(0; θ0)
)
.

The matrix K ′′
0 (0; θ0) is already positive definite by assumption (see (2.4)), so the condition

(2.15) reduces to (2.24). Note that the d ×p matrix ∇s∇θK0(0; θ0) from (2.24) is the gradient
of the mapping

(2.42) θ �→ E(Yθ )

(evaluated at θ0) so the condition (2.15)/(2.24) is equivalent to saying that the linear approx-
imation (at θ0) to the mapping θ �→ E(Yθ ) is one-to-one.

Heuristically, if the implied sample mean y0 matches with the model at parameter value
θ0, and if the mapping θ �→ E(Yθ ) is one-to-one, then by the law of large numbers, y0 is an
unlikely observation under any other parameter value θ �= θ0. This matches the observation
that the function (2.12) will vanish at θ = θ0 and must be strictly negative elsewhere.

Conversely, if the gradient of θ �→ E(Yθ ) has rank p1 < p, there will be a p2-dimensional
hyperplane, p2 = p − p1, along which the mapping θ �→ E(Yθ ) is constant to first order.
Hence, for all θ along this surface, ŝ(θ, y0) ≈ 0 continues to be an approximate solution of the
saddlepoint equation, the leading-order coefficient K0(ŝ(θ, y0); θ) − ŝ(θ, y0)y0 remains zero
to first order, and the heuristic from Section 2.5.3 fails. In such a case, it may still be possible
to apply Theorem 6, with the coordinate ν representing the position within p2-dimensional
level surfaces along which E(Yθ ) is constant.
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2.5.5. Observing multiple samples. As remarked in Section 2.2, the parameter n should
not be interpreted as a sample size in the traditional sense since the summands Y (1), . . . , Y (n)

of (2.6) are not observed. A model with i.i.d. observations X(1), . . . ,X(k) ∈ R
d0×1 can be fit

into the framework of this paper by concatenating them into a vector �X of dimension d =
kd0. Likewise, the observed data values x(1), . . . , x(k) ∈ R

d0×1 are concatenated into a vector
�x ∈ R

kd0×1. We then study the likelihood L �X(θ; �x) and MLE θMLE(�x) = argmaxθ L �X(θ; �x)

for a single combined observation �x by applying Theorems 1–8 to �X, �x instead of X, x.
When we apply the saddlepoint approximation to the concatenated vector �X of dimen-

sion kd0, the covariance matrix K ′′
�X(�s) will be block-diagonal. Other quantities appearing in

Theorems 1–8 also take a special form; see Example 20 in Appendix J for further details.
For present purposes, we note that the saddlepoint approximation for �X factors as a prod-
uct of k d0-dimensional saddlepoint approximations for X(1), . . . ,X(k), each of which is a
saddlepoint approximation applied to the distribution Xθ .

This paper considers only the limit n → ∞ along which the saddlepoint approximation
becomes more accurate. In particular, the number k of i.i.d. observations is considered to be
fixed throughout.

2.5.6. Sufficient statistics of exponential families. Consider the case where X is a suffi-
cient statistic for a full exponential family of distributions with natural parameter η ∈ R

1×d .
That is, we assume that p = d and that η = η(θ) is a reparametrisation of θ ∈ R ⊂ R

d×1,
that is, the mapping θ �→ η(θ) and its inverse are smooth, and η varies over an open subset of
R

1×d . Then we can write

(2.43) L(x; θ) = f (x; θ) = h(x) exp
(
ηx − ρ(η)

)
, KX(s; θ) = ρ(η + s) − ρ(η),

for scalar-valued functions h, ρ with ρ convex. The saddlepoint equation (SE) reduces to

(2.44) ρ ′(η + ŝ) = x.

In particular, the quantity η̂ = η + ŝ depends on x alone and is fixed as a function of η,
provided (2.44) has a solution. The saddlepoint approximation can be written as

(2.45) f̂ (x; θ) = exp(ρ(η̂) − η̂x)√
det(2πρ′′(η̂))

exp
(
ηx − ρ(η)

)
.

The first factor need not coincide with h(x), so the saddlepoint approximation need not be
exact, but because the first factor depends on x only, the saddlepoint MLE is exact for an
exponential family provided that the saddlepoint approximation itself is well-defined. Indeed,
in terms of the natural parameter η, the MLE is precisely the quantity η̂ = η + ŝ solving
(2.44), which we already find in the course of computing the saddlepoint.

2.6. Guide to examples. Appendix J contains a number of examples based on theory and
on the literature. Example 19 discusses the case X = AU , where A is a constant matrix and
U is a random vector with KU known. Example 20 gives the details for the construction of
Section 2.5.5, in which �X is a concatenation of k independent random vectors each formed
in accordance with (2.6) and (SAR).

Examples 21–23 examine applications of saddlepoint MLEs in the literature [7, 16, 21].
Example 21 gives further detail for certain models mentioned in Section 2.3; it illustrates
the fully identifiable case of Theorems 2–5, and also the setup of Example 19. Example 22
illustrates the partially identifiable case of Theorems 6–7, and also the setup of Example 20.
Example 23 shows a model that falls outside the setup of (SAR).

