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5 Functional limit theorems for Lévy-driven linear models . . . . . . . . 31
5.1 Central limit theorems . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Non-central limit theorems . . . . . . . . . . . . . . . . . . . . . 35

6 CLT for tapered Toeplitz quadratic functionals . . . . . . . . . . . . . 38
6.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Statistical motivation . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Central limit theorems for tapered quadratic functional Qh

T . . . 41
6.3.1 CLT for Gaussian models . . . . . . . . . . . . . . . . . . 41
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1. Introduction

A significant part of large-sample statistical inference relies on limit theorems of
probability theory, which involves sums and quadratic functionals of stationary
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observations. Depending on the memory (or dependence) structure of the un-
derlying processes, these functionals, once normalized, can have different limits,
and the proofs of such limit theorems generally use different methods. In this
paper, we focus on the quadratic functionals. The term ‘central limit theorem’
(CLT) refers to a statement that a suitably standardized quadratic functional
converges in distribution to a Gaussian random variable. Limit theorems where
a suitably standardized quadratic functional converges in distribution to a non-
Gaussian random variable are termed ‘non-central limit theorems’ (NCLT).

We present results on central and non-central limit theorems for Toeplitz
and tapered Toeplitz type quadratic functionals of stationary processes with
applications in parametric and nonparametric statistical estimation theory. The
underlying processes are Gaussian, linear or Lévy-driven linear processes with
memory, and are defined either in discrete or continuous time. We also discuss
some questions concerning Toeplitz matrices and operators, Fejér-type singular
integrals, Lévy-Itô-type and Stratonovich-type multiple stochastic integrals, and
power counting theorems. These are the main tools for obtaining limit theorems,
but they are also of interest in themselves.

1.1. Notation and conventions

The following notation and conventions are used throughout the paper.
The symbol ‘:=’ stands for ‘by definition’. c.t.: = continuous-time; d.t.: =

discrete-time; s.d.:= spectral density; c.f.:= covariance function; CLT:= cen-

tral limit theorem; NCLT:= non-central limit theorem. The symbol ‘
d
=’ stands

for equality of the finite-dimensional distributions. The symbol ‘
d→’ stands for

convergence in distribution. The symbol ‘
f.d.d.−→ ’ stands for convergence of finite-

dimensional distributions. The symbol ‘=⇒’ stands for weak convergence. The

notation XT
d→ η ∼ N(0, σ2) as T → ∞ will mean that the distribution of the

random variable XT tends (as T → ∞) to the centered normal distribution with
variance σ2. E[·]: = expectation operator. tr[A]: = trace of an operator (matrix)
A. IA(·): = indicator of a set A ⊂ Λ. WN(0, 1): = standard white noise.

The standard symbols N, Z and R denote the sets of natural, integer and real
numbers, respectively. By Λ we denote the frequency domain, that is, Λ := R

in the c.t. case, and Λ := [−π.π] in the d.t. case. By Lp(μ) := Lp(Λ, μ) (p ≥1)
we denote the weighted Lebesgue space with respect to the measure μ, and by
|| · ||p,μ we denote the norm in Lp(μ). In the special case where dμ(λ) = dλ,
we will use Lp and || · ||p, respectively. By lp (p ≥1) we denote the the space of
p-summable sequences. The letters C and c with or without indices are used to
denote positive constants, the values of which can vary from line to line.

1.2. The functionals under consideration

Let {X(u), u ∈ U} be a centered real-valued stationary process with spectral
density (s.d.) f(λ), λ ∈ Λ and covariance function (c.f.) r(t), t ∈ U. We consider
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simultaneously the continuous-time (c.t.) case, where U = R := (−∞,∞), and
the discrete-time (d.t.) case, where U = Z := {0,±1,±2, . . .}. The domain Λ of
the frequency variable λ is Λ = R in the c.t. case, and Λ := [−π.π] in the d.t.
case.

We first survey the recent results concerning the asymptotic distribution (as
T → ∞) of the following Toeplitz type quadratic functionals of the process
X(u):

QT :=

⎧⎨⎩
∑T

t=1

∑T
s=1 ĝ(t− s)X(t)X(s) in the d.t. case,∫ T

0

∫ T
0
ĝ(t− s)X(t)X(s) dt ds in the c.t. case,

(1.1)

where

ĝ(t) :=

∫
Λ

eiλt g(λ) dλ, t ∈ U (1.2)

is the Fourier transform of some real, even, integrable function g(λ), λ ∈ Λ.
We will refer to g(λ) and to its Fourier transform ĝ(t) as a generating function
and generating kernel for the functional QT , respectively. In the d.t. case the
functions f(λ) and g(λ) are assumed to be 2π-periodic and periodically extended
to R. In the c.t. case the process X(u) is assumed measurable and mean square
continuous.

The limit distributions of the functionals in (1.1) are completely determined
by the spectral density f(λ) (or covariance function r(t)) and the generating
function g(λ) (or generating kernel ĝ(t)), and depending on their properties, the
limits can be either Gaussian (that is, QT with an appropriate normalization
obeys the central limit theorem), or non-Gaussian.

The following two questions arise naturally:

(a) Under what conditions on f(λ) (resp. r(t)) and g(λ) (resp. ĝ(t)) will the
limits be Gaussian? (CLT-problem).

(b) Describe the limit distributions, if they are non-Gaussian (NCLT-pro-
blem).

We discuss here these questions both for d.t. and c.t. stationary processes,
and survey the recent results.

We also survey recent results concerning functional central and non-central
limit theorems for the following processes, generated by quadratic functionals
in (1.1):

QT (τ) :=

⎧⎨⎩
∑[Tτ ]

t=1

∑[Tτ ]
s=1 ĝ(t− s)X(t)X(s) in the d.t. case,∫ Tτ

0

∫ Tτ

0
ĝ(t− s)X(t)X(s) dt ds in the c.t. case,

(1.3)

where τ ∈ [0, 1] and [ · ] stands for the greatest integer.
We say that a functional central limit theorem (FCLT) for QT (τ) holds if the

process QT (τ) with an appropriate normalization converges weakly in C[0, 1] in
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the c.t. case (and in D[0, 1] in the d.t. case) to Brownian motion. We say that
we have a functional non-central limit theorem (FNCLT) for the process QT (τ)
if the limit is non-Gaussian or, if Gaussian, it is not Brownian motion.

The tapered case. In the spectral analysis of stationary processes the data are
frequently tapered before calculating the statistics of interest. Instead of the
original data {X(t), 0 ≤ t ≤ T} the tapered data {h(t)X(t), 0 ≤ t ≤ T} with
the data taper h(t) are used for all further calculations. The benefits of tapering
the data have been widely reported in the literature (see, e.g., Bloomfield [14],
Brillinger [17], Dahlhaus [24, 25, 26], Dahlhaus and Künsch [28], Guyon [69],
and references therein). For example, data-tapers are introduced to reduce the
so-called ‘leakage effects’, that is, to obtain better estimation of the spectrum of
the model in the case where it contains high peaks. Other application of data-
tapers is in situations in which some of the data values are missing. Also, the
use of tapers leads to bias reduction, which is especially important when dealing
with spatial data. In this case, the tapers can be used to fight the so-called ‘edge
effects’.

In this case, to establish asymptotic properties of the corresponding estima-
tors, we have to study the asymptotic distribution (as T → ∞) of the following
Toeplitz type tapered quadratic functionals of the process X(u):

Qh
T :=

⎧⎨⎩
∑T

t=1

∑T
s=1 ĝ(t− s)hT (t)hT (s)X(t)X(s) in the d.t. case,∫ T

0

∫ T
0
ĝ(t− s)hT (t)hT (s)X(t)X(s) dt ds in the c.t. case,

(1.4)

where ĝ(t), t ∈ U is the Fourier transform of some integrable even function g(λ),
λ ∈ Λ, and hT (t) := h(t/T ) with a taper function h(t), t ∈ [0, 1].

Quadratic functionals of the form (1.1) and (1.4) arise naturally in the con-
text of nonparametric and parametric statistical estimation of the spectrum of
stationary processes based on the non-tapered and tapered data, respectively.
And their limiting distributions are necessary to establish asymptotic properties
of the corresponding estimators. For instance, when we are interested in non-
parametric estimation of a linear integral functional J(f) in Lp(Λ), p > 1, then
a natural statistical estimator for J(f) is the linear integral functional of the em-
pirical spectral density (periodogram) of the process X(t), which is a quadratic
functional of the form (1.1) in the non-tapered case, and of the form (1.4) in
the tapered case. In the case of parametric estimation, for example, the Whittle
estimation procedure is based on the minimization of quadratic functionals of
the form (1.1) and (1.4).

1.3. A brief history

The problem of describing the asymptotic distribution of Toeplitz type quadratic
forms and functionals of stationary processes has a long history, and goes back to
the classical monograph by Grenander and Szegő [67], where the CLT-problem
for Gaussian processes was considered as an application of the authors’ theory of
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the asymptotic behavior of the trace of products of truncated Toeplitz matrices
and operators.

Later the CLT-problem has been studied by a number of authors. Here we
mention only some significant contributions. For the d.t. short memory pro-
cesses, the problem was studied by Bentkus [10], Ibragimov [75] and Rosenblatt
[87], in connection with statistical estimation of the spectral and covariance
functions. Since 1986, there has been a renewed interest in this problem, re-
lated to the statistical inferences for long memory (long-range dependence) and
intermediate memory (anti-persistent) processes (see, e.g., Avram [6], Fox and
Taqqu [39], Giraitis and Surgailis [60], Giraitis and Taqqu [62], Has’minskii and
Ibragimov [70], Ginovian and Sahakian [52], Terrin and Taqqu [102], and ref-
erences therein). In particular, Avram [6], Fox and Taqqu [39], Ginovian and
Sahakian [52], Giraitis and Surgailis [60], Giraitis and Taqqu [62] have obtained
sufficient conditions for quadratic form QT to obey the central limit theorem.

In the case of c.t. stationary Gaussian processes the CLT-problem for Toeplitz
type quadratic functionals was studied in a number of papers. We cite merely
the papers Avram et al. [7], Bai et al. [8, 9], Bryc and Dembo [19], Ginovyan
[43, 45, 48], Ginovyan and Sahakyan [53], Ibragimov [75], Leonenko and Sakhno
[80], where additional references can be found. The NCLT-problem have been
studied in Bai et al. [9], Giraitis and Taqqu [65], and Terrin and Taqqu [101].

Central and non-central limit theorems for tapered quadratic forms of a d.t.
long memory Gaussian stationary fields have been proved in Doukhan et al.
[32]. A central limit theorem for tapered quadratic functionals Qh

T , in the case
where the underlying model X(t) is a Lévy-driven c.t. stationary linear process
has been proved in Ginovyan and Sahakyan [56].

The problem of nonparametric and parametric estimation of the spectrum
of the process X(t) both for d.t. and c.t. cases based on the non-tapered data
has been considered by many authors (see, e.g., Avram et al. [7], Bentkus [10],
Dahlhaus [27], Dzhaparidze [27], Fox and Taqqu [38], Gao et al. [41], Ginovyan
[42, 43, 46, 47, 48, 49], Giraitis et al. [59], Giraitis and Surgailis [60], Giraitis
and Taqqu [64], Guyon [69], Hasminskii and Ibragimov [70], Ibragimov [75, 76],
Leonenko and Sakhno [80], Taniguchi [95], Taniguchi and Kakizawa [96], Taqqu
[98], and references therein). The problem in the tapered case was studied in
Alomari et al. [1], Dahlhaus [24, 26], Dahlhaus and Künsch [28], Ginovyan [50],
Ginovyan and Sahakyan [56], and Ludeña and Lavielle [82].

1.4. Frequency-domain conditions

Conditions that are expressed in terms of the spectral density f(λ) and the gen-
erating function g(λ) will be termed frequency-domain conditions, while condi-
tions that are in terms of the covariance function r(t) and the generating kernel
ĝ(t) will be termed time-domain conditions.

There are three sets of frequency-domain conditions for functionals of the
form (1.1) to obey the CLT, and these conditions separate the ranges of CLT
and NCLT:
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(a) the (Lp, Lq) condition,
(b) the (α, β) condition,
(c) the trace condition.

All three are compensation conditions, meaning that the good behavior of one
function, say g can compensate for the bad behavior of f and vice versa.

(a) The (Lp, Lq) condition. Let f ∈ Lp (p ≥ 2) and g ∈ Lq (q ≥ 2). If
1/p + 1/q ≤ 1/2, then the functional QT with an appropriate normalization
obeys the CLT (see Theorem 3.1(C)), while when 1/p + 1/q > 1/2, then, in
general, QT does not obey the CLT. This condition goes back to the classical
works of Rosenblatt [86, 87], where when estimating the covariance function
r(t) of a d.t. Gaussian process, it was shown that for a sample covariance r̂(t)
(which is a functional of the form (1.1) with g(λ) = cos(tλ)) to obey the CLT,
the spectral density f should satisfy the condition f ∈ Lp (p ≥ 2).

(b) The (α, β) condition. If both the spectral density f and the generating
function g are regularly varying at the origin of orders α and β, respectively,
then it is the sum α+ β that determines the limiting distribution of QT . When
α+ β ≤ 1/2, then the limiting distribution of QT is Gaussian, that is, QT with
an appropriate normalization obeys the CLT (see Theorem 3.3), while when
α+β > 1/2, then the limiting distribution of QT is non-Gaussian (see Theorem
4.6).

(c) The trace condition. This condition, which is more general and implies
both conditions (a) and (b), is an implicit condition. It is expressed in terms of
traces of products of truncated Toeplitz matrices (in the d.t. case) and operators
(in the c.t. case). The idea here is to approximate the traces of products of
Toeplitz matrices and operators (which are no longer Toeplitz) by the traces of
a Toeplitz matrix and a Toeplitz operator, respectively. Let AT (f) denote either
the T × T Toeplitz matrix BT (f) or the T -truncated Toeplitz operator WT (f)
generated by the spectral density f , and let AT (g) denote either the T × T
Toeplitz matrix BT (g), or the T -truncated Toeplitz operator WT (g) generated
by the function g (for definitions see Section 3.1, formulas (3.4) and (3.5)). The
trace condition is: if

fg ∈ L2

and
T−1
[
tr
(
AT (f)AT (g)

)2 − tr
(
AT (f

2g2)
)]

→ 0 as T → ∞,

then the quadratic functional QT in (1.1) with an appropriate normalization
obeys the CLT (see Theorems 3.1(A) and 3.4).

We will also discuss the time-domain counterparts of (Lp, Lq) and (α, β)
conditions.

1.5. Methods and tools

The most commonly used methods to prove central limit theorems for Toeplitz
type quadratic forms and functionals are:
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(a) the method of cumulants or moments,
(b) the approximation method,
(c) the method of characteristic functions.

To prove the non-central limit theorems for Toeplitz type quadratic function-
als, was used:

(a) the spectral representation of the underlying process,
(b) the properties of Lévy-Itô-type and Stratonovich-type multiple stochastic

integrals,
(c) the power counting theorem.

Some details of the above methods are described in Section 8.

1.6. The structure of the paper

The paper is structured as follows. In Section 2 we describe the model of in-
terest - a stationary process, and recall some key notions and results from the
theory of stationary processes. In Section 3 we present sufficient conditions for
Toeplitz type quadratic forms and functionals of the form (1.1) to obey the
CLT in the case where the model is either a Gaussian or a linear process. Sec-
tion 4 contains functional central and noncentral limit theorems for processes
generated by Toeplitz type quadratic forms and functionals for Gaussian and
linear models. Section 5 is devoted to the functional central and noncentral
limit theorems for Lévy-driven linear models. In Section 6 we discuss the case
of tapered Toeplitz quadratic functionals, and state central limit theorems. Sec-
tion 7 contains some applications, involving nonparametric estimation of spec-
tral functionals and Whittle parametric estimation procedure. In Section 8 we
briefly discuss the methods and tools, used to prove central and noncentral limit
theorems for Toeplitz type quadratic forms and functionals.

2. The model: second-order stationary process

In this section we introduce the model of interest - a second-order stationary
process, and recall some key notions and results from the theory of stationary
processes.

2.1. Key notions and some basic results

2.1.1. Second-order (wide-sense) stationary process

Let {X(u), u ∈ U} be a centered real-valued second-order (wide-sense) station-
ary process defined on a probability space (Ω,F , P ) with covariance function
r(t), that is,

E[X(u)] = 0, r(u) = E[X(t+ u)X(t)], u, t ∈ U,
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where E[·] stands for the expectation operator with respect to measure P . We
consider simultaneously the c.t. case, where U = R := (−∞,∞), and the d.t.
case, where U = Z := {0,±1,±2, . . .}. We assume that X(u) is a non-degenerate
process, that is, Var[X(u)] = E|X(u)|2 = r(0) > 0. (Without loss of generality,
we assume that r(0) = 1). In the continuous-time case, the process X(u) is
also assumed mean-square continuous, that is, E[X(t) − X(s)]2 → 0 as t → s
(t, s ∈ R). This assumption is equivalent to that of the covariance function r(u)
be continuous at u = 0 (see, e.g., Cramér and Leadbetter [23], Section 5.2).

2.1.2. Spectral representations

By the Herglotz theorem in the d.t. case, and the Bochner-Khintchine theorem
in the c.t. case (see, e.g., Cramér and Leadbetter [23], Doob [31], Ibragimov
and Linnik [77]), there is a finite measure μ on (Λ,B(Λ)), where Λ = R in the
c.t. case, and Λ = [−π.π] in the d.t. case, and B(Λ) is the Borel σ-algebra on
Λ, such that for any t ∈ U the covariance function r(t) admits the following
spectral representation:

r(u) =

∫
Λ

exp{iλu}dμ(λ), u ∈ U. (2.1)

The measure μ in (2.1) is called the spectral measure of the process X(u).
The function F (λ) := μ[−π, λ] in the d.t. case and F (λ) := μ(−∞, λ] in the c.t.
case, is called the spectral function of the process X(t). If F (λ) is absolutely
continuous (with respect to the Lebesgue measure), then the function f(λ) :=
dF (λ)/dλ is called the spectral density of the process X(t). Notice that if the
spectral density f(λ) exists, then f(λ) ≥ 0, f(λ) ∈ L1(Λ), and (2.1) becomes

r(u) =

∫
Λ

exp{iλu}f(λ)dλ, u ∈ U. (2.2)

Thus, the covariance function r(u) and the spectral function F (λ) (resp. the
spectral density function f(λ)) are equivalent specifications of the second order
properties for a stationary process {X(u), u ∈ U}.

