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Abstract: A solution manifold is the collection of points in a d-dimension-
al space satisfying a system of s equations with s < d. Solution manifolds
occur in several statistical problems including missing data, algorithmic
fairness, hypothesis testing, partial identifications, and nonparametric set
estimation. We theoretically and algorithmically analyze solution mani-
folds. In terms of theory, we derive five useful results: smoothness theorem,
stability theorem (which implies the consistency of a plug-in estimator),
convergence of a gradient flow, local center manifold theorem and conver-
gence of the gradient descent algorithm. We propose a Monte Carlo gradient
descent algorithm to numerically approximate a solution manifold. In the
case of the likelihood inference, we design a manifold constraint maximiza-
tion procedure to find the maximum likelihood estimator on the manifold.
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1. Introduction

A solution manifold [64] is the collection of points in d-dimensional space that
solves a system of s equations where s < d. Namely, feasible set is a collection
of points in an under-constrained system. Under smoothness conditions, the
feasible set forms a manifold known as a solution manifold.

The solution manifold occurs in many problems in statistics such as missing
data (Example 1), algorithmic fairness (Example 2), constrained likelihood space
(Example 3), and density ridges/level sets (Example 4). In the regular case that
s = d, the solution manifold reduces to the usual problems such as the Z-
estimators [77] or estimating equations [45]. While there has been a tremendous
amount of literature on the analysis of regular cases (s = d), little is known
when s < d. This study aims to analyze the problem when s < d and design a
practical algorithm to find the manifold.

Formally, let Ψ : R
d �→ R

s be a vector-valued function with s < d. The
solution set of Ψ

M = {x : Ψ(x) = 0}
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Fig 1. An example of a solution manifold formed by the parameter (μ, σ) of a Gaussian with a
tail probability bound P (−5 < Y < 2) = 0.5. The left panel shows 1000 random initializations
(uniformly distributed within [1, 3]× [2, 4]). We keep applying the gradient descent algorithm
until convergence (right panel). The black dashed line indicates the actual location of the
solution manifold.

is called the solution manifold and we call Ψ the generator (function) of M .
Note that in some applications, x represents the parameter in a model; thus,
sometimes we write M = {θ : Ψ(θ) = 0}. Here we provide examples of solution
manifolds from various statistical problems.

Example 1 (Missing data). Consider a simple missing data problem where
we have a binary response variable Y and a binary covariate X. The response
variable is subject to missing. We use a binary variable R to indicate the response
pattern of Y (i.e., Y is observed if R = 1). Depending on the value of R, we
may observe (X,Y,R = 1) or (X,R = 0). In this case, the entire distribution is
characterized by the following parameters:

ζx,y = P (R = 1|X = x, Y = y), μx = P (Y = 1|X = x), ξ = P (X = x)

for x, y ∈ {0, 1}. Parameter ζx,y is called missing data mechanism [47]. μx is
the regression function, and ξ is the marginal mean of X. Thus, this problem
has seven parameters. From the observed data (IID elements in the form of
(X,Y,R = 1) or (X,R = 0)), we can identify P (x, y,R = 1) and P (x,R = 0)
for x, y ∈ {0, 1}, which leads to six constraints (note that P (x, y, r) = P (X =
x, Y = y,R = r)):

P (1, 1, 1) = ζ11μ1ξ, P (1, 0, 1) = ζ10(1− μ1)ξ,

P (0, 1, 1) = ζ01μ0(1− ξ), P (0, 0, 1) = ζ00(1− μ0)(1− ξ)

P (X = 0, R = 0) = (1− ζ01)μ0(1− ξ) + (1− ζ00)(1− μ0)(1− ξ)

P (X = 1, R = 0) = (1− ζ11)μ1ξ + (1− ζ10)(1− μ1)ξ.

(1)

Thus, the feasible values of the parameters (ζx,y, μx, ξ) will form a solution man-
ifold and the above constraints describe the generator Ψ. Note that the result-
ing solution manifold is related to the nonparametric bound of the parameters
[49, 50, 17]; see Section 4.1 for more discussions.

Example 2 (Algorithmic fairness). The algorithmic fairness is a trending topic
in modern machine learning research [40, 26, 27]. We consider a post-processing
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method in the algorithmic fairness study. Suppose we have a binary response
Y ∈ {0, 1}, a sensitive binary variable A ∈ {0, 1} that we wish to protect, and
an output from a trained classifier W ∈ {0, 1} (one can view it as W = c(X,A),
where X is the covariate/feature and c is a trained classifier). The sensitive
variable is often the race or gender indicator. The classification result based on
W may discriminate against the sensitive variable A; that is, it is likely that
A = 1 and W = 1 occur at the same time. We want to construct a new ‘fair’
classifier Q ∈ {0, 1} such that Q is a random variable whose distribution depends
only on A and W and the output of Q will not discriminate against A. In other
words, we design a new random variable Q such that Q ⊥ Y |A,W . While there
are many principles of algorithmic fairness, we consider the test fairness [26]:
We want to construct Q such that

P (Y = 1|Q = s,A = 0) = P (Y = 1|Q = s,A = 1), (2)

for each s = 0, 1. To construct Q that satisfies the above constraint, we generate
Q based on A,W such that its distribution is determined by parameter qw,a =
P (Q = 1|W = w,A = a). As long as we can properly choose qw,a, the resulting
Q will satisfy equation (2). In this case, any qw,a solving the following two
equations will satisfy equation (2) (see Appendix B):∑

w qw,0P (W =w, Y =1|A=0)∑
w′ qw′,0P (W =w′|A=0)

=

∑
w qw,1P (W =w, Y =1|A=1)∑

w′ qw′,1P (W =w′|A=1)
.∑

w(1− qw,0)P (W =w, Y =1|A=0)∑
w′(1− qw′,0)P (W =w′|A=0)

=

∑
w(1− qw,1)P (W =w, Y =1|A=1)∑

w′(1− qw′,1)P (W =w′|A=1)
.