Examples 24–33 explore families of distributions for which some direct calculations are
possible, including the normal, Poisson and Gamma families; families where the true likeli-
hood has different global behaviour than the saddlepoint likelihood; and ill-behaved distribu-
tions showing how the regularity conditions (2.9)–(2.10) may hold or fail.
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3. Structure of the saddlepoint approximation. In Section 3.1, we break down the
saddlepoint approximation into two steps: an exact step based on tilting, and an approxima-
tion step based on the normal distribution. Understanding the saddlepoint approximation via
tilting is not a new idea (cf. for instance [17], Section 2) but here we use it to motivate a
novel factorisation of the likelihood into an exact factor, which encodes the effect of tilting
and is shared between the true and approximate likelihoods; and a correction term, a normal
approximation of which leads to the saddlepoint likelihood. This factorisation establishes the
framework in which the proofs will take place.

As a natural by-product of the factorisation, we introduce in Section 3.2 a simpler but
less accurate alternative to the saddlepoint approximation, which satisfies results similar to
Theorems 1–8.

3.1. Tilting and the saddlepoint approximation. Calculating the saddlepoint approxima-
tion splits naturally into two steps. For given θ , x, we first compute the saddlepoint ŝ(θ, x)

by solving (SE), and then this value is substituted into the expression from (SPA). As we now
explain, the first step can be understood in terms of tilting, and this will clarify the nature of
the approximation made in the second step.

If X has density function f , the MGF M(iϕ; θ) along the imaginary axis gives the Fourier
transform of f . Consequently, we can use the inverse Fourier transform to recover f :

(3.1) f (x; θ) =
∫
R1×d

M(iϕ; θ)e−iϕx dϕ

(2π)d
=

∫
R1×d

exp
(
K(iϕ; θ) − iϕx

) dϕ

(2π)d
.

In practice, either of the factors M(iϕ; θ) or e−iϕx may be highly oscillatory, and will not
typically cancel with each other. To make the integral more manageable, we exponentially tilt
the distribution of X. Define

(3.2) fs0(x; θ) = es0xf (x; θ)

M(s0; θ)

for all s0 ∈ Sθ . Then fs0 is still a density function, corresponding to a tilted distribution X
(s0)
θ

having the same support as Xθ , and we compute

(3.3) MX(s0) (s; θ) = M(s0 + s; θ)

M(s0; θ)
, KX(s0) (s; θ) = K(s0 + s; θ) − K(s0; θ).

Recalling (2.3), we note that K ′(s0; θ) = E(X
(s0)
θ ) and K ′′(s0; θ) = Cov(X(s0),X(s0)) can

themselves be interpreted as means and covariance matrices, respectively. We remark also
that, since Xθ and X

(s0)
θ have the same support, (2.4) is unaffected by the choice of s ∈ intSθ .

If we apply the inversion formula (3.1) to X
(s)
θ , we can solve to find

(3.4)

f (x; θ) = M(s; θ)e−sxfs(x; θ)

= exp
(
K(s; θ) − sx

) ∫
R1×d

exp
(
K(s + iϕ; θ) − K(s; θ) − iϕx

) dϕ

(2π)d
.

Note that the assumption (2.9) implies that the integral in (3.4) converges absolutely, and thus
defines a continuous density function x �→ f (x; θ) whenever (s, θ) ∈ intS and nδ(s, θ) > 1,
and this justifies our use of the Fourier inversion formula. Subject to this condition, we can
choose s ∈ Sθ arbitrarily. To make the integral more tractable, we wish to choose s so that the
linear term −iϕx cancels with K(s + iϕ; θ) − K(s; θ) to leading order. That is, we choose
s = ŝ(θ;x), the solution of (SE), provided that x ∈Xθ . Replacing x by K ′(ŝ(θ, x); θ),

(3.5)

f (x; θ) = exp
(
K(ŝ; θ) − ŝK ′(ŝ; θ)

)
·
∫
R1×d

exp
(
K(ŝ + iϕ; θ) − K(ŝ; θ) − iϕK ′(ŝ; θ)

) dϕ

(2π)d
.
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At this point, explicit x dependence has been virtually eliminated from (3.5); all x depen-
dence on the right-hand side is now carried implicitly by ŝ = ŝ(θ, x). We introduce new no-
tation to exploit this feature. Along with this new notation, we again switch from considering
the density f to the likelihood L.

Define

(3.6)

L∗(s, θ) = exp
(
K(s; θ) − sK ′(s; θ)

)
,

P (s, θ) =
∫
R1×d

exp
(
K(s + iϕ; θ) − K(s; θ) − iϕK ′(s; θ)

) dϕ

(2π)d
,

for all s ∈ intSθ . Setting x = K ′(s; θ), (3.5) can be reformulated as

(3.7) L
(
θ;K ′(s; θ)

) = L∗(s, θ)P (s, θ).

