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Abstract: We propose a fast and efficient strategy, called the representa-
tive approach, for big data analysis with generalized linear models, espe-
cially for distributed data with localization requirements or limited network
bandwidth. With a given partition of massive dataset, this approach con-
structs a representative data point for each data block and fits the target
model using the representative dataset. In terms of time complexity, it is
as fast as the subsampling approaches in the literature. As for efficiency, its
accuracy in estimating parameters given a homogeneous partition is com-
parable with the divide-and-conquer method. Supported by comprehensive
simulation studies and theoretical justifications, we conclude that mean
representatives (MR) work fine for linear models or generalized linear mod-
els with a flat inverse link function and moderate coefficients of continuous
predictors. For general cases, we recommend the proposed score-matching
representatives (SMR), which may improve the accuracy of estimators sig-
nificantly by matching the score function values. As an illustrative appli-
cation to the Airline on-time performance data, we show that the MR and
SMR estimates are as good as the full data estimate when available.
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1. Introduction

In the past decade, big data or massive data has drawn dramatically increasing
attention all over the world. It was in the 2009 ASA Data Expo competition
when people found out that no statistical software was available to analyze the
massive Airline on-time performance data. At that time, the airline data file,
about 12GB in size, consists of 123,534,969 records of domestic flights in the
United States from October 1987 to April 2008 (Kane, Emerson and Weston,
2013). Up to December 2019, the Airline on-time performance data collected
from the Bureau of Transportation Statistics consists of 387 files and N =
188,690, 624 valid records in total.

The response in the Airline on-time performance data was treated as a bi-
nary variable Late Arrival with 1 standing for late by 15 minutes or more
(Wang et al., 2016). Generalized linear models (GLMs) have been widely used
for modeling binary responses, as well as Poisson, Gamma, and Inverse Gaussian
responses (McCullagh and Nelder, 1989; Dobson and Barnett, 2018). In order
to fit a GLM with p predictors, a typical algorithm searching for the maximum
likelihood estimate (MLE) based on the full data of size N requires O((y Np?)
time to run, where (y is the number of iterations required for the convergence
of the full data MLE algorithm (Wang, Zhu and Ma, 2018).

Starting in 2009, substantial efforts have been made on developing both
methodologies and algorithms towards big data analysis (see, for example, Wang
et al. (2016), for a good survey on relevant statistical methods and computing).
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Divide-and-conquer, also known as divide-and-recombine, split-and-conquer, or
split-and-merge, first partitions a big dataset into K blocks, fits the target model
block by block, and then aggregates the K fitted models to form a final one
(Wang et al., 2016). A divide-and-conquer algorithm proposed by Lin and Xi
(2011) reaches the time complexity of O(CN/KNpZ), where (y/k is the number
of iterations required by a GLM MLE algorithm with N/K data points. The ac-
curacy of the estimated parameters based on the divide-and-conquer algorithm
relies on the block size N/K, which typically depends on the computer memory.
Therefore, as IV increases, K has to increase accordingly. Typically, its accuracy
is not as good as the full data estimate. The divide-and-conquer idea has been
applied to numerous statistical problems (Chen and Xie, 2014; Schifano et al.,
2016; Zhao, Cheng and Liu, 2016; Lee et al., 2017; Battey et al., 2018; Shi, Lu
and Song, 2018; Chen, Liu and Zhang, 2019). For example, Chen and Xie (2014)
made an innovative attempt of majority voting on variable selection based on
a divide-and-conquer framework that is similar in spirit to combining confi-
dence distributions in meta-analysis (Singh, Xie and Strawderman, 2005; Xie,
Singh and Strawderman, 2011). Schifano et al. (2016) extended the divide-and-
conquer idea for online updating problems motivated from a Bayesian inference
perspective.

Another popular strategy for big data analysis is subsampling. For exam-
ple, leveraging technique has been used to sample a more informative subset
of the full data for linear regression problems (Ma and Sun, 2014). Inspired by
D-optimality in optimal design theory, Wang, Yang and Stufken (2019) pro-
posed an information-based subsampling technique, called IBOSS, for big data
linear regression problems. Its time complexity is O(Np) while the ordinary
least square (OLS) estimate for linear models takes O(Np?) time complexity.
Motivated by A-optimality, Wang, Zhu and Ma (2018) developed an efficient
two-step subsampling algorithm for large sample logistic regression, which is a
special case of generalized linear models. The time complexity of the A-optimal
subsampler is also O(Np). Compared with the divide-and-conquer strategy, the
subsampling approach requires much less computational cost. Nevertheless, its
accuracy relies on the subsample size and is typically not as good as the divide-
and-conquer estimate.

Other developments include stochastic gradient descent and the polynomial
approximate sufficient statistics approaches. Stochastic gradient descent algo-
rithms (Tran, Toulis and Airoldi 2015; Lin and Rosasco 2017) update in a se-
quential manner based on a noisy gradient. Polynomial approximate sufficient
statistics methods (Huggins, Adams and Broderick 2017; Keeley et al. 2020;
Zoltowski and Pillow 2018) construct polynomial approximate sufficient statis-
tics for GLMs for any combination of batch, parallel, or streaming. In terms of
accuracy, their performances are comparable with subsampling techniques.

The success of divide-and-conquer methods relies on the similarity between
blocks, which can be achieved by randomly partitioning the original dataset.
In practice, however, a massive dataset is often stored in multiple files, within
which data points have sort of similarity in some fields. We call it homogeneous
partition. For example, the Airline on-time performance data (see Section 4)
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consists of 387 files labeled by month. In each file, all data points share the
same values in fields YEAR, MONTH, and QUARTER, while between files these val-
ues are different. A divide-and-conquer strategy would not work directly with
the original homogeneous partition due to distinct blocks. Even worse, a mas-
sive dataset is sometimes distributed in multiple hard disks, or even a network
of interconnected computers, known as nodes (see, for example, a distributed
database (Ozsu and Valduriez, 2011)). If one needs to re-partition the data
randomly, it may involve intensive communication between nodes and require
extensive network bandwidth.

Another critical issue on massive data analysis is data localization require-
ments. Due to security or privacy concerns, data localization or data residency
law prohibits health records, personal data, payment system data, etc, from
being transferred freely (Bowman, 2017; Fefer, 2020). Technology companies,
such as Microsoft, also use data storage locale controls in their cloud services
(Vogel, 2014). The Irish Data Protection Commission sent Facebook a prelimi-
nary order to suspend moving data from its European users to the United States
(Schechner and Glazer, 2020). Under such kind of circumstances, the partition
of data is predetermined and raw data exchange between nodes is prohibited.
We call such kind of data partition a natural partition.

In the computer science literature, algorithms of the CoCoA family have
been developed for optimization problems with distributed dataset and a cen-
tral server (see Smith et al. (2018) for a good review), which combine local
solvers for subproblems in an efficient manner. He, Bian and Jaggi (2018) fur-
ther extended CoCoA to the COLA algorithm for decentralized environment,
that is, distributed computing without a central coordinator.

To avoid intensive data communications between nodes and even avoid any
raw data transfer, we propose a different data analysis strategy for distributed
massive dataset with data localization requirements, named the representative
approach. When a massive data is provided in data blocks, either naturally
or partitioned by a data binning procedure, we construct a representative data
point for each data block using only the data within the block and initial param-
eter values, and then run regression analysis on the representative data points.
The constructed representatives are typically artificial ones which may not be-
long to the original dataset. The collection of representative data points may
be used for further analysis and inference. Compared with the original data, its
data volume is significantly reduced.

The representative approach provides an ideal solution for the analysis of
naturally partitioned massive data. By exchanging only the estimated param-
eters and the representative data points among parallel computing computers,
the representative approach can work well even with slow-speed or restricted
network connection. It fulfills user privacy or security requirements since ana-
lysts perform regression analysis on the representatives without direct access to
the raw data.

The representative approach is inspired by the data binning technique in the
computer science literature. By discretizing continuous variables into categorical
variables (see, for example, Kotsiantis and Kanellopoulos (2006)), a data binning
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procedure partitions a continuous feature space into blocks labeled by so-called
smoothing values. It focuses on how to partition data into blocks or bins, while
the smoothing values are typically chosen from class labels, boundary points,
centers, means, or medians of the data blocks. A data binning procedure is often
used for data pre-processing, whose performance is not guaranteed, especially
for nonlinear models.

Different from the data binning technique, the representative approach pro-
posed in this paper assumes a given data partition and concentrates on con-
structing the best smoothing values, which we call representatives, more effi-
ciently for a pre-specified regression model. With a given partition, the goal of
the representative approach is to run as fast as subsampling approaches, while
estimating model parameters as accurately as the divide-and-conquer method.

Actually, using the proposed representative approach, a GLM is fitted on
K representatives constructed from the original N data points (K < N). Its
time complexity is also O(Np), same as the subsampling approaches. On the
other hand, the K representatives are not a subset of the N data points, but
summarize the information from each single one of the original N data points.
Based on our comprehensive simulation studies, by matching the score function
values of GLMs, the proposed score-matching representative (SMR) approach
is often comparable with the full data estimate.

The data binning technique that we consider here is to partition the data
according to the predictors. It is different from the sufficient dimension reduction
techniques which start with a data partition based on the responses or the
conditional class probabilities of binary responses (Shin et al., 2014, 2017).

The representatives described in this paper are different from the represen-
tative points (rep-points) developed in the statistical literature, which aims to
represent a distribution the best. Research work on rep-points includes the prin-
cipal points in Flury (1990), the mse-rep-points in Fang and Wang (1994), and
the recent support points in Mak and Joseph (2017, 2018). Although the rep-
points can capture the covariate distribution better, they may not be more
informative in estimating model parameters, and thus are not as efficient as sub-
sampling methods or the proposed representative approaches (see Section A.4
in the Appendix for comparisons).

The remainder of this paper proceeds as follows. In Section 2 we describe
the general framework of the representative approach and data partitions. After
comparing mean, median and mid-point representatives, we recommend mean
representative (MR) for big data linear regression analysis. In Section 3 we
develop SMR along with its theoretical justifications. We recommend SMR, for
big data general linear regression analysis. In Section 4, we use the Airline on-
time performance data as an illustrative example for real big data analysis. We
show that the MR and SMR estimates are as accurate as the full data estimate
when available. We conclude in Section 5. The proofs of theorems and corollaries,
more corollaries, more simulations, as well as more details about the real case
study, are relegated to the Appendix.
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TABLE 1

Examples v(n) and G(n) of commonly used GLMs
Distribution of Y link function g v(n) (up to a constant) G(n)
Normal(pu, ¢) identity 1 n
Bernoulli(p) logit 1 exp(n){1 + exp(n)} !
Bernoulli(x) probit dm{ @) @(—n)} ! 2(n)
Bernoulli(u) cloglog exp(n){1 — exp[— exp(n)]} ! 1 — exp{—exp(n)}
Bernoulli(x) loglog exp(—n){1 — exp[— exp(—n)]} exp{—exp(-n)}
Bernoulli(p) cauchit w{(1 4 n?)(n?/4 — arctan?(n))} ! arctan(n) /7 +1/2
Poisson(p) log 1 exp(n)
Gammal(k, pu/k) reciprocal 1 1/n
Inverse Gaussian(u, @) inverse squared 1 1/v/m

2. GLM, massive data and mean representative
2.1. Generalized linear model and score function

Given the original data set {(x;,y;),: = 1,2,...,N} with covariates x; =
(Tity .oy xid)T € R? and response y; € R, we consider a generalized linear model
assuming independent response random variable Y;’s and the corresponding pre-
dictors X; = (h1(xi),. .., hp(x:))T € RP. For model-based data analysis with
fairly general known functions hq(-),. .., hy(-), we would rather regard the data
set as 2 = {(X;,¥;),i = 1,..., N}. For many applications, hy(x;) = 1 corre-
sponds to the intercept. For examples, X; = (1, z;1,.. ., ;vn)T for a main-effects
model or )(z = (1, Li1,Li2, X453, Li1L32, Li1Li3, L32X453, .’I?il.’lﬁig.%‘ig)T for a model with
interactions.