By the well-known Cramér theorem (see, e.g., Cramér and Leadbetter [23])
for any stationary process {X(u), u ∈ U} with spectral measure μ there exists
an orthogonal stochastic measure Z = Z(B), B ∈ B(Λ), such that for every
u ∈ U the process X(u) admits the following spectral representation:

X(u) =

∫
Λ

exp{iλu}dZ(λ), u ∈ U. (2.3)

Moreover, E
[
|Z(B)|2

]
= μ(B) for every B ∈ B(Λ). For definition and proper-

ties of orthogonal stochastic measures and stochastic integral in (2.3) we refer,
e.g., Cramér and Leadbetter [23].
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2.1.3. Kolmogorov’s isometric isomorphism theorem

Given a probability space (Ω,F , P ), define the L2-space of random variables
ξ = ξ(ω), E[ξ] = 0:

L2(Ω) :=

{
ξ : ||ξ||2 :=

∫
Ω

|ξ(ω)|2dP (ω) < ∞
}
. (2.4)

Then L2(Ω) becomes a Hilbert space with the following inner product: for ξ, η ∈
L2(Ω)

(ξ, η) = E[ξη] =

∫
Ω

ξ(ω)η(ω)dP (ω). (2.5)

For a, b ∈ U, −∞ ≤ a ≤ b ≤ ∞, we define the space Hb
a(X) to be the closed

linear subspace of the space L2(Ω) spanned by the random variables X(u, ω),
u ∈ [a, b]:

Hb
a(X) := sp{X(u), a ≤ u ≤ b}L2(Ω). (2.6)

Observe that the subspace Hb
a(X) consists of all finite linear combinations∑n

k=1 ckX(uk) (a ≤ uk ≤ b), as well as, their L2(Ω)-limits.
The space H(X) := H∞

−∞(X) is called the Hilbert space generated by the process
X(u), or the time-domain of X(u).

Let μ be the spectral measure of the process {X(u), u ∈ U}. Consider the
weighted L2-space L2(μ) := L2(μ,Λ) of complex-valued functions ϕ(λ), λ ∈ Λ,
defined by

L2(μ) :=

{
ϕ(λ) : ||ϕ||2μ :=

∫
Λ

|ϕ(λ)|2dμ(λ) < ∞
}
. (2.7)

Then L2(μ) becomes a Hilbert space with the following inner product: for ϕ, ψ ∈
L2(μ)

(ϕ, ψ)μ =

∫
Λ

ϕ(λ)ψ(λ)dμ(λ). (2.8)

The Hilbert space L2(μ,Λ) is called the frequency-domain of the process X(u).
Kolmogorov’s isometric isomorphism theorem states that for any stationary

process X(u), u ∈ U, with spectral measure μ there exists a unique isometric
isomorphism V between the time- and frequency-domains H(X) and L2(μ),
such that V [X(u)] = eiuλ for any u ∈ U.

Thus, any linear problem in the time-domain H(X) can be translated into
one in the frequency-domain L2(μ), and vice versa. This fact allows to study
stationary processes using analytic methods.

2.2. Linear processes. Existence of spectral density functions

We will consider here stationary processes possessing spectral density functions.
For the following results we refer to Cramér and Leadbetter [23], Doob [31],
Ibragimov and Linnik [77].



Limit theorems for Toeplitz-type quadratic functionals 11

(a) The spectral function F (λ) of a d.t. stationary process {X(u), u ∈ Z}
is absolutely continuous (with respect to the Lebesgue measure), F (λ) =∫ λ
−π

f(x)dx, if and only if it can be represented as an infinite moving
average:

X(u) =

∞∑
k=−∞

a(u− k)ξ(k),

∞∑
k=−∞

|a(k)|2 < ∞, (2.9)

where {ξ(k), k ∈ Z} is a standard white noise, that is, a sequence of
centered orthonormal random variables.

(b) The covariance function r(u) and the spectral density f(λ) of X(u) are
given by formulas:

r(u) = EX(u)X(0) =

∞∑
k=−∞

a(u+ k)a(k), (2.10)

and

f(λ) =
1

2π
|â(λ)|2 =

1

2π

∣∣∣∣∣
∞∑

k=−∞
a(k)e−ikλ

∣∣∣∣∣
2

, λ ∈ Λ. (2.11)

(c) In the case where {ξ(k), k ∈ Z} is a sequence of Gaussian random variables,
the process {X(u), u ∈ Z} is Gaussian.

Similar results hold for c.t. processes. Indeed, the following results hold.

(a) The spectral function F (λ) of a c.t. stationary process {X(u), u ∈ R} is
absolutely continuous (with respect to the Lebesgue measure), F (λ) =∫ λ
−∞ f(x)dx, if and only if it can be represented as an infinite continuous
moving average:

X(u) =

∫
R

a(u− t)dξ(t),

∫
R

|a(t)|2dt < ∞, (2.12)

where {ξ(t), t ∈ R} is a process with orthogonal increments and E|d ξ(t)|2
= dt.

(b) The covariance function r(u) and the spectral density f(λ) of X(u) are
given by formulas:

r(u) = EX(u)X(0) =

∫
R

a(u+ x)a(x)dx, (2.13)

and

f(λ) =
1

2π
|â(λ)|2 =

1

2π

∣∣∣∣∫
R

e−iλta(t)dt

∣∣∣∣2 , λ ∈ R. (2.14)

(c) In the case where {ξ(t), t ∈ R} is a Gaussian process, the process {X(u), u
∈ Z} is Gaussian.
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2.3. Lévy-driven linear process

We first recall that a Lévy process {ξ(t), t ∈ R} is a process with independent
and stationary increments, continuous in probability, with sample-paths which
are right-continuous with left limits (càdlàg) and ξ(0) = ξ(0−) = 0. The Wiener
process {B(t), t ≥ 0} and the centered Poisson process {N(t)− EN(t), t ≥ 0}
are typical examples of centered Lévy processes. A Lévy-driven linear process
{X(t), t ∈ R} is a real-valued c.t. stationary process defined by (2.12), where
ξ(t) is a Lévy process satisfying the conditions:

Eξ(t) = 0, Eξ2(1) = 1 and Eξ4(1) < ∞.

In the case where ξ(t) = B(t), X(t) is a Gaussian process.
The function a(·) in representations (2.9) and (2.12) plays the role of a time-

invariant filter, and the linear processes defined by (2.9) and (2.12) can be
viewed as the output of a linear filter a(·) applied to the process {ξ(u), t ∈ U},
called the innovation or driving process of X(u).

Processes of the form (2.12) appear in many fields of science (economics,
finance, physics, etc.), and cover a large class of popular models in c.t. time
series modeling. For instance, the so-called c.t. autoregressive moving average
(CARMA) models, which are the c.t. analogs of the classical autoregressive
moving average (ARMA) models in d.t. case, are of the form (2.12) and play
a central role in the representations of c.t. stationary time series (see, e.g.,
Brockwell [18]).

2.4. Dependence (memory) structure of the model

In the frequency domain setting, the statistical and spectral analysis of sta-
tionary processes requires two types of conditions on the spectral density f(λ).
The first type controls the singularities of f(λ), and involves the dependence
(or memory) structure of the process, while the second type – controls the
smoothness of f(λ).

We will distinguish the following types of stationary models:
(a) short memory (or short-range dependent),
(b) long memory (or long-range dependent),
(c) intermediate memory (or anti-persistent).

The memory structure of a stationary process is essentially a measure of the
dependence between all the variables in the process, considering the effect of all
correlations simultaneously. Traditionally memory structure has been defined
in the time domain in terms of decay rates of the autocorrelations, or in the
frequency domain in terms of rates of explosion of low frequency spectra (see,
e.g., Beran [11], Beran et al. [12], Giraitis et al. [59], Guégan [68], Robinson [85],
and references therein).

It is convenient to characterize the memory structure in terms of the spectral
density function.
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2.4.1. Short memory models

Much of statistical inference is concerned with short memory stationary models,
where the spectral density f(λ) of the model is bounded away from zero and
infinity, that is, there are constants C1 and C2 such that

0 < C1 ≤ f(λ) ≤ C2 < ∞ for all λ ∈ Λ.

A typical d.t. short memory model example is the stationary Autoregressive
Moving Average (ARMA)(p, q) process X(t) defined to be a stationary solution
of the difference equation:

ψp(B)X(t) = θq(B)ε(t), t ∈ Z,

where ψp and θq are polynomials of degrees p and q, respectively, B is the
backshift operator defined by BX(t) = X(t − 1), and {ε(t), t ∈ Z} is a d.t.
white noise, that is, a sequence of zero-mean, uncorrelated random variables
with variance σ2. The covariance r(k) of (ARMA)(p, q) process is exponentially
bounded:

|r(k)| ≤ Cr−k, k = 1, 2, . . . ; 0 < C < ∞; 0 < r < 1,

and the spectral density f(λ) is a rational function (see, e.g., Brockwell and
Davis [19], Section 3.1):

f(λ) =
σ2

2π
· |θq(e

−iλ)|2
|ψp(e−iλ)|2 . (2.15)

A typical c.t. short-memory model example is the stationary c.t. ARMA(p, q)
processes, denoted by CARMA(p, q), which is defined to be the solution of a pth
order stochastic differential equation with a suitable initial condition and driven
by a standard Brownian motion and its derivatives up to and including order
0 ≤ q < p. The spectral density function f(λ) of the CARMA(p, q) process is
given by the following formula (see, e.g., Brockwell [18]):

f(λ) =
σ2

2π
· |β(iλ)|

2

|α(iλ)|2 , (2.16)

where α(z) and β(z) are polynomials of degrees p and q, respectively.

Another important c.t. short memory model is the Ornstein-Uhlenbeck pro-
cess, which is a Gaussian stationary process with covariance function r(t) =
σ2e−α|t| (t ∈ R), and spectral density

f(λ) =
σ2

π
· α2

λ2 + α2
, α > 0, λ ∈ R. (2.17)



14 M. S. Ginovyan and M. S. Taqqu

2.4.2. Discrete-time long-memory and anti-persistent models

Data in many fields of science (economics, finance, hydrology, etc.), however, is
well modeled by stationary processes whose spectral densities are unbounded or
vanishing at some fixed points (see, e.g., Beran [11], Guégan [68], Palma [83],
Taqqu [97] and references therein).

A long-memory model is defined to be a stationary process with unbounded
spectral density, and an anti-persistent model – a stationary process with van-
ishing (at some fixed points) spectral density.

In the discrete context, a basic long-memory model is the Autoregressive
Fractionally Integrated Moving Average (ARFIMA)(0, d, 0)) process X(t) de-
fined to be a stationary solution of the difference equation (see, e.g., Brockwell
and Davis [19], Section 13.2):

(1−B)dX(t) = ε(t), 0 < d < 1/2,

where B is the backshift operator and ε(t) is a d.t. white noise defined above.
The spectral density f(λ) of X(t) is given by

f(λ) = |1− e−iλ|−2d = (2 sin(λ/2))−2d, 0 < λ ≤ π, 0 < d < 1/2. (2.18)

Notice that f(λ) ∼ c |λ|−2d as λ → 0, that is, f(λ) blows up at λ = 0 like a
power function, which is the typical behavior of a long memory model.

A typical example of an anti-persistent model is the ARFIMA(0, d, 0) process
X(t) with spectral density f(λ) = |1 − e−iλ|−2d with d < 0, which vanishes at
λ = 0. Note that the condition d < 1/2 ensures that

∫ π
−π

f(λ)dλ < ∞, implying

that the process X(t) is well defined because E|X(t)|2 =
∫ π
−π

f(λ)dλ.
Data can also occur in the form of a realization of a ‘mixed’ short-long-

intermediate-memory stationary process X(t). A well-known example of such a
process, which appears in many applied problems, is an ARFIMA(p, d, q) process
X(t) defined to be a stationary solution of the difference equation:

ψp(B)(1−B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backshift operator, ε(t) is a d.t. white noise, and ψp and θq are
polynomials of degrees p and q, respectively. The spectral density fX(λ) of X(t)
is given by

fX(λ) = |1− e−iλ|−2df(λ), d < 1/2, (2.19)

where f(λ) is the spectral density of an ARMA(p, q) process, given by (2.15).
Observe that for 0 < d < 1/2 the model X(t) specified by (2.19) displays long-
memory, for d < 0 – intermediate-memory, and for d = 0 – short-memory.
For d ≥ 1/2 the function fX(λ) in (2.19) is not integrable, and thus it cannot
represent a spectral density of a stationary process. Also, if d ≤ −1, then the
series X(t) is not invertible in the sense that it cannot be used to recover a
white noise ε(t) by passing X(t) through a linear filter (see, e.g., Bondon and
Palma [16], and Brockweel and Davis [19]).
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The ARFIMA(p, d, q) processes, first introduced by Granger and Joyeux [66],
and Hosking [73], became very popular due to their ability in providing a good
characterization of the long-run properties of many economic and financial time
series. They are also very useful for modeling multivariate time series, since they
are able to capture a larger number of long term equilibrium relations among
economic variables than the traditional multivariate ARIMA models (see, e.g.,
Guégan [68], and Henry and Zaffaroni [71] for a survey on this topic).

Another important long-memory model is the fractional Gaussian noise (fGn).
To define fGn we first consider the fractional Brownian motion (fBm) {BH(t), t
∈ R} with Hurst index H, 0 < H < 1, defined to be a centered Gaussian
H-self-similar process having stationary increments, that is, BH(t) satisfies the
following conditions:

(a) BH(0) = 0, E[BH(t)] = 0, t ∈ R;

(b) {BH(at), t ∈ R} d
= {aHBH(t), t ∈ R} for any a > 0;

(c) {BH(t+ u)−BH(u), t ∈ R} d
= {BH(t), t ∈ R} for each fixed u ∈ R;

(d) the covariance function is given by

Cov(BH(s), BH(t)) =
σ2
0

2

[
|t|2H − |s|2H − |t− s|2H

]
,

where the symbol
d
= stands for equality of the finite-dimensional distributions,

and σ2
0 = VarBH(1). Then the increment process

{X(k) := BH(k + 1)−BH(k), k ∈ Z},

called fractional Gaussian noise (fGn), is a d.t. centered Gaussian stationary
process with covariance function

r(k) =
σ2
0

2

[
|k + 1|2H − |k|2H − |k − 1|2H

]
, k ∈ Z, (2.20)

and spectral density function

f(λ) = c |1− e−iλ|2
∞∑

k=−∞
|λ+ 2πk|−(2H+1), −π ≤ λ ≤ π, (2.21)

where c is a positive constant.

It follows from (2.21) that f(λ) ∼ c |λ|1−2H as λ → 0, that is, f(λ) blows up
if H > 1/2 and tends to zero if H < 1/2. Also, comparing (2.18) and (2.21),
we observe that, up to a constant, the spectral density of fGn has the same
behavior at the origin as ARFIMA(0, d, 0) with d = H − 1/2.

Thus, the fGn {X(k), k ∈ Z} has long-memory if 1/2 < H < 1 and is anti-
percipient if 0 < H < 1/2. The variables X(k), k ∈ Z, are independent if
H = 1/2. For more details we refer to Samorodnisky and Taqqu [89] and Taqqu
[97, 99].
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2.4.3. Continuous-time long-memory and anti-persistent models

In the continuous context, a basic process which has commonly been used to
model long-range dependence is the fractional Brownian motion (fBm) {BH(t), t
∈ R} with Hurst index H, defined above, which can be regarded as a Gaussian
process having a ’spectral density’:

f(λ) = c|λ|−(2H+1), c > 0, 0 < H < 1, λ ∈ R. (2.22)

The form (2.22) can be understood in a generalized sense (see Yaglom [108],
Section 24, Flandrin [36], Solo [91]), since the fBmBH is a nonstationary process.

A proper stationary model in lieu of fBm is the fractional Riesz-Bessel motion
(fRBm), introduced in Anh et al. [2], and defined as a c.t. Gaussian process X(t)
with spectral density

f(λ) = c |λ|−2α(1 + λ2)−β , λ ∈ R, 0 < c < ∞, (2.23)

where the exponents α and β are such that 0 < α < 1, β > 0 and α+ β > 1/2.
The exponent α determines the long-range dependence, while the exponent β
indicates the second-order intermittency of the process (see, e.g., Anh et al. [3]
and Gao et al. [41]).

Notice that the process X(t), specified by (2.23), is stationary if 0 < α < 1/2
and is non-stationary with stationary increments if 1/2 ≤ α < 1. Observe
also that the spectral density (2.23) behaves as O(|λ|−2α) as |λ| → 0 and as
O(|λ|−2(α+β)) as |λ| → ∞. Thus, under the conditions 0 < α < 1/2, β > 0 and
α + β > 1/2, the function f(λ) in (2.23) is well-defined for both |λ| → 0 and
|λ| → ∞ due to the presence of the component (1 + λ2)−β , β > 0, which is the
Fourier transform of the Bessel potential.

Comparing (2.22) and (2.23), we observe that the spectral density of fBm is
the limiting case as β → 0 that of fRBm with Hurst index H = α− 1/2.

Another important c.t. long-memory model is the CARFIMA(p,H, q) pro-
cesses, which is defined to be the solution of a pth order stochastic differential
equation with a suitable initial condition and driven by a fractional Brownian
motion with Hurst parameter H and its derivatives up to and including order
0 ≤ q < p. The spectral density function f(λ) of the CARFIMA(p,H, q) process
is given by the following formula (see, e.g., Tsai and Chan [104]):

f(λ) =
σ2

2π
Γ(2H + 1) sin(πH)|λ|1−2H |β(iλ)|2

|α(iλ)|2 , (2.24)

where α(z) and β(z) are polynomials of degrees p and q, respectively. Notice
that for H = 1/2, the spectral density function given by (2.24) becomes that of
the short-memory CARMA(p, q) process, given by (2.16).

3. CLT for Toeplitz type quadratic functionals for Gaussian and
linear processes

In this section we present sufficient conditions for quadratic forms and function-
als of the form (1.1) to obey the CLT. The processes considered will be d.t. and
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c.t. Gaussian or linear processes with memory. The matrix and the operator
that characterize the quadratic form and functional are Toeplitz.

As it was mentioned in the introduction, the limit distributions of the func-
tionals in (1.1) are completely determined by the spectral density f(λ) (or co-
variance function r(t)) and the generating function g(λ) (or generating kernel
ĝ(t)). Conditions that are in terms of the spectral density f(λ) and the generat-
ing function g(λ) will be called frequency-domain conditions, while conditions
that are in terms of the covariance function r(t) and the generating kernel ĝ(t)
will be called time-domain conditions.