We can recognise logL∗(s, θ) as the negative of the relative entropy (or Kullback–Leibler
divergence) for the distribution of X

(s)
θ relative to Xθ . We can also give a probabilistic inter-

pretation of P(s, θ): it is the density of the tilted distribution X
(s)
θ at its mean K ′(s; θ).

We emphasise at this point that all the calculations so far are exact. The factor L∗ measures
the probabilistic “cost” of shifting from the original distribution Xθ to the tilted distribution
X

(s)
θ , but no distributional information is lost in the tilting step.
The natural next step will be to make an approximation to P(s, θ). Define

(3.8) P̂ (s, θ) = 1√
det(2πK ′′(s; θ))

.

Then the saddlepoint approximation (SPA) becomes

(3.9) L̂
(
θ;K ′(s; θ)

) = L∗(s, θ)P̂ (s, θ).

We recognise P̂ (s, θ) as the density (at its mean) of a normal random variable with covari-
ance matrix K ′′(s; θ). Comparing (3.7) and (3.9), we see that the saddlepoint approxima-
tion amounts to approximating P(s, θ), the density at its mean of the tilted distribution, by
P̂ (s, θ), the density at its mean of the normal random variable with the same covariance
matrix.

In the remainder of the paper, we will study the two-variable functions L∗(s, θ), P(s, θ)

and P̂ (s, θ) and their gradients. Since the factor L∗(s, θ) appears in both (3.7) and (3.9), it
will suffice to compare the gradients of P and P̂ . Ultimately, our interest will be in the case
s = ŝ(θ, x), and we will therefore rewrite (3.7) and (3.9) as

(3.10)
L(θ;x) = L∗(

ŝ(θ, x), θ
)
P

(
ŝ(θ, x), θ

)
,

L̂(θ;x) = L∗(
ŝ(θ, x), θ

)
P̂

(
ŝ(θ, x), θ

) for x ∈ intXθ .

REMARK. A key advantage to studying L∗(s, θ), P(s, θ) and P̂ (s, θ) is that, because
P and P̂ both represent densities at the mean, they vary less dramatically as a function of
their arguments than the full likelihoods L(θ;x) and L̂(θ;x), even in the limit n → ∞ from
(SAR). As we shall see, both P and P̂ and their gradients behave asymptotically as powers
of n. The only factor that decays exponentially in n is L∗, and since it is a common factor of
L(θ;x) and L̂(θ;x) we can circumvent its effects.

The representation (3.10) is also useful for numerical calculation. Recent work by Lunde,
Kleppe and Skaug [13] calculates densities and likelihoods to high relative precision, even in
the tails, using saddlepoint methodology. Expressed in our notation, they evaluate P(s, θ) by
applying a quadrature rule to the integral in (3.6). Because P(s, θ) is a density at the mean,
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the integral defining P(s, θ) is much more amenable to numerical integration, in general,
than the inverse Fourier integral (3.1).

Likewise, the fact that P and P̂ both represent densities at the mean helps to explain
why the saddlepoint approximation can be so accurate even in the tails. Given x close to the
boundary of Xθ (or tending to infinity), the corresponding saddlepoint ŝ will be close to the
boundary of Sθ (or will tend to infinity). In such a limit, there is no reason in general to expect
the ratio P̂ /P to converge to 1; but often the tilted density at the tilted mean remains on the
order of the inverse of the tilted standard deviation, so that P̂ /P may remain bounded. By
contrast, normal approximations and other similar techniques rely on extrapolating a density
far from the mean, and such an extrapolation can only be accurate if the true density happens
to have the same tail behaviour far from the mean; see Appendix I.

L∗ and P in the integer-valued case. When X ∈ Z
d×1, the analogue of (3.1) is

(3.11) P(Xθ = x) =
∫
[−π,π ]1×d

M(iϕ; θ)e−iϕx dϕ

(2π)d
for x ∈ Z

d×1.

We can repeat the tilting argument above, leading us to define

(3.12) Pint(s, θ) =
∫
[−π,π ]1×d

exp
(
K(s + iϕ; θ) − K(s; θ) − iϕK ′(s; θ)

) dϕ

(2π)d
.

At integer values x ∈ Z
d×1, we take the likelihood function to be L(θ;x) = P(Xθ = x), and

we will have

(3.13) L(θ;x) = L∗(
ŝ(θ, x), θ

)
Pint

(
ŝ(θ, x), θ

)
.

However, Pint(s, θ) is defined whenever s ∈ intSθ . Thus we can use (3.13) as a definition of
L(θ;x) even when x is noninteger, although L(θ;x) may not represent a probability in that
case.

3.2. A lower-order saddlepoint approximation. Approximating P using first and second
moments is a natural and reasonable step, but is not the only possible approach. As we have
seen, the standard saddlepoint approximation selects a density from the family of normal
distributions after matching first and second moments. An alternative is to use a different
reference family of distributions; this is one approach to non-Gaussian saddlepoint approxi-
mations, originally developed by Wood, Booth and Butler [20] in a different context and with
different tools.