Following McCullagh and Nelder (1989), there exists a link function g and
regression parameters 3 = (81, ..., B,)T, such that E(Y;) = p; and n; = g(w;) =
XiTﬁ, where Y; has a distribution in the exponential family. For typical appli-
cations, the link function g is one-to-one and differentiable.

According to McCullagh and Nelder (1989, Section 2.5), the maximum like-
lihood estimate of B solves the score equation s(B;y,X) = 0, where y =
(y1,---,yn)T, X = (X4,...,Xn)7T, and the score function

N

s(Biy, X) = > (yi — G(n))v(n)Xs (2.1)

=1

with G(n) = g~ 1(n) and v(n) = G’(n)/h(n), where h(n;) = Var(Y;). For com-
monly used GLMs, their ¥ and G are listed in Table 1.

2.2. Representative approaches and mean representatives

In this paper, we assume that the data is given along with a data partition. Let
I ={1,2,...,N} be the data index set. The data partition can be denoted by
a partition {I1, Is, ..., Ix } of I. The kth data block 2y = {(X;,v:),? € I} has
block size ny = |Ij|.

A representative approach for model-based regression analysis constructs a
representative data point (X;“gjk) for data block 2, k = 1,..., K, and then
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fit the regression model based on the weighted representative dataset 2 =
{(ng, Xk, k), k = 1,..., K}. This procedure could be repeated to achieve a
desired accuracy level of estimated model parameters.

Unlike subsampling approaches, a representative data point may not belong
to the original data set. With a given data partition, the goal of the representa-
tive approach is to make the model parameter estimate 3 based on the weighted
representative dataset close enough to the full data estimate 3. Given an initial
value of parameter estimate, the construction of representative data points in
one block shall not be affected by another to facilitate parallel computing.

In practice, a massive dataset is often provided in multiple data files, which
forms a matural partition with each block representing a data file. In order to
improve the efficiency of the proposed representative approach, one may con-
struct a sub-partition within each natural data block or data file such that the
predictors have similar values in each finer block. Many partitioning methods
have been proposed in the literature (see, for example, Fahad et al. (2014) for
a good survey). From our point of view, there are two types of partitioning
methods, grid or clustered. Grid partition is based on the feature space in RP,
with cut points obtained from the summary information of data, such as quan-
tiles (called equal-depth) or equal-width points, which is usually feasible with a
moderate number of predictors (Kotsiantis and Kanellopoulos, 2006). Its time
complexity is O(Np). Clustered partition is based on clustering algorithms. For
example, Pakhira (2014) proposed a linear k-means algorithm with time com-
plexity O(Np), which is especially useful with large p. When the massive data
consists of multiple natural blocks or data files, these partitioning methods could
be applied on the natural blocks one-by-one to obtain a finer partition of the
whole dataset. In practice the sizes of natural blocks or data files are typi-
cally fixed. Only the number of data files increases when the massive dataset is
updated in a time order. Therefore, the overall time complexity for obtaining
all sub-partitions is still O(Np). Improving the efficiency of sub-partitioning is
important but out of the scope of this paper.

There are lots of representative choices that could possibly work for the rep-
resentative approach. A naive choice of the representative is the block center,
which is popular in the data binning literature. More specifically, given the
kth data block 2, = {(X;,v:),¢ € I} with block size ny, the options for its
representative Xy, include (1) mid-point of the rectangular block, when a grid
partition is given; (2) (component-wise) median; (3) (vector) mean, that is,
X = n,;l Zielk X;. Then the weighted representative data for the kth block
is defined as (ng,Xg,Jx) with g, = n,?l > ic1, Yi» which will be justified in
Theorem 3.2.

A comprehensive simulation study with linear models shows that using block
means, the mean representative approach (MR), is more efficient than the mid-
point and median options, as well as the IBOSS subsampling approach (Wang,
Yang and Stufken, 2019). For details please see Section A.1 in the Appendix.

As for time complexity, the full data ordinary least squares (OLS) estimate
takes O(Np?). The IBOSS (Wang, Yang and Stufken, 2019) costs O(Np). For
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typical applications, K < N and p < N, then the overall time complexity
including constructing representatives and fitting models is O(N) for mid-point
or O(Np) for median and mean representative approaches for both linear re-
gression models and GLMs.

The simulation studies in Section A.1 of the Appendix also imply that the
maximum Euclidean distance within data blocks, denoted by A = max;max; jer,
|X; — X, plays an important role on the efficiency of mean representatives.
For general representatives, the key quantity is the maximum deviation from
the corresponding representatives A = max;, maxier, || X; — Xk”

3. Score-matching representative approach for GLMs

The MR approach works very well for linear models and can be validated for
GLMs when A is sufficiently small. Nevertheless, for moderate A with general
GLMs, MR approach is not so satisfactory (see Section 3.2). In this section, we
propose a much more efficient representative approach, called score-matching
representative (SMR) approach for GLMs.

Recall that in Section 2.1 the maximum likelihood estimate ,C:] solves the
score equation s(3) = 0. It is typically obtained numerically by the Fisher scor-
ing method (McCullagh and Nelder, 1989), which iteratively updates the score
function with the current estimate of 3. Inspired by the Fisher scoring method,
given some initial values of the estimated parameters, our score-matching rep-
resentative approach constructs data representatives by matching the values of
the score function block by block, and then applies the Fisher scoring method on
the representative dataset and gets estimated parameter values for the next iter-
ation. We may repeat this procedure for a few times till a certain accuracy level
is achieved. According to our comprehensive simulation studies (see Section A.2
in the Appendix), three iterations are satisfactory for typical applications.

3.1. Score-matching representative approach

Let sk(8) = > icr, (vi — G(ni))v(n:)X; denote the value of the score function
contributed by the kth data block 2, = {(X;,v:),% € I}, and 5,(8) = ng (g —
G(7))v (i) X}, denote the value of the score function based on the weighted
representative data (ng, X, k), where n; = XT3 and 7, = Xf,@ are functions
of 3.

Suppose the estimated parameter value is ,@(t) at the tth iteration. For the
(t + 1)th iteration, our strategy is to find the representative (Xk,gjk) carrying
the same score as the kth data block at B*), that is, s,(8®) = 5,(3®), or

> vXTBD)(y: — GXTBD))X; = np v(XE B (1 — GXFB) Xy (3.1)
i€l
Multiplying by B8®) on both sides of (3.1), we get
> v (yi — Gna))mi = nwe v (i) (G — Gl (3.2)

1€l
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where 7; = X7 8® and 7, = XTB8®. The weight v(n;)n; of y; in (3.2) suggests
that we take g as a weighted average of y;’s for the SMR approach, that is,

e Vi)

==t (3.3)
Eiezk v(ni)n;
Remark 3.1. The g defined by (3.3) is a natural generalization of the mean
representative. Actually, let g = n;l Zielk Yi, Xpp = n;l Zielk X,;, and 7 =
ny ' Yier, mi = XEB® denote the mean representative. Since |n; — x| < [|X; —
Xl 18P = O(A), then it can be verified that g, = 7+ O(A) as A goes to 0,
given that 7 is bounded away from 0. In order to avoid 0 € (min;ey, 7;, max;er,
7:), which may lead to unbounded g when ;. ; v(n:)n; is close to 0, we split
such a block into two pieces by the signs of 7;’s and generate two representatives,
one for positive 7;’s and the other for negative 7;’s.

Since g in (3.3) does not rely on 7, we can further obtain 7, by solving
(3.2).

Theorem 3.1. There exists an Ty, € [min;er, 17;, Mmax;er, 17:] that solves equa-
tion (3.2).

The existence of the score-matching representative is guaranteed by The-
orem 3.1, whose proof is relegated to the Appendix, Section A.8. Since the
solution solving (3.2) may not be unique, we choose the 7 closest to the mean
representative to keep a smaller A. Different from mean representatives, the co-
ordinates of the score-matching representatives corresponding to the intercept
term may not be exactly one.

Plugging the 7, solving (3.2) into (3.1), we get the predictor representative
X for SMR:

X = [nev(i) @k — G(R))] " > vXTBY)(yi - GXTBINX;  (3.4)

i€l

The kth weighted representative data point Dy, = (ng, Xk, Uk ), which carries
the same score value at ﬁ(t) as the kth original data block, will be used for
fitting B(H‘l) via the Fisher scoring method. For typical applications, we may
repeat this procedure for T = 3 times to achieve the desired accuracy level
(see Figure 5 in the Appendix for a trend of SMR iterations). The complete
procedure of the T-iteration SMR approach is described by Algorithm 1.

For a GLM, the time cost is O(Np) for calculating all n;’s, O(N) for calcu-
lating all gj’s using (3.3), O(N) plus ¢, iterations for solving (3.2), and O(Np)
for calculating all X;’s by (3.4). Along with the time cost O(Cx Kp?) for find-
ing the MLE based on K representative points, a 3-iteration SMR requires
O(Np + N¢, + Cx Kp?). Since ¢, (x, K,p < N, the time complexity of SMR
for a GLM is essentially O(Np).
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Data: 2 = {(Xi,¥:),i =1,..., N} with a partition {I1,...,Ig} of I ={1,...,N}
Result: SMR estimate 3 for a generalized linear model and a pre-specified number T" of
iterations
Use the mean representatives as the initial weighted dataset
> < (0) ~(0
7O = {(n, X, 5 VH 5 ~ ]
Apply the Fisher scoring method on 2 and obtain the initial estimate 3(9);
fort=1,...,7 do
fork=1,...,K do
Calculate n; := X;fr,B(tfl) for i € Iy;
Calculate gj,(:) by (3.3);
Solve the one-dimensional equation (3.2) for ﬁ,(:>;
Calculate Xg) by (3.4);
Apply the Fisher scoring method on the weighted data set
) = {(nk,X,(f),gl(:))}le and obtain Bm;
B := 3D
Algorithm 1: Score-Matching Representative Approach

3.2. Stmulation studies with logistic regression model

Logistic regression model is one of the most widely used generalized linear mod-
els. Wang, Zhu and Ma (2018) proposed an A-optimal subsampling approach
for big data logistic regression. Following Wang, Zhu and Ma (2018), we run a
comprehensive simulation study with the model

logit (P(Y; = 1| x;)) = Bo + Brwi1 + -+ + Braar (3.5)

Analogue to the simulation setup in Wang, Zhu and Ma (2018), we choose
Bo =0, f1 =--- = 7 = 0.5. For simulating x; = (z;1, ... ,z47)T, we consider six
unbounded distributions plus a bounded one: (1) mzNormal, N7(0,X) with X
having diagonal 1 and off-diagonal 0.5; (2) nzNormal, N(1.5-1,¥), a case with
imbalanced responses, where 1 is a vector of all ones; (3) ueNormal, N;(0,3,,)
with X, having diagonals {12,...,7%} and off-diagonal 0.5; (4) mixNormal,
0.5N7(1,%)+0.5N,(—1,3), a case with bimodal x;; (5) T5, Multivariate ¢ with
3 degrees of freedom t3(0,X)/10, a case with heavy tails; (6) EXP, exp(\ = 2),
an iid case with a heavier tail on the right; (7) BETA, Beta(a = 0.5, 8 = 0.5),
a bounded iid case with “U” shaped distribution.