(3)
Note that P (W = w, Y = y,A = a) is identifiable from the data. The original
parameter {qw,a : w, a = 0, 1} is in four-dimensional space and we have two
constraints, leading to a solution manifold of two dimensions.

Example 3 (Constrained likelihood space). Consider a random variable Y from
an unknown distribution. We place a parametric model p(y; θ) of the underlying
PDF of Y where θ ∈ R

d is the parameter vector. Suppose that we have a set of
constraints on the model such that a feasible parameter must satisfy

f1(θ) = f2(θ) = · · · = fs(θ) = 0

for some given functions f1, · · · , fs. These functions may be from independence
assumptions or moment constraints E(gj(Y )) = 0 for some functions g1, · · · , gs.
The set of parameters that satisfies these constraints is

Θ0 = {θ : f�(θ) = 0, � = 1, · · · , s} = {θ : Ψ(θ) = 0} , (4)

which is a solution manifold with Ψ�(θ) =
∫
f�(y)p(y; θ)dy. The above model is

used in algebraic statistics [32, 55], partial identification problems with equality
constraints [38, 25], and mixture models with moment constraints [46, 14]. We
will return to this problem in Section 4.3.2. Figure 1 shows an example of a
solution manifold formed by the tail probability constraint P (−5 < Y < 2) = 0.5
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where Y ∼ N(μ, σ2). We have two parameters (μ, σ2) and one constraint; thus,
the resulting solution set is a one-dimensional manifold. From the left to the
right panels, we show that we can recover the underlying manifold by random
initializations with a suitable gradient descent process (Algorithm 1).

Example 4 (Density ridges). A k-ridge [35] of a density function p(x) is defined
as the collection of points satisfying

{x : Vk(x)
T∇p(x) = 0, λk(x) < 0},

where Vk(x) = [vk(x), · · · , vd(x)] ∈ R
(k−d) is the collection of eigenvectors of

H(x) = ∇∇p(x), and λk(x) is the k-th eigenvector. The eigen-pairs are ordered
as λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x). In this case Ψ(x) = Vk(x)

T∇p(x); hence, ridges
are also solution manifolds. In addition to ridges, the level sets and critical points
of a function [79, 48, 13] are examples of solution manifolds. We will discuss
this in Section 4.4

Although the aforementioned examples are from different statistical prob-
lems, they all share a similar structure that the feasible set forms a solution
manifold. Thus, we study properties of solution manifolds in this paper, and
our results will be applicable to all of these cases.

Main results. Our main results include theoretical developments and algo-
rithmic innovations. In the theoretical analysis, we show that under a similar
sets of assumptions, we have the following:

1. Smoothness theorem. The solution manifold is a (d − s)-dimensional
manifold with a positive reach (Lemma 1 and Theorem 3).

2. Stability theorem. As long as Ψ̂ and Ψ and their derivatives are suffi-
ciently close, M̂ = {x : Ψ̂(x) = 0} converges to M under the Hausdorff
distance (Theorem 5).

3. Convergence of a gradient flow. For the gradient descent flow of
‖Ψ(x)‖2, the flow converges (in the normal direction of M) to a point
on M when the starting point is sufficiently close to M (Theorem 7).

4. Local center manifold theorem. The collection of points converging to
the same location z ∈ M forms an s-dimensional manifold (Theorem 8).

5. Convergence of a gradient descent algorithm. With a good initial-
ization, the gradient descent algorithm of ‖Ψ(x)‖2 converges linearly to a
point in M (Theorem 9) when the step size is sufficiently small.

We propose three algorithms to numerically find solution manifolds and use
them to handle statistical problems:

1. Monte Carlo gradient descent algorithm: an algorithm generating
points overM that requires only the access to Ψ and its gradient (Section 3
and Algorithm 1).

2. Manifold-constraint maximizing algorithm: an algorithm that finds
the MLE on the solution manifold (Section 4.3.1 and Algorithm 2).

3. Approximated manifold posterior algorithm: a Bayesian procedure
that approximates the posterior distribution on a manifold (Appendix A



412 Y.-C. Chen

and Algorithm 3).

We would like to emphasize that while some of the theoretical results have
appeared in the regular case (s = d, i.e., the solution manifold is a collection of
points or just a single point), generalizing these results to the manifold cases (s <
d) requires non-trivial extensions of existing techniques. The major challenge
comes from the fact that the set M contains an infinite number of points and
the geometry of M will pose technical issues during the theoretical analysis.
Also, although the stability theorem has appears for specific examples such as
level set and ridge estimation [12, 66, 35], there is no such result for the general
class of solution manifolds. This paper provides a unified framework of analyzing
solution manifolds.

The impact of this paper is beyond statistics. Our result provides a new
analysis of the partial identification problem in econometrics [38, 25]. The local
center manifold theorem offers a new class of statistical problems where the dy-
namical system interacts with statistics [61]. The Monte Carlo approximation of
a solution manifold leads to a point cloud over the manifold, which is a common
scenario in computational geometry [24, 23, 30]. The algorithmic convergence of
the gradient descent demonstrates a new class of non-convex functions for that
we still obtain the linear convergence [10, 58].