3.1. Frequency domain conditions

Let {X(u), u ∈ U} be a centered real-valued Gaussian stationary process with

spectral density f(λ), λ ∈ Λ and covariance function r(t) := f̂(t), t ∈ U, where
U and Λ are as in Section 2. We are interested in the asymptotic distribution
(as T → ∞) of the following Toeplitz type quadratic functionals of the process
X(u):

QT := QT (f, g) =

⎧⎨⎩
∑T

t=1

∑T
s=1 ĝ(t− s)X(t)X(s) in the d.t. case,∫ T

0

∫ T
0
ĝ(t− s)X(t)X(s) dt ds in the c.t. case,

(3.1)

where ĝ(t) is the Fourier transform of some real, even, integrable function g(λ),
λ ∈ Λ. In the d.t. case the functions f(λ) and g(λ) are assumed to be 2π-periodic
and periodically extended to R.
Note. We include the function f in the notation QT (f, g) to emphasize that
the distribution of the quadratic form depends also on the spectral density f .
Let QT be as in (3.1). By Q̃T we denote the standard normalized quadratic
functional:

Q̃T := T−1/2 (QT − E[QT ]) . (3.2)

As before, the notation

Q̃T
d→ η ∼ N(0, σ2) as T → ∞ (3.3)

will mean that the distribution of the random variable Q̃T tends (as T → ∞)
to the centered normal distribution with variance σ2.

Toeplitz matrices and operators arise naturally in the theory of stationary
processes, and serve as tools, to study many topics of the spectral and statistical
analysis of d.t. and c.t. stationary processes.

We first define the truncated Toeplitz matrices and operators, generated by
integrable real symmetric functions.

Let ψ(λ) be an integrable real symmetric function defined on Λ = [−π, π].
For T = 1, 2, . . ., the (T × T )-truncated Toeplitz matrix generated by ψ(λ),
denoted by BT (ψ), is defined by the following equation (see, e.g., Ginovyan and
Sahakyan [52], and Grenander and Szegő [67]):

BT (ψ) : = ‖ψ̂(t− s)‖t,s=1,2,...,T
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=

⎛⎜⎜⎝
ψ̂(0) ψ̂(−1) · · · ψ̂(1− T )

ψ̂(1) ψ̂(0) · · · ψ̂(2− T )
· · · · · · · · · · · ·
ψ̂(T − 1) ψ̂(T − 2) · · · ψ̂(0)

⎞⎟⎟⎠ , (3.4)

where ψ̂(t) =
∫
Λ
eiλt ψ(λ) dλ (t ∈ Z) are the Fourier coefficients of ψ.

Given a real number T > 0 and an integrable real symmetric function ψ(λ) de-
fined on R := (−∞,∞), the T -truncated Toeplitz operator (also called Wiener-
Hopf operator) generated by ψ(λ), denoted byWT (ψ), is defined by the following
equation (see, e.g., Ginovyan [45], Ginovyan and Sahakyan [53], Grenander and
Szegő [67], Ibragimov [75], and Kac [79]):

[WT (ψ)u](t) =

∫ T

0

ψ̂(t− s)u(s)ds, u(s) ∈ L2[0, T ], (3.5)

where ψ̂(t) =
∫
R
eiλt ψ(λ) dλ (t ∈ R) is the Fourier transform of ψ(λ).

Let AT (f) and AT (g) denote either the T -truncated Toeplitz operators (in
the c.t. case), or the T ×T Toeplitz matrices (in the d.t. case) generated by the
functions f and g, respectively. Observe that AT (f) is the covariance matrix
(in the d.t. case) and the covariance operator (in the c.t. case) of the process
{X(u), u ∈ U}.

We assume below that f, g ∈ L1(Λ), and with no loss of generality, that g ≥ 0.
Also, we set

σ2
0 := 16π3

∫
Λ

f2(λ)g2(λ) dλ. (3.6)

As usual Λ = [−π, π] in the d.t. case and Λ = R in the c.t. case.
The theorems that follow contain sufficient conditions expressed in terms

of f(λ) and g(λ) to ensure central limit theorems for standard normalized

quadratic functionals Q̃T both for d.t. and c.t. Gaussian processes. Some of
the assumptions imposed on f allow for long-range dependence (f(0) = ∞),
others for discontinuities at other frequencies. Sometimes the good behavior of
one function, say g can compensate for the bad behavior of f and vice versa.

Theorem 3.1. Let f , g, AT (f), AT (g), and Q̃T be as above. Each of the fol-
lowing conditions is sufficient for functional QT to obey the CLT, that is,

Q̃T
d→ η ∼ N(0, σ2

0) as T → ∞, (3.7)

with σ2
0 given by (3.6).

(A) f · g ∈ L1(Λ) ∩ L2(Λ) and

χ2(Q̃T ) :=
2

T
tr
[
AT (f)AT (g)

]2 −→ σ2
0 , (3.8)

where tr[A] stands for the trace of the operator (or the matrix) A.



Limit theorems for Toeplitz-type quadratic functionals 19

(B) The function

ϕ(u) := ϕ(u1, u2, u3) =

∫
Λ

f(λ)g(λ− u1)f(λ− u2)g(λ− u3) dλ (3.9)

belongs to L2(Λ3) and is continuous at 0 = (0, 0, 0).
(C) f ∈ L1(Λ)∩Lp(Λ) (p ≥ 2) and g ∈ L1(Λ)∩Lq(Λ) (q ≥ 2) with 1/p+1/q ≤

1/2.
(D) f ∈ L1(Λ) ∩ L2(Λ), g ∈ L1(Λ) ∩ L2(Λ), fg ∈ L2(Λ) and∫

Λ

f2(λ)g2(λ− μ) dλ −→
∫
Λ

f2(λ)g2(λ) dλ as μ → 0.

Remark 3.1. Observe that assertion (A) implies assertions (B) – (D), and
assertion (B) implies assertions (C) and (D) (see Giraitis and Surgailis [60],
Ginovyan and Sahakyan [52, 53]). For the d.t. case, assertions (A) and (D) were
proved in Giraitis and Surgailis [60] (see also Giraitis et al. [59]); assertions (B)
was proved in Ginovyan and Sahakyan [52]; assertion (C) for p = q = ∞ was
first established by Grenander and Szegő ([67], Section 11.7), while the case
p = 2, q = ∞ was proved by Ibragimov [75] and Rosenblatt [87]; in the general
d.t. case assertion (C) was proved by Avram [6]. For the c.t. case, assertions (A)
– (D) were proved in Ginovyan [45] and in Ginovyan and Sahakyan [53].

The following theorem provides conditions for the CLT to hold when either
f or g is a sufficiently smooth function. Given a number α (0 < α < 1). Denote
by Lipα(Λ) the class of Lipschitz functions on Λ. By definition, φ ∈ Lipα(Λ) if
there exists a constant C < ∞ such that

|φ(x)− φ(y)| ≤ C|x− y|α for all x, y ∈ Λ.

Theorem 3.2. Let either f ∈ Lipα(Λ) or g ∈ Lipα(Λ) with α > 1/2, and let

fg ∈ L2(Λ). Then Q̃T
d→ η ∼ N(0, σ2

0) as T → ∞ with σ2
0 given by (3.6).

Theorem 3.2 for the d.t. case was proved in Giraitis and Taqqu [61]. For the
c.t. case it can be proved similarly.

To state the next theorem, we need to introduce a class of slowly varying
functions at zero. Recall that a function u(λ), λ ∈ R, is called slowly varying at
zero if it is non-negative and for any t > 0

lim
λ→0

u(tλ)

u(λ)
→ 1.

Denote by SV0(Λ) the class of slowly varying functions at zero u(λ), λ ∈ Λ,
satisfying the following conditions: for some a > 0, u(λ) is bounded on [−a, a],
limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) < u(μ) for 0 < λ < μ < a. An
example of a function belonging to SV0(Λ) is u(λ) = |ln |λ||−γ

with γ > 0 and
a = 1.
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Theorem 3.3. Assume that the functions f and g are integrable on R and
bounded outside any neighborhood of the origin, and satisfy for some a > 0 the
following conditions:

f(λ) ≤ |λ|−αL1(λ), |g(λ)| ≤ |λ|−βL2(λ), λ ∈ [−a, a], (3.10)

for some α < 1, β < 1 with α + β ≤ 1/2, where L1(x) and L2(x) are slowly
varying functions at zero satisfying

Li ∈ SV0(R), λ−(α+β)Li(λ) ∈ L2[−a, a], i = 1, 2. (3.11)

Then Q̃T
d→ η ∼ N(0, σ2

0) as T → ∞ with σ2
0 given by (3.6).

Remark 3.2. For the d.t. case the result of Theorem 3.3 under the condition
α + β < 1/2 was first obtained by Fox and Taqqu [39]. For the general case,
including the critical value α+β = 1/2 it was proved in Ginovyan and Sahakyan
[52]. For the c.t. case the result was proved in Ginovyan and Sahakyan [53].

Remark 3.3. The conditions α < 1 and β < 1 in Theorem 3.3 ensure that the
Fourier transforms of f and g are well defined. Observe that when α > 0 the
process X(t) may exhibit long-range dependence. We also allow here α + β to
assume the critical value 1/2. The assumptions f · g ∈ L1(R), f, g ∈ L∞(R \
[−a, a]) and (3.11) imply that f · g ∈ L2(R), so that the variance σ2

0 in (3.6) is
finite.

Remark 3.4. In Theorem 3.3, the assumption that L1(x) and L2(x) belong to
the class SV0(R) instead of merely being slowly varying at zero is done in order
to deal with the critical case α+ β = 1/2.

Remark 3.5. The functions

f(λ) = |λ|−α| ln |λ||−γ and g(λ) = |λ|−β | ln |λ||−γ , (3.12)

where α < 1, β < 1, α + β ≤ 1/2 and γ > 1/2, provide examples of spectral
density f(λ) and generating function g(λ) satisfying the conditions of Theorem
3.3 (see Ginovyan and Sahakyan [52]).

Remark 3.6. The slowly varying functions L1 and L2 in (3.10) are important
because they provide a great flexibility in the choice of spectral density f and
generating function g. Theorem 3.3 shows that in the critical case α+ β = 1/2

the limit distribution of the standard normalized quadratic form Q̃T given by
(3.2) is Gaussian and depends on the slowly varying factors L1 and L2 through
f and g.

Remark 3.7. The functions f(λ) and g(λ) in Theorem 3.3 have singularities
at the point λ = 0, and are bounded in any neighborhood of this point. It can
be shown that the choice of the point λ = 0 is not essential, and instead it
can be taken to be any point λ0 ∈ [−a, a]. Using the properties of the products
of Toeplitz matrices and operators it can be shown that Theorem 3.3 remains
valid when f(λ) and g(λ) have singularities of the form (3.12) at the same finite
number of points of the segment [−a, a] (see Ginovyan and Sahakyan [52]).
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Remark 3.8. Assertion (A) of Theorem 3.1 implies Theorem 3.3. On the other
hand, for functions f(λ) = λ−3/4 and g(λ) = λ3/4 satisfying the conditions
of Theorem 3.3, the function ϕ(u1, u2, u3) in (3.9) is not defined for u2 = 0,
u1 = 0, u3 = 0, showing that assertion (B) of Theorem 3.1 generally does not
imply Theorem 3.3 (see Ginovyan and Sahakyan [52]).

Giraitis and Surgailis [60] proved that assertion (A) of Theorem 3.1 remains
valid for d.t. linear processes. More precisely, they proved the following theorem.

Theorem 3.4. Let {X(u), u ∈ Z} be a d.t. stationary linear process of the
form (2.9) with spectral density f . Let QT be a quadratic form generated by
a function g given by (3.1), and let BT (f) and BT (g) be the T × T Toeplitz
matrices generated by the functions f and g, respectively (defined according to
formula (3.4)). Assume that

1

T
tr
[
BT (f)BT (g)

]2 −→ 8π3

∫ π

−π

f2(λ)g2(λ)dλ < ∞, (3.13)

Then the CLT holds for QT , that is,

Q̃T := T−1/2 (QT − E[QT ])
d→ η ∼ N(0, σ2) as T → ∞, (3.14)

where

σ2 = 16π3

∫ π

−π

f2(λ)g2(λ)dλ+ κ4

[
2π

∫ π

−π

f(λ)g(λ)dλ

]2
, (3.15)

and κ4 is the fourth cumulant of ξ(0).

The next result, which was proved in Giraitis and Taqqu [61], extends The-
orem 3.2 to the case of d.t. linear processes.

Theorem 3.5. Let {X(u), u ∈ Z} be a d.t. stationary linear process of the
form (2.9) with spectral density f and E[ξ2(0)] = 1, and let QT be a quadratic
form generated by a function g given by (3.1). Suppose either f ∈ Lipα(Λ) or

g ∈ Lipα(Λ) with α > 1/2, and fg ∈ L2(Λ). Then Q̃T
d→ η ∼ N(0, σ2) as

T → ∞ with σ2 given by (3.15).

Giraitis and Surgailis [60] conjectured that the relation (3.13), and hence, the
CLT for QT , holds under the single condition that the integral on the right hand
side of (3.13) is finite. Ginovyan [44] showed that the finiteness of this integral
does not guarantee convergence in (3.13), and conjectured that positiveness and
finiteness of the integral in (3.13) must be sufficient for QT to obey the CLT.

The next proposition shows that the condition of positiveness and finiteness
of the integral in (3.13) also is not sufficient for QT to obey the CLT (see
Ginovyan and Sahakyan [52]).

Proposition 3.1. There exist a spectral density f(λ) and a generating function
g(λ) such that

0 <

∫ π

−π

f2(λ) g2(λ) dλ < ∞ (3.16)
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and

lim
T→∞

supχ2(Q̃T ) = lim
n→∞

sup
2

T
tr (BT (f)BT (g))

2
= ∞, (3.17)

where χ2(Q̃T ) is the second cumulant of Q̃T . Thus, the condition (3.16) does
not guarantee convergence in (3.13), and hence is not sufficient for QT to obey
the CLT.

To construct functions f(λ) and g(λ) satisfying (3.16) and (3.17), for a fixed
p ≥ 2 we choose a number q > 1 to satisfy 1/p+ 1/q > 1, and for such p and q
we consider the functions f0(λ) and g0(λ) defined by

f0(λ) =

{ (
2s/s2
)1/p

, if 2−s−1 ≤ λ ≤ 2−s, s = 2m
0, if 2−s−1 ≤ λ ≤ 2−s, s = 2m+ 1,

(3.18)

g0(λ) =

{ (
2s/s2
)1/q

, if 2−s−1 ≤ λ ≤ 2−s, s = 2m+ 1
0, if 2−s−1 ≤ λ ≤ 2−s, s = 2m,

(3.19)

where m is a positive integer. For an arbitrary finite positive constant C we
set g±(λ) = g0(λ) ± C. Then the functions f = f0 and g = g+ or g = g−
satisfy (3.16) and (3.17) (for details we refer to Ginovyan [44], and Ginovyan
and Sahakyan [52]). Consequently, for these functions the quadratic form QT

does not obey the CLT, and it is of interest to describe the limiting non-Gaussian
distribution of QT in this special case.

3.2. Time domain conditions

In this subsection we present time-domain sufficient conditions for a quadratic
form QT of the form (3.1) to obey the CLT. That is, the conditions are in
terms of the covariance function r(t) and the generating kernel ĝ(t). The pro-
cesses considered here will be d.t. Gaussian or linear processes with memory.
Observe that the time-domain conditions stated below are, in general, not equiv-
alent to the frequency-domain conditions stated in Theorems 3.1 and 3.3. The
method of proof for establishing the CLT is also different under the time-domain
conditions. In this case, diagrams are used and the method of moments is ap-
plied. This is because, in the frequency-domain, one can use an approximation
technique, essentially replacing the possibly unbounded spectral density by a
bounded one, which allowed us to approximate the bivariate quadratic forms
by univariate sums of m-dependent random variables. Such an approximation
technique, however, does not work with time-domain conditions, and one has to
deal directly with the covariances, which decrease slowly.

The next results contain sufficient conditions in terms of the covariance func-
tion r(t) and the generating kernel ĝ(t) ensuring central limit theorems for

standard normalized quadratic form Q̃T for the d.t. Gaussian processes (see
Fox and Taqqu [37], and Giraitis and Taqqu [62]).
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Theorem 3.6. If the covariance function r(t) and the generating kernel ĝ(t)
satisfy the following condition:

r ∈ lp (p ≥ 1) and ĝ ∈ lq (q ≥ 1) with 1/p+ 1/q ≥ 3/2,

then the CLT holds for the quadratic form QT with limiting variance σ2
0 given

by (3.6).

Remark 3.9. In fact, in Giraitis and Taqqu [62] (see also Giraitis and Taqqu
[63]) was proved more general result stating that Theorem 3.6 is true for qua-
dratic forms of the form:

QT,m,n =

T∑
t=1

T∑
s=1

ĝ(t− s)Pm,n(X(t), X(s)), T ∈ N, (3.20)

where Pm,n(X(t), X(s)) is a bivariate Appell polynomial (Wick power) of the
linear variables X(t) and X(s), m,n ≥ 0, m + n ≥ 1, and X(t) is a d.t. linear
process of the form (2.9). Also, observe that QT,1,1 = QT .

The next theorem, which was proved in Giraitis and Taqqu [62], shows that
under some rather restrictive conditions on the covariance function r(t) and
the generating kernel ĝ(t), the long-range dependence of the process X(t) can
be compensated by the fast decay of the generating kernel ĝ(t) in such a way
that the CLT for QT holds. These conditions ensure, in fact, that the sufficient
conditions in the frequency domain, provided in Theorem 3.3, are satisfied.
The theorem involves quasi-monotone sequences: a sequence {b(t), t ∈ Z} is
said to be quasi-monotonically convergent to 0 if b(t) → 0 and b(t + 1) ≤
b(t)(1 + c/t) as t → 0 for some c > 0. The sequence b(t) has bounded variation
if
∑∞

t=1 |b(t+ 1)− b(t)| < ∞.

Theorem 3.7. Assume that r(t) = |t|−γ1L1(|t|), ĝ(t) = |t|−γ2L2(|t|) with 0 <
γ1, γ2 < 3 and γ1 + γ2 > 3/2. Suppose in addition that both sequences {r(t)}
and {ĝ(t)} have bounded variation and are quasi-monotonically convergent to 0;
if 1 < γ1 < 3, r(t) has the same sign for large t and satisfies

∑
t∈Z

r(t) = 0; if
1 < γ2 < 3, ĝ(t) has the same sign for large t and satisfies

∑
t∈Z

ĝ(t) = 0. Then
the CLT holds for the quadratic form QT . The limiting variance is expressed by
(3.6) provided that 0 < γ1, γ2 < 1.