For illustration purpose, we choose a moderate population size N = 106 in
this simulation study. In the absence of a natural partition, we use two data-
driven partitions: (1) An equal-depth partition with m = 4 splits for each pre-
dictor, that is, using the three sample quartiles (25%, 50%, and 75%) as the cut
points for each predictor and partitioning the whole data into up to 47 = 16, 384
blocks (after removing empty blocks, the number of blocks K is actually be-
tween 11,488 and 16,384); (2) a k-means partition with the number of blocks
K =1000. The proposed SMR approach starts with MR, estimates as its initial
values and repeats the iterations for 3 times.

For comparison purpose, stochastic gradient descent (SGD) proposed by
Tran, Toulis and Airoldi (2015), A-optimal subsampling (A-opt) by Wang, Zhu
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TABLE 2
Awerage (std) of RMSEs (1072) of 100 simulations for logistic regression model
Simulation Full Equal-depth k-means
setup data MR SMR MR SMR A-opt DC SGD

mzNormal 3.7 (1.1) | 20.4 (1.0) 3.9 (1.2) | 17.9 (1.0) 4.1 (1.2) | 204 (5.7) 7.9 (1.1) _ 55.9 (14.8)
nzNormal 7.2 (20) | 204 (1.7) 9.6 (26) | 174 (1.7) 83 (2.0) | 244 (6.1) 21.5(1.6)  99.2 (27.8)
ueNormal 2.1 (0.8) | 170.4 (0.7) 4.4 (1.1) | 195.7 (3.8) 14.8 (7.4) 9.0 (3.3) 132 (1.3)  62.9 (77.0)
mixNormal 5.0 (1.3) | 199 (1.1) 54 (1.6) | 13.8(1.2) 5.7 (1.6) | 229 (55) 121 (1.2)  79.3 (21.0)

T3 16.0 (4.4) | 305 (4.2) 209 (5.8) | 25.1(7.5) 23.4(7.3) | 97.9 (30.1) 19.6 (3.9) 177.8 (17.8)
EXP 6.2 (1.7) | 23.0 (26) 13.4(24) | 203 (3.1) 88(25) | 31.3(7.9) 182 (23) 147.9 (20.9)
BETA 7.5 (2.4) 7.6 (25) 7.6 (25) | 11.4(3.0) 114 (3.7) | 39.9 (11.6) 9.3 (2.5) 179.4 (20.0)

Sample size N = 10%; MR, SMR: equal-depth partition, m = 4 or k-means partition,
K = 1000; A-opt: A-optimal subsampler, 20,000 subsamples; DC: Divide-and-Conquer,
1000 random blocks; SGD: stochastic gradient descent

and Ma (2018) with subsample size 20,000, and divide-and-conquer (DC) by
Lin and Xi (2011) with 1000 blocks from a random partition are applied to the
simulated data.

Table 2 shows the average and standard deviation of the root mean squared
errors (RMSEs, (37_, (8; — £:)%/7)/?) between the estimated parameter value
Bi’s and the true value (;’s across different simulation settings and each with
100 independent simulations.

According to Table 2, MR, A-opt and SGD do not match either DC or SMR
in terms of accuracy. SMR performs either the best or comparable with DC.
For more than half of the scenarios, SMR is even comparable with the full data
estimates. With the k-means partition, SMR achieves roughly the same accuracy
level with only 1000 representatives. A justification under linear models, which
is relegated to the Appendix (Section A.1l), shows that a best partition keeps
the cluster size 6 = max; jer, || X; — X,|| the same for k& = 1,..., K, which
partially explains the better performance of k-means partitions.

As a conclusion, when the predictors are bounded, MR is a fast and low-
cost (computationally cheaper) solution for big data analysis with generalized
linear models. For more general cases, especially when a higher accuracy level
is desired, MR can be used as a pre-analysis for SMR, while the latter has a
significant improvement across different scenarios and different partitions.

3.3. Other GLM examples

Commonly used GLMs include binary responses with logit, probit, cloglog,
loglog, and cauchit links, Poisson responses with log link, Gamma responses
with reciprocal link, Inverse Gaussian responses with inverse squared link (see
detailed formulae in Table 1).

In Table 3, we show the RMSEs ((3>7_,(8: — 8:)?/p)'/?) from the true pa-
rameter 3 and the RMSEs ((327_,(6; — £:)%/p)'/?) from the full data esti-

mate ,5’ The representative approaches, MR and SMR, are based on k-means
partition with K = 1000 for the following three models: (1) Binary response
with complementary log-log (or cloglog) link g(p) = log(—log(1 — u)). Since
G(n) =1 — exp{—exp(n)} is relatively flat, SMR estimate is comparable with
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TABLE 3
Awerage (std) of RMSEs (1072) of 100 simulations for three GLMs

Binary with cloglog Poisson with log Logistic with interactions

Full MR SMR  Full MR SMR Full MR SMR
From true 2.81 43.73 3.88 0.22 29.87 12.17 3.51 7.40 5.12
(0.75)  (0.99) (1.04) | (0.06) (9.86) (10.41) | (1.20) (2.01) (1.52)
From full 0 43.57 2.57 0 29.88 12.17 0 6.45 3.79
- (0.55) (0.67) - (9.86) (10.41) - (0.42) (0.99)

Sample size N = 10%; Covariate distribution: mzNormal; MR, SMR: k-means partition,
K = 1000

the full data estimate even with a not-so-good MR estimate. (2) Poisson re-
sponse with the canonical link g(u) = log . Since G(n) = exp(n) increases
exponentially, the improvement of SMR is slowed down with a not-so-good MR
estimate. The variances of MR and SMR estimates are both high. Thus a good
initial value for Poisson regression is crucially important (see Section 3.5 for de-
tailed discussion on how the slope of G(n) affects the performance of SMR). (3)
Logistic model with interactions. In this case, we simulate x = (21, x5, 23)7 from
mzNormal and assume the non-intercept predictors to be (hy(x),...,h7(x)) =
(21,9, 23,2122, X123, T2T3, T1T2x3). Both MR and SMR estimates work well.

3.4. Theoretical justification of SMR

First of all, for the proposed SMR approach in Section 3.1, the full data estimate
,3 is a stationary point of the SMR iteration. That is, if the current estimate
,é(t) = ,é, then the representative dataset achieves score 0 at B(t) and thus
B+ = 3 as well.

Recall that B is the maximum likelihood estimate (MLE) based on the full
data 2 = {(X;,y:),i = 1,...,N}. Let B be the MLE based on a weighted
representative data 9 = {(ng, X, Jx), k = 1,..., K}, which could be obtained
by MR, SMR, or other representative approaches. Since || X; — X;| < ||X; —
Xl +[|X; — Xg|| for any i, € I, then A = maxy max; jer, [|Xi — X;|| < 24,
where A = max;, max;e . 1Xi — Xk|| Theorem 3.2 below provides asymptotic
results for fairly general representative approaches, whose proof is relegated to
the Appendix (Section A.8).

Theorem 3.2. For a generalized linear model with a given dataset, suppose
its log-likelihood function 1(B) is strictly concave and twice differentiable on a
compact set B C RP and its mazimum can be attained in the interior of B.
Suppose the representatives satisfy yr = n,zl Zielk y;. Then B3 — B as A — 0.

Furthermore, |8 — B| = O(AY/?).

Theorem 3.2 covers mean, median, and mid-point representatives. For mean
and mid-point representatives, we actually have A < A. For median represen-
tatives, we also have A < p'/2A. Thus as direct corollaries, |8 — 3|| = O(AY/2)
for all the three center representatives (see Corollaries A.1 & A.2 in Section A.8
of the Appendix).
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Theorem 3.3. Suppose jj, = n;, " Dien Vit O(A). Under the same conditions

as in Theorem 3.2, for any given t, the SMR estimate B(t) converges to ,é if A
goes to zero, and ||B® — B|| = O(AY/?).

Technically speaking, any representative approach satisfying (3.1) could be
called a score-matching approach. The proposed SMR approach which satisfies
(3.3) and (3.4) is one of the possible solutions for (3.1), which is a natural
extension of the MR approach. Both Theorem 3.3 and the following theorem
provide consistency results for general score-matching approaches, whose proofs
are relegated to Section A.8 of the Appendix.

Theorem 3.4. Consider a more general iterative representative approach with
estimated parameter B at its tth iteration. Suppose for the (t + 1)th iteration,

for each k = 1,..., K, the obtained weighted representative data (nk,f(,(f“),

g,gt+1)) satisfies the following two conditions:

(a) The representative matches the score function at 8%, that is, (3.1) is true;

(b) The representative response g,(f“) = g +O(A), where gy = n; " Y ier, Yi-

Then the estimated parameter ,é(“rl) based on the weighted representative data
satisfies

134D — B < p(B) 1B - Bl + (A1) (3.6)

where p(A) = O(A) < 1 for small enough A. Therefore, 31) — 3 as t — oo
and A — 0.

Remark 3.2. We call p(A) in (3.6) the global rate of convergence, which de-
pends on the size of A. Its specific form can be found in the proof of Theorem 3.4.
Based on our experience, even for moderate size of A, p(A) can be significantly
smaller than 1 and the first few iterations can improve the accuracy level sig-
nificantly.

For score-matching representatives, condition (a) of Theorem 3.4 holds in-
stantly. As for condition (b) of Theorem 3.4, if |7jx| > ¢ for some § > 0 as A
goes to 0, then g = x + O(A) (see Remark 3.1), and thus g = 7 + O(A)
since A < 2A. After splitting blocks according to the signs of 7;’s, the cases of
data blocks with 7, close to 0 are rare. For those blocks, we may simply define
Ur = Ux. Thus condition (b) can be guaranteed in practice.

The conditions and conclusions of Theorem 3.4 are expressed in terms of
A. When applying the SMR approach, a slight modification may guarantee
A < A < 2A. Actually in our simulation studies, it is almost always the case
for the proposed SMR approach. Occasionally, X}, could be out of the convex
hull of {X;,i € I} due to v(7g)(gx — G(7x)) = 0. For such kind of cases, we
replace X with the MR representative Xj,. The difference caused for the value
of score function is negligible. By this way, the conclusions of Theorem 3.4 hold
for A — 0 as well.

Overall, Theorem 3.4 justifies why the proposed SMR approach works well.
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Corollary 3.1. When A =0 or A =0, MR and SMR generate the same set of
representatives. Both SMR and MR estimates are equal to the full data estimate
for GLMs.