Outline. The remainder of this paper is organized as follows. Section 2 pro-
vides a formal definition of a solution manifold and studies the smoothness and
stability of the manifold. Section 3 presents an algorithm for approximating the
solution manifold and an analysis of its properties. Section 4 discusses several
statistical applications of solution manifolds. Section 5 provides future direc-
tions, connections with other fields, and some manifolds in statistics that are
not in a solution form.

Notations. Let v ∈ R
d be a vector and V ∈ R

n×m be a matrix. ‖v‖2 is the
L2 norm (Euclidean norm) of v, and ‖v‖max = max{|v1|, · · · , |vd|} is the vector

max norm. For matrices, we use ‖V ‖ = ‖V ‖2 = max‖u‖=1,u∈Rm
‖V u‖2

‖u‖2
as the L2

norm and ‖V ‖max = maxi,j ‖Vij‖ as the max norm. For a squared matrix A, we
define λmin(A), λmax(A) to be the minimal and maximal eigenvalue respectively,
and λ2

min,>0(A) as the smallest non-zero eigenvalue. For a vector value function
Ψ, we define a maximal norm of derivatives as

‖Ψ‖(J)∞ = sup
x

max
i

max
j1

· · ·max
jJ

∣∣∣∣ ∂J

∂xj1 · · · ∂xjJ

Ψi(x)

∣∣∣∣
for J = 0, 1, 2, 3. When Ψ is a scalar function, this is reduced to

‖Ψ‖(1)∞ = sup
x

‖∇Ψ(x)‖max, ‖Ψ‖(2)∞ = sup
x

‖∇∇Ψ(x)‖max,

which are the usual maximal norm of the gradient vector and Hessian matrix
over all x. We also define

‖Ψ‖∗∞,J = max
j=0,··· ,J

‖Ψ‖(j)∞
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as a norm that measures distance using upto the J-th derivative. The Jacobian
(gradient) of Ψ(x) is an s× d matrix

GΨ(x) = ∇Ψ(x) =

⎡⎢⎢⎣
∇Ψ1(x)

T

∇Ψ2(x)
T

. . .
∇Ψs(x)

T

⎤⎥⎥⎦ ∈ R
s×d

and the Hessian of Ψ(x) will be an s× d× d array

HΨ(x) = ∇∇Ψ(x) ∈ R
s×d×d, [HΨ(x)]ijk =

∂2

∂xj∂xk
Ψi(x)

and third derivative of Ψ will be an array

∇∇∇Ψ(x) ∈ R
s×d×d×d, [∇∇∇Ψ(x)]ijk� =

∂3

∂xj∂xk∂x�
Ψi(x).

Let A be a set and x be a point. We then define

d(x,A) = inf{‖x− y‖ : y ∈ A}

as the projected distance from x to A. For a set A and a positive number r, we
denote A⊕ r = {x : d(x,A) ≤ r}.

2. Solution manifold and its geometry

Let Ψ : Rd �→ R
s be a vector-valued function and M = {x : Ψ(x) = 0} be the

solution set/manifold. When the Jacobian matrix GΨ(x) = ∇Ψ(x) has rank s
at every x ∈ M , the set M is an (d − s)-dimensional manifold locally at every
point x due to the implicit function theorem [72]. In algebraic statistics, the
parameters in the solution set {x : Ψ(x) = 0} are called an implicit (statistical)
algebraic model [36].

For a solution manifold, its normal space can be characterized using the
following lemma.

Lemma 1. For every point x ∈ M , the row space of GΨ(x) ∈ R
s×d spans the

normal space of M at x.

Lemma 1 is an elementary result from geometry (see Section 6.5.1 of [34]);
hence, we omit its proof. Lemma 1 states that the Jacobian/gradient of Ψ is
normal to the solution manifold. This is a natural result because the gradient
of a function is always normal to the level set and the solution manifold can be
viewed as the intersection of level sets of different functions.

2.1. Assumptions

We will make the following two major assumptions in this paper. All the theo-
retical results rely on these two assumptions.
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(D-k) Ψ(x) is bounded k-times differentiable.
(F) There exists λ0, δ0, c0 > 0, such that

A. λmin(GΨ(x)GΨ(x)
T ) ≡ λmin,>0(GΨ(x)

TGΨ(x)) > λ2
0 for all x ∈ M ⊕

δ0 and

B. ‖Ψ(x)‖max > c0 for all x /∈ M ⊕ δ0.

Assumption (D-k) is an ordinary smoothness of the generator function. It
may be relaxed by a Hölder type condition on Ψ(x). Assumption (D-k) is weaker
for a smaller integer k. In the stability analysis, we need (D-1) (i.e., bounded
first order derivative) condition. If we want to control the smoothness of the
manifold, we need (D-2) or a higher-order condition. The stability of a gradient
flow requires a (D-3) condition. Assumption (F) is a curvature assumption of Ψ
around the solution manifold. Lemma 1 implies that the normal space of M at
each point is well-defined. This assumption will reduce to commonly assumed
conditions in the literature. For instance, in the case of mode estimation (finding
the local modes of a PDF p(x)), (F) reduces to the assumption that the local
modes are well-defined as separated [68, 69]. This is similar to the assumption
that the PDF p(x) is a Morse function [19, 43]. In the MLE theory, (F) refers to
the Fisher’s information matrix being positive definite at the MLE (and other
local maxima), which is often viewed as a classical condition in the MLE theory
(see, e.g., Chapter 5 of [77]). In the problem of finding the density level sets
(finding the set {x : p(x) = λ}), this assumption is equivalent to assuming that
p(x) has a non-zero gradient around the level set [56, 76, 57, 12, 48, 44]. The
assumption (F) is critical to the that the set M forms a manifold. When there
is no lower bound λ0, i.e., the gradient λmin(GΨ(x)GΨ(x)

T ) attains 0, the set
M may not form a manifold. One scenario that this occurs is the density level
set {x : p(x) = λ} such that the density function p(x) is flat at the level λ.