3.3. Operator conditions

In this subsection we assume that the model X(t) is a d.t. Gaussian process
defined on a probability space (Ω,F , P ), and we are interested in asymptotic
normality of the quadratic form QT := QT (f, g) given by (3.1) (d.t. case). Recall
the notation (see formula (3.2))

Q̃T (f, g) := T−1/2 (QT (f, g)− E[QT (f, g)]) . (3.21)
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and (see formula (3.6))

σ2(f, g) := 16π3

∫ π

−π

f2(λ)g2(λ) dλ. (3.22)

We denote by L2(dP ) the L2-space constructed from a probability measure P
such that X(t) ∈ L2(dP ), t ∈ Z.

Solev and Gerville-Reache [90] observed that for a fixed spectral density f

and a number T ∈ N the quadratic form Q̃T (f, g) in (3.21) can be regarded as

the value of a linear operator Q̃T : g �→ Q̃T (f, g). It turns out that in order to

study the asymptotic normality of the quadratic form Q̃T (f, g), it is enough to
understand for what sets Bε (possibly, depending on f) we have

lim sup
T→∞

sup
g∈Bε

||Q̃T (f, g)||L2(dP ) ≤ ε. (3.23)

It can be shown that the function ||Q̃T (f, g)||L2(dP ) possesses the following sym-
metry property regarded as a function of (f, g): if g is a nonnegative function,
then

||Q̃T (f, g)||2L2(dP ) = ||Q̃T (g, f)||2L2(dP ). (3.24)

The next result plays a key role in the proof of the asymptotic normality of
Q̃T (f, g) (see Solev and Gerville-Reache [90]).

Theorem 3.8. Let G0 and G (G0 ⊂ G) be linear subsets in the space L1[−π, π].
Assume that the following conditions hold:

(a) for every g0 ∈ G0 the limit

lim
T→∞

||Q̃T (f, g0)||2L2(dP ) = σ2(f, g0) < ∞.

exists, and

Q̃T (f, g0)
d→ η0 ∼ N(0, σ2(f, g0)) as T → ∞;

(b) for every g ∈ G and a number ε > 0 there exists a function g0 ∈ G0 such
that

lim sup
T→∞

||Q̃T (f, g − g0||L2(dP ) ≤ ε, ||g − g0)||f2 ≤ ε,

where || · ||L2(dP ) and || · ||f2 are the norms in the spaces L2(dP ) and
L2(f2, [−π, π]), respectively. Then σ2(f, g) < ∞, the limit

lim
T→∞

||Q̃T (f, g)||2L2(dP ) = σ2(f, g)

exists, and

Q̃T (f, g)
d→ η ∼ N(0, σ2(f, g)) as T → ∞. (3.25)
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Thus, if the results holds for every g0 ∈ G0 (part (a)), then it holds for every
g ∈ G close to g0 (part (b)).

Given a function φ ∈ L1[−π, π] and an interval I ⊂ [−π, π] of length |I|, we
set

{φ}I :=
1

|I|

∫
I

φ(x)dx,

and define

λ(φ) := sup
I
{φ}I × {1/φ}I , (3.26)

where the supremum is taken over all intervals I ⊂ [−π, π]. The condition
λ(φ) < ∞ implies a type of smoothness of the function ψ = log |φ| in the
neighborhoods of points where it turns to infinity (for details, see the paper
Hunt et al. [74]).

The following result was obtained by Solev and Gerville-Reache [90].

Theorem 3.9. Assume that the following conditions hold:

(a) f ≤ f∗, |g| ≤ g∗ and λ(f∗), λ(g∗) < ∞,
(b) f∗g∗ ∈ L2[−π, π].

Then the quadratic form QT (f, g) obeys the CLT, that is, the relation (3.25) is
satisfied.

4. Functional limit theorems for Gaussian and linear models

In this section, we establish weak convergence in C[0, 1] for c.t. case and in
D[0, 1] for d.t. case of normalized stochastic processes, generated by Toeplitz
type quadratic functionals of a Gaussian stationary process, exhibiting long-
range dependence. Specifically, we are interested in describing the limiting be-
havior (as T → ∞) of the following process QT (τ), generated by Toeplitz type
quadratic functionals of a Gaussian stationary process {X(u), u ∈ U} with
spectral density f :

QT (τ) =

⎧⎨⎩
∑[Tτ ]

t=1

∑[Tτ ]
s=1 ĝ(t− s)X(t)X(s) in the d.t. case,∫ Tτ

0

∫ Tτ

0
ĝ(t− s)X(t)X(s) dt ds in the c.t. case,

(4.1)

where τ ∈ [0, 1], ĝ(t), t ∈ U is the Fourier transform of some integrable even
function g(λ), λ ∈ Λ, and [ · ] stands for the greatest integer.

The limit of the process (4.1) again is completely determined by the spectral
density f(λ) (or covariance function r(t)) and the generating function g(λ) (or
generating kernel ĝ(t)), and depending on their properties, the limiting process
can be Gaussian or not. We say that we have a functional non-central limit
theorem (FNCLT) for the process QT (τ) if the limit is non-Gaussian or, if
Gaussian, it is not Brownian motion. We say that a functional central limit
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theorem (FCLT) for QT (τ) holds if we have the following weak convergence in
C[0, 1] in the c.t. case (and in D[0, 1] in the d.t. case):

Q̃T (τ) =⇒ σB(τ), τ ∈ [0, 1], (4.2)

where σ > 0, B(τ) is a standard Brownian motion, and Q̃T (τ) is the standard
normalized version of the process QT (τ) in (4.1):

Q̃T (τ) := T−1/2 (QT (τ)− E[QT (τ)]) , τ ∈ [0, 1]. (4.3)

4.1. Functional CLT for QT (τ )

We first state functional central limit theorems, when the limit of the normalized
process (4.3) is Brownian motion.

In the d.t. case the next result was obtained in Giraitis and Taqqu [65] (see
also Fox and Taqqu [38] and Giraitis and Taqqu [61]).

Theorem 4.1. If the covariance function r(t) and the generating kernel ĝ(t)
satisfy the following condition: r ∈ lp (p ≥ 1) and ĝ ∈ lq (q ≥ 1) with 1/p+1/q ≥
3/2, then for the process QT (τ) the FCLT holds, that is, the convergence (4.2)
holds in D[0, 1] with limiting variance σ2 given by

σ2 :=
∑

t,s,v∈Z

ĝ(t)ĝ(s)Cov (P (X(v), X(v + t)), P (X(0), X(s)) , (4.4)

where P (X(t), X(s)) := X(t)X(s)− E[X(t)X(s)].

Now we consider the c.t. case. The next result, which is an extension of
Theorem 3.1(A), involves the convergence of finite-dimensional distributions of

the process Q̃T (τ) to those of a standard Brownian motion (see Bai et al. [8]).

Theorem 4.2. Assume that the spectral density f(λ) and the generating func-
tion g(λ) satisfy the following conditions:

f · g ∈ L1(R) ∩ L2(R) (4.5)

and

E[Q̃2
T (1)] → 16π3

∫
R

f2(x)g2(x)dx as T → ∞. (4.6)

Then we have the following convergence of the finite-dimensional distributions

Q̃T (τ)
f.d.d.−→ σ0B(τ),

where Q̃T (τ) is as in (4.3), B(τ) is a standard Brownian motion, and (see
(3.6)):

σ2
0 := 16π3

∫
R

f2(x)g2(x)dx. (4.7)
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To extend the convergence of finite-dimensional distributions in Theorem 4.2
to the weak convergence in the space C[0, 1], we impose an additional condition
on the underlying Gaussian process X(t) and on the generating function g.
It is convenient to impose this condition in the time domain, that is, on the
covariance function r := f̂ and the generating kernel a := ĝ. The following
condition is an analog of the assumption in Theorem 4.1

r(·) ∈ Lp(R), a(·) ∈ Lq(R) for some p, q ≥ 1,
1

p
+

1

q
≥ 3

2
. (4.8)

Remark 4.1. In fact under (4.5), the condition (4.8) is sufficient for the con-
vergence in (4.6). Indeed, let p̄ = p/(p − 1) and q̄ = q/(q − 1) be the Hölder
conjugates of p and q, respectively. Since 1 ≤ p, q ≤ 2, one has by the Hausdorff-
Young inequality that ‖f‖p̄ ≤ cp‖r‖p, ‖g‖q̄ ≤ cq‖a‖q, and hence, in view if (4.8)
we have

f(·) ∈ Lp̄, g(·) ∈ Lq̄,
1

p̄
+

1

q̄
= 2− 1

p
− 1

q
≤ 1/2. (4.9)

Then the convergence in (4.6) follows from Theorem 3.1(C) (see the proof of
Theorem 3 of Ginovyan and Sahakyan [53] in the c.t. case, and Giraitis and
Surgailis [60] in the d.t. case).

Remark 4.2. Observe that condition (4.8) is satisfied if the functions r(t) and
a(t) satisfy the following: there exist constants C > 0, α∗ and β∗, such that

|r(t)| ≤ C(1 ∧ |t|α∗−1), |a(t)| ≤ C(1 ∧ |t|β∗−1), (4.10)

where 0 < α∗, β∗ < 1/2 and α∗ + β∗ < 1/2. Indeed, to see this, note first that
r(·), a(·) ∈ L∞(R). Then one can choose p, q ≥ 1 such that p(α∗ − 1) < −1
and q(β∗ − 1) < −1, which entails that r(·) ∈ Lp(R) and a(·) ∈ Lq(R). Since
1/p+ 1/q < 2− α∗ − β∗ and 2− α∗ − β∗ > 3/2, one can further choose p, q to
satisfy 1/p+ 1/q ≥ 3/2.

The next results, two functional central limit theorems, extend Theorems
3.1(A) and 3.3 to weak convergence in the space C[0, 1] of the stochastic process

Q̃T (τ) to a standard Brownian motion.

Theorem 4.3. Let the spectral density f and the generating function g satisfy
condition (4.5). Let the covariance function r(t) and the generating kernel a(t)
satisfy condition (4.8). Then we have the following weak convergence in C[0, 1]:

Q̃T (τ) =⇒ σ0B(τ),

where Q̃T (τ) is as in (4.3), σ0 is as in (4.7), and B(τ) is a standard Brownian
motion.

Recall the class SV0(R) of slowly varying at zero functions u(x), x ∈ R,
satisfying the following conditions: for some a > 0, u(x) is bounded on [−a, a],
limx→0 u(x) = 0, u(x) = u(−x) and 0 < u(x) < u(y) for 0 < x < y < a.
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Theorem 4.4. Assume that the functions f and g are integrable on R and
bounded outside any neighborhood of the origin, and satisfy for some a > 0

f(x) ≤ |x|−αL1(x), |g(x)| ≤ |x|−βL2(x), x ∈ [−a, a] (4.11)

for some α < 1, β < 1 with α + β ≤ 1/2, where L1(x) and L2(x) are slowly
varying at zero functions satisfying

Li ∈ SV0(R), |x|−(α+β)Li(x) ∈ L2[−a, a], i = 1, 2. (4.12)

Let, in addition, the covariance function r(t) and the generating kernel a(t)
satisfy condition (4.8). Then we have the following weak convergence in C[0, 1]:

Q̃T (τ) =⇒ σ0B(τ),

where Q̃T (τ) is as in (4.3), σ0 is as in (4.7), and B(τ) is a standard Brownian
motion.

Remark 4.3. The proofs of Theorems 4.2 - 4.4, given in Bai et al. [8] uses the
method developed in Ginovyan and Sahakyan [53], which itself is based on the
approximations of traces of the products of truncated Toeplitz operators (see
Section 8.1).

4.2. Functional NCLT for QT (τ )

4.2.1. Non-central limit theorems (discrete-time)

For d.t. Gaussian processes the problem of description of the limit distribution
of the quadratic form:

QT :=

T∑
t=1

T∑
s=1

ĝ(t− s)X(t)X(s), T ∈ N, (4.13)

if it is non-Gaussian, goes back to the classical papers of Rosenblatt [86]–[88].
Later this problem was studied in a series of papers by Fox and Taqqu, Taqqu,
and Terrin and Taqqu (see, e.g., [37], [97], [100], [101], [102], and references
therein). Suppose that the spectral density f(λ) and the generating function
g(λ) are regularly varying functions at the origin:

f(λ) = |λ|−αL1(λ) and g(λ) = |λ|−βL2(λ), α < 1, β < 1, (4.14)

where L1(λ) and L2(λ) are slowly varying functions at zero, which are bounded
on bounded intervals. The conditions α < 1 and β < 1 ensure that the Fourier
coefficients of f and g are well defined. When α > 0 the model {X(t), t ∈ Z}
exhibits long memory.

It is the sum α+β that determines the asymptotic behavior of the quadratic
formQT . If α+β ≤ 1/2, then by Theorem 3.3 the standard normalized quadratic
form

T−1/2 (QT − E[QT ])
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converges in distribution to a Gaussian random variable. If α + β > 1/2, the
convergence to a Gaussian distribution fails.

Consider the embedding of the discrete sequence {QT , T ∈ N} into a conti-
nuous-time process {QT (τ), T ∈ N, τ ∈ [0, 1]} defined by

QT (τ) :=

[Tτ ]∑
t=1

[Tτ ]∑
s=1

ĝ(t− s)X(t)X(s), (4.15)

where [ · ] stands for the greatest integer. The problem of interest is to describe
the limit distribution of the following normalized process:

Q̃T (τ) := d−1
T (QT (τ)− E[QT (τ)]) (4.16)

where dT is a suitably chosen normalization factor.

In [86] (see also [88]) Rosenblatt showed that if a d.t. centered Gaussian
process X(t) has covariance function r(t) = (1 + t2)α/2−1/2 with 1/2 < α < 1,
then the random variable

Q̃T := T−α
T∑

t=1

[
X2(t)− 1

]
has a non-Gaussian limiting distribution, and described this distribution in
terms of characteristic functions. This is a special case of (4.16) with τ = 1,
1/2 < α < 1, β = 0 and dT = Tα. In [97] (see also [100]) Taqqu extended
Rosenblatt’s result by showing that the stochastic process

Q̃T (τ) := T−α

[Tτ ]∑
t=1

[
X2(t)− 1

]
converges (as T → ∞) weakly in D[0, 1] to a process (called the Rosenblatt
process) which has the double Wiener-Itô integral representation

Q(τ) := Cα

∫ ′′

R2

eiτ(x+y) − 1

i(x+ y)
|x|−α/2|y|−α/2dZ(x)dZ(y), (4.17)

where Z(·) is a complex-valued Gaussian random measure defined on the Borel
σ-algebra B(R), and satisfying E[Z(B)] = 0, E|Z(B)|2 = |B|, and Z(−B) =
Z(B) for any B ∈ B(R). The double prime in the integral (4.17) indicates that
the integration excludes the diagonals x = ±y.

Notice that the distribution of the random variable Q(τ) in (4.17) for τ = 1
is described in Veillette and Taqqu [105].

The next result, proved in Terrin and Taqqu [101] using power counting
theorems (see Section 8.6), describes the non-Gaussian limit distribution of the
suitable normalized process QT (τ).
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Theorem 4.5. Let f(λ) and g(λ) be as in (4.14) with α < 1, β < 1 and slowly
varying at zero and bounded on bounded intervals factors L1(λ) and L2(λ). Let
the process QT (τ) be as in (4.15). Then for α+ β > 1/2 the process:

ZT (τ) :=
1

Tα+βL1(1/T )L2(1/T )
(QT (τ)− E[QT (τ)]) (4.18)

converges (as T → ∞) weakly in D[0, 1] to

Z(τ) :=

∫ ′′

R2

Kτ (x, y)dZ(x)dZ(y), (4.19)

where

Kτ (x, y) = |xy|−α/2

∫
R

eiτ(x+u) − 1

i(x+ u)
· e

iτ(y−u) − 1

i(y − u)
|u|−βdu, (4.20)

The double prime in the integral (4.19) indicates that the integration excludes
the diagonals x = ±y (for the definition of the integral

∫ ′′
see Section 8.5,

formula (8.25)).

Remark 4.4. The limiting process in (4.19) is real-valued, non-Gaussian, and
satisfies E[Z(τ)] = 0 and E[Z2(τ)] =

∫
R2 |Kτ (x, y)|2dxdy. It is self-similar with

parameter H = α + β ∈ (1/2, 2), that is, the processes {Z(aτ), τ ∈ [0, 1]} and
{aHZ(τ), τ ∈ [0, 1]} have the same finite dimensional distributions for all a > 0.

4.2.2. Non-central limit theorems (continuous-time)

Now we state a non-central limit theorem for the process QT (τ) in the c.t. case,
that is, when QT (τ) in (4.1) is defined through integrals. Let the spectral density
f and the generating function g satisfy

f(x) = |x|−αL1(x) and g(x) = |x|−βL2(x), x ∈ R, α < 1, β < 1, (4.21)

with slowly varying at zero functions L1(x) and L2(x) such that∫
R

|x|−αL1(x)dx < ∞ and

∫
R

|x|−βL2(x)dx < ∞.

We assume in addition that the functions L1(x) and L2(x) satisfy the following
condition, called Potter’s bound (see Giraitis et al. [59], formula (2.3.5)): for
any ε > 0 there exists a constant C > 0 so that if T is large enough, then

Li(u/T )

Li(1/T )
≤ C(|u|ε + |u|−ε), i = 1, 2. (4.22)

Note that a sufficient condition for (4.22) to hold is that L1(x) and L2(x) are
bounded on intervals [a,∞) for any a > 0, which is the case for the slowly
varying functions in Theorem 4.4.
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Now we are interested in the limit process of the following normalized version
of the process QT (τ) given by (4.1), with f and g as in (4.21):

ZT (τ) :=
1

Tα+βL1(1/T )L2(1/T )
(QT (τ)− E[QT (τ)]) . (4.23)

Theorem 4.6. Let f and g be as in (4.21) with α < 1, β < 1 and slowly
varying at zero functions L1(x) and L2(x) satisfying (4.22), and let ZT (τ) be
as in (4.23). Then if α + β > 1/2, we have the following weak convergence in
the space C[0, 1]:

ZT (τ) =⇒ Z(τ),

where the limit process Z(τ) is given by

Z(τ) =

∫ ′′

R2

Hτ (x1, x2)W (dx1)W (dx2), (4.24)

with

Hτ (x1, x2) = |x1x2|−α/2

∫
R

[
eiτ(x1+u) − 1

i(x1 + u)

]
·
[
eiτ(x2−u) − 1

i(x2 − u)

]
|u|−βdu , (4.25)

where W (·) is a complex Gaussian random measure with Lebesgue control mea-
sure.