A special case of Corollary 3.1, whose proof is relegated to Section A.8 of
the Appendix, is when all covariates are categorical and the dataset is naturally
partitioned by distinct covariate values. When most covariates are categorical
except for a few continuous variables, for example, the Airline on-time perfor-
mance data analysis in Section 4, the partition could be chosen such that A is
fairly small and thus both MR and SMR estimates work very well.

3.5. Asymptotic properties of MR and SMR for big data

In order to study the asymptotic properties of MR and SMR estimates as N

goes to oo, we assume that the predictors Xi,..., Xy € R? are iid ~ F with a
finite expectation, and the partition {Bi,..., Bx} of the predictor space R? is
fixed. To avoid trivial cases, we assume py = F(By) >0 foreach k =1,..., K.

Then the index block I, = {i € {1,...,N} | X; € By} with size nj. By the
strong law of large numbers (see, for example, Resnick (1999, Corollary 7.5.1)),
as N — oo, ng /N — pr > 0 almost surely. In order to investigate asymptotic
properties, we consider the discrepancy from the true parameter value 8 instead
of the estimate B based on the full data.

For the MR approach, as N — oo,

X — plzl/B x F(dx), ¥k —>le ; G(,@TX) F(dx) (3.7

almost surely. If the link function g or G = g~! is linear, then g(Jz) — Xzﬁ =0
and thus the MR estimate 3 — 3. Nevertheless, in general g is nonlinear, and
the accuracy of the MR estimate mainly depends on the size A of blocks, not
the sample size N. In other words, for a general GLM and a fixed partition of
the predictor space, the accuracy of the MR estimate is restricted by (3.7) and
thus will not benefit from an increased sample size.

Different from MR, by matching the score function of the full data, the pro-
posed SMR approach can still improve its accuracy as the sample size increases,
even with a fixed partition of the predictor space. Actually, for a general GLM,
E(Y;) = G(n;) and Y; — G(n;) e (0,02), where 02 = Var(Y;) = h(n;) > 0. For a
bounded block By, max;cy, o2 is also bounded. By the strong law of large num-
bers for independent sequence of random variables (see, for example, Resnick
(1999, Corollary 7.4.1)) and the first-order Taylor expansion, as N — oo and
thus ny — oo, the left hand side (LHS) of (3.2) after divided by ny, is

n,;l Z v(ni)ni(yi — G(n:))
i€l

= Y vl [y - GXTB) - G'(XTAXT (A - )

i€l
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+ 0(I8Y - 81)]
et S vl -G XTAXT(BY - 8) + O(IBY ~ 8I%)] (38)

i€l
= )G (XEBXE(BY — B) + 0(ABY — Bl)
+0(18" - 8 (3.9)

From (3.8) we see that as N increases, the leading discrepancy of LHS caused
by response y;’s vanishes. Even if the maximum block size A is fixed, when 3()
is close to B, the LHS of (3.2) is small, and so is its right hand side. For blocks
with 7, away from 0, it indicates that g — G(7)) and thus §x — G(XF3) are
small. That is, when N — oo, the SMR representatives {(Xk, k), k=1,...,K}
stay close to the true curve, u = E(Y) = G(XT3), which leads to a faster
convergence rate of the SMR estimate towards 8 than MR’s.

From (3.9) we conclude that a relatively large G'(X} 3) may slow down the
convergence of the SMR estimate. For example, under a Poisson regression
model with log link (see Model (2) in Section 3.3), G(n) = €". If the initial
estimate of the regression parameter is not so accurate, SMR may converge
slowly. For such kind of cases, we suggest a finer partition or smaller A to ob-
tain a good initial estimate. For models with fairly flat G functions, such as
models with logit link, G’ is small for most blocks. For this kind of cases, even if
the initial estimate for SMR is not so accurate, we can still improve the accuracy
of the estimate significantly after a few iterations.

To reveal the performance of SMR visually over sample size N, we use
the first simulation setup mzNormal for illustration purpose, varying N =
10°,105,107,10%. For MR and SMR, the number of blocks is fixed at K = 1000
with a k-means partition. For the divide-and-conquer method, the block size
typically restricted by the computer memory and thus will not change as N in-
creases. For illustration purpose, we fix the same block size 1000 as in Section 3.2.
As N increases, the number of blocks for the divide-and-conquer method in-
creases proportionally.

Figure 1 (see also Table 4) shows how much those methods benefit from
increased sample size N over 100 simulations for each N. Figure 1(a) shows that
in terms of RMSE from the true parameter value, SMR’s estimate is comparable
with the full data estimate and converges to B much faster than other methods.
Figure 1(b) shows that SMR’s estimate quickly gets closer to the full data
estimate B as N increases, while other methods’ estimates do not show a clear
pattern getting closer. This simulation study confirms our conclusion in this
section.

3.6. CPU time

We use R (version 3.6.1) for all simulation studies listed in this paper. For the
IBOSS (Wang, Yang and Stufken, 2019) and A-optimal (Wang, Zhu and Ma,
2018) subsampling methods, we use the R functions provided by the authors.
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TABLE 4
Awerage (std) of RMSEs (1072) of 100 simulations with various N
N RMSE from true 8 RMSE from full g
Full data MR SMR Aopt DC MR SMR Aopt DC
10°  11.9 (3.5) 21.2(3.3) 135 (3.6) 236 (7.1) 134 (3.5) | 17.8 (1.1) 5.7 (1.7) 20.1 (6.0) 6.8 (0.4)
106 3.7 (L1) 183 (1.0)  4.2(12) 204 (57) 7.9(L1) | 17.9(0.3) 1.9 (0.6) 20.2(5.7) 6.9 (0.1)
107 1.1(03) 17.9(0.3) 1.3 (0.4) 195 (5.2) 7.0 (0.3) | 17.9 (0.1) 0.7 (0.2) 19.3 (5.1) 6.9 (0.0)
108 - 179 (0.1) 0.6 (0.7) 19.8 (5.0) 6.9 (0.1) - - - -

Notes: Logistic model; predictor distribution: mzNormal;
MR, SMR: k-means with K = 1000; DC: 1000 observations per block; Aopt: 20,000
subsample size; Full data estimate is not available at N = 108 due to memory limit
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Fic 1. RMSE vs N of MR, SMR, A-opt, and divide-conquer for logistic model

We also use data.table format in R package data.table for calculating rep-
resentatives or fitting by group, and KMeans_arma in R package ClusterR for
faster k-means clustering. All computations are carried out on a single thread
of a MAC Pro running macOS 10.15.6 with 3.5 GHz 6-Core Intel Xeon E5 and
32GB 1866 MHz DDR3 memory.

The CPU time costs for MR and l-iteration SMR with a given k-means
(K =1000) partition, A-optimal subsampling with subsample size 20,000, and
divide-and-conquer with 1000 random blocks are shown in Table 12 and Figure 8
in the Appendix. With the given partition, MR is comparable to A-optimal
subsampling method in terms of computational time; SMR is a little slower
than MR but faster than the divide-and-conquer method.

One drawback of k-means clustering algorithm is that its time cost grows
fast as N increases. In practice, we recommend a subset clustering strategy.
That is, the K clustering centers are determined by a subset of M data points
(M < N), and the partition of the full data is determined by measuring the
distance between the data points and the K centers. Since the predetermined
M mainly depends on the number p of predictors, not the sample size N, the
time cost of subset clustering is O(Np). According to our simulation study (see
Section A.7 of the Appendix), the subset clustering strategy can significantly
reduce the clustering time cost, while keeping the efficiency of representative
approaches.
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4. A case study: airline on-time performance data

The Airline on-time performance data for the US domestic flights of arrival time
from October 1987 to December 2019 were collected from the Bureau of Trans-
portation Statistics (https://www.transtats.bts.gov/) as a real example for
big data analysis. The original dataset consists of 387 csv files with the total
number of records 192, 555, 789 (see Table 16 in the Appendix for more details).
After cleaning, the total number of valid records is N = 188,690, 624.

For illustration purpose, we consider a main-effects logistic regression model
for binary response ArrDell5 (arrival delay for 15 minutes or more, 1I=YES)
with three categorical covariates and one continuous covariate: QUARTER (season,
1 ~ 4) instead of MONTH for simplification purpose; Day0fWeek (day of week,
1 ~ 7); DepTimeBlk (departure time block, 1 ~ 4) following the convention of
the O’Hare International Airport; and DISTANCE (distance of flight, 8 ~ 4983
miles). More details about the data and the fitted models could be found in
Section A.9 of the Appendix.

In order to evaluate the performance of MR and SMR given that the full data
estimate is not available, we choose the MR estimate of the main-effects logistic
model on the last 5 years’ data (from January 2015 to December 2019) as the
“oracle” regression coefficients (denoted by (3, see Table 14 in the Appendix),
and simulate 10 independent replicates of responses using the logistic model
with the oracle parameter values (3.

To show how MR and SMR work on the natural partition, we treat each
data file (labeled by MONTH) as a node and prohibit raw data exchanging be-
tween nodes. Note that the natural partition in this example is pre-determined.
The data from different nodes follow different distributions since the predictor
QUARTER is a constant in each node but varies across different nodes. We fur-
ther split each data file into 7 x 4 x 8 = 224 sub-partitions by cutting the only
continuous covariate DISTANCE at 8 equal-depth points and combining distinct
values of DayOfWeek and DepTimeBlk.

In order to show the change of estimate accuracy along with increased data
size, we run a sequence of four experiments using the first 60 months, 120
months, 240 months and all 387 months of data, respectively. In each exper-
iment, we obtain the full data estimate (not available for 240 months and 353
months due to too big data size), as well as the MR and SMR estimates, which
are listed in Table 5. The average and standard deviation (std) of RMSEs are
obtained from 10 independent simulations.

In terms of RMSE from the oracle 3 (see Table 5), MR and SMR perform as
good as the full data estimate for 60 months and 120 months. The main reason
is that the oracle coefficient of the only continuous predictor DISTANCE is as
small as 7.955 x 10~°. Even multiplied by the largest value of DISTANCE, 4983,
the contribution of DISTANCE is still less than 0.4, which is too small compared
with the oracle intercept —2.322. In other words, this scenario is fairly close to
a case where all predictors are categorical. According to Corollary 3.1, both MR
and SMR estimates match the full data estimate very well. Table 5 also shows
that as the data size gets bigger, including 240 months and 387 months, both
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TABLE 5
Average (std) of RMSEs (1072) from oracle B for Airline on-time performance data
Number of months Full MR SMR

60 months  13.768 (5.155)  13.763 (5.164)  13.760 (5.175)
120 months  11.391 (4.417) 11.384 (4.423)  11.370 (4.415)
240 months - 10.234 (4.068)  10.225 (4.066)
387 months - 9.058 (3.967)  9.051 (3.966)

Note: Full data estimates for 240 months and 387 months are not available
due to memory limit.

MR and SMR estimates are better than the last available full data estimate
obtained at 120 months.

It is interesting that if we amplify the effect of the continuous predictor
DISTANCE, say enlarge its oracle coefficient from 7.955 x 107° to 7.955 x 1074,
SMR estimate will show clearly higher accuracy than MR estimate (see Sec-
tion A.9 in the Appendix for more details).