The constants in (F) can be further characterized by the following lemma.

Lemma 2. Assume (D-2) and that there exists λM > 0 such that

(F ′) inf
x∈M

λmin(GΨ(x)GΨ(x)
T ) ≥ λ2

M .

Then the constants in (F) can be chosen as

λ0 =
1

2
λM , δ0 =

3λ2
M

8‖Ψ∗
∞,1‖‖Ψ∗

∞,2‖
, c0 = inf

x/∈M⊕δ0
‖Ψ‖max.

Lemma 2 only places assumptions on the behavior of Ψ and its deriva-
tives on the manifold M . (F’) is the eigengap conditions for the row space
of GΨ(x). The assumption in Lemma 2 is very mild. When estimating the local
modes of a function, the assumption is the same as requiring that the Hes-
sian matrix at local modes have all eigenvalues being positive. The requirement
infx∈M λmin(GΨ(x)GΨ(x)

T ) ≥ λ2
M implies that rows of GΨ(x) are linearly in-

dependent for all x.
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Fig 2. An illustration for reach. Reach is the largest radius for a ball that can freely move
along the manifold M without penetrating any part of M . In (a), the radius of the pink ball
is the same to the reach. In (b), the radius is too large; hence, it cannot pass the small gap
on M .

Fig 3. An example of a smooth generator Ψ but the resulting solution manifold M = M1∪M2

may have 0 reach. The dashed line is the contour lines for different levels.

2.2. Smoothness of solution manifolds

We introduce the concept of reach [33, 28, 1, 2] (also known as condition number
in [59] and minimal feature size in [15]) to describe the smoothness of a manifold.
The reach is the longest distance away from M , in which every point within this
distance to M has a unique projection onto M , that is,

reach(M) = sup{r > 0 : ∀x ∈ M ⊕ r, x has a unique projection onto M}. (5)

The reach can be viewed as the largest radius of a ball that can freely move
along the manifold M . See figure 2 for an example. The reach has been used in
nonparametric set estimation as a condition to guarantee the stability of a set
estimator [18, 20, 28].

The smoothness of Ψ does not suffice to guarantee the smoothness of a solu-
tion manifold. Consider the example of a density level set {x : p(x) = λ} with a
smooth density p(x). By construction, this level set is a solution manifold with
Ψ(x) = p(x) − λ, a smooth function. Suppose that p(x) has two modes and a
saddle point c. If we choose λ = p(c), the level set does not have a positive
reach. See Figure 3 for an example.

Although the smoothness of Ψ is not enough to guarantee a smooth M , with
an additional condition (F), the solution manifold will be a smooth one as will
be described in the following theorem.
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Theorem 3 (Smoothness Theorem). Conditions (D-2) and (F) imply that the
reach of M has a lower bound

reach(M) ≥ min

{
δ0
2
,

λ0

‖Ψ‖∗∞,2

}
.

Theorem 3 shows a lower bound on the reach of a solution manifold. Es-
sentially, it shows that as long as the generator function is not flat around the
solution manifold (assumption (F)), the resulting manifold will be smooth. Note
that for Theorem 3, condition (D-2) can be relaxed to a 2-Hölder condition and
the quantity ‖Ψ‖∗∞,2 can be replaced by the corresponding Hölder’s constant.

Remark 1. Reach is related to the curvature and a quantity called folding [65].
Folding is defined as the smallest radius r such that B(x, r)∩M is connected for
each x ∈ M . The first quantity δ0

2 is related to the folding. The second quantity
λ0

K is related to the curvature. When s = 1, a similar result to Theorem 3
appeared in [79]. Note that the reach is also related to the ‘rolling properties’
and ‘α-convexity’; see [28] and Appendix A of [60].

2.3. Stability of solution manifolds

In this section, we show that when two generator functions are sufficiently close,
the associated solution manifolds will be similar as well. We first start with a
partial stability theorem, which holds under a weaker smoothness condition.

Proposition 4. Let Ψ, Ψ̃ : Rd �→ R
s be two vector-valued functions and let

M = {x : Ψ(x) = 0}, M̃ = {x : Ψ̃(x) = 0}

be the corresponding solution manifolds. Moreover, let δ0 and c0 be the constants
in (F). Assume that (D-1) holds within M⊕δ0 and (F). When ‖Ψ̃−Ψ‖∗∞,0 < c0,
we have

sup
y∈M̃

d(y,M) = O
(
‖Ψ̃−Ψ‖(0)∞

)
.