Remark 4.5. Let PT and P denote the measures generated in C[0, 1] by the
processes ZT (τ) and Z(τ) given by (4.23) and (4.24), respectively. Then The-
orem 4.6 can be restated as follows: under the conditions of Theorem 4.6, the
measure PT converges weakly in C[0, 1] to the measure P as T → ∞. Similar
assertions can be stated for Theorems 4.3 and 4.4.

Remark 4.6. Comparing Theorems 4.5 and 4.6, we see that the limit pro-
cess Z(τ) is the same both for continuous and discrete time models. Also, it is
worth noting that although the statements of Theorems 4.5 and 4.6 are similar,
the proofs are different. The proof of Theorem 4.5, given in Terrin and Taqqu
[101], uses hard technical analysis based on power counting theorems, while the
proof of Theorem 4.6, given in Bai et al. [9], is simple and uses the spectral
representation of the underlying process and properties of Wiener-Itô integrals.

5. Functional limit theorems for Lévy-driven linear models

In this section, we survey results involving functional central and non-central
limit theorems for a suitably normalized stochastic process:

QT (τ) :=

∫ Tτ

0

∫ Tτ

0

ĝ(t− s)X(t)X(s)dtds, τ ∈ [0, 1] (5.1)

in the general case where the underlying model {X(t), t ∈ R} is a c.t. linear
process driven from Lévy noise ξ(t) with time invariant filter a(·), that is,

X(t) =

∫
R

a(t− s)dξ(s),

∫
R

|a(s)|2ds < ∞. (5.2)
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These theorems, which were stated and proved in Bai et al. [9], extend the re-
sults stated in Section 4 for Wiener-driven processes and show that under some
(Lp, Lq)-type conditions imposed on the filter a(·) and the generating kernel ĝ(·)
of the quadratic functional, the process QT (τ) obeys a central limit theorem,
that is, the finite-dimensional distributions of the standard

√
T normalized pro-

cess QT (τ) in (5.1) tend to those of a normalized standard Brownian motion. In
contrast, when the functions a(·) and ĝ(·) have slow power decay, then we have
a non-central limit theorem for QT (τ), that is, the finite-dimensional distribu-
tions of the process QT (τ), normalized by T γ for some γ > 1/2, tend to those
of a non-Gaussian non-stationary-increment self-similar process which can be
represented by a double stochastic Wiener-Itô integral on R

2.
We point out that the proofs of the central limit theorems given in Bai et

al. [9] were based on an approximation approach, which reduces the quadratic
integral form to a single integral form, while the proofs of the non-central limit
theorems, used the spectral representation of the underlying process, the prop-
erties of Wiener-Itô integrals, and a continuous analog of a method to establish
convergence in distribution of quadratic functionals to double Wiener-Itô inte-
grals, developed by Surgailis [94] (see also Giraitis et al. [59]).

It is worth noting that if the underlying process X(t) is not necessarily Gaus-
sian, additional complications arise due to the contribution of the random diag-
onal term in the double stochastic integral with respect to Lévy noise, which is
not present in the case of Gaussian noise (see Remark 5.2 below). For this model,
in Avram et al. [7], a central limit theorem for the quadratic functional QT (1)
was stated (without proof) under some (Lp, Lq)-type conditions imposed on the
spectral density f(λ) and the generating function g(λ) (see Remark 5.5 below).
For a related study of the sample covariances of Lévy-driven moving average
processes we refer to the papers by Cohen and Lindner [22], and Spangenberg
[93].

In this section, we follow the paper Bai et al. [9], and will use the following
notation.
The symbol ∗ will stand for the convolution:

(φ ∗ ψ)(u) =
∫
R

φ(u− x)ψ(x)dx,

while the symbol ∗̄ is used to denote the reversed convolution:

(φ∗̄2)(u) = (φ∗̄φ)(u) =
∫
R

φ(u+ x)φ(x)dx.

By F and F−1 we denote the Fourier and the inverse Fourier transforms:

(Fφ)(u) = φ̂(u) =

∫
R

eixuφ(x)dx, (F−1φ)(u) =
1

2π

∫
R

e−ixuφ(x)dx.

We will use the following well-known identities:

F(φ ∗ ψ) = F(φ) · F(ψ) and F(φ∗̄ψ) = F(φ) · F(ψ). (5.3)
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5.1. Central limit theorems

Let {X(t), t ∈ R} be a centered real-valued linear process given by (5.2) with
filter a(·) ∈ L2(R). Recall that the covariance function r(t) and the spectral
density f(λ) of X(t) are given by formulas (2.13) and (2.14), respectively.

The theorem that follows contains (Lp, Lq)-type time-domain sufficient con-
ditions for the process QT (τ) to obey the central limit theorem (see Bai et al.
[9]).

Theorem 5.1. Let X(t) be as in (5.2), and let QT (τ) be as in (5.1). Assume
that

a(·) ∈ Lp(R) ∩ L2(R), ĝ(·) ∈ Lq(R) (5.4)

with

1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 5

2
. (5.5)

Then

Q̃T (τ) := T−1/2 (QT (τ)− E[QT (τ)])
f.d.d.−→ σB(τ), (5.6)

where the symbol
f.d.d.−→ stands for convergence of finite-dimensional distributions,

B(τ) is a standard Brownian motion, and

σ2 =

∫
R

[2KA(v) + κ4KB(v)] dv, (5.7)

where κ4 is the fourth cumulant of ξ(1), and

KA(v) =
(
(a ∗ b)∗̄2 · a∗̄2

)
(v), KB(v) =

(
(a∗b) · a

)∗̄2
(v). (5.8)

Remark 5.1. Young’s convolution inequality (see, e.g., Bogachev [15], Theorem
3.9.4) states that for any numbers p, p1, q satisfying 1 ≤ p, q ≤ p1 ≤ ∞ and
1
p1

= 1
p + 1

q − 1, and for any functions f ∈ Lp(R), g ∈ Lq(R), the function f ∗ g
is defined almost everywhere, f ∗ g ∈ Lp1(R), and

‖f ∗ g‖p1 ≤ ‖f‖p‖g‖q. (5.9)

Applying this inequality to the convolution in (2.13), we get ‖r‖p1 ≤ ‖a‖2p < ∞,
where 1 + 1/p1 = 2/p. Hence the relations (5.4) and (5.5) imply that

r(·) ∈ Lp1(R), b(·) ∈ Lq(R),
1

p1
+

1

q
=

2

p
− 1 +

1

q
≥ 5

2
− 1 =

3

2
. (5.10)

The condition (5.10) is sufficient for the convergence in Theorem 5.1 to hold in
the case where ξ(t) is Brownian motion (see Theorem 4.3). In fact, in this case,
the convergence in Theorem 5.1 holds under even a weaker condition imposed on
the generating function g(λ) and the spectral density f(λ) of X(t) (see Theorem
4.2).
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Remark 5.2. In contrast to the cases where the model is either a d.t. linear
process (see Giraitis and Surgailis [60]), or a c.t. Gaussian process (see Bai et
al. [8]), it is convenient to impose the time-domain conditions (5.4) and (5.5)
on the functions a(·) and ĝ(·), instead of on the spectral density f(λ) and the
generating function g(λ). This allows the analysis of the random diagonal term
which arises from the double stochastic integral with respect to a non-Gaussian
Lévy process. In the d.t. case the random diagonal term is estimated by the
full double sum (see Giraitis and Surgailis [60], relation (2.3)), while in the
c.t. Gaussian case, there is no such random diagonal term (see Ginovyan and
Sahakyan [53]). In the c.t. non-Gaussian case, there is a random diagonal term
in the form of a single stochastic integral that cannot be controlled by the double
integral, and hence it should be treated separately (see the proof of Theorem
2.1 of Bai et al. [9]).

Remark 5.3. Observe that the long-run variance σ2 given by (5.7) can be
expressed in terms of the spectral density f(λ) and the generating function
g(λ), provided that these functions satisfy some regularity conditions. Indeed,
using the equalities in (5.3) and the Parseval-Plancherel theorem, under suitable
integrability conditions on a(·) and b(·), we can write∫

R

KA(v)dv =

∫
R

(a ∗ b)∗̄2(v)a∗̄2(v)dv =
1

2π

∫
R

F
(
(a ∗ b)∗̄2

)
(λ)F (a∗̄2) (λ)dλ

=
1

2π

∫
R

|F(a ∗ b)(λ)|2|F(a)(λ)|2dλ =
1

2π

∫
R

|â(λ)̂b(λ)|2|â(λ)|2dλ

= 8π3

∫
R

f(λ)2g(λ)2dλ,

where in the last equality we used the fact |â|2 = 2πf and b̂ = 2πg (because b(·)
is an even function). Similarly, we have∫

R

KB(v)dv =

∫
R

dv

∫
R

dx
(
(a∗b) · a

)
(x)
(
(a∗b) · a

)
(x+ v)

=

(∫
R

(a∗b)(x)a(x)dx
)2

=
1

4π2

(∫
R

â(x)̂b(x)â(x)dλ

)2
= 4π2

[∫
R

f(λ)g(λ)dλ

]2
.

So an alternative expression for σ2 in (5.7) is

σ2 = 16π3

∫
R

f(λ)2g(λ)2dλ+ κ4

[
2π

∫
R

f(λ)g(λ)dλ

]2
, (5.11)

which should be compared with Avram et al. [7] (Theorem 4.1), and formula
(3.15) for an analogous expression in the d.t. case.

Remark 5.4. The d.t. analog of Theorem 5.1 with t = 1 and ξ being Gaussian
was established in Giraitis and Surgailis [60]. A special case of Theorem 5.1 with
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t = 1 and ξ being Gaussian was established in Ginovian [45], and in Ginovian
and Sahakyan [53]. Theorem 5.1 for Wiener-driven model (κ4 = 0) was proved
in Bai et al. [8].

Remark 5.5. For Lévy-driven model with t = 1 and σ2 given by (5.11), a
version of Theorem 5.1 was stated in Avram et al. [7] (Theorem 4.1). They
impose (Lp, Lq)-type conditions on the spectral density f(·) and the generating
function g(·), and assume the existence of all moments of the driving Lévy
process ξ(t). The details of the proof of Theorem 4.1 in Avram et al. [7] is
unfortunately omitted, and it is not clear how the omitted details of the method-
of-moment proof can be carried out given the complexity of computing the
moments of multiple integrals with respect to non-Gaussian Lévy noise (see
Peccati and Taqqu [84], Chapter 7).

The following corollary contains sufficient conditions for the assumptions in
Theorem 5.1 to hold. These conditions involve bounds on the tails of functions
a(·) and b(·) by suitable power functions (see Bai et al. [9]).

Corollary 5.1. The convergence in (5.6) holds if the functions a(·) and b(·)
satisfy the following conditions:

a(·), b(·) ∈ L∞(R), |a(x)| ≤ c|x|α/2−1, |b(x)| ≤ c|x|β−1 (5.12)

with

0 < α, β < 1, α+ β < 1/2.

5.2. Non-central limit theorems

We now state the non-central limit theorems. We make the following assump-
tions on the functions a(·) and b(·), and on their Fourier transforms â(·) and

b̂(·).

Assumption 5.1. The Fourier transform â(·) of a(·) ∈ L2(R) satisfies

â(x) = A(x)|x|−α/2L
1/2
1 (x),

where L1(x) is an even non-negative function slowly varying at zero and bounded
on intervals [c,∞) for any c > 0, and A(x) is a complex-valued function satisfy-
ing |A(x)| = 1, and limx→0+ A(x) = A0 for some A0 on the complex unit circle
(since â(−x) = â(x), we also have limx→0− A(x) = A0).

Assumption 5.2. The generating function b̂(·) ∈ L1(R) and satisfies

b̂(x) = |x|−βL2(x),

where L2(x) is an even non-negative function slowly varying at zero and bounded
on intervals [c,∞) for any c > 0.
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Assumption 5.3. The parameters α and β above satisfy

− 1/2 < α < 1, −1/2 < β < 1, α+ β > 1/2. (5.13)

Assumption 5.4. There exist numbers α∗ and β∗ satisfying

0 < α∗, β∗ < 1 1 < α∗ + β∗ < α+ β + 1/2,

such that
|a(x)| ≤ C|x|α∗/2−1, |b(x)| ≤ C|x|β∗−1.

The proof of the following theorem can be found in Bai et al. [9].

Theorem 5.2. Suppose that Assumptions 5.1 - 5.4 hold. Then as T → ∞ we
have

ZT (τ) :=
1

Tα+βL1(1/T )L2(1/T )
(QT (τ)− EQT (τ))

f.d.d.−→ Zα,β(τ), (5.14)

where

Zα,β(τ) =
1

2π

∫ ′′

R2

|x1x2|−α/2

∫
R

eiτ(x1+u) − 1

i(x1 + u)

eiτ(x2−u) − 1

i(x2 − u)
|u|−βdu

×W (dx1)W (dx2), (5.15)

where W (·) is a complex-valued Brownian motion.

Remark 5.6. The regular variation conditions on â(·) and b̂(·) in Assump-
tions 5.1 - 5.3 generally do not follow from the corresponding regular variation
conditions imposed on the inverse Fourier transforms a(·) and b(·). This im-
plication only holds under some additional assumptions on the slowly varying
factors L1(·) and L2(·) of a(·) and b(·). For instance, it will hold if we have (see
Bingham et al. [13], formula (4.3.7))

a(x) = xα/2−1�1(x)1[0,∞)(x), b(x) = |x|β−1�2(x), (5.16)

where 0 < α < 1, 0 < β < 1, α + β > 1/2, and �1(x) and �2(x) are even non-
negative functions which are locally bounded, slowly varying at infinity and
quasi-monotone. Recall that a slowly varying function l(·) is said to be quasi-
monotone if it has locally bounded variation, and for all δ > 0, one has (see
Bingham et al. [13], Section 2.7):∫ x

0

tδ|d�(t)| = O(xδl(x)) as x → ∞.

A sufficient condition for a slowly varying �(x) with locally bounded variation to
be quasi-monotone is that xδ�(x) is increasing and x−δ�(x) is decreasing when
x is large enough, for any δ > 0 (see Theorem 1.5.5 and Corollary 2.7.4 in
Bingham et al. [13]).

Notice also that Assumption 5.4 will be satisfied if (5.16) holds.
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Remark 5.7. Let the functions a(·) and b(·) be as in (5.16) with α < 0 or
β < 0 (by (5.13) only one of α and β can be negative). Assume that α < 0 and
β > 0. Then for the corresponding regular variation of â(·) to hold, one needs
to impose in addition that

∫∞
0

a(x)dx = 0. In this case, one does not need to
assume quasi-monotonicity for �1 (see Corollary 1.40 of Soulier [92]). Similar
considerations hold if β < 0 and α > 0 instead.

Remark 5.8. Note that Assumption 5.1 holds with α = 0 if a(·) ∈ L1(R)
and
∫∞
0

a(x) = 0, and Assumption 5.2 holds with β = 0 if b(·) ∈ L1(R) and∫∞
0

b(x) = 0.

The next theorem contains time-domain representations for the limiting pro-
cess Zα,β(τ) in (5.15) in the case α, β ≥ 0 (see Bai et al. [9], Theorem 2.3).

Theorem 5.3. The limiting process Zα,β(τ) in (5.15) admits the following
time-domain representations:

(a) when α > 0, β > 0:

Zα,β(τ)
f.d.d.
= cα,β

∫ ′

R2

∫ τ

0

∫ τ

0

|u− v|β−1(u− x1)
α/2−1
+ (v − x2)

α/2−1
+ dudv

×B(dx1)B(dx2), (5.17)

where

cα,β =
Γ(1− β) sin(βπ/2)

πΓ(α/2)2
;

(b) when α > 1/2, β = 0:

Zα,β(τ)
f.d.d.
= cα

∫ ′

R2

∫ τ

0

(u−x1)
α/2−1
+ (u−x2)

α/2−1
+ du B(dx1)B(dx2), (5.18)

where

cα =
sin(απ/2)Γ(1− α/2)

πΓ(α/2)
;

(c) when α = 0, β > 1/2:

Zα,β(τ)
f.d.d.
= cβ

∫ ′

[0,τ ]2
|x1 − x2|β−1 B(dx1)B(dx2), (5.19)

where

cβ =
Γ(1− β) sin(βπ/2)

π
.

Here B(·) is the real Brownian random measure and the prime ′ in the
integrals indicates the exclusion of the diagonals (for the definition of the
integral

∫ ′
see Section 8.5, formula (8.24)).

Remark 5.9. In view of (5.1) and (5.16), the representation (5.17) gives an
explicit insight of the convergence in Theorem 5.2 (see Theorem 5.4 below).
The process in (5.18) is known as Rosenblatt process (see Taqqu [97]), and
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the corresponding convergence in Theorem 5.2 is the c.t. analog of the d.t. case
considered in Fox and Taqqu [37]. The representation (5.19) is obtained because
for α = 0, the underlying process X(t) has short memory and in this case, one
expects that in the limit X(t)dt in (5.1) can be replaced by the white noise
B(dt).

Remark 5.10. It is of interest to obtain appropriate elementary expressions
for the time-domain representation of the limiting process Zα,β(τ), similar to
(5.17) - (5.19), in the cases where either α or β satisfying (5.13) is negative.

Using the time-domain representation (5.17), one can state a non-central
limit theorem in the case where α, β > 0 without going to the spectral domain.
This simplifies the assumptions imposed on the functions a(·) and b(·) (see Bai
et al. [9]).

Theorem 5.4. Suppose that the functions a(·) and b(·) are given by (5.16),
where 0 < α < 1, 0 < β < 1, α + β > 1/2, and �1(x) and �2(x) are even
functions slowly varying at infinity and bounded on bounded intervals. Then as
T → ∞ we have

1

Tα+β�1(T )�2(T )
(QT (τ)− E[QT (τ)])

f.d.d.−→∫ ′

R2

∫ τ

0

∫ τ

0

|u− v|β−1(u− x1)
α/2−1
+ (v − x2)

α/2−1
+ dudv B(dx1)B(dx2).