5. Discussion and conclusion

In practice, a natural partition may be provided with partially homogeneous
blocks. In order to investigate the dependence of the proposed SMR approach
on homogeneous partitions, we run another simulation study letting the given
partition gradually change from a random partition to a homogeneous partition.
More specifically, under the logistic regression model (3.5) with 7 covariates, for
k=0,1,2,...,7, we first partition the data according to the first k covariates
into 4% blocks using the equal-depth criterion. We then, for each of the 4* blocks,
randomly divide the data in this block into 4”7 ~* sub-blocks. By this way, k = 0
actually leads to a random partition of 47 blocks, and k = 7 corresponds to an
equal-depth homogeneous partition. As k increases from 0 to 7, the partition
becomes more and more homogeneous. The performance of MR and SMR on
these partitions are displayed in Figure 2. In this simulation study, both MR
and SMR are affected by the homogeneous level of the natural partition. The
higher k is, the better performance they have. Overall, MR seems to be the
worst, which does not meet A-optimal sampler until £ = 7. SMR is not as good
as A-optimal one and DC when k is small, while it surpasses A-optimal one at
k > 4 and does better than DC at k = 7. An implication is that sub-partitions
are necessary for representative approaches when the natural partition is not
homogeneous.

When all predictors of the GLMs are categorical or discrete, the best solution
would be partitioning the data according to distinct predictor values if applica-
ble. In this case, A = 0, both the MR and SMR estimates exactly match the
full data estimate.

For GLMs with flat G(n) (that is, G'(n) is bounded by some moderate num-
ber), such as logit, probit, cloglog, loglog, and cauchit links for binomial models,
one may check the coefficients of the continuous variables fitted by MR. If all
linear predictors contributed by continuous variables are relative small compar-
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depth partitions (100 mzNormal simulations for 7 predictors under logistic model with N =
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ing to the intercept or linear predictors contributed by categorical ones, then
the MR estimate might be good enough. Otherwise, we recommend the SMR
solution. For GLMs with unbounded or large G’(n), such as Poisson model and
Gamma model, we recommend SMR, over MR with a finer partition (see Sec-
tion 3.5 for more detailed discussion).

Data partition, or more specifically, the maximum block size A, is critical for
both MR and SMR. Asymptotically, the accuracy of MR estimate depends on
A and will not benefit from an increased sample size unless for linear models,
while the accuracy of SMR estimate can still be improved with increased sample
size and fixed partition of the predictor space (see Section 3.5 and Section A.5
in the Appendix for more detailed discussion).

To illustrate how SMR scales with dimension d, we also run simulations
towards various covariate dimension d using MR, SMR, A-opt, and DC. To
avoid the increment of linear predictor along with dimension d, we randomly
generated a (d 4 1)-dimensional 3 for each simulation such that ||3|| = 3 as the
true regression coefficients. Figure 3 shows that, as the covariate dimension d in
the main-effects logistic model increases, the performance of the SMR estimate,
using MR estimate as initial value, gets away from the full data estimate. As we
expected, A increases with d, which leads to a challenge for both MR and SMR.
It seems that A-optimal sampler is fairly robust across different dimensions.
One strategy for solving large-d problems is to use A-optimal estimate as the
initial parameter value for SMR iterations.

When d is large, it is also difficult to reduce the maximum block size A
efficiently due to the curse of dimensionality. How we can obtain an efficient
partition or do variable selection for large dimension d is critical for representa-
tive approaches, but is out of the scope of this paper.

The framework of representative approaches allows the data analysts to work
with the representative data instead of the raw data. In the scenario where differ-
ent sources of data are owned by different individuals, organizations, companies,
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or countries (also regarded as nodes) with competing interests, the exchange of
raw data between nodes might be prohibited. In this scenario, neither divide-
and-conquer nor subsampling approaches are feasible, while representative ap-
proaches may provide an ideal solution since the representative data points
typically could not be used to track the raw data.

Compared with the CoCoA algorithms (Smith et al., 2018), the representa-
tive approaches introduced in this paper also require a central server to collect
representative data points and process regression analysis. Utilizing a similar
idea as in the COLA algorithm (He, Bian and Jaggi, 2018), the representative
approaches may be applied to decentralized environment as well.

Appendix
A.1. SMR and MR for linear model

The simulation study in this section is based on the linear regression model
Yi = Bo + Brwin + -+ + Baia + € (A1)

where i = 1,..., N and ¢’s are iid ~ N(0,02%). Note that linear regression
models are actually special cases of the generalized linear models with normally
distributed responses and identity link (see Table 1). Analogue to the simulation
setup in Section 3.2, we take N =105, d =7, 8y =0, 81 = --- = B4 = 0.5 and
0?2 =1, as well as the same distributions for simulating x; = (i1, - ,:CW)T.
The main-effects predictors in (A.1) are for illustration purpose. The representa-
tive approach can actually work with general predictors including, for example,
interactions of covariates.

In the absence of a natural partition, we again use an equal-depth partition
with m = 4 splits for each predictor, and a k-means partition with the number
of blocks K = 1000.



612 K. Li and J. Yang

TABLE 6
Average (std) of RMSEs (10=3) of 100 simulations for linear model (N = 10%)
Simulation Full Equal-depth (m = 4) k-means (K = 1000)
setup data Mid Med MR SMR MR SMR IBOSS
mzNormal 1.2 (0.3) | 239.4 (2.8)  28.7 (02) 1.4 (0.4) 1.4 (0.4) 1 5(0.4)  15(04) | 68 (1.9)
nzNormal 2(0.3) | 239.4 (2.8) 287 (0.2) 1.4(0.4) 1.4 (0.4) 6(0.4) 15 (04) | 6.8(L9)
ueNormal 5(02) | 251 (34) 43.6(0.3) 05 (0.2) 0.5 (0.2) 9(0.6) 0.9 (0.6) | 2.3(1.0)
mixNormal 1.3 (0.3) | 202.1 (2.9)  16.4 (0.2) 16 (0.5) 1.6 (0.5) 5(0.4) 15 (04) | 7.5 (2.0)
T 4(21) | 483 (42) 1068 (1.7) 103 (2.8) 10.2 (2.8) 11 1(31) 107 (31) | 12,0 (41)
EXP 9 (0.5) | 368.9 (4.1) 77 (1.1) 2.2 (0.6) 2.2 (0.6) 3(0.6) 2.1(0.6) | 6.0 (18)
BETA 9(0.7) | 27.7(0.9) 129 (0.9) 2.9 (0.8) 2.9 (0.8) 7(09) 3.3 (0.9) | 18.2 (5.2)

Mid: mid—pomt representative; Med: median representative;
IBOSS: information-based optimal subdata selection.

Table 6 shows both the average and standard deviation of the root mean
squared errors (RMSEs, (Ezzl(ﬂi — Bi)?/7)*/?) between the estimated param-
eter value Bi’s and the true value (;’s across different simulation settings and
each with 100 independent simulations.

In terms of RMSE, Table 6 clearly shows that MR outperforms both mid-
point (Mid) and median (Med) representative approaches, as well as informa-
tion-based optimal subdata selection (IBOSS) proposed by Wang, Yang and
Stufken (2019) with 20,000 subsamples, which is larger than the largest pos-
sible number of non-empty blocks or representatives. Compared with the true
parameter value, MR estimates are comparable even with the estimates based
on the full data.

From Table 6, we also see that the RMSE of MR based on the equal-depth
partition obtained from 11,488 ~ 16,384 non-empty blocks or representatives
on average are comparable with the RMSE of MR from the k-means partition
with 1000 representatives. It implies that representative approaches based on
clustered partition are more efficient. Actually, the maximum distance within
data blocks A = maxgmax; jer, || X; — X;||, may play an important role in
extracting data information more efficiently. The following theorem shows that
for linear models, the MR estimate is unbiased. It is also asymptotically efficient
as A — 0.

Theorem A.1. Suppose Zivzl X; XTI is positive definite. For linear model y; =
XI'B+e,i=1,...,N, with ¢ iid ~ N(0,02), the MR estimator

K

= anXkXT anxkyk

k=1

has mean B and covariance Cov(B3) = UQ(Zszl e XEXy,) ! given that A% <
N1 Zfil X;XT|l2, where the induced matriz norm || - |2 is the largest eigen-

value for positive semi-definite matrices. Furthermore, ||Cov(8) — Cov(B)|2 =
O(A?), as A goes to zero.

Proof of Theorem A.1. Recall that X; € RP? is the ith predictor vector, y; € R is
the ith response variable, i = 1,2,..., N;and y = (y1,...,yn)7 is the response
vector of the full data, X = (Xj,...,Xx)7 is the predictor matrix of the full
data.
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Given a data partition {Iy,...,Ix} of I = {1,..., N}, we denote by Xj,
Yk, €k the predictor matrix, the response vector and the error vector of the kth
block, k = 1,..., K, respectively. Then 2521 XFXy, = Zf\’ L X XTI, which is
positive definite according to our assumption.

Denote by ||-[|2 the induced matrix norm defined by [|A ||z = max =1 [|Ax],
which is actually the square root of the largest eigenvalue of A*A. If A is
positive semi-definite, then || Al is simply its largest eigenvalue.

K
DD (X = Xp) (X = Xp)"

k=1icl;
K

k=1 2
Denote by 6, = max; jez, [|X; — X[l Then 3,0, (Xi — Xp)(X; — Xp)T =

07 > e, aial for some a;’s satisfying [la;|| < 1. By the definition of the matrix
norm,

K

K
Z Xng - Z nkaXg
k=1 k=1

2 2

Z (X; — Xi) (X — Xp) 7

i€ly,

a;a’|| = ma aa X
,Z o =t 22
i€l i€l
12 (eS|
H = i<t
< ng

Therefore we have

K K K

ZX,{Xk - Z e XEX|| < an&j‘ < A’N (A.2)

k=1 k=1 9 -

Denote by A1 and Aj the smallest eigenvalues of matrices Zle XF X}, and

Zszl n;.cf({f(k, respectively. According to our assumption, A; > 0 regardless
of the partition. By (A.2), we have A} > A\; — A2N > 0 if A% < \;/N. That is,
Zle np X ¥ X, is invertible when A? is sufficiently small.

Therefore, we have the weighted least squares (WLS) estimate from mean
representative dataset

K
5 (z xx) S X
k=1

k=1

K -1 K
<anle ]lnk]lgka> anlek Nk nk
k=1
K *1 K
B+ (Z nklkaJnka> S n ' XE D, e

k=1 k=1
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where 1, is an ng x 1 vector of all 1’s, and J,, is an nj x ni matrix of all 1’s.
Then the MR estimator is unbiased since

K -1 K

E(B) =B +E <an1X{Jnka> > ' X[ Tnen | =8
k=1 k=1

and the covariance matrix of the MR estimator is given by

K K -1
Cov(B) =) _ Cov (Z . ¢ Jnka> ng ' XF D, ex
k=1

k=1

K [ K -1 K -1
:o’zz (Z n;ngJnka> n;zXEJika (Z nnganka>

k=1 \k=1 k=1

K -1
2 T

- — X7J,. X

(S Extnx)
k=1
X —1

:0’2 (Z nka Xk>
k=1

and the matrix norm of difference between the Fisher information matrices of
OLS and MR is given by

K K
Z xXIx, - Z neXFX,
k=1 k=1

Consider the induced matrix norm of difference between covariance matrices
of OLS and MR estimators

|cov(8) - covip)|

K K
=0 || mXEXe) T = O XX
k=1 k=1 2
K o K K o K
=o” || XEXe) O XX =D XX (O XE X))
k=1 k=1 k=1 k=1 2
K o K K o K
<o? |0 meXEXp) 7 DD XX - XX [ O D XX
k=1 2 k=1 k=1 2 k=1 2

<a*(\) 7L AN AT
<o?*(M\ — AZN)H AN A
<202\ 2NA?