An even simpler alternative, however, is to ignore P altogether. Define

(3.14) L̂∗(θ;x) = L∗(
ŝ(θ, x), θ

)
for x ∈ Xθ . We could describe L̂∗(θ;x) as the “zeroth-order” saddlepoint approximation to
the likelihood. We saw the quantity 1

n
log L̂∗(θ;ny0) and its derivatives in (2.12) and (2.14)–

(2.15), and Iθ (x) = − log L̂∗(θ;x) are the large deviations rate function from Cramér’s theo-
rem applied to Xθ . Equivalently, − log L̂∗(θ; ·) is the Legendre transform of K(·; θ); see, for
instance, [8], Sections I.4 and V.1, or [11], Section 1.2.

Form the corresponding maximum likelihood estimator,

(3.15) θ̂∗
MLE(x) = argmax

θ

L̂∗(θ;x)

when it exists, and likewise define π̂∗

|U,x as in (2.18) with L̂ replaced by L̂∗. We remark that

in the standard asymptotic regime (SAR) where x = ny, the MLE θ̂∗
MLE(x) depends on y but

not on n; the same is true if we maximise over θ restricted to a neighbourhood U .
Applied to L̂∗, the conclusions of Theorems 1–5 and 8 are almost unchanged, except that

error terms have powers of n changed by one.
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THEOREM 9 (Zeroth-order saddlepoint approximation—fully identifiable case).

(a) Under the hypotheses of Theorem 1,

(3.16) ∇θ log L̂∗(θ;x) = ∇θ logL(θ;x) + O(1) as n → ∞
for (y, θ) ∈ Yo, with uniformity if (y, θ) is restricted to a compact subset of Yo.

(b) Under the hypotheses of Theorem 2, there exist n0 ∈ N and neighbourhoods U ⊂ R of
θ0 and V ⊂ R

d×1 of y0 such that, for all n ≥ n0 and y ∈ V , the function θ �→ L̂∗(θ;x) has a
unique local maximiser in U and, writing this local maximiser as θ̂∗

MLE in U(x),

(3.17)
∣∣θ̂∗

MLE in U(x) − θMLE in U(x)
∣∣ = O(1/n) as n → ∞.

(c) Under the hypotheses of Theorem 3, with x = ny0, the distribution of the rescaled
parameter

√
n(
 − θ0) under π̂∗


|U,x converges as n → ∞ to the same limiting distribution

N (0,−H−1), where H is the negative definite matrix from (2.15).
(d) Under the hypotheses of Theorems 4 or 5, the sampling distributions of the rescaled

approximate MLEs
√

n(θ̂∗
MLE in U(χn) − θ0) or

√
n(θ̂∗

MLE in U(Xθ0) − θ0), respectively, con-
verge as n → ∞ to Z, where Z is as in Theorems 4 or 5, respectively. These convergences
occur jointly with the convergences from Theorems 4 or 5, with the same limiting random
variable Z in each case. Furthermore, Theorem 5(c) applies also with 
 = θ̂∗

MLE in U(Xθ0).
(e) The above results also apply under the hypotheses of Theorem 8.
(f) Suppose X is the sufficient statistic for an exponential family indexed by the natural

parameter η. Let η̂∗
MLE(x) be the parameter obtained by maximising L̂∗, provided the max-

imiser exists. Then η̂∗
MLE(x) coincides with the true MLE.

It is notable that maximizing L̂∗ results in an approximation to the MLE whose error as
n → ∞ is still smaller than the spatial scale 1/

√
n, even though L̂∗ is no longer an adequate

approximation to the likelihood itself in the sense that L̂∗/L → ∞ as n → ∞.
The proofs of (a)–(e) are given along with the corresponding proofs of Theorems 1–5

and 8. Part (f) holds by the same reasoning as in Section 2.5.6: in the first factor in (2.45), we
now remove the denominator, and the resulting factor still does not depend on η.

4. Proofs of Theorems 1–2. The proof of Theorem 1 is based on two key results, Propo-
sition 10 and Corollary 12, that refine the statement of Theorem 1 using the factorisation from
Section 3.1. Theorem 2 follows using a scaling analysis and the implicit function theorem.
We begin with some derivative formulas; see Appendix B for their derivation.

4.1. Summary of saddlepoint derivatives. Under the scaling of (SAR), the quantities
logL∗(s, θ), logL∗(ŝ(θ, x), θ) and their gradients are proportional to n. Define

(4.1)
L∗

0(s, θ) = exp
(
K0(s; θ) − sK ′

0(s; θ)
)
,

L̂∗
0(θ;y) = L∗

0
(
ŝ0(θ, y), θ

) = exp
(
K0

(
ŝ0(θ, y); θ) − ŝ0(θ, y)y

)
,

so that

(4.2) logL∗(s, θ) = n logL∗
0(s, θ), ∇θ log L̂∗(θ;x) = n∇θ log L̂∗

0(θ;y)

and so on, where

(4.3)

∇θ logL∗
0(s, θ) = ∇θK0(s; θ) − s∇s∇θK0(s; θ),

∇s logL∗
0(s, θ) = −K ′′

0 (s; θ)sT ,

∇θ log L̂∗
0(θ;y) = ∇θK0

(
ŝ0(θ, y); θ)