6. CLT for tapered Toeplitz quadratic functionals

6.1. The problem

In this section we consider a question concerning asymptotic distribution (as
T → ∞) of the following tapered Toeplitz type quadratic functionals of the
centered stationary process X(u), u ∈ U, with spectral density f(λ), λ ∈ Λ:

Qh
T :=

⎧⎨⎩
∑T

t=1

∑T
s=1 ĝ(t− s)hT (t)hT (s)X(t)X(s) in the d.t. case,∫ T

0

∫ T
0
ĝ(t− s)hT (t)hT (s)X(t)X(s) dt ds in the c.t. case,

(6.1)

where ĝ(t) is the Fourier transform of some integrable even function g(λ) and

hT (t) := h(t/T ) (6.2)

with h(t), t ∈ R being a taper function to be specified below.
Note. The case h(t) = I[0,1](t), where I[0,1](·) denotes the indicator of the seg-
ment [0, 1], will be referred to as the non-tapered case.

The limit distribution of the functional (6.1) is completely determined by the
functions f , g and h, and depending on their properties it can be either Gaussian
(that is, Qh

T with an appropriate normalization obey central limit theorem), or
non-Gaussian.
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We discuss here the case where the limit distribution is Gaussian, and present
sufficient conditions in terms of functions f , g (and h) ensuring central limit
theorems for a standard normalized tapered quadratic functional Qh

T .

6.2. Statistical motivation

Much of the statistical inferences (parametric and nonparametric estimation,
hypotheses testing) about the spectrum or the covariance of a stationary process
{X(u), u ∈ U} is based on the sample:

XT :=

{
{X(t), t = 1, . . . , T} in the d.t. case,
{X(t), 0 ≤ t ≤ T} in the c.t. case.

(6.3)

In the statistical analysis of stationary processes, however, the data are fre-
quently tapered before calculating the statistics of interest, and the statistical
inference procedure, instead of the original data XT given by (6.3), is based on
the tapered data Xh

T :

Xh
T :=

{
{hT (t)X(t), t = 1, . . . , T} in the d.t. case,
{hT (t)X(t), 0 ≤ t ≤ T} in the c.t. case,

(6.4)

with a taper function h(t), t ∈ R.
The benefits of tapering the data have been widely reported in the literature

(see, e.g., Bloomfield [14], Brillinger [17], Dahlhaus [24, 25, 26], Dahlhaus and
Künsch [28], Guyon [69], and references therein). For example, data-tapers are
introduced to reduce the so-called ‘leakage effects’, that is, to obtain better
estimation of the spectrum of the model in the case where it contains high
peaks. Other application of data-tapers is in situations in which some of the
data values are missing. Also, the use of tapers leads to bias reduction, which
is especially important when dealing with spatial data. In this case, the tapers
can be used to fight the so-called ‘edge effects’.

Quadratic functionals of the form (6.1) appear both in nonparametric and
parametric estimation of the spectrum of the process X(t) based on the tapered
data (6.4). For instance, when we are interested in nonparametric estimation of
a linear integral functional in Lp(Λ), p > 1 of the form:

J = J(f) :=

∫
Λ

f(λ)g(λ)dλ, (6.5)

where g(λ) ∈ Lq(Λ), 1/p+1/q = 1, then a natural statistical estimator for J(f)
is the linear integral functional of the empirical spectral density (periodogram)
of the process X(t). To define this estimator, we first introduce some notation.

For k ∈ N := {1, 2, . . .}, denote by Hk,T (λ) the tapered Dirichlet type kernel,
defined by

Hk,T (λ) :=

⎧⎨⎩
∑T

t=1 h
k
T (t)e

−iλt in the d.t. case,∫ T
0
hk
T (t)e

−iλtdt in the c.t. case,
(6.6)
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and put
Hk,T := Hk,T (0). (6.7)

Define the finite Fourier transform of the tapered data (6.4):

dhT (λ) :=

⎧⎨⎩
∑T

t=0 hT (t)X(t)e−iλt in the d.t. case,∫ T
0
hT (t)X(t)e−iλtdt in the c.t. case,

(6.8)

and the tapered periodogram IhT (λ) of the process X(t):

IhT (λ) : =
1

CT
dhT (λ)d

h
T (−λ)

=

⎧⎪⎪⎨⎪⎪⎩
1

CT

∣∣∣∑T
t=1 hT (t)X(t)e−iλt

∣∣∣2 in the d.t. case,

1
CT

∣∣∣∫ T0 hT (t)X(t)e−iλtdt
∣∣∣2 in the c.t. case.

(6.9)

where
CT := 2πH2,T (0) = 0. (6.10)

Notice that for non-tapered case (h(t) = I[0,1](t)), we have CT = 2πT .

As an estimator Jh
T for functional J(f), given by (6.5), based on the tapered

data (6.4), we consider the averaged tapered periodogram (or a simple ’plug-in’
statistic), defined by

Jh
T = J(IhT , g) :=

∫
Λ

IhT (λ)g(λ)dλ. (6.11)

In view of (6.1), (6.9) and (6.11) we have

Jh
T = C−1

T Qh
T , (6.12)

where CT is as in (6.10).
Thus, to study the asymptotic properties of the estimator Jh

T , we have to
study the asymptotic distribution (as T → ∞) of the tapered Toeplitz type
quadratic functional Qh

T given by (6.1) (for details see Section 7).
Throughout the paper, we will assume that the taper function h(·) satisfies

the following assumption.

Assumption 6.1. The taper h : R → R is a continuous nonnegative function
of bounded variation and of bounded support [0, 1], such that Hk = 0, where

Hk := lim
T→∞

(1/T )Hk,T , and Hk,T is as in (6.7). (6.13)

Observe that in the c.t. case we have Hk =
∫ 1
0
hk(t)dt.

Remark 6.1. In the d.t. case, an example of a taper function h(t) satisfying
Assumption 6.1 is the Tukey-Hanning taper function h(t) = 0.5(1− cos(πt)) for
t ∈ [0, 1]. In the c.t. case, a simple example of a taper function h(t) satisfying
Assumption 6.1 is the function h(t) = 1 − t for t ∈ [0, 1] (see, e.g., Anh et al.
[5]).
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6.3. Central limit theorems for tapered quadratic functional Qh
T

We will use the following notation. By Q̃h
T we denote the standard normalized

quadratic functional:

Q̃h
T = T−1/2

(
Qh

T − E[Qh
T ]
)
. (6.14)

Also, we set

σ2
h := 16π3H4

∫
Λ

f2(λ)g2(λ) dλ, (6.15)

where H4 is as in (6.13). The notation

Q̃h
T

d→ η ∼ N(0, σ2
h) as T → ∞ (6.16)

will mean that the distribution of the random variable Q̃h
T tends (as T → ∞)

to the centered normal distribution with variance σ2
h.

Let ψ(λ) be an integrable real symmetric function defined on [−π, π], and
let h(t), t ∈ [0, 1] be a taper function. For T = 1, 2, . . ., the (T × T )-truncated
tapered Toeplitz matrix generated by ψ and h, denoted by Bh

T (ψ), is defined by
the following equation (see (3.4) for non-tapered case):

Bh
T (ψ) := ‖ψ̂(t− s)hT (t)hT (s)‖t,s=1,2...,T , (6.17)

where ψ̂(t) (t ∈ Z) are the Fourier coefficients of ψ.
Given a real number T > 0 and an integrable real symmetric function ψ(λ)

defined on R, the T -truncated tapered Toeplitz operator (also called tapered
Wiener-Hopf operator) generated by ψ and a taper function h, denoted by
Wh

T (ψ) is defined as follows (see (3.5) for non-tapered case):

[Wh
T (ψ)u](t) =

∫ T

0

ψ̂(t− s)u(s)hT (s)ds, u(s) ∈ L2([0, T ];hT ), (6.18)

where ψ̂(·) is the Fourier transform of ψ(·), and L2([0, T ];hT ) denotes the
weighted L2-space with respect to the measure hT (t)dt.

Let Ah
T (f) be either the T × T tapered Toeplitz matrix Bh

T (f), or the T -
truncated tapered Toeplitz operator Wh

T (f) generated by the spectral density f
and taper h, and let Ah

T (g) denote either the T ×T tapered Toeplitz matrix, or
the T -truncated tapered Toeplitz operator generated by the functions g and h.

6.3.1. CLT for Gaussian models

The theorems that follow extend the results of Theorems 3.1 and 3.3 to the
tapered case. We assume that the model process X(t) is Gaussian, and with no
loss of generality, that g ≥ 0. The following theorems were proved in Ginovyan
and Sahakyan [57].
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Theorem 6.1. Assume that f ·g ∈ L1(Λ)∩L2(Λ), the taper function h satisfies
Assumption 6.1, and for T → ∞

χ2(Q̃
h
T ) =

2

T
tr
[
Ah

T (f)A
h
T (g)
]2 −→ σ2

h, (6.19)

where σ2
h is as in (6.15). Then Q̃h

T
d→ η ∼ N(0, σ2

h) as T → ∞.

Theorem 6.2. Assume that the function

ϕ(x1, x2, x3) =

∫
Λ

f(u)g(u− x1)f(u− x2)g(u− x3) du (6.20)

belongs to L2(Λ3) and is continuous at (0, 0, 0), and the taper function h satisfies

Assumption 6.1. Then Q̃h
T

d→ η ∼ N(0, σ2
h) as T → ∞.

Theorem 6.3. Assume that f(λ) ∈ Lp(Λ) (p ≥ 1) and g(λ) ∈ Lq(Λ) (q ≥ 1)
with 1/p+ 1/q ≤ 1/2, and the taper function h satisfies Assumption 6.1. Then

Q̃h
T

d→ η ∼ N(0, σ2
h) as T → ∞.

Theorem 6.4. Let f ∈ L2(Λ), g ∈ L2(Λ), fg ∈ L2(Λ),∫
Λ

f2(λ)g2(λ− μ) dλ −→
∫
Λ

f2(λ)g2(λ) dλ as μ → 0, (6.21)

and let the taper function h satisfy Assumption 6.1. Then Q̃h
T

d→ η ∼ N(0, σ2
h)

as T → ∞.

To state the next theorem, we recall the class SV0(R) of slowly varying func-
tions at zero u(λ), λ ∈ R, satisfying the following conditions: for some a > 0,
u(λ) is bounded on [−a, a], limλ→0 u(λ) = 0, u(λ) = u(−λ) and 0 < u(λ) < u(μ)
for 0 < λ < μ < a.

Theorem 6.5. Assume that the functions f and g are integrable on R and
bounded outside any neighborhood of the origin, and satisfy for some a > 0

f(λ) ≤ |λ|−αL1(λ), |g(λ)| ≤ |λ|−βL2(λ), λ ∈ [−a, a], (6.22)

for some α < 1, β < 1 with α + β ≤ 1/2, where L1(x) and L2(x) are slowly
varying functions at zero satisfying

Li ∈ SV0(R), λ−(α+β)Li(λ) ∈ L2[−a, a], i = 1, 2. (6.23)

Also, let the taper function h satisfy Assumption 6.1. Then Q̃h
T

d→ η ∼ N(0, σ2
h)

as T → ∞.

As in Remark 3.3, the conditions α < 1 and β < 1 in Theorem 6.5 ensure
that the Fourier transforms of f and g are well defined. Observe that when
α > 0 the process X(t) may exhibit long-range dependence. We also allow
here α + β to assume the critical value 1/2. The assumptions f · g ∈ L1(Λ),
f, g ∈ L∞(Λ \ [−a, a]) and (6.23) imply that f · g ∈ L2(Λ), so that the variance
σ2
h in (6.15) is finite.
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6.3.2. CLT for Lévy-driven stationary linear models

Now we assume that the underlying model X(t) is a Lévy-driven stationary
linear process defined by (2.12), where a(·) is a filter from L2(R), and ξ(t) is a
Lévy process satisfying the conditions: Eξ(t) = 0, Eξ2(1) = 1 and Eξ4(1) < ∞.

The central limit theorem that follow is a tapered counterpart of Theorem
5.1 and was proved in Ginovyan and Sahakyan [56].

Theorem 6.6. Assume that the filter a(·) and the generating kernel ĝ(·) are
such that

a(·) ∈ Lp(R) ∩ L2(R), ĝ(·) ∈ Lq(R), 1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 5

2
, (6.24)

and the taper h satisfies Assumption 6.1. Then Q̃h
T

d→ η ∼ N(0, σ2
L,h) as T → ∞,

where

σ2
L,h = 16π3H4

∫
R

f2(λ)g2(λ)dλ+ κ44π
2H4

[∫
R

f(λ)g(λ)dλ

]2
, (6.25)

and H4 is as in (6.13).

Remark 6.2. Notice that if the underlying process X(t) is Gaussian, then in
formula (6.25) we have only the first term and so σ2

L,h = σ2
h (see (6.15)), because

in this case κ4 = 0. On the other hand, the condition (6.24) is more restrictive
than the conditions in Theorems 6.1 - 6.5. Thus, for Gaussian processes Theo-
rems 6.1 - 6.5 improve Theorem 6.6.

Remark 6.3. Central and non-central limit theorems for tapered quadratic
forms of a d.t. long memory Gaussian stationary fields have been proved in
Doukhan et al. [32].

7. Applications

7.1. Nonparametric estimation of spectral functionals

Suppose we observe a realization XT := {X(u), 0 ≤ u ≤ T (or u = 1, . . . , T
in the d.t. case)} of a centered stationary process X(t) with an unknown spec-
tral density function f(λ), λ ∈ Λ. We assume that f(λ) belongs to a given
(infinite-dimensional) class Θ ⊂ Lp(Λ) (p ≥ 1) of spectral densities possessing
some smoothness properties. Let Φ(·) be some known functional, the domain of
definition of which contains Θ. The problem is to estimate the value Φ(f) of the
functional Φ(·) at an unknown point f ∈ Θ on the basis of observation XT , and
investigate the asymptotic (as T → ∞) properties of the suggested estimators.

This problem for linear and some nonlinear smooth functionals for d.t. and
c.t. stationary models has been extensively discussed in the literature (see, e.g.,
Dahlhaus and Wefelmeyer [29], Ginovyan [42, 43, 46, 48, 49], Ginovyan and
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Sahakyan [56, 57], Has’minskii and Ibragimov [70], Taniguchi [95], Taniguchi
and Kakizawa [96], and references therein).

In this section we apply the results of Section 6.3 to show that the statistic Jh
T

given by (6.11) is a consistent and asymptotically normal estimator for the linear
functional J(f) given by (6.5). We follow the papers Ginovyan and Sahakyan
[56, 57]. To state the corresponding results, we first introduce the Lp-Hölder
class and set up a set of assumptions.

Given numbers p ≥ 1, 0 < α < 1, r ∈ N0 := N ∪ {0}, we set β = α + r
and denote by Hp(β) the Lp-Hölder class, that is, the class of those functions
ψ(λ) ∈ Lp(Λ), which have r-th derivatives in Lp(Λ) and with some positive
constant C satisfy

||ψ(r)(·+ λ)− ψ(r)(·)||p ≤ C|λ|α.
Now we list the assumptions.

Assumption 7.1. The filter a(·) and the generating kernel ĝ(·) are such that

a(·) ∈ Lp(Λ) ∩ L2(Λ), ĝ(·) ∈ Lq(Λ) (7.1)

with

1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 5

2
. (7.2)

Assumption 7.2. The spectral density f and the generating function g are
such that f, g ∈ L1(Λ) ∩ L2(Λ) and g is of bounded variation.

Assumption 7.3. The spectral density f and the generating function g are
such that f ∈ Hp(β1), β1 > 0, p ≥ 1 and g(λ) ∈ Hq(β2), β2 > 0, q ≥ 1 with
1/p+ 1/q = 1, and one of the conditions a)–d) is satisfied:

a) β1 > 1/p, β2 > 1/q
b) β1 ≤ 1/p, β2 ≤ 1/q and β1 + β2 > 1/2
c) β1 > 1/p, 1/q − 1/2 < β2 ≤ 1/q
d) β2 > 1/q, 1/p− 1/2 < β1 ≤ 1/p.

Remark 7.1. In Ginovian [45] it was proved that if Assumption 7.3 is satisfied,
then there exist numbers p1 (p1 > p) and q1 (q1 > q), such that Hp(β1) ⊂ Lp1 ,
Hq(β2) ⊂ Lq1 and 1/p1 + 1/q1 ≤ 1/2.

The next theorem controls the bias E(Jh
T ) − J and provides sufficient con-

ditions assuring the proper rate of convergence of the bias to zero, which is
necessary to obtain the asymptotic normality of the estimator Jh

T . Specifically,
we have the following result, which was proved in Ginovyan and Sahakyan [56].

Theorem 7.1. Let the functionals J := J(f) and Jh
T := J(IhT ) be defined by

(6.5) and (6.11), respectively. Then under Assumptions 7.2 (or 7.3) and 6.1 the
following asymptotic relation holds:

T 1/2
[
E(Jh

T )− J
]
→ 0 as T → ∞. (7.3)

The next theorem, which is an immediate consequence of Theorem 6.6, con-
tains sufficient conditions for functional Jh

T to obey the central limit theorem.
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Theorem 7.2. Let J := J(f) and Jh
T := J(IhT ) be defined by (6.5) and (6.11),

respectively. Then under Assumptions 7.1 and 6.1 the functional Jh
T obeys the

central limit theorem. More precisely, we have

T 1/2
[
Jh
T − E(Jh

T )
] d→ η as T → ∞, (7.4)

where the symbol
d→ stands for convergence in distribution, and η is a normally

distributed random variable with mean zero and variance σ2
h(J) given by

σ2
h(J) = 4πe(h)

∫
R

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
R

f(λ)g(λ)dλ

]2
. (7.5)

Here κ4 is the fourth cumulant of ξ(1), and

e(h) := lim
T→∞

TH4,T

H2
2,T

. (7.6)

Observe that for c.t. case we have

e(h) = lim
T→∞

TH4,T

H2
2,T

=
H4

H2
2

=

∫ 1

0

h4(t)dt

(∫ 1

0

h2(t)dt

)−2

.

Taking into account the equality

T 1/2
[
Jh
T − J
]
= T 1/2

[
E(Jh

T )− J
]
+ T 1/2

[
Jh
T − E(Jh

T )
]
, (7.7)

as an immediate consequence of Theorems 7.1 and 7.2, we obtain the next result
that contains sufficient conditions for a simple “plug-in” statistic J(IhT ) to be
an asymptotically normal estimator for a linear spectral functional J(f).