The last “<” holds if A2 < \;/(2N). Therefore, as A goes to zero, Cov(3)

converges to Cov(8) in terms of the largest eigenvalue. O



Score-matching representative approach 615

Best Partition: From the proof of Theorem A.1, we know that the difference
between the Fisher information matrices of 8 and B is actually bounded by
Zszl nkdz up to a constant, where §; = max; jer, [|Xi — X;|| is the kth block
size. Fixing the number K of blocks, a natural question is to find a partition
that minimizes the upper bound Ele noz.

Assume that the average density of the kth block is fi, such that, ny ~ c- 97, fi
for some constant ¢ > 0 and r > 0. Typically r = d while in general r depends on
the mapping from the covariate vector x; to the predictor vector X;. Then the
goal is to minimize 25:1 n11€+2/rf,;2/r subject to Zszl ng = N. Let wy, = ny/N.
The goal is equivalent to minimize

K

S w A (A.3)
k=1

subject to Zszl wy = 1. Plugging wyx = 1 — Zf:_ll wy, into (A.3) and differen-
tiating it with respect to wg, we get

K—1 K-1 1+2/p
St (125w )
k=1

k=1

Fork=1,..., K —1,

=

1 14+2/r
wk> =0

9 }7:1 / /

1+2/r p—2/7r
- f + 11—
Wk k=1 wk * ( 1

k

which implies wi/ fr, = wx/fx, k=1,..., K — 1, which further implies

i

w = ———————
TR Ik

Therefore, the partition minimizing the upper bound satisfies

5 (nk>1/7‘ ( N/C )1/7‘
ER =\
cfr fi++ [k

which is the same for £ = 1,..., K. That is, the best partition keeps all the
blocks about the same size. It explains why a k-means partition works usually
better than a equal-depth partition for MR in linear regressions, because it
minimizes Y1, Yier, IXi = X[ (Raykov et al., 2016).

From Theorem A.1, we also see that if the grids of partition are coarse, the
variance of MR estimate could be large and away from the variance of OLS.

_ Asfor the comparison between MR and SMR, in terms of the RMSEs between
B and B (such as in Table 6), the performances of MR and SMR are similar and
both comparable with the full data estimate 3 (shown in Table 6). Since for
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TABLE 7
Average (std) of RMSEs (1073) from 3 of 100 simulations for linear model (N = 10°)

Simulation Equal-depth (m = 4) k-means (K = 1000)

setup MR SMR MR SMR
mzNormal _ 0.664 (0.183) _ 0.660 (0.182) | 0.761 (0.214) _ 0.733 (0.207)
nzNormal  0.664 (0.183) 0.657 (0.181) | 1.067 (0.300)  0.980 (0.299)
ueNormal  0.194 (0.106)  0.192 (0.108) | 0.723 (0.482) 0.699 (0.472)
mixNormal  0.856 (0.240)  0.845 (0.238) | 0.858 (0.243)  0.823 (0.237)
T3 6.793 (1.938)  6.729 (1.942) | 7.709 (2.326)  7.226 (2.198)
EXP 1.175 (0.291)  1.145 (0.288) | 1.250 (0.313)  0.974 (0.276)
BETA 0.627 (0.149)  0.610 (0.144) | 2.286 (0.650) 1.461 (0.568)

TABLE 8
Average absolute value of intercept estimate (1073) of 100 simulations for linear model
(N = 108, using equal-depth partitions with m = 4 for representative approaches)

Simulation setup Full data Mid Med MR SMR IBOSS

mzNormal 0.7 23.8 0.9 0.7 0.7 6.1
nzNormal 1.7 2512.8 300.6 1.8 1.8 8.0
ueNormal 0.7 104.3 1.9 0.7 0.7 4.0
mixNormal 0.8 29.5 0.8 0.8 0.8 5.2
Ts 0.7 46.9 0.7 0.7 0.7 5.3
EXP 2.2 661.9 104.2 2.7 2.7 9.6
BETA 2.7 96.3 44.0 2.7 2.7 23.5

practical data “true” model or “true” parameter value may not exist, a more
realistic goal is to match the full data estimate B

In Table 7, we show the RMSEs between B and ,é’ It confirms the conclusions
in Theorem 3.4 and Section 3.5. That is, for linear models, both MR and SMR
perform very well, while SMR is slightly better. Nevertheless, when the A is
small (for example, in the partition obtained by k-means), the global rate p(A)
of convergence (see Remark 3.2) is close to 0 and the improvement from MR to
SMR is significant.

It is also interesting to see different estimates on the intercept Sy. From
Table 8, it seems that MR and SMR are among the best and comparable with
the full data estimate.

A.2. Practical number of iterations for SMR

In order to determine a practical number T of iterations for SMR algorithm,
we simulate 100 datasets of size N = 106 for each of the seven distributions of
covariates in the linear model (A.1) and the logistic regression model (3.5). We
apply 20 iteration steps of SMR for examining a practical number of iterations.
Figure 4 and Figure 5 show that the iterative SMR based on a k-means partition
with K = 1000 improves the accuracy level significantly in the first 1 or 2
iterations. Starting from the 4th iteration, the relative improvements of RMSE
are less than 5% for ueNormal, and less than 2% for other distribution settings.

For GLMs with flat G(n) such as linear model and logistic model, typically
the first iteration based on the initial MR estimate improves the accuracy level
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significantly. For GLMs with steeper G(n) such as Poisson model with log link,
we recommend 7' = 3 (see also asymptotic properties discussed in Section 3.5).
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F1G 4. Boz-plots of iterative SMR on linear model: T' = 3 achieves a reasonably good accuracy
level; average RMSE from full data estimate B based on 100 replicates; N = 106 with k-
means partition at K = 1000; x-azis as the number of iterations of SMR from 0 to 20 with
0 representing MR.

A.3. SMR vs divide-and-conquer for logistic models

In this section, we use simulation studies to show that in terms of accuracy level
the 3-iteration SMR is comparable with the divide-and-conquer approach (Lin
and Xi, 2011), which is also known as divide and recombine, split and conquer,
or split and merger in the literature (Wang et al., 2016). When there is no
ambiguity, we call the 3-iteration SMR simply SMR.

We simulate 100 datasets of size N = 10% for each of the seven distributions
of covariates in the logistic regression model (3.5). We apply both SMR and the
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F1a 5. Boxz-plots of iterative SMR on logistic model: T' = 3 achieves a reasonably good accuracy
level; average RMSE from full data estimate B based on 100 replicates; N = 10° with k-
means partition at K = 1000; x-axis as the number of iterations of SMR from 0 to 20 with
0 representing MR.

divide-and-conquer (DC) algorithm proposed by Lin and Xi (2011) to estimate
the parameter values. Table 2 shows that SMR based on a k-means partition
with K = 1000 outperforms the divide-and-conquer method with 1000 blocks
in most of simulation settings. Actually, the SMR estimates are comparable
with the full data estimates in terms of RMSEs from the true parameter value.
In Figure 6 and Figure 7, we plot the corresponding boxplots. For comparison
purpose, we also list the corresponding MR, estimates, which are overall not as
good as DC’s.

SMR  is ideal for massive data stored in multiple nodes, since it exchanges
only the representative data points and estimated parameter values between
nodes. It can perform well even with limited network bandwidth.

On the contrary, divide-and-conquer methods typically operate on random
partitions. Each random data block for divide-and-conquer might consist of
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data points from many different nodes, which requires heavy communications
between nodes. It may not be feasible when raw data transfer is prohibited.
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F1G 6. Bozxplots of RMSEs from true parameter values based on 100 simulations under logistic
model with N = 10 full data estimate, MR and SMR using k-means partition with K = 1000,
and DC with 1000 points per block

A.4. SMR vs support points for logistic models

In order to compare the performance of the proposed methods and the support
points techniques (Mak and Joseph, 2018), we run a simulation study under the
logistic regression model with 7 covariates. We use R function sp in package
support for searching support points for a given dataset. Since it takes sp more
than one hour to generate 20,000 support points from 1,000,000 data points,
we reduce the simulation setup to choosing 1,000 support points from 10,000
original data points, which is the simulation setup used by Wang, Zhu and Ma
(2018).
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F1c 7. Boxplots of RMSEs from full data estimates based on 100 simulations under logistic
model with N = 109 : full data estimate, MR and SMR using k-means partition with K = 1000,
and DC with 1000 points per block

TABLE 9

Average (std) of RMSEs (10=3) of 100 simulations for logistic models with N = 10%: simple
random sample (SRS), support points (Support), A-optimal sampler (A-opt), MR, SMR
(with 1000 subsample/support/representative points)

Simulation setup SRS Support A-opt MR SMR
mzNormal 111 (3.0) 118 (3.4) 93 (2.6) 22 (0.4) 16 (0.4)
nzNormal 235 (7.5) 237 (7.9) 115 (3.6) 41 (1.1) 31 (1.0)
ueNormal 65 (3.2) 65 (3.3) 45 (1.8) 186 (1.0) 11 (0.5)
mixNormal 160 (4.7) 162 (4.6) 101 (3.7) 28 (0.6) 22 (0.6)

Ts 493 (15.9) 526 (14.3) 472 (15.5) 92 (2.6) 87 (2.6)
EXP 193 (5.2) 187 (4.8) 137 (4.0) 22 (0.6) 17 (0.5)
BETA 241 (6.5) 233 (6.6) 180 (5.2) 23 (0.7) 19 (0.6)

In Table 9, we list the average RMSE (ZZ:1(BZ' — B:)2/7)"2 over 100 sim-
ulations, where Bl is estimated by the full dataset consisting of 10,000 data
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points, f3; is estimated by 1000 simple random samples (SRS), support points
(Support), A-optimal sample points (Aopt), mean representatives (MR), or the
proposed score-matching representatives (SMR).

In terms of RMSE, SMR still performs the best. The difference between MR
and SMR is not as large as in Table 2 since the sample size N = 10% is smaller
in this simulation study.

A.5. MR and SMR with finer partition

According to Theorems 3.2 and 3.3, the estimate 3 obtained by MR or SMR
converges to the full data estimate B as A — 0. That is, with a finer partition,
B gets closer to B (but not necessarily closer to the true parameter 3 once the
dataset is given). Table 10 and Table 11 show that with finer and finer partitions,
both MR and SMR estimates get closer to B, while SMR is more robust to the
block size than MR.