,

∇T
θ ∇θ log L̂∗

0(θ;y) = ∇T
θ ∇θK0(ŝ; θ) − (∇s∇θK0(ŝ; θ)

)T
K ′′

0 (ŝ; θ)−1∇s∇θK0(ŝ; θ).
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By contrast, ŝ, ∇θ ŝ
T and ∂

∂t
log P̂ do not depend on n:

(4.4)

ŝ(θ, x) = ŝ0(θ, y),

∇θ ŝ
T (θ, x) = ∇θ ŝ

T
0 (θ, y) = −K ′′

0
(
ŝ(θ, x); θ)−1∇s∇θK0

(
ŝ(θ, x); θ)

,

∂

∂t
log P̂ (s, θ) = −1

2
tr

(
K ′′

0 (s; θ)−1 ∂K ′′
0

∂t
(s; θ)

)
.

For the remainder of the proofs, we will emphasise that P(s, θ), Pint(s, θ), L(θ;x),
L̂(θ;x), θMLE(x), θ̂MLE(x) depend on n by writing them as Pn(s, θ), Pint,n(s, θ), Ln(θ;x),
L̂n(θ;x), θMLE(x, n), θ̂MLE(x, n). The n-dependences of M(s; θ), K(s; θ), logL∗(s, θ) and
log L̂∗(θ;x) are simple in form and we will handle them by directly substituting the formu-
las in (SAR) and (4.2). We remark that the expression in (2.12) reduces to log L̂∗

0(θ;y0),
and (2.14)–(2.15) amount to the assertion that θ0 is a nondegenerate local maximum for
θ �→ log L̂∗

0(θ;y0). Note that P̂n(s, θ) also depends on n in a simple way,

(4.5) P̂n(s, θ) = 1√
det(2πnK ′′

0 (s; θ))
= n−d/2√

det(2πK ′′
0 (s; θ))

,

but by (4.4) the gradients ∇s log P̂ (s, θ), ∇θ log P̂ (s, θ) do not depend on n and we will omit
the subscript in those cases.

4.2. Proof of Theorem 1. Unlike L∗ and P̂n, the quantity Pn has no closed form and is
instead given as an integral as in (3.6). In the standard asymptotic regime given by (SAR),
we can substitute K = nK0 to obtain

(4.6) Pn(s, θ) =
∫
R1×d

exp
(
n
[
K0(s + iϕ; θ) − K0(s; θ) − iϕK ′

0(s; θ)
]) dϕ

(2π)d
.

Note that the integrand in (4.6) has the form h(ϕ)eng(ϕ) with g(0) = 0 and g′(0) = 0. This is
the standard setup for applying the multivariate Laplace method; see [3, 19]. Thus the limiting
framework of (SAR), in which X is the sum of n i.i.d. terms, leads us to expect that Pn(s, θ),
after suitable rescaling by a power of n, will have an asymptotic series expansion in powers
of 1/n.

Let the scalar t denote one of the coordinates θi or sj . As we will show in the proof of
Proposition 10, for large enough n we may differentiate under the integral sign:

(4.7)

∂Pn

∂t
(s, θ) =

∫
R1×d

exp
(
n
[
K0(s + iϕ; θ) − K0(s; θ) − iϕK ′

0(s; θ)
])

· n
[
∂K0

∂t
(s + iϕ; θ) − ∂K0

∂t
(s; θ) − iϕ

∂K ′
0

∂t
(s; θ)

]
dϕ

(2π)d
.

A key observation motivating Theorem 1 is that ∂Pn

∂t
(s, θ) scales according to the same n-

dependent factor as Pn(s, θ). Indeed, the values of both integrals arise primarily from the
region where ϕ is of order 1/

√
n, and the extra factor in (4.7) is of order 1 in that region. We

could summarise by saying that taking gradients of Pn(s, θ) with respect to θ or s does not
substantially change the nature of the n-dependence.

When we turn to MLEs, we will need to control the dependence of Pn(s, θ) (and its gradi-
ents) on s, θ and n simultaneously. Specifically, the proof of Theorem 2 is based on the im-
plicit function theorem, which requires continuous differentiability. We will therefore prove
the following result, which is more precise than is necessary for Theorem 1.
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PROPOSITION 10. Under the hypotheses of Theorem 1, with t being one of the entries
θi or sj , there are continuously differentiable functions q1(s, θ, ε), q2(s, θ, ε), defined on an
open set Q containing {(s, θ,0) : (s, θ) ∈ intS}, such that q1(s, θ,0) = q2(s, θ,0) = 0 and

(4.8)
Pn(s, θ) = P̂n(s, θ)

(
1 + q1(s, θ,1/n)

)
,

∂Pn

∂t
(s, θ) = P̂n(s, θ)

(
∂

∂t
log P̂ (s, θ) + q2(s, θ,1/n)

)
whenever n is large enough that (s, θ,1/n) ∈ Q.