Theorem 7.3. Let the functionals J := J(f) and Jh
T := J(IhT ) be defined by

(6.5) and (6.11), respectively. Then under Assumptions 7.1, 7.2 (or 7.3) and 6.1
the statistic Jh

T is an asymptotically normal estimator for functional J . More
precisely, we have

T 1/2
[
Jh
T − J
] d→ η as T → ∞, (7.8)

where η is as in Theorem 7.2, that is, η is a normally distributed random variable
with mean zero and variance σ2

h(J) given by (7.5) and (7.6).

In the Gaussian case we have more accurate result. The next theorem, which
was proved in Ginovyan and Sahakyan [57], states that for Gaussian models
Assumptions 7.3 and 6.1 are sufficient for the statistic Jh

T to be an asymptotically
normal estimator for functional J .

Theorem 7.4. Let the functionals J := J(f) and Jh
T := J(IhT ) be defined by

(6.5) and (6.11), respectively. Then under Assumptions 7.3 and 6.1 the statistic
Jh
T is an asymptotically normal estimator for functional J . More precisely, we

have
T 1/2
[
Jh
T − J
] d→ η as T → ∞, (7.9)
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where η is a normally distributed random variable with mean zero and variance
σ2
h(J) given by

σ2
h(J) = 4πe(h)

∫
R

f2(λ)g2(λ)dλ, (7.10)

and e(h) is as in (7.6).

7.2. Parametric estimation: the Whittle procedure

We assume here that the spectral density f(λ) belongs to a given parametric
family of spectral densities F := {f(λ, θ) : θ ∈ Θ}, where θ := (θ1, . . . , θp) is an
unknown parameter and Θ is an open subset in the Euclidean space R

p. The
problem of interest is to estimate the unknown parameter θ on the basis of the
tapered data (6.4), and investigate the asymptotic (as T → ∞) properties of
the suggested estimators, depending on the dependence (memory) structure of
the model X(t) and the smoothness of its spectral density f .

There are different methods of estimation: maximum likelihood, Whittle,
minimum contrast, etc. Here we focus on the Whittle method.

The Whittle estimation procedure, originally devised for d.t. short memory
stationary processes, is based on the smoothed periodogram analysis on a fre-
quency domain, involving approximation of the likelihood function and asymp-
totic properties of empirical spectral functionals (see Whittle [107]). The Whittle
estimation method since its discovery has played a major role in the asymptotic
theory of parametric estimation in the frequency domain, and was the focus of
interest of many statisticians. Their aim was to weaken the conditions needed
to guarantee the validity of the Whittle approximation for d.t. short memory
models, to find analogues for long and intermediate memory models, to find
conditions under which the Whittle estimator is asymptotically equivalent to
the exact maximum likelihood estimator, and to extend the procedure to the
c.t. models and random fields.

For the d.t. case, it was shown that for Gaussian and linear stationary mod-
els the Whittle approach leads to consistent and asymptotically normal estima-
tors under short, intermediate and long memory assumptions. Moreover, it was
shown that in the Gaussian case the Whittle estimator is also asymptotically
efficient in the sense of Fisher (see, e. g., Dahlhaus [27], Dzhaparidze [33], Fox
and Taqqu [39], Giraitis and Surgailis [60], Guyon [69], Heyde and Gay [72],
Taniguchi and Kakizawa [96], Walker [106], and references therein).

For c.t. models, the Whittle estimation procedure has been considered, for
example, in Anh et al. [4], Avram et al. [7], Casas and Gao [21], Dzhaparidze
[33], Gao [40], Gao et al. [41], Leonenko and Sakhno [80], Tsai and Chan [104],
where can also be found additional references. In this case, it was proved that
the Whittle estimator is consistent and asymptotically normal.

The Whittle estimation procedure based on the d.t. tapered data has been
studied in Alomari et al. [1], Dahlhaus [24], Dahlhaus and Künsch [28], Guyon
[69], Ludeña and Lavielle [82]. In the case where the underlying model is a Lévy-
driven c.t. linear process with possibly unbounded or vanishing spectral density
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function, consistency and asymptotic normality of the Whittle estimator was
established in Ginovyan [50].

To explain the idea behind the Whittle estimation procedure, assume for sim-
plicity that the underlying process X(t) is a d.t. Gaussian process, and we want
to estimate the parameter θ based on the sample XT := {X(t), t = 1, . . . , T}. A
natural approach is to find the maximum likelihood estimator (MLE) θ̂T,MLE

of θ, that is, to maximize the log-likelihood function LT (θ), which in this case
takes the form:

LT (θ) = −T

2
ln 2π − 1

2
ln detBT (fθ)−

1

2
X ′

T [BT (fθ)]
−1XT ,

where BT (fθ) is the Toeplitz matrix generated by fθ. Unfortunately, the above
function is difficult to handle, and no explicit expression for the estimator
θ̂T,MLE is known (even in the case of simple models). An approach, suggested
by P. Whittle, called the Whittle estimation procedure, is to approximate the
term ln detBT (fθ) by T

2

∫ π
−π

ln fθ(λ)dλ and the inverse matrix [BT (fθ)]
−1 by

the Toeplitz matrix BT (1/fθ). This leads to the following approximation of the
log-likelihood function LT (θ), introduced by P. Whittle [107], and called Whittle
functional:

LT,W (θ) = − 1

4π

∫ π

−π

[
ln fθ(λ) +

IT (λ)

fθ(λ)

]
dλ,

where IT (λ) is the ordinary periodogram of the process X(t).
Now maximizing the Whittle functional LT,W (θ) with respect to θ, we get

the Whittle estimator θ̂T for θ. It can be shown that if

T−1/2(LT (θ)− LT,W (θ) → 0 as n → ∞ in probability,

then the MLE θ̂T,MLE and the Whittle estimator θ̂T are asymptotically equiv-

alent in the sense that θ̂T also is consistent, asymptotically normal and asymp-
totically Fisher-efficient (see, e.g., Dzhaparidze [33]).

In the continuous context, the Whittle procedure of estimation of a spectral
parameter θ based on the sample XT := {X(t), 0 ≤ t ≤ T} is to choose the

estimator θ̂T to minimize the weighted Whittle functional:

UT (θ) :=
1

4π

∫
R

[
ln f(λ, θ) +

IT (λ)

f(λ, θ)

]
· w(λ) dλ, (7.11)

where IT (λ) is the continuous periodogram of X(t), and w(λ) is a weight func-
tion (w(−λ) = w(λ), w(λ) ≥ 0, w(λ) ∈ L1(R)) for which the integral in (7.11) is
well defined. An example of common used weight function is w(λ) = 1/(1+λ2).

The Whittle procedure of estimation of a spectral parameter θ based on the
tapered sample (6.4) is to choose the estimator θ̂T,h to minimize the weighted
tapered Whittle functional:

UT,h(θ) :=
1

4π

∫
Λ

[
log f(λ, θ) +

IhT (λ)

f(λ, θ)

]
· w(λ) dλ, (7.12)
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where IhT (λ) is the tapered periodogram of X(t), given by (6.9), and w(λ) is a
weight function for which the integral in (7.12) is well defined. Thus,

θ̂T,h := Arg min
θ∈Θ

UT,h(θ). (7.13)

Here we follow the paper Ginovyan [50]. To state results involving properties
of the Whittle estimator, we first introduce the following set of assumptions.

Assumption 7.4. The true value θ0 of the parameter θ belongs to a compact
set Θ, which is contained in an open set S in the p-dimensional Euclidean space
R

p, and f(λ, θ1) = f(λ, θ2) whenever θ1 = θ2 almost everywhere in Λ with
respect to the Lebesgue measure.

Assumption 7.5. The functions f(λ, θ), f−1(λ, θ) and ∂
∂θk

f−1(λ, θ), k = 1, . . . ,

p, are continuous in (λ, θ).

Assumption 7.6. The functions f := f(λ, θ) and g := w(λ) ∂
∂θk

f−1(λ, θ) satisfy
Assumptions 7.2 or 7.3 for all k = 1, . . . , p and θ ∈ Θ.

Assumption 7.7. The functions a := a(λ, θ) and b := ĝ, where g is as in
Assumption 7.6, satisfy Assumption 7.1.

Assumption 7.8. The functions ∂2

∂θk∂θj
f−1(λ, θ) and ∂3

∂θk∂θj∂θj
f−1(λ, θ) for

k, j, l = 1, . . . , p, are continuous in (λ, θ) for λ ∈ Λ, θ ∈ Nδ(θ0), where Nδ(θ0) :=
{θ : |θ − θ0| < δ} is some neighborhood of θ0.

Assumption 7.9. The matrices

W (θ) := ‖wij(θ)‖, A(θ) := ‖aij(θ)‖, B(θ) := ‖bij(θ)‖ i, j = 1, . . . , p (7.14)

are positive definite, where

wij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w(λ)dλ, (7.15)

aij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w2(λ)dλ, (7.16)

bij(θ) =
κ4

16π2

∫
Λ

∂

∂θi
ln f(λ, θ)w(λ)dλ

∫
R

∂

∂θj
ln f(λ, θ)w(λ)dλ, (7.17)

and κ4 is the fourth cumulant of ξ(1).

Consistency of the Whittle estimator. The next theorem contains sufficient con-
ditions for Whittle estimator to be consistent.

Theorem 7.5. Let θ̂T,h be the Whittle estimator defined by (7.13) and let θ0
be the true value of parameter θ. Then, under Assumptions 7.4–7.7 and 6.1, the
statistic θ̂T,h is a consistent estimator for θ, that is, θ̂T,h → θ0 in probability as
T → ∞.
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Asymptotic normality of the Whittle estimator. Having established the consis-
tency of the Whittle estimator θ̂T,h, we can go on to obtain the limiting distri-

bution of T 1/2
(
θ̂T,h − θ0

)
in the usual way by applying the Taylor’s formula,

the mean value theorem, and Slutsky’s arguments. Specifically we have the fol-
lowing result, showing that under the above assumptions, the Whittle estimator
θ̂T,h is asymptotically normal.

Theorem 7.6. Suppose that Assumptions 7.4–7.9 and 6.1 are satisfied. Then
the Whittle estimator θ̂T,h of an unknown spectral parameter θ based on the
tapered data (6.4) is asymptotically normal. More precisely, we have

T 1/2
(
θ̂T,h − θ0

)
d→ Np (0, e(h)Γ(θ0)) as T → ∞, (7.18)

where Np(·, ·) denotes the p-dimensional normal law,
d→ stands for convergence

in distribution,

Γ(θ0) = W−1(θ0) (A(θ0) +B(θ0))W
−1(θ0), (7.19)

where the matrices W , A and B are defined in (7.14)-(7.17), and the tapering
factor e(h) is given by formula (7.6).

8. Methods and tools

In this section we briefly discuss the methods and tools, used to prove the central
and noncentral limit theorems for Toeplitz type quadratic forms and functionals
stated in Sections 3–6, as well as the results stated in Section 7.

As mentioned in the introduction, the most commonly used methods to prove
central limit theorems are: (a) the method of characteristic functions. (b) the
method of cumulants or moments, (c) the approximation method.

To prove the central limit theorems stated in this paper, depending on the un-
derlying model, was used either the method of cumulants or the approximation
method. If the underlying model is Gaussian, then the method of cumulants was
applied, otherwise the approximation method was applied, which reduces the
quadratic integral form to a single integral form. To prove the non-central limit
theorems, was used the spectral representation of the underlying process, the
properties of Lévy-Itô-type and Stratonovich-type multiple stochastic integrals,
and power counting theorems. Some details of the above methods are described
below.

8.1. The characteristic functions and cumulant criteria for the CLT

The characteristic functions criterion for the CLT is based on the fact that
convergence in distribution is equivalent to the pointwise convergence of the
corresponding characteristic functions. The general cumulant criterion for the
CLT is based on the following result (see, e.g., Giraitis et al. [59], Corollary
4.2.1).
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Proposition 8.1. Let the random variables {XT , T ∈ R} have all moments
finite, and let E[XT ] → 0, Var[XT ] → σ2, and χk(XT ) := Cumk(XT ) → 0 for

all k = 3, 4, . . . as T → ∞. Then XT
d→ X ∼ N(0, σ2) as T → ∞.

The characteristic functions and cumulant criteria for the CLT for quadratic
functionals is based on the following general result (see Ibragimov [75]).

Let ξ be a Gaussian random variable with values in a separable Hilbert space
H. In other words, ξ is a random variable with characteristic functional:

ϕ(h) = exp

{
m(h)− 1

2
(Rh, h)

}
, h ∈ H, (8.1)

where m(h) is a continuous linear functional and the correlation operator R
is a self-adjoint completely continuous operator with finite trace. We assume,
without loss of generality, that m(h) ≡ 0. Let A be some linear self-adjoint
bounded operator.

The proof of the following result can be found in Ibragimov [75].

Proposition 8.2. Let the operators R and A be as above. The quadratic form
(Aξ, ξ) has the same distribution as the sum

∑∞
k=1 λkξ

2
k, where ξk are inde-

pendent N(0, 1) Gaussian random variables and λk are the eigen-values of the
operator B := RA.

Remark 8.1. It can easily be shown that the sets of non-zero eigen-values
of the operators RA, AR and R1/2AR1/2 coincide, where R1/2 is the positive
definite square root of R.

As mentioned above, Toeplitz matrices and operators arise naturally in the
theory of stationary processes, and serve as tools, to study many topics of the
spectral and statistical analysis of d.t. and c.t. stationary processes.

Let AT (f) denote the covariance matrix (or operator) of the process {X(u), u
∈ U}, that is, AT (f) is either the T × T Toeplitz matrix BT (f), or the T -
truncated Toeplitz operator WT (f) generated by the spectral density f , and
let AT (g) denote either the T × T Toeplitz matrix, or the T -truncated Toeplitz
operator generated by the function g (for definitions see formulas (3.4) and
(3.5)).

As a consequence of Proposition 8.2, we have the following result, which gives
a link between the distribution of the quadratic functional QT in (1.1) and the
trace problem for Toeplitz matrices and operators (see, e.g., Ginovyan et al.
[58], Grenander and Szegő [67], Ibragimov [75]).

1. The quadratic functional QT in (1.1) has the same distribution as the

sum
∑∞

k=1 λk,T ξ
2
k (
∑T

k=1 λk,T ξ
2
k in the d.t. case), where {ξk, k ≥ 1} are

independent N(0, 1) Gaussian random variables and {λk,T , k ≥ 1} are the
eigenvalues of the operator AT (f)AT (g).

2. The characteristic function ϕT (t) of QT is given by

ϕT (t) =

∞∏
k=1

|1− 2itλk,T |−1/2. (8.2)
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3. The k–th order cumulant χk(·) of QT is given by

χk(QT ) = 2k−1(k − 1)!

∞∑
j=1

λk
j,T = 2k−1(k − 1)! tr [AT (f)AT (g)]

k, (8.3)

where tr[A] stands for the trace of an operator A.

The product in (8.2) and the sum in (8.3) are over j = 1, . . . , T in the d.t. case.

The tapered case. To study the asymptotic distribution (as T → ∞) of the
tapered functional Qh

T , given by (6.1), we use the method of cumulants, the
frequency-domain approach, and the technique of truncated tapered Toeplitz
matrices and operators.

Let Ah
T (f) be either the T × T tapered Toeplitz matrix Bh

T (f), or the T -
truncated tapered Toeplitz operator Wh

T (f) generated by the spectral density f
and taper h, and let Ah

T (g) denote either the T ×T tapered Toeplitz matrix, or
the T -truncated tapered Toeplitz operator generated by the functions g and h
(for definitions see formulas (6.17) and (6.18)). Similar to the non-tapered case,
we have the following results (cf. Ginovyan et al. [58], Grenander and Szegő [67],
Ibragimov [75]).

1. The quadratic functional Qh
T in (6.1) has the same distribution as the

sum
∑∞

j=1 λj,T ξ
2
j , where {ξj , j ≥ 1} are independent N(0, 1) Gaussian

random variables and {λj,T , j ≥ 1} are the eigenvalues of the operator
Ah

T (f)A
h
T (g).

2. The characteristic function ϕ(t) of Qh
T is given by formula:

ϕ(t) =

∞∏
j=1

|1− 2itλj,T |−1/2. (8.4)

3. The k–th order cumulant χk(Q
h
T ) of Q

h
T is given by formula:

χk(QT ) = 2k−1(k − 1)!

∞∑
j=1

λk
j,T = 2k−1(k − 1)! tr [Ah

T (f)A
h
T (g)]

k. (8.5)

Thus, to describe the asymptotic distribution of the quadratic functional
Qh

T , we have to control the traces and eigenvalues of the products of truncated
tapered Toeplitz operators and matrices.

8.2. Approximation of traces of products of Toeplitz matrices and
operators

The trace approximation problem for truncated Toeplitz operators and matrices
has been discussed in detail in the survey paper Ginovyan et al. [58] for non-
tapered case. Here we present some important results, which were used to prove
CLT for quadratic functionals Qh

T .
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Let h be a taper function satisfying Assumption 6.1. Let Ah
T (ψ) be either

the T × T tapered Toeplitz matrix Bh
T (ψ), or the T -truncated tapered Toeplitz

operator Wh
T (ψ) generated by a function ψ (for definitions see formulas (6.17)

and (6.18))
Observe that, in view of (6.10), (6.13), (6.17) and (6.18), we have

1

T
tr
[
Ah

T (ψ)
]
=

1

T
· ψ̂(0) ·

∫ T

0

h2
T (t)dt = 2πH2

∫
Λ

ψ(λ)dλ. (8.6)

What happens to the relation (8.6) when Ah
T (ψ) is replaced by a product of

Toeplitz matrices (or operators)? Observe that the product of Toeplitz matrices
(resp. operators) is not a Toeplitz matrix (resp. operator).

The idea is to approximate the trace of the product of Toeplitz matrices
(resp. operators) by the trace of a Toeplitz matrix (resp. operator) generated
by the product of the corresponding generating functions. More precisely, let
{ψ1, ψ2, . . . , ψm} be a collection of integrable real symmetric functions defined
on Λ. Let Ah

T (ψi) be either the T × T tapered Toeplitz matrix Bh
T (ψi), or the

T -truncated tapered Toeplitz operator Wh
T (ψi) generated by a function ψi and

a taper function h. Define

SA,H,h(T ) :=
1

T
tr

[
m∏
i=1

Ah
T (ψi)

]
, MΛ,H,h := (2π)m−1Hm

∫
Λ

[
m∏
i=1

ψi(λ)

]
dλ,

where Hm is as in (6.13), and let

Δ(T ) := ΔA,Λ,H,h(T ) = |SA,H,h(T )−MΛ,H,h|. (8.7)

Proposition 8.3. Let Δ(T ) be as in (8.7). Each of the following conditions is
sufficient for

Δ(T ) = o(1) as T → ∞. (8.8)

(C1) ψi ∈ L1(Λ) ∩Lpi(Λ), pi > 1, i = 1, 2, . . . ,m, with 1/p1 + · · ·+ 1/pm ≤ 1.
(C2) The function ϕ(u) defined by

ϕ(u) : =

∫
Λ

ψ1(λ)ψ2(λ− u1)ψ3(λ− u2) · · ·ψm(λ− um−1) dλ, (8.9)

where u = (u1, u2, . . . , um−1) ∈ Λm−1, belongs to Lm−2(Λm−1) and is
continuous at 0 = (0, 0, . . . , 0) ∈ Λm−1.