In the case of s = d, the conditions in Proposition 4 show many connections
to the existing work. For instance, the convergence rate of estimating a mode (or
a local mode) is often based on a similar condition to (D-1); see, e.g., Theorem
2 of [78]. In the MLE and Z-estimation theory (see, e.g., Section 5.6 and 5.7
of [77]), classical conditions often require the first order derivative of the score
equation or estimating equations to be uniformly bounded, which are similar to
conditions of (D-1). Moreover, in the MLE theory, we often need the derivative of
the score function (or Fisher’s information matrix under appropriate conditions)
to be non-singular within a small neighborhood of the population maximizer.
This is exactly the same as condition (F). The constant λ0 in (F) is the smallest
absolute eigenvalue of the derivative of the score function in the case of MLE
problems.
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Note that in the case of s = d, Proposition 4 is often enough for statistical
consistency because M is a collection of disjoint points; thus, there is no need to
consider the smoothness of M . However, when s < d, the set M contains infinite
amount of points and the smoothness of M plays a role in terms of analyzing
its stability. Therefore, we will need additional derivatives.

Before we formally state the stability theorem, we first introduce the concept
of the Hausdorff distance, a common metric of sets. The Hausdorff distance is
defined as

Haus(A,B) = max

{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)

}
.

The Hausdorff distance is a distance between two sets and can be viewed as an
L∞ type distance between sets.

Theorem 5 (Stability Theorem). Let Ψ, Ψ̃ : Rd �→ R
s be two vector-valued

functions and let

M = {x : Ψ(x) = 0}, M̃ = {x : Ψ̃(x) = 0}

be the corresponding solution manifolds. Assume (D-2) and (F) and that Ψ̃ is
bounded two-times differentiable. When ‖Ψ̃−Ψ‖∗∞,2 is sufficiently small,

1. (F) holds for Ψ̃.

2. Haus(M, M̃) = O
(
‖Ψ̃−Ψ‖(0)∞

)
.

3. reach(M̃) ≥ min
{

δ0
2 ,

λ0

‖Ψ‖∗
∞,2

}
+O

(
‖Ψ̃−Ψ‖∗∞,2

)
.

Theorem 5 shows that two similar generator functions have similar solution
manifolds. Claim 2 is a geometric convergence property indicating that a con-
sistent generator function estimator implies a consistent manifold estimator.
The need of a second-order derivative comes from the constants in (F). These
constants are associated with the second-order derivatives through Lemma 2.
Claim 3 is the convergence in smoothness, which implies that M̃ cannot be very
wiggly when Ψ̃ is sufficiently closed to Ψ.

Example 5 (Missing data). The stability theorem (Theorem 5) provides a sim-
ple approach for obtaining the convergence rate of an estimator. Consider the
missing data example in Example 1. The ‘population’ solution manifold is the
parameters θ = (ζx,y, μx, ξ)

Θ = {θ : Ψ(θ) = 0} ⊂ R
7

such that Ψ(θ) ∈ R
6 is based on equation (1). When we observed random samples

of size n in the form of (Xi, Yi, Ri = 1) or (Xi, Ri = 0), we derived estimators

P̂ (X = x, Y = y,R = 1) and P̂ (X = x,R = 0) and constructed an estimated

version Ψ̂n(θ) by replacing P (x, y, r = 1) and P (x, r = 0) in equation (1) with
the estimated versions. This leads to an estimated solution manifold

Θ̂n = {θ : Ψ̂n(θ) = 0} ⊂ R
d.



418 Y.-C. Chen

Algorithm 1 Monte Carlo gradient descent algorithm
1. Randomly choose an initial point x0 ∼ Q, where Q is a distribution over the region of
interest K.
2. Iterates

xt+1 ← xt − γ∇f(xt) (7)

until convergence. Let x∞ be the convergent point.
3. If Ψ(x∞) = 0 (or sufficiently small), we keep x∞; otherwise, discard x∞.
4. Repeat the above procedure until we obtain enough points for approximating M .

The stability theorem (Theorem 5) bounds the distance between Θ̂n and Θ via
the difference

max{|P̂ (x, y, r = 1)− P (x, y, r = 1)|, |P̂ (x, r = 0)− P (x, r = 0)| : x, y = 0, 1}.

3. Monte Carlo approximation to solution manifolds

Given Ψ or its estimator/approximation Ψ̂, numerically finding the solution
manifold M is a non-trivial task. In this section, we propose a simple gradient
descent procedure to find a point on M . Note that though we describe the
algorithm using Ψ, we will apply the algorithm to Ψ̂ in practice. M is the
solution set of Ψ; thus, we may rewrite it as

M = {x : Ψ(x) = 0} = {x : f(x) = 0},
f(x) = Ψ(x)TΛΨ(x),

(6)

where Λ is an s× s positive definite matrix. Let x be an initial point. Consider
the gradient flow πx(t):

πx(0) = x, π′
x(t) = −∇f(πx(t)).

Points in M are stationary points of the gradient system; moreover, they are
the minima of the function f(x). Thus, we can use a gradient descent approach
to find points on M . Algorithm 1 summarizes the gradient descent procedure
for approximating M . Note that we may choose Λ = I to be the identity matrix.
In this case, f(x) = ‖Ψ(x)‖2, so we will be investigating the gradient descent
flow of ‖Ψ(x)‖2. For the case of d = s, this is a common method in numerical
analysis to find the solution set of non-linear equations; see, e.g., Section 6.5 of
[29].

Algorithm 1 consists of three steps: a random initialization step, a gradient
descent step, and a rejection step. The random initialization step allows us to
explore different parts of the manifold. The gradient descent step moves the
initial points to possible candidates on M by iterating the gradient descent.
The rejection step ensures that points being kept are indeed on the solution
manifold.

Note that the random initialization and rejection steps are popular strategies
in numerical analysis. They serve as a remedy to resolve the problem of local
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minimizers of f that is not in the solution manifold M . See the discussion in
page 152 of [29].