As with Theorem 1, Proposition 10 includes the implicit assertion that all the quantities in
(4.8) exist when (s, θ,1/n) ∈ Q.

An almost identical statement holds in the integer-valued case.

PROPOSITION 11. Under the hypotheses of Theorem 8, the conclusions of Proposi-
tion 10 hold with Pn(s, θ) replaced by Pint,n(s, θ).

The proofs of Propositions 10–11 use many of the elements of standard proofs of Laplace’s
method. Additional care is needed to ensure that q1, q2 are continuously differentiable, and
we defer the details to Appendix C.

Everything we will use from Propositions 10–11 can be encapsulated in the following
corollary, or its analogue for Pint,n(s, θ).

COROLLARY 12. Under the hypotheses of Theorem 1, there is a continuously differ-
entiable function q3(θ, y, ε), with values in R

1×p , defined on an open set Q′ containing
{(θ, y,0) : (y, θ) ∈ Yo}, such that q3(θ, y,0) = 0 and

(4.9) ∇θ

(
logPn

(
ŝ0(θ, y), θ

)) = ∇θ

(
log P̂

(
ŝ0(θ, y), θ

)) + q3(θ, y,1/n)

whenever (θ, y,1/n) ∈ Q′.

The proof is again deferred to Appendix C. Theorem 1 now follows immediately.

PROOF OF THEOREM 1. Use (3.10) and cancel the term logL∗ to obtain

(4.10)
∇θ logL(θ;x) − ∇θ log L̂(θ;x) = ∇θ

(
logPn

(
ŝ0(θ;y), θ

)) − ∇θ

(
log P̂

(
ŝ0(θ;y), θ

))
= q3(θ, y,1/n).

By Corollary 12, q3 is continuously differentiable and q3(θ, y,0) = 0 in a neighbourhood of
(θ0, y0). An application of the mean value theorem (see, for instance, [18], Theorem 5.10)
completes the proof. �

Although it is not necessary to our study of MLEs, we note that the same argument yields

(4.11) logL(θ;x) − log L̂(θ;x) = q̃(θ, y,1/n),

where q̃(θ, y, ε) is a continuously differentiable function defined on Q′ with q̃(θ, y,0) = 0.
This is a more precise form of the basic saddlepoint error estimate (2.8). Theorem 9(a) also
follows easily.

PROOF OF THEOREM 9(a). Since Theorem 1 already gives a bound on ∇θ log L̂ −
∇θ logL, it suffices to show that ∇θ log L̂ − ∇θ log L̂∗ = O(1). From (3.10) and (4.4),
∇θ log(L̂(θ;x)/L̂∗(θ;x)) = ∇θ log P̂ (ŝ0(θ, y), θ) is constant with respect to n, so it is O(1)

in the limit n → ∞. Since it also depends continuously on θ and y, uniformity follows. �
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4.3. Proof of Theorem 2. To study the MLE θMLE in U(x,n), we will show that the func-
tion θ �→ logLn(θ;x) has a unique maximum when θ is restricted to lie in a suitably chosen
neighbourhood U . In fact, it will be more convenient to consider the rescaled function

(4.12) Rx,n(θ) = 1

n
logLn(θ;x) = logL∗

0
(
ŝ0(θ, y), θ

) + 1

n
logPn

(
ŝ0(θ, y), θ

)
,

where we have substituted (3.10) and (4.2). Use (4.4) and Corollary 12 to compute

(4.13)
∇θRx,n(θ) = ∇θK0

(
ŝ0(θ, y); θ) + 1

n
q3(θ, y,1/n) + 1

n
∇θ log P̂

(
ŝ0(θ, y), θ

)
− 1

n
∇T

s log P̂
(
ŝ0(θ, y), θ

)
K ′′

0
(
ŝ0(θ, y); θ)−1∇s∇θK0

(
ŝ0(θ, y); θ)

.

We will define a function F(sT , θ;y, ε) such that, with the substitution ε = 1/n, a solution
of F = 0 corresponds to a critical point of Rx,n.

PROOF OF THEOREM 2. Define the functions

(4.14)

F
(
sT , θ;y, ε

) =
(

F1
(
sT , θ;y)

F2
(
sT , θ;y, ε

)) , F1
(
sT , θ;y) = K ′

0(s; θ) − y,

F2
(
sT , θ;y, ε

) = ∇T
θ K0(s; θ) + εq3(θ, y, ε)T

+ ε
(∇T

θ log P̂ (s, θ) − (∇s∇θK0(s; θ)
)T

K ′′
0 (s; θ)−1∇s log P̂ (s, θ)

)
.

We think of F1, F2, F as column-vector-valued functions of column-vector arguments, with
(sT , θ;y, ε) and F(sT , θ;y, ε) interpreted as column vectors expressed in block form, of
sizes (2d + p + 1) × 1 and (d + p) × 1, respectively. We will show that we can solve F = 0
to define θ and s implicitly as functions of y and ε; to indicate this, we will merge the column
vectors sT and θ and write

(
sT

θ

) = G(y, ε) ∈R
(d+p)×1 such that F(G(y, ε);y, ε) = 0.