TABLE 10
Average (std) of RMSEs (10=3) of 100 simulations for logistic model given equal-depth
partitions with different m

m RMSE from true 3 RMSE from full g
Full data MR SMR MR SMR

2 3.72(1.08) 69.82 (0.88) 4.75 (1.40) | 69.67 (0.48) 3.00 (1.00)

3 3.72(1.08) 33.35(1.05) 4.20 (1.16) | 33.09 (0.36) 1.90 (0.57)

4 3.72(1.08) 20.44 (1.00) 3.94 (1.15) | 20.06 (0.25) 1.44 (0.39)

5 3.72(1.08) 13.89 (1.06) 3.85(1.07) | 13.34 (0.20) 1.01 (0.31)

Sample size N = 10%; Covariate distribution: mzNormal

TABLE 11
Average (std) of RMSEs (1073) of 100 simulations for logistic model given k-means
partitions with different K

K RMSE from true (3 RMSE from full 8
Full data MR SMR MR SMR
500  3.72 (1.08) 21.14 (1.05) 4.26 (1.26) | 20.76 (0.33) 2.14 (0.69)
1000 3.72 (1.08) 17.95 (1.00) 4.14 (1.22) | 17.51 (0.30) 1.92 (0.49)
2000 3.72 (1.08) 15.17 (0.96) 4.09 (1.12) | 14.66 (0.31) 1.67 (0.51)
3000 3.72 (1.08) 13.75 (1.00) 4.08 (1.19) | 13.17 (0.29) 1.60 (0.47)

Sample size N = 106; covariate distribution: mzNormal

A.6. CPU time of MR and SMR

In this section, we provide Table 12 and Figure 8 mentioned in Section 3.6. All
computations are carried out on a single thread of a MAC Pro running macOS
10.15.6 with 3.5 GHz 6-Core Intel Xeon E5 and 32GB 1866 MHz DDR3 memory.
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TABLE 12
Average CPU time (secs) of MR, SMR, A-optimal, Divide-and-conquer over 100
stmulations for logistic model with d =7 covariates

Simulation setup Full data MR SMR A-opt DC

mzNormal 5.22 0.72 3.25 0.55  20.49
nzNormal 6.45 0.67 3.19 0.57 21.58
ueNormal 6.50  0.67 3.64 0.57 21.48
mixNormal 5.85 0.68 3.17 0.54 21.05
Ts 3.42  0.68 3.36 0.55 19.55
EXP 4.59 0.71 3.07 0.55  20.04
BETA 3.96 0.67 3.01 0.57  19.69

Distribution: mzNormal; N = 10%; MR and SMR (l-iteration):
given a k-means partition (K = 1000); A-opt: subsample size 20, 000;
DC: given a random partition with 1000 blocks

method
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— SWR 1e+02

time

me

S
. = 1e+01 method
o -+ Aopt
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0 25 50 75 100 1e-01 -
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(a) CPU time against d covariates with
N =10° (b) CPU time against N with d =7

Fic 8. Average CPU time (secs) over 100 simulations for logistic model with sample size N
and d covariates (mzNormal)

A.7. Subset clustering strategy

When there is no natural partition available or when sub-partitions are needed,
a partitioning procedure is required by representative approaches. Based on our
simulation study and justification (see Section 3.2 and Section A.1), a clustering
procedure, such as k-means, is more efficient than grid partitions. However, the
computational cost of k-means clustering is quite heavy especially for large sam-
ple size N. We recommend the subset clustering strategy (see the last paragraph
of Section 3.6), which can significantly reduce the clustering cost for represen-
tative approaches. More specifically, the K cluster centers are determined by
a clustering algorithm on a much smaller subset of size M, which will not be
changed as the full sample size N increases. Once the K centers are determined,
each data point with predictor vector X € RP is assigned to the cluster whose
center is closest to X. Since both K and M will not change with N and they
are much less than N, the time complexity of the overall clustering procedure
is O(Np).



Score-matching representative approach 623

To illustrate the performance of the subset clustering strategy compared with
a full data clustering for MR and SMR, we carry two simulation studies as
follows. In the first simulation study, we generate datasets with sample size
N =10°,10%,107,10% and d = 7 covariates following mzNormal for the logis-
tic model described in Section 3.2. For each N, we generate 100 independent
replicates. The size of a randomly selected subset for locating K = 1000 clus-
tering centers is fixed at M = 10°. Figure 9 shows in terms of the average SMR
RMSE over 100 simulations the difference between the subset clustering and the
full data clustering is negligible (the result of full data clustering is not available
at N = 10® due to too much computational time.

Table 13 shows the computational time on clustering. For full data clustering,
the time cost is proportional to the sample size N. For subset clustering, we
break the overall time cost into two parts. The first part is for locating the K
cluster centers based on the subset of size M, whose time cost is fairly short and
roughly constant. The second part is also full data clustering but with given K
cluster centers, whose time cost is also proportional to N but much less than
the original full data clustering. Overall, the subset clustering strategy reduces
the clustering cost significantly.

To further explore the interaction between the dimension of predictors and
the subset clustering strategy, we simulate datasets with d = 4,7,15,20 co-
variates and sample size N = 10° for logistic main-effects models. Since the
dimension of covaraites changes, for each simulation we randomly generate the
regression coefficients 3 such that ||3|| = 3. We also adopt different subset size
M =5 x10%10°,2 x 10°,10°. Figure 10 shows that in terms of MR and SMR
RMSEs, the subset clustering strategy is not sensitive to the initial subset size
M across different dimensions of predictors.

TABLE 13
Average CPU time (secs) of full data clustering (size N) and subset clustering (size
M = 10%) over 100 simulations for logistic model, d = 7 with mzNormal, k-means partition

(K =1000)

N full data centers subset cluster centers full data clustering given centers
10° 4.96 4.97 1.02
10¢ 49.81 5.01 10.08
107 478.85 4.81 96.48

108~ 4812.69 6.46 973.98

Full data centers: Finding cluster centers based on the full data of size N.
Subset cluster centers: Finding cluster centers based on the subset of size M.
*: CPU time with N = 108 is calculated over 30 replicates.

A.8. More proofs
Proof of Theorem 3.1: Plugging (3.3) into the left hand side of (3.2), we get

> ) (e — Gna))mi = rue v (i) (G — GG )it

i€l
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FIc 9. Full data clustering (size N) vs. subset clustering (size M = 10°): Bozplots of RMSEs
of SMR based on k-means clustering (K = 1000) over 100 simulations for logistic model
with d = 7 covariates and distribution mzNormal (full data clusterings are not available at
N =10%)
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F1c 10. Boxplots of MR and SMR RMSEs over 100 simulations based on subset clustering
with different subset size M and dimension d of covariates for logistic model with size N = 106
and distribution mzNormal, using k-means partitions (K = 1000)
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Let S(n) = v(n)(gx — G(n))n, a one-dimensional function of 7. Then (3.2) is
equivalent to

ny > Sni) = S(i) (A4)

i€l
Let a = min;ey, {n;} and b = max;cy, {n:}. Since S(n) is continuous on [a, b,
there exist Nmin, Pmax € [@, b] such that, S(Nmin) = min,c(q,p) S(n) and S(Mmax)
= maxye[q,5 S(1). Then n; Zzel S(1:) € [S(Mmin), S(Mmax)] and there exists
an 7, between Nmin and Nmax solving (A.4) and thus (3.2). O

Lemma A.1 (Kanniappan and Sastry, 1983, Theorem 2.2). Suppose X is a
finite dimensional space and f, : X — R, n = 0,1,..., are strictly convex.
Suppose fn, — fo uniformly and x¥, = argmin,f,(z) exists uniquely. Then
xy — xf as n goes to oo.

Proof of Theorem 3.2. According to McCullagh and Nelder (1989, Section 2.5),
the log-likelihood of a GLM with data 2 = {(X;,v;),i = 1,..., N}, which is
fixed throughout the proof, is given by

N
y:0(XTB) — b(0(XTB3))
I

where (-) = (b')"1(g7 (")), a(-), b(+) and ¢(-,-) are known functions, and ¢ is
the dispersion parameter. Given a data partition {I1,...,Ix}of I = {1,..., N},
which will become finer and finer later, the log-likelihood contributed by the kth
block 2y = {(Xi,yi), € I} with block size ny = |Ii| is essentially

W(B) = a(®) " [ub(X]B) - b(O(X] B))]
i€l
while the log-likelihood contributed by the weighted kth representative (ng, Xy,
Jk) is

(8) =nials) " [0(XEB) - b(6XTB))]

=a(¢)~! (nkﬂk - Z y1> (k) + Z { (X7 8) — b(0(X[B))

i€}, i€y,

=" ale) ™ [w0(XTB) — b(O(X] )|

i€ly

since g = n,;l Zielk yi. Then the log-likelihood based on the full data is [(3) =
Zk I(B), and the log-likelihood based on the weighted representative data is
1B) = 3, (3.

Recall that the derivative 91/93 is simply the score function (2.1). By plug-
ging in the first order Taylor expansion of I, about X at X; and the Cauchy-
Schwarz inequality, we have

1:(B) — Ik (B)
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= > {lw - XTBWXTB)] (X = Xi)T B+ o(IIXe — Xl |

i€y,
1/2
< (Z(yi — GXTE)XIB? S K — X ||ﬂ||2>
i€}, i€},
+ Z o(|IXx — X))
i€l
1/2
< mAll8|| ( "> i - GXTB)° (XiTﬁ)2> +> o(A)
i€l i€l

Denote Fj, = (n} ' Yiern, (Wi — G(XT3))?v(XTB)?*)'/2. Then for sufficiently
small A and all 8 € B, we have

K N
1) -18)| < S mAlIBIF+ > oA
k=1 i=1

< NA||B|| - maxFy + No(A)
< MA (A.5)

for some M > 0, which depends on the data, which is given and fixed, but not
the representatives or A. That is, I(8) converges to I(3) uniformly for all 8 € B
as A goes to 0.

The strict concavity of I(3) implies the existence and uniqueness of B € B,
such that 3 = arg maxgl(3). Let B maximize [(3). For sufficiently small A, [(3)

is also strictly concave, which guarantees the existence and uniqueness of ,6' By
Lemma A.1, B converges to ,8 as A — 0.
Since l(,@) is twice differentiable and gé = 0 at 3, the second-order Taylor

expansion of [(3) at B is
1B) = 108) + (B~ BTH(B)(B ~ B) +o(l18 ~ BI)

where H(B) = % is the Hessian matrix. Let A\; be the smallest eigenvalue
of H(B). Since I(8) is strictly concave, then A; > 0. For small enough [|8 — 3|,

1B) — 1B)| > IIﬁ el (A.6)

We claim that . R s -
18— 8| < (3MATY) 2 AV (A7)

Actually, if |3 — B||2 > 8MAT'A, then we have

1(B) —1(B) > 2MA (A.8)
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due to (A.6) and [(8) > I(3). From (A.5) and (A.8), we have
1(B) <1(B) + MA < I(8) —2MA + MA = 1(3) — MA (A.9)

On the other hand, since 8 maximizes I(3), we have

18) > 1(B) > 1(B) — MA

due to (A.5). That leads to a contradiction with (A.9). Thus (A.7) is justified
and

18— Bl = O(A?) 0

Recall that X; = (ha(x:), - .. hp(x;))T in general. Denote the kth represen-
tative Xk = (th .. ka) .

Corollary A.1. All three center representative estimates 3 — ,3 as A — 0.

Proof of Corollary A.1. For mean representatives, X = n,;l > X;. Then

i€ly,

max |[X; - X4l —max||nk1 > (X - X)) < max 1X; — X,
JEIk

Therefore, A = max;, maxier, || X; — Xk” < maxy max; jer, || X — X,|| = A.
Thus A — 0 also implies 8 — 3.
For median representatives, Xy, = median({h;(x;) | i € Ix}), I = 1,...,p.