Figure 1 shows an example of finding the solution manifold

{(μ, σ) : P (−5 < Y < 2) = 0.5, Y ∼ N(μ, σ2)}

using random initializations (from a uniform distribution over [1, 3]× [2, 4]) and
the gradient descent (we will provide more details on the implementations later
in Example 6). We recover the underlying 1-dimensional manifold structure
using Algorithm 1.

3.1. Analysis of the gradient flow

When an initial point is given, we perform gradient descent to find a minimum.
We analyze this process by starting with an analysis of the (continuous-time)
gradient flow πx(t). The gradient descent algorithm can be viewed as a discrete-
time approximation to the continuous-time gradient flow. To analyze the con-
vergence of the flow and the algorithm, we denote Λmax and Λmin as the largest
and smallest eigenvalues of Λ, respectively.

Lemma 6. Assume (D-2) and (F). Let Gf (x) = ∇f(x) and Hf (x) = ∇∇f(x)
and Gψ(x) = ∇Ψ(x) ∈ R

s×d. Then we have the following properties:

1. For each x ∈ M ,

(a) the non-zero eigenvectors of Hf (x) span the normal space of M at x.

(b) the minimal non-zero eigenvalue

λmin,>0(Hf (x))≥ψ2
min(x)≡λ2

min,>0(Gψ(x)
TGψ(x))Λmin≥2λ2

0Λmin.

(c) the minimal eigenvalue in the normal space of M at x λmin,⊥(Hf (x))
= λmin,>0(Hf (x)).

2. Suppose that x has a unique projection xM ∈ M and let NM (x) be the nor-

mal space of M at xM . If d(x,M) < δc = min
{
δ0,

Λmin

8dΛmax

λ2
0

‖Ψ‖∗
∞,2‖Ψ‖∗

∞,3

}
,

then

λmin,⊥,M (Hf (x))≡ min
v∈NM (xM )

vTHf (x)v

‖v‖2 = min
v∈NM (xM )

‖Hf (x)v‖
‖v‖ ≥λ2

0Λmin.

Property 1 in Lemma 6 describes the behavior of the Hessian Hf (x) on the
manifold. The eigenspace (corresponds to non-zero eigenvalues) is the same as
the normal space of the manifold. With this insight, it is easy to understand
property 1-(c) that the minimal eigenvalue in the normal space is the same as the
minimal non-zero eigenvalue. Property 2 is about the behavior of Hf (x) around
the manifold. The Hessian Hf (x) is well-behaved as long as we are sufficiently
close to M . The following theorem characterizes several important properties of
the gradient flow.
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Theorem 7 (Convergence of gradient flows). Assume (D-3) and (F). Let δc
be defined in Lemma 6. Define πx(∞) = limt→∞ πx(t). The gradient flow πx(t)
satisfies the following properties:

1. (Convergence radius) For all x ∈ M ⊕ δc, πx(∞) ∈ M .

2. (Terminal flow orientation) Let vx(t) =
π′
x(t)

‖π′
x(t)‖

be the orientation of the

gradient flow. If πx(∞) ∈ M , then vx(∞) = limt→∞ vx(t) ⊥ M at πx(∞).

The first result of Theorem 7 defines the convergence radius of the gradient
flow. The flow converges to the manifold as long as the gradient flow starts within
δc distance to the manifold. The second statement of the theorem characterizes
the orientation of the gradient flow. The flow intersects the manifold from the
normal space of the manifold. Namely, the flow hits the manifold orthogonally.
If we choose Λ = I to be the identity matrix (Λmin > 0 in this case), Theorem 7
implies the convergence of the gradient flow of ‖Ψ‖2.

Note that Theorem 7 requires one additional derivative (D-3) because we
need to perform a Taylor expansion of the Jacobian of Ψ around M to ensure
that the gradient flow converges from a normal direction to a manifold. We need
the third-order derivatives to ensure that the remainders are small.

Suppose that the initial point x is drawn from the distribution Q, which has
a PDF q, the convergent point πx(∞) can be viewed as a random draw from
a distribution QM defined over the manifold M . The distribution Q and the
distribution QM are associated via the mapping induced by the gradient descent
process; thus, QM is a pushforward measure of Q [7]. We now investigate how
Q and QM are associated.

For every point z ∈ M , we define its basin of attraction [13, 19] as

A(z) = {x : πx(∞) = z}.

Namely, A(z) is the collection of initial points that the gradient flow converges
to z ∈ M . Let AM = ∪z∈MA(z) be the union of all basins of attraction. The
set AM characterizes the regions where the initialization leads to an accepted
point in Algorithm 1. Thus, the acceptance probability of the rejection step of
Algorithm 1 is Q(AM ) =

∫
AM

Q(dx).

Basin A(z) has an interesting geometric property of forming an s-dimensional
manifold under smoothness assumption. This result is similar to the stable man-
ifold theorem in dynamical systems literature [53, 54, 5]. In fact, it is more
relevant to the local center manifold theorem (see, e.g., Section 2.12 of [61]).

Theorem 8 (Local center manifold theorem). Assume (D-3) and (F). The
basin of attraction A(z) forms an s-dimensional manifold at each z ∈ M .

An outcome from Theorem 8 is that the pushforward measure QM has an
s-dimensional Hausdorff density function [52, 62] if Q has a regular PDF q. Note
that an s-dimensional Hausdorff density at point x is defined through

lim
r→0

QM (B(x, r))

Csrs
,
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where Cs is the s-dimensional volume of a unit ball. If the limit of the above
equation exists, QM has an s-dimensional Hausdorff density at point x.