By Corollary 12, the function F is continuously differentiable with respect to all its
parameters. Our assumptions imply that F(sT

0 , θ0;y0,0) = 0 and ∇sT ,θF (sT
0 , θ0;y0,0) is

nonsingular; see Appendix E. We can therefore apply the implicit function theorem (see,
for instance, [18], Theorem 9.28) to find neighbourhoods U , V , W of θ0, y0, s0, a neigh-
bourhood [−1/n0,1/n0] of 0 and a continuously differentiable function G(y, ε) defined on
V × [−1/n0,1/n0] such that, for all y ∈ V , ε ∈ [−1/n0,1/n0], the point

(
sT

θ

) = G(y, ε) is

the unique solution in W × U of F(sT , θ;y, ε) = 0.
As outlined above, when ε = 1/n, the solution of F = 0 corresponds to the MLE.

LEMMA 13. Possibly after shrinking U , V and increasing n0, we have

(4.15) G(y,1/n) =
(
ŝT

0
(
θMLE in U(x,n), y

)
θMLE in U(x,n)

)
for all y ∈ V and n ≥ n0, including the assertion that the maximum of Ln(θ;x), restricted to
θ ∈ U , is attained uniquely.

We defer the proof to Appendix E.
We now turn to the saddlepoint MLE, which amounts to omitting the term εq3:

(4.16)

F̂2
(
sT , θ;y, ε

) = ∇T
θ K0(s; θ) + ε∇T

θ log P̂ (s, θ)

− ε
(∇s∇θK0(s; θ)

)T
K ′′

0 (s; θ)−1∇s log P̂ (s, θ),

F̂
(
sT , θ;y, ε

) =
(

F1
(
sT , θ;y)

F̂2
(
sT , θ;y, ε

)) .
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Then F̂ and its gradients agree with F and its gradients at (sT
0 , θ0;y0,0), so that (after shrink-

ing U , V , W and increasing n0 if necessary) the implicit function theorem again produces a
function Ĝ(y, ε) giving the unique solution

(
sT

θ

)
in U × W of F̂ (sT , θ;y, ε) = 0. Moreover,

the analogue of Lemma 13 applies, with the same proof, so that

(4.17) Ĝ(y,1/n) =
(
ŝT

0
(
θ̂MLE in U(x,n), y

)
θ̂MLE in U(x,n)

)
.

For later convenience, write Ĝ in block form as Ĝ = ( ĜT
s

Ĝθ

)
.

To compare G(y, ε) with Ĝ(y, ε), note that F2 and F̂2 are close:

(4.18) F2
(
sT , θ;y, ε

) = F̂2
(
sT , θ;y, ε

) + εq3(θ, y, ε).

In particular, F(Ĝ(y, ε);y, ε) is almost zero:

(4.19) F
(
Ĝ(y, ε);y, ε

) =
(
F1

(
Ĝ(y, ε);y, ε

)
F̂2

(
Ĝ(y, ε);y, ε

)) +
(

0
εq3

(
Ĝθ (y, ε), y, ε

)) .

The first term in the right-hand side vanishes by definition. In the second term, note that
q3(Ĝθ (y, ε), y, ε) is a continuously differentiable function of (y, ε) that vanishes whenever
ε = 0 (since q3 has the same property by Corollary 12). We can therefore conclude that

(4.20) F
(
Ĝ(y, ε);y, ε

) = ε2q4(y, ε),

where |q4(y, ε)| ≤ C for (y, ε) in a suitable neighbourhood of (y0,0).
To make use of (4.20), we define an augmented version of F that is locally invertible. Let

(4.21)

F̃
(
sT , θ;y, ε

) =
⎛⎜⎝F

(
sT , θ;y, ε

)
y

ε

⎞⎟⎠ so that

∇sT ,θ,y,εF̃ =
⎛⎝∇sT ,θF ∇yF ∇εF

0 Im×m 0
0 0 1

⎞⎠
in block form. Thus ∇sT ,θ,y,εF̃ (sT

0 , θ0;y0,0) is an invertible (2d + p + 1) × (2d + p + 1)

matrix, and by the inverse function theorem [18], Theorem 9.24, after shrinking the domain
of F̃ if necessary, F̃ has a continuously differentiable inverse function G̃(u;y, ε). As above,
we may shrink the domain further to make the partial derivatives of G̃ uniformly bounded.

The inverse function G̃ is related to the implicit function G by G̃(0;y, ε) =
( G(y,ε)

y
ε

)
.

From (4.20) and the definition of F̃ , we have

(4.22) F̃
(
Ĝ(y, ε);y, ε

) =
⎛⎜⎝ε2q4(y, ε)

y

ε

⎞⎟⎠ and so G̃
(
ε2q4(y, ε);y, ε

) =
⎛⎜⎝Ĝ(y, ε)

y

ε

⎞⎟⎠ .