Remark 8.2. In the nontapered case, Proposition 8.3 was proved in Ginovyan
et al. [58], in the tapered case, it was proved in Ginovyan [51]. Proposition 8.3
was used to prove parts (B) and (C) of Theorem 3.1 (in the nontapered case)
and Theorems 6.2 and 6.3 (in the tapered case). In the special case m = 4,
ψ1 = ψ3 := f and ψ2 = ψ4 := g, in Ginovyan and Sahakyan [52] (in the d.t.
case) and in Ginovyan and Sahakyan [53] (in the c.t. case) it was proved that
the conditions of Theorem 3.1(D) and Theorem 3.3 are also sufficient for (8.8).

Remark 8.3. More results concerning the trace approximation problem for
truncated Toeplitz operators and matrices can be found in Ginovyan and Sa-
hakyan [54, 55], Ginovyan et al. [58] and Lieberman and Phillips [81].
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8.3. Approximation method for the CLT

The approximation method for CLT for quadratic functionals is based on ap-
proximation of quadratic functional QT by a univariate sum (integral) of m-
dependent random variables, and then using the CLT for such variables (see,
e.g., Giraitis et al. [59], Section 4.5, and Giraitis and Surgailis [60]).

Let Xi(u) (i = 1, 2) be two linear processes of the form (2.9), subordinated to
the same orthonormal sequence {ξ(k), k ∈ Z}, with square summable covariance
functions ri(u) (i = 1, 2), that is,

Xi(u) =

∞∑
k=−∞

ai(u− k)ξ(k),

∞∑
k=−∞

|ai(k)|2 < ∞, i = 1, 2, (8.10)

and ∞∑
u=−∞

|ri(u)|2 < ∞, i = 1, 2. (8.11)

Denote

ST :=

T∑
u=1

X1(u)X2(u). (8.12)

Proposition 8.4. Let Xi(u) (i = 1, 2) and ST be as above, and let the quadratic
form QT be as in (1.1). Then the following assertions hold.

(a) The distribution of T−1/2(ST − E[ST ]) tends to the centered normal dis-
tribution with variance:

σ2 :=

∞∑
u=−∞

r1(u)r2(u) + κ4r
2
1,2, (8.13)

where κ4 is the fourth cumulant of ξ(0), and r1,2 = E[X1(0)X2(0)].

(b) Var(QT − ST ) = o(T ) as T → ∞.

A similar result is true for c.t. linear processes of the form (2.12), where now
we have (see Ginovyan and Sahakyan [53]):

ST :=

∫ T

0

X1(u)X2(u)du.

8.4. Fejér-type singular integrals

We define Fejér-type kernels and singular integrals, and state some of their
properties that were used to prove the limit theorems stated in Section 7.

For a number k (k = 2, 3, . . .) and a taper function h satisfying Assumption
6.1 consider the following Fejér-type ‘tapered’ kernel function:

Φh
k,T (u) :=

HT (u)

(2π)k−1Hk,T (0)
, u = (u1, . . . , uk−1) ∈ R

k−1, (8.14)
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where

HT (u) := H1,T (u1) · · ·H1,T (uk−1)H1,T

⎛⎝− k−1∑
j=1

uj

⎞⎠, (8.15)

and the function Hk,T (·) is defined by (6.6) with Hk,T (0) = Hk,T = 0 (see (6.7)).

The proofs of propositions that follow can be found in Ginovyan and Sa-
hakyan [56]. The next result shows that, similar to the classical Fejér kernel,
the ‘tapered’ kernel Φh

k,T (u) is an approximation identity (see Ginovyan and
Sahakyan [56], Lemma 3.4).

Proposition 8.5. For any k = 2, 3, . . . and a taper function h satisfying As-
sumption 6.1 the kernel Φh

k,T (u), u = (u1, . . . , uk−1) ∈ R
k−1, possesses the

following properties:

a) supT>0

∫
Rk−1

∣∣∣Φh
k,T (u)

∣∣∣ du = C1 < ∞;

b)
∫
Rk−1 Φ

h
k,T (u) du = 1;

c) limT→∞
∫
E
c
δ

∣∣∣Φh
k,T (u)

∣∣∣ du = 0 for any δ > 0;

d) If k > 2 for any δ > 0 there exists a constant Mδ > 0 such that for T > 0∥∥Φh
k,T

∥∥
Lpk (Ec

δ)
≤ Mδ, (8.16)

where pk = k−2
k−3 for k > 3, p3 = ∞, Ec

δ = R
k−1 \ Eδ, and

Eδ = {u = (u1, . . . , uk−1) ∈ R
k−1 : |ui| ≤ δ, i = 1, . . . , k − 1}.

e) If the function Ψ ∈ L1(Rk−1)
⋂

Lk−2(Rk−1) is continuous at the point
v = (v1, . . . , vk−1) (L0 is the space of measurable functions), then

lim
T→∞

∫
Rk−1

Ψ(u+ v)Φh
k,T (u)du = Ψ(v). (8.17)

Denote

Δh
2,T :=

∫
R2

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ−

∫
R

f(λ)g(λ)dλ, (8.18)

where Φh
2,T (μ) is given by (8.14)–(8.15).

The next two propositions, which were used to prove Theorems 7.1 and 7.3,
give information on the rate of convergence to zero of Δh

2,T as T → ∞.

Proposition 8.6. Assume that Assumptions 7.2 and 6.1 are satisfied. Then
the following asymptotic relation holds:

Δh
2,T = o

(
T−1/2

)
as T → ∞. (8.19)
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Proposition 8.7. Assume that Assumptions 7.3 and 6.1are satisfied. Then the
following inequality holds:

|Δh
2,T | ≤ Ch

⎧⎪⎨⎪⎩
T−(β1+β2), if β1 + β2 < 1

T−1 lnT, if β1 + β2 = 1

T−1, if β1 + β2 > 1,

T > 0, (8.20)

where Ch is a constant depending on h.

Notice that for non-tapered case (h(t) = I[0,1](t)), the above stated results
were proved in Ginovyan and Sahakyan [53] (see also Ginovyan and Sahakyan
[54, 55]).

8.5. Lévy-Itô-type and Stratonovich-type multiple stochastic
integrals

To prove limit theorems for quadratic functionals of Lévy-driven c.t. linear mod-
els, was used the multiple off-diagonal (Itô-type) and with-diagonal (Stratono-
vich-type) stochastic integrals with respect to Lévy noise. In this subsection we
introduce these integrals, and briefly discuss their properties (see, e.g., Bai et
al. [9], Farré et al. [35], Peccati and Taqqu [84]).

Let f be a function in L2(Rk), then the following off-diagonal multiple sto-
chastic integral, called Itô-Lévy integral, is well-defined:

Iξk(f) =

∫ ′

Rk

f(x1, . . . , xk)ξ(dx1) . . . ξ(dxk), (8.21)

where ξ(t) is a Lévy process with E[ξ(t)] = 0 and Var[ξ(t)] = σ2
ξ t, and the prime

′ indicates that we do not integrate on the diagonals xi = xj , i = j. The multiple

integral Iξk(·) satisfies the following inequality:

‖Iξk(f)‖2L2(Ω) ≤ k!σ2k
ξ ‖f‖2L2(Rk), (8.22)

and the inequality in (8.22) becomes equality if f is symmetric:

‖Iξk(f)‖2L2(Ω) = k!σ2k
ξ ‖f‖2L2(Rk). (8.23)

Observe that if in (8.21), ξ(·) = B(·), where B(·) is the real-valued Brownian
motion, then the corresponding integral:

IBk (f) =

∫ ′

Rk

f(x1, . . . , xk)B(dx1) . . . B(dxk) (8.24)

is called multiple Wiener-Itô integral (see Itô [78]).
The Wiener-Itô integral can also be defined with respect to the complex-

valued Brownian motion:

IWk (g) =

∫ ′′

Rk

g(u1, . . . , uk)W (du1) . . .W (duk), (8.25)
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where g ∈ L2(Rk) is a complex-valued function satisfying g(−u1, . . . ,−uk) =
g(u1, . . . , uk), and W (·) is a complex-valued Brownian motion (with real and
imaginary parts being independent) viewed as a random integrator (see, e.g.,
Embrechts and Maejima [34]), and the double prime ′′ indicates the exclusion
of the hyper-diagonals up = ±uq, p = q.

The next result, which can be deduced from Proposition 9.3.1 of Peccati
and Taqqu [84] and Proposition 4.2 of Dobrushin [30] (see Bai et al. [9]), gives a
relationship between the integrals IBk (·) and IWk (·), defined by (8.24) and (8.25),
respectively.

Proposition 8.8. Let fj(·) be real-valued functions in L2(Rkj ), j = 1, . . . , J ,
and let

f̂j(w1, . . . , wkj ) =

∫
R

kj

fj(x1, . . . , xkj )e
i(x1w1+...+xkj

wkj )dx1 . . . dxkj

be the L2-Fourier transform of fj(·). Then(
IBk1

(f1), . . . , I
B
kJ
(fJ )
)

d
=(

(2π)−k1/2IWk1

(
f̂1A

⊗k1

)
, . . . , (2π)−kJ/2IWkJ

(
f̂JA

⊗kJ

))
,

for any function A(u) : R → C such that |A(u)| = 1 and A(w) = A(−w) almost
everywhere, where A⊗k(w1, . . . , wk) := A(w1) · · ·A(wk).

In the next proposition we state a stochastic Fubini’s theorem (see Bai et al.
[9], Lemma 3.1, or Peccati and Taqqu [84], Theorem 5.12.1).

Proposition 8.9. Let (S, μ) be a measure space with μ(S) < ∞, and let
f(s, x1, . . . , xk) be a function on S × R

k such that∫
S

∫
Rk

f2(s, x1, . . . , xk)dx1 . . . dxkμ(ds) < ∞,

then we can change the order of the multiple stochastic integration Iξk(·) and the
deterministic integration

∫
S
f(s, ·)μ(ds):∫

S

Iξk
(
f(s, ·)

)
μ(ds) = Iξk

(∫
S

f(s, ·)μ(ds)
)
.

The with-diagonal counterpart of the Lévy-Itô integral Iξk(f), called a Strato-
novich-type stochastic integral, is defined by

I̊ξk(f) :=

∫
Rk

f(x1, . . . , xk)ξ(dx1) . . . ξ(dxk), (8.26)

which includes all the diagonals. We refer to Farré et al. [35] for a compre-

hensive treatment of Stratonovich-type integrals I̊ξk(f). Observe that for the
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with-diagonal integral I̊ξk(f) to be well-defined, the integrand f needs also to be
square-integrable on all the diagonals of Rk (see Bai et al. [9], Farré et al. [35]).

The with-diagonal integral I̊ξk(f) can be expressed by off-diagonal integrals
of lower orders using the Hu-Meyer formula (see Farré et al. [35], Theorem 5.9).
In the special case when k = 2, we have

I̊ξ2 (f) =

∫ ′

R2

f(x1, x2)ξ(dx1)ξ(dx2) +

∫
R

f(x, x)ξ(2)c (dx) +

∫
R

f(x, x)dx, (8.27)

where
ξ(2)c (t) = ξ(2)(t)− Eξ(2)(t) = ξ(2)(t)− |t|, (8.28)

and ξ(2)(t) is the quadratic variation of ξ(t), which is non-deterministic if ξ(t) is

non-Gaussian (see Farré et al. [35], equation (10)). The centered process ξ
(2)
c (t)

is called a second order Teugels martingale, which is a Lévy process with the
same filtration as ξ(t), whose quadratic variation is deterministic:

[ξ(2)c (t), ξ(2)c (t)] = κ4t,

where κ4 is the fourth cumulant of ξ(1). For any f, g ∈ L2(R), one has (see
Farré et al. [35])

E

[∫
R

g(x)ξ(2)c (dx)

∫
R

h(x)ξ(2)c (dx)

]
= κ4

∫
R

f(x)g(x)dx. (8.29)

The decomposition (8.27) implies that

E

[
I̊ξk(f)
]
=

∫
R

f(x, x)dx.

Notice that for any f ∈ L2(R2) and g ∈ L2(R) the following integrals, the
first of which is an off-diagonal double integral and the second is a single integral

with respect to Teugels martingale ξ
(2)
c (t):∫ ′

R2

f(x1, x2)ξ(dx1)ξ(dx2) and

∫
R

g(x)ξ(2)c (dx). (8.30)

are uncorrelated (see Bai et al. [9]).

8.6. Power counting theorems

Power counting theorems provide convergence conditions for some classes of
integrals on R

n whose integrands are products of functions bounded near zero
by powers of linearly dependent affine functionals and near infinity by different
powers of those functionals. These theorems are useful in studying asymptotic
distributions of statistics of time series models with long-range dependence.
The results stated below were used in Terrin and Taqqu [101] to establish non-
central limit theorems for quadratic forms QT of d.t. stationary processes with
long-range dependence (see Theorem 4.5).
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First we introduce some notation. Let L := {L1, . . . , Lm} be a collection of
linear functionals Li(x) on R

n, i = 1, . . . ,m. For numbers 0 < ai ≤ bi, ci > 0,
and real constants αi and βi we define

P1(x) := f1(L1(x))f2(L2(x)) · · · fm(Lm(x)), (8.31)

where the functions fi, (i = 1, . . . ,m) satisfy the condition:

|fi(y)| ≤
{

ci|yi|αi if |y| < ai
ci|yi|βi if |y| > bi,

(8.32)

and |fi(y)| is bounded above in the interval (ai, bi), i = 1, ...,m. The constants
αi and βi are called the exponents of |y| around 0 and ∞, respectively. For
W ⊂ T we set s(W ) := span(W ) ∩ T , where span(W ) denotes the linear span
of W . Define

d0(W ) := r(W ) +
∑
s(W )

αi and d∞(W ) := r(T )− r(W ) +
∑

T\s(W )

βi. (8.33)

A summation over a set E means summation over the set {i : Li ∈ E}, |E|
denotes the cardinality of E and r(E) is the rank of E, that is, the number of
linearly independent functionals in E. We call a set W padded if for every L in
W , L is also in s(W \ {L}), that is, L can be obtained as a linear combination
of other elements in W . Observe that W = ∅ is padded, and if W is linearly
independent, then d0(W ) := |W |+

∑
s(W ) αi.

The proofs of the following results can be found in Terrin and Taqqu [101]
(see also Fox and Taqqu [39], and Terrin and Taqqu [103]).

Proposition 8.10. If r(T ) = n and (a) d0(W ) > 0 for every nonempty subset
W of T with s(W ) = W , while (b) d∞(W ) < 0 for every proper subset W of T
with s(W ) = W , including the empty set. Then∫

Rn

|P1(x)|dx < ∞, (8.34)

where P1(x) is as in (8.31).

Proposition 8.10 can be extended to the class of functionals of the form
Li(x) + θi, where θi is a constant. For i = 1, ...,m let αi and θi be real constants,
and let Mi(x) be a linear functional on R

n. Put Li(x) := Mi(x) + θi and set

P2(x) := |L1(x)|α1 · · · |Lm(x)|αm . (8.35)

Proposition 8.11. Let s(W ) and d0(W ) be as above. Suppose that d0(W ) > 0
for every nonempty subset W of T with s(W ) = W . Then∫

[−t,t]n
|P2(x)|dx < ∞ for all t > 0, (8.36)

where P2(x) is as in (8.35).
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Remark 8.4. If αi > −1 and βi ≥ −1 in Proposition 8.10, then it suffices to
verify the conditions (a) and (b) for sets W that are also padded. If αi > −1
in Proposition 8.11, then it suffices to consider subsets W that are also padded
(see Terrin and Taqqu [101, 103]).
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als for Lévy-driven continuous time linear models with tapered data, Electronic
Journal of Statistics 13, 255–283. MR3905127

[57] Ginovyan, M.S. and Sahakyan, A. A. (2019). Limit theorems for tapered
Toeplitz quadratic functionals of continuous time Gaussian stationary processes.
J. Cont. Math. Anal. 54(4), 222–239. MR4019542

[58] Ginovyan, M.S., Sahakyan, A. A. and Taqqu M. S. (2014). The trace problem
for Toeplitz matrices and operators and its impact in probability. Probability
Surveys 11, 393–440. MR3290440

[59] Giraitis, L., Koul, H. and Surgailis, D. (2012). Large Sample Inference for
Long Memory Processes. Imperial College Press, London. MR2977317

[60] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic
forms in strongly dependent linear variables and its application to asymptoti-
cal normality of Whittle’s estimate. Probab. Theory Related Fields. 86, 87–104.
MR1061950

[61] Giraitis, L. and Taqqu, M.S. (1997). Limit theorems for bivariate Appell poly-
nomials: Part I. Central limit theorems. Probab. Theory Related Fields, 107,
359–381. MR1440137

[62] Giraitis, L. and Taqqu, M.S. (1998). Central limit theorems for quadratic forms
with time-domain conditions. Annals of Probability. 26(1), 377–398. MR1617055

[63] Giraitis, L. and Taqqu, M.S. (1999). Convergence of normalized quadratic
forms, J. Statist. Plann. Inference 80 (1), 15–35. MR1713799

[64] Giraitis, L. and Taqqu, M.S. (1999). Whittle estimator for finite-variance non-
Gaussian long-memory time series. Ann. Statist. 27 (1), 178–203. MR1701107

[65] Giraitis, L. and Taqqu, M.S. (2001). Functional non-central and central limit
theorems for bivariate Appell polynomials. Journal of Theoretical Probability,
14(2), 393–426. MR1838735

[66] Granger, C.W.J. and Joyeux, K. (1980). An introduction to long-memory
time series and fractional differencing. J. Time Ser. Anal. 1, 15–29. MR0605572

[67] Grenander, U. and Szegő, G. (1958). Toeplitz Forms and Their Applications.
University of California Press, Berkeley and Los Angeles. MR0094840
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