Then
max
i€l

1/2
max || X; — X || [hz(Xi) Xkl]z}
i€l

s T~

1/2
< [hy(x:) — hi(x)]?
< 52‘0}5{2%%5 1(xi) — z(Xg)]}
» 1/2
< X; — X2
< [zgga,zn ]
= - max [|X; — X,
i,JE€Iy

Therefore, A < p'/2A. If A — 0, then 8 — B for median representatives.

For mid-point representatives, the kth block I is typically defined by the grid
points —oo < ag; < by < 0o such that, i € I, if and only if ag; < hy(x;) < by,
I =1,...,p. In this case, we redefine A = (Zle(bkl — akl)2)1/2 > A. Then
B — ﬁ as A — 0. O

When all the covariates are categorical or have finite discrete values, one may
partition the data according to distinct X;’s. In this case, A = 0.
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Corollary A.2. Let A be maxymax; jer, |X; — X;|| for mean and median
representatives, and (Zle(bkl — akl)2)1/2 for mid-point representative. Under
the conditions of Theorem 3.2, B — B as A — 0 and |8 — B| = O(AY/?). If
A =0, then the mid-point, median, and mean representative approaches are the
same and all satisfy 8= ,8

Proof of Corollary A.2. Since A < A for mean and mid-point representatives,
and A < pl/ 2A for median representatives, then under the conditions of Theo-
rem 3.2, B — Bas A — 0 and |3 — 8| = O(AY/?).

If A =0, then in each block all the predictor variables are the same, that is,
X; =Xy fori €Iy, k=1,...,K. Therefore, I(3) = lx(8), k=1,..., K and
B=4 0
Proof of Theorem 3.3. Since gy, = n;, ' Dien Vit O(A), following a similar ar-
gument for Theorem 3.2, we can obtain 3() converges to Bas A goes to 0 and

18Y — B8] = O(A'/2). O

Proof of Theorem 3.4. Let s(3) = s(B;y,X) as in (2.1) be the score function
based on the full data satisfying s(3) = 0. Let

Zn Y - GBTXT TR )XY

be the score function based on the representative data points for the (¢ + 1)th
iteration satisfying 5(3")) = s(8®")) and 3(B**Y) = 0. Consider their first-

order Taylor expansions at 3(*):

s(B) = s(8") + H(BD)(B - BY) + o8- B (A.10)
3(BUY) = 5(BW) + H(BW) (BT — 1) 4 oD — D) (A1)
where
K
2 ’ T
HE) = 55| =2 V(i) = G (v (i) XX
k=1 ZEI;C
- ds
)y = 22
HB™) = 36lsp0

K
=2 m [ g — G ) () — G’(ﬁk)y(ﬁk)} X+ (Xgﬂ))T
k=1

~ - T .
with n; = X7 8 and 7, = (X,(ct+1)> B®). Subtracting (A.10) from (A.11), we

obtain

BUHD — g0 = H(BY) T H(BY)(B-BY) +o(|BHY —BY) +o(1B - B
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Therefore,

B(t+1) _ B
(B — B) — (8- B
= (1= HBO) T HB)) (B - B)+o(IBH) — BV)) +o(18 - B)

According to Theorem 3.3, as A — 0, ||3®) — 8| = (A
) _

. 0 3 0 J and [|30+) — B|| =
O(A!2). Then |81 — W] < (|8 — G| + (|8 | =

?)
Bl = O(AY2). Thus

B~ 5 — (1- HEO)THED)) (B - §) + o A1)

According to condition (b), y,(:H) = 7k + O( ~) Since X; = X,(:H) +O(A)
for i € Iy, it can be verified that H(3®) = H(B®) + O(A). Therefore, I —
HBO) T H(BY) = 1— HBO) " (A(B9)+O0(A)) = O(A). Let p(A) be

the largest eigenvalue of I — f[(,é(t))’lfg(/é(t)). Then p(A) = O(A), which is
strictly less than 1 for sufficiently small A. Therefore,

1B = Bl < p(A)|BY = B + o(AV2) (A12)

It guarantees that B — B ast — oo and A — 0. O

Proof of Corollary 3.1. If A = 0, by definition we have X; = X}, and n; = 7
for all ¢ € I,. Therefore, g, = i and Xk = X, for both MR and SMR.

If A =0, then X; = X, and n; = n; for all 4,j € I, and thus §i = ¥
according to (3.3). Since n; = 7 for all i € I, then 7 is a solution for solving
(3.2). Since we always choose a solution closest to 7, when the solutions are not
unique, the proposed SMR have 7y = 7;. In this case, we have X = X by

(3.4).
In both cases, SMR and MR estimates are the same. By Corollary A.2, we
know both of them equal to the full data estimate 3. O

A.9. More on airline on-time performance data

In the simulation study (see Table 5) based on the oracle regression coefficients
B, MR and SMR perform about the same, which is mainly due to the tiny oracle
coefficient 7.955 x 10~° of the only continuous predictor DISTANCE.

In order to verify when SMR is better than MR, we inflate the oracle coef-
ficient of DISTANCE by 10 times to get a new oracle 3’ (see Table 14). Then
the maximum contribution of the predictor DISTANCE is about 4, which is ex-
pected to play a more important role in predicting Late Arrival. We redo the
simulation study in Section 4 with the new oracle 3’ and list the corresponding
results in Table 15. Clearly the SMR estimates show consistent advantage over
MR’s estimate throughout all data sizes. Both MR and SMR estimates based
on 387-month data are better than the last available full-data estimate based
on the 120-month data.
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The rest of this section provides detailed description of the airline raw data
(Table 16) and working data (Table 17), the MR and SMR estimates based
on all available 387 months (Table 18), and regression coefficients fitted yearly
based on the original GLM (full) or SMR algorithm (Figure 11).

TABLE 14
Oracle coefficients of predictors

Predictor Oracle 3 Inflated oracle 3’

Intercept -2.322 -2.322

QUARTER2 7.083e-02 7.083e-02

QUARTER3 3.215e-02 3.215e-02

QUARTER4 -1.396e-01 -1.396e-01

DAY_OF_WEEK2 -1.251e-01 -1.251e-01

DAY_OF_WEEK3 -1.178e-01 -1.178e-01

DAY_OF _WEEK4 4.755e-02 4.755e-02

DAY_OF _WEEK5 4.443e-02 4.443e-02

DAY_OF _WEEK6 -2.268e-01 -2.268e-01

DAY_OF _WEEK7 -1.022e-01 -1.022e-01

DEP_TIME_BLK2 4.229e-01 4.229e-01

DEP_TIME_BLK3 1.019e4-00 1.019e+-00

DEP_TIME_BLK4 1.230e4-00 1.230e+4-00

DISTANCE 7.955e-05 7.955e-04

TABLE 15
Average (std) of RMSEs (10~2) from oracle 3 for Airline on-time performance data

Number of months Full MR SMR
60 months 10.289 (3.814) 11.235 (5.937) 10.793 (5.298)
120 months 8.309 (4.306)  9.557 (5.221)  8.919 (5.028)
240 months - 9.019 (5.016)  8.482 (4.754)
387 months - 7.916 (4.282)  7.512 (4.162)

“7: Full data estimates for 240 months and 387 months are not available
due to memory limitation
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TABLE 16

Description of fields in the airline raw data
Field Name Description
YEAR Year, from 1987 to 2019
QUARTER Quarter (1-4)
MONTH Month
DAY_OF_MONTH Day of Month
DAY_OF_WEEK Day of Week
FL_DATE Flight Date (yyyymmdd)

ORIGIN_AIRPORT_ID

DEST_AIRPORT_ID

CRS_DEP_TIME
DEP_DELAY

DEP_DELAY_GROUP
DEP_TIME_BLK
CRS_ARR_TIME
ARR_DELAY

ARR_DELAY_GROUP
ARR_TIME_BLK
CANCELLED
CANCELLATION_CODE
DIVERTED
CRS_ELAPSED_TIME
DISTANCE
DISTANCE_GROUP

Origin Airport, Airport ID. An identification number assigned by US DOT to identify
a unique airport. Use this field for airport analysis across a range of years because an
airport can change its airport code and airport codes can be reused.

Destination Airport, Airport ID. An identification number assigned by US DOT to
identify a unique airport. Use this field for airport analysis across a range of years
because an airport can change its airport code and airport codes can be reused.
CRS Departure Time (local time: hhmm)

Difference in minutes between scheduled and actual departure time. Early departures

show negative numbers.

Departure Delay intervals, every (15 minutes from < —15 to > 180)
CRS Departure Time Block, Hourly Intervals

CRS Arrival Time (local time: hhmm)

Difference in minutes between scheduled and actual arrival time. Early arrivals show

negative numbers.

Arrival Delay intervals, every (15-minutes from < —15 to > 180)
CRS Arrival Time Block, Hourly Intervals

Cancelled Flight Indicator (1=Yes)

Specifies The Reason For Cancellation

Diverted Flight Indicator (1=Yes)

CRS Elapsed Time of Flight, in Minutes

Distance between airports (miles)

Distance Intervals, every 250 Miles, for Flight Segment

TABLE 17
Description of fields in the airline working data

Field Name

Description

ArrDellb

QUARTER

DayOfWeek

DepTimeBlk

DISTANCE

binary response variable: arrival delay indicator, 15
minutes or more (1=Yes)

season, “1”: January 1-March 31, “2”: April 1-June 30,
“3”: July 1-September 30,

“4”: October 1-December 31

day of week, “1”: Monday, “2”: Tuesday, “3”: Wednes-
day, “4”: Thursday, “5”: Friday,

“6”: Saturday, “7”: Sunday

CRS departure time block, “17: 12:00 AM - 05:59 AM,
“27: 06:00 AM - 11:59 AM,

“3”7:12:00 PM - 05:59 PM, “4”: 06:00 PM - 11:59 PM
distance between airports, in miles
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TABLE 18
MR and SMR estimates based on all 387 months
Predictor MR SMR
Intercept -1.984 -1.981
QUARTER2 -8.628e-02  -8.584e-02
QUARTER3 -1.163e-01  -1.163e-01
QUARTER4 -8.917e-02  -8.906e-02

DAY_OF _WEEK2 -7.486e-02  -7.587e-02
DAY_OF _WEEK3 -3.527e-03  -4.684e-03
DAY_OF _WEEK4 1.468e-01 1.461e-01
DAY_OF _WEEK5 1.775e-01 1.773e-01
DAY_OF _WEEK6 -1.844e-01  -1.854e-01
DAY_OF _WEEK7 -4.481e-02  -4.562e-02
DEP_TIME_BLK2 1.288e-01 1.274e-01
DEP_TIME_BLK3 6.739e-01 6.720e-01
DEP_TIME_BLK4 8.679e-01 8.665e-01

DISTANCE 1.732e-04 1.726e-04

06 full smr
04- ‘g
0.2- °
0.0- s
-02- E
15- o  — DAY_OF _WEEK2
1.0- W W B DAY_OF_WEEK3
05- % — DAY_OF_WEEK4
0.0- WN X/\/_/\/WM @ — DAY_OF_WEEKS
-05- A — DAY_OF_WEEKS
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-2.0- § — QUARTER2
-2.4- B QUARTERS
— QUARTER4
0.2- &
0.0- s
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-0.4- 2
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year

Fi1a 11. Regression coefficients fitted yearly by original GLM (full) or SMR algorithms
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