Thus, if we obtain Z1, · · · , ZN ∈ M from applying Algorithm 1, we may view
them as IID observations from a distribution QM defined over the manifold
M , and this distribution QM has an s-dimensional Hausdorff density function.
The model that we observe IID Z1, · · · , ZN from a distribution supported over
a lower-dimensional manifold is common in computational geometry [24, 30,
31, 16]. Hence, Theorem 8 implies that Algorithm 1 provides a new statistical
example for this model.

Note that [3] proved the stability of a gradient ascent flow when the target is
to find the local modes of density function. The stability of basins of attraction
was studied in [21] in a similar scenario. These results may be generalized to
solution manifolds. The major technical issue that we need to solve is that
the convergent points of flows form a collection of infinite number of points.
Therefore, the analysis is much more complicated. We leave this as a future
work.

3.2. Analysis of the gradient descent algorithm

In Algorithm 1, we did not perform the gradient descent using the flow πx;
instead, we used an iterative gradient descent approach that creates a sequence
of discrete points x0, x1, · · · , x∞ such that

xt+1 = xt − γ∇f(xt), x0 = x, (8)

where γ > 0 is the step size.
The gradient descent algorithm will diverge if the step size γ is chosen incor-

rectly. Thus, it is crucial to investigate the range of γ leading to a convergent
point x∞ and how fast the sequence {xt : t = 0, 1, · · · } converges to a point on
M . The following theorem characterizes the algorithmic convergence along with
a feasible range of the step size γ.

Theorem 9 (Linear convergence). Assume (D-2) and (F). When the initial
point x0 and step size γ satisfy

d(x0,M) < δc = min

{
δ0,

Λminλ
2
0

8dΛmax‖Ψ‖∗∞,2‖Ψ‖∗∞,3

}
,

γ < min

{
1

Λmax‖Ψ‖∗∞,2

,
Λmax‖Ψ‖∗∞,2

4λ4
0Λ

2
min

, δc

}
,

we have the following properties for t = 0, 1, 2, · · · :

f(xt) ≤ f(x0) ·
(
1− γ

λ4
0Λ

2
min

Λmax‖Ψ‖∗∞,2

)t

,

d(xt,M) ≤ d(x0,M)
(
1− γλ2

0Λmin

) t
2 .
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The convergence radius δc is the same as in Theorem 7. Theorem 9 shows
that when the initial point is within the convergence radius of the gradient flow
and the step size is sufficiently small, the gradient descent algorithm converges
linearly to a point on the manifold. An equivalent statement of Theorem 9 is
that the algorithm takes only O(log(1/ε)) iterations to converge to ε-error to
the minimum.

The key step in the derivation of Theorem 9 is to investigate the minimal
eigenvalue of the normal space λmin,⊥(Hf (x)) for each x ∈ M . This quantity
(appears in the theorem through the lower bound λ2

0Λmin) controls the flattest
direction of f(x) in the normal space. The three requirements on the step sizes
are due to different reasons. The first requirement (γ < 1

Λmax‖Ψ‖∗
∞,2

) ensures that

the objective function is decreasing. The second requirement (γ <
Λmax‖Ψ‖∗

∞,2

λ2
0Λmin

)

establishes the convergence rate. The third requirement (γ < δc) guarantees
that the Hessian matrix behaves of f is well-behaved when applying the gra-
dient descent algorithm. The first and third requirements together are enough
for the convergence of the gradient descent algorithm but will not lead to the
convergence rate. We need the additional second requirement to obtain the con-
vergence rate.

Theorem 9 is a very interesting result. The function f(x) is non-convex within
any neighborhood of M (i.e., not locally convex), but the gradient descent al-
gorithm still converges linearly to a stationary point. An intuitive explanation
of this result is that the function f(x) is a ‘directionally’ convex function in the
normal subspace ofM (Property 2 in Lemma 6). Note that similar to Theorem 7,
Theorem 9 applies to the gradient descent algorithm with Λ = I.

4. Statistical applications

In this section, we show that the idea of solution manifolds can be applied to
various statistical problems. We also include a Bayesian approach that finds a
credible region on a solution manifold in Appendix A.

4.1. Missing data

The solution manifold framework we developed can be used to analyze the non-
parametric bound in the missing data problem [49, 50, 17]. We use Example 1 to
illustrate the idea, but our analysis can be generalized to a complex missing data
scenario. The nonparametric bound refers to the feasible range of parameters
θ = (ζx,y, μx, ξ : x, y = 0, 1) ∈ R

7 without any additional assumptions. Hence,
the only constraint for these seven parameters is the six equations in equation
(1). Thus, we know that the resulting parameter space is a one-dimensional
manifold.

This manifold will be a smooth one due to Theorem 3. The stability theorem
informs us that when we estimate the constraints by sample analogues, the
estimated manifold (can be viewed as an estimated nonparametric bound) will
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be at OP (1/
√
n) distance to the population manifold by the stability theorem

(Theorem 5).
Algorithm 1 provides a simple approach for numerically finding points on

this solution manifold. We can obtain a point cloud approximation of the 1D
manifold characterizing the nonparametric bound of all the parameters with
multiple random initializations.

4.2. Algorithmic fairness

We now revisit the algorithmic fairness problem in Example 2. We have shown
that a simple method of generating a test fair classifier Q from W,A is to sam-
ple from a Bernoulli random variable with a parameter qW,A = P (Q = 1|W,A)
that satisfies equation (3). This leads to a solution manifold Θ = {θ = (qw,a :
w, a = 0, 1) : Ψ(θ) = 0}, where Ψ(θ) is described in equation (3). By Theorem 3,
the collection of feasible parameters will be a smooth manifold. When we esti-
mate the underlying constraint by a random sample, the convergence rate (of
manifolds) is described by Theorem 5.