Thus, setting ε = 1/n for n sufficiently large,

(4.23)

∣∣θ̂MLE in U(x,n) − θMLE in U(x,n)
∣∣ ≤ ∣∣Ĝ(y,1/n) − G(y,1/n)

∣∣
= ∣∣G̃(

n−2q4(y,1/n);y,1/n
) − G̃(0;y,1/n)

∣∣.
The boundedness of q4 and of the partial derivatives of G̃ imply that this upper bound is
O(1/n2), uniformly over y in a suitable neighbourhood of y0. �
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The corresponding assertion from Theorem 9 has a similar proof.

PROOF OF THEOREM 9(b). Note that θ = θ̂∗
MLE in U(x,n) and s = ŝ(θ, x) are the so-

lutions of F(sT , θ;y,0) = 0. (The proof is the same as for Lemma 13; see Appendix E.)
Then

(4.24)
∣∣θ̂∗

MLE in U(x,n) − θMLE in U(x,n)
∣∣ ≤ ∣∣G(y,0) − G(y,1/n)

∣∣
and the conclusion follows from the fact that G is continuously differentiable. �

5. Conclusion. A long-established result tells us that the saddlepoint approximation
gives a relative error of order 1/n. That is, applied to a random variable given as a sum
of n i.i.d. terms, the saddlepoint approximation estimates the values of the density (or like-
lihood) up to a factor of the form 1 + O(1/n): see (2.8) or Proposition 10. Very commonly,
however, we are not interested in the likelihood for its own sake but rather as a step towards
computing the MLE. This paper gives the analogous basic results, Theorems 2 and 6, for
the approximation error between the true MLE and saddlepoint MLE: under certain explicit
identifiability conditions, it is O(1/n), O(1/n3/2), or O(1/n2).

It is worth noting that this MLE error estimate is sharper than what we obtain from the
basic likelihood error estimate. In the fully identifiable case, knowing that log L̂(θ;x) has a
maximum at θ = θ̂MLE(x) and knowing that the true log-likelihood satisfies | logL(θ;x) −
log L̂(θ;x)| = O(1/n), we conclude only that |θMLE(x) − θ̂MLE(x)| = O(1/n); see Sec-
tion 2.5.3. Although an MLE error bound of size O(1/n) is small compared to the scale of
the inferential uncertainty in estimating θ (see Theorems 3–5 and the remarks at the end of
Section 2.4.2), it is still a significant overestimate compared to the true MLE error O(1/n2).
The results in this paper help to explain why saddlepoint MLEs in practice often turn out to
be so much more accurate than expected.

A key point in the analysis is to ask how well the saddlepoint approximation captures the
shape of the log-likelihood as a function of the parameter θ . Specifically, it is error bounds
on the gradient of the log-likelihood, as in Theorem 1 and Corollary 12, that control the size
of the MLE approximation error and lead to sharp results (see [14, 15] for a similar finding
in another context). The same logic underpins the finding of Section 2.5.6 that saddlepoint
MLEs are exact for exponential families; errors in the saddlepoint approximation to the log-
likelihood are irrelevant if the sizes of the errors do not depend on the parameter.

Seen in this light, it is less surprising that a lower-order saddlepoint approximation,
L̂∗(θ;x) from Section 3.2, can give a good approximation to the MLE (see Theorem 9) de-
spite being a poor approximation to the likelihood with L̂∗(θ;x)/L(θ;x) → ∞ as n → ∞.
We remark that since L̂∗(θ;x) is even less computationally demanding than the usual sad-
dlepoint approximation, it may be a useful tool for high-dimensional and computationally
intensive applications, or for initialising the search for a true or saddlepoint MLE.

In the other direction, refinements of the saddlepoint approximation that improve likeli-
hood accuracy may be less effective than anticipated when applied to MLEs. For instance,
normalising the saddlepoint approximation f̂ (x; θ) to make it a density (as a function of
x) often brings the saddlepoint density values closer to the true density (see, for instance,
[4]). However, this operation is slow and is often not pursued; cf. [6]. Using the viewpoint
developed in this paper, we can reframe the issue by asking “does normalising bring the sad-
dlepoint log-gradient closer to the true log-gradient”? The general answer is far from clear.
Indeed, for an exponential family such as the Poisson family, Example 24 in Appendix J, for
which the saddlepoint MLE is already exact, normalising will actually make the MLE worse.

This paper has considered likelihoods and MLEs in a particularly tractable limiting frame-
work, the standard asymptotic regime (SAR) in which the observation is a sum of n i.i.d.
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terms. In particular, we have seen that the basic likelihood accuracy estimate does not di-
rectly lead to the correct MLE error estimate, which is markedly better. It would be of in-
terest to extend these results in several directions, including non-Gaussian saddlepoint ap-
proximations, as in [20]: non-i.i.d. sums, integer-valued random variables, uniform upper
bounds, large-sample-size limits and applications based on approximating tail probabilities
rather than likelihoods.
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SUPPLEMENTARY MATERIAL

Appendices A–J (DOI: 10.1214/22-AOS2169SUPP; .pdf). Proofs, further technical de-
tails and examples.
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