In practice, finding Θ is often not the ultimate goal. Our goal is to find a clas-
sifier that is test fair and has a good classification error [40, 27]. A conventional
approach of measuring classification accuracy is via a loss function L(y, y′) and
we want to find the optimal q∗w,a ∈ Θ such that

q∗ = argminq∈ΘR(q) = EQ∼q(L(Y,Q)).

This is essentially a manifold constraint maximization/minimization problem.
This problem also occurs in the constraint likelihood inference (see next section)
where we want to find the MLE under a solution manifold constraint. We will
discuss a unified treatment of this manifold-constraint optimization problem
in the next section and propose an algorithm for it (Algorithm 2). While the
algorithm is written in the form of finding the MLE, one can easily adapt it to
the test fairness problem.

4.3. Parametric model

One scenario that the solution manifolds will be useful is analyzing paramet-
ric models. We provide two different examples showing how solution manifolds
can be used in parametric modeling. Suppose that we observe IID observations
X1, · · · , Xn from some distribution P , and we model the distribution using a
parametric model Pθ and θ ∈ Θ. Let pθ be the PDF/PMF of Pθ and let

�(θ|X1, · · · , Xn) =
1

n

n∑
i=1

log pθ(Xi)

be the log-likelihood function. Note that in Appendix A, we also provide a
Bayesian procedure that approximates the posterior distribution on a manifold
(Algorithm 3).
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4.3.1. Constrained MLE

In the likelihood inference, we may need to compute the MLE under some
constraints. One example is the likelihood ratio test when the parametric space
Θ0 under H0 is generated by equality constraints. Namely,

Θ0 = {θ ∈ Θ : Ψ(θ) = 0}.
This problem occurs in algebraic statistic and asymptotic theories can be found
in [55] and Section 5 of [32].

To use the likelihood ratio test, we need to find the MLEs under both Θ0 and
Θ. Finding the MLE under Θ is a regular statistical problem. However, finding
the MLE under Θ0 may not be easy because of the constraint Ψ(θ) = 0. We
propose to a procedure combining the gradient ascent of the likelihood func-
tion and the gradient descent to the manifold to compute the constrained MLE.
Algorithm 2 describes the procedure, and Figure 4 provides a graphical illus-
tration. This algorithm consists of a one-step gradient ascent of the likelihood
function (Step 3) and a gradient descent to manifold (Algorithm 1; steps 4 and
5).

The stopping criterion (Step 6) is that ∇�(θ
(m)
∞ |X1, · · · , Xn) belongs to the

row space of ∇Ψ(θ
(m)
∞ ). Due to Lemma 1, the row space of ∇Ψ(θ

(m)
∞ ) is the

normal space of M at θ
(m)
∞ . It is easy to see that any critical points of the

log-likelihood function on the manifold satisfy the condition that the likelihood
gradient belongs to the row space of∇Ψ; thus, the constrained MLE is a station-
ary point in Algorithm 2. As a result, we stop the algorithm when the stopping
criterion occurs. However, other local modes and saddle points and local minima
are also the stationary points. Hence, in practice, we need to run the algorithm
with multiple initial points to increase the chance of finding the true MLE.

Note that one may replace the gradient ascent process by the EM algorithm.
However, the EM algorithm is not identical to a gradient ascent, so it is unclear

if the movement θ
(m+1)
0 − θ

(m)
∞ will be normal to the manifold Θ0 or not.

Example 6 (Testing a tail probability in a Gaussian model). To illustrate
the idea, suppose that Xi ∈ R is from an unknown distribution that we place
a parametric model on it. We further assume that the parametric distribution
is a Gaussian N(μ, σ2) with unknown mean and variance. Consider the null
hypothesis

H0 : P (r0 ≤ Y ≤ r1) = s0

for some given s0 > 0 and r0, r1 (note that this example also appears in Fig-
ure 1). Let Φ(y) = P (Z ≤ y) denote the CDF of a standard normal. The null
hypothesis H0 forms the following constraint on (μ, σ2):

s0 = Φ

(
r1 − μ

σ

)
− Φ

(
r0 − μ

σ

)
.

Thus,

Ψ(μ, σ) = Φ

(
r1 − μ

σ

)
− Φ

(
r0 − μ

σ

)
− s0 ∈ R.
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Algorithm 2 Manifold-constraint maximizing algorithm

1. Randomly choose an initial point θ
(0)
0 = θ

(0)
∞ ∈ Θ.

2. For m = 1, 2, · · · , do step 3-6:
3. Ascent of likelihood. Update

θ
(m)
0 = θ

(m−1)
∞ + α∇�(θ

(m−1)
∞ |X1, · · · , Xn), (9)

where α > 0 is the step size of the gradient ascent over likelihood function and
�(θ|X1, · · · , Xn) is the log-likelihood function.
4. Descent to manifold. For each t = 0, 1, 2, · · · iterates

θ
(m)
t+1 ← θ

(m)
t − γ∇f(θ

(m)
t )

until convergence. Let θ
(m)
∞ be the convergent point.

5. If Ψ(θ
(m)
∞ ) = 0 (or sufficiently small), we keep θ

(m)
∞ ; otherwise, discard θ

(m)
∞ and return

to step 1.

6. If ∇�(θ
(m)
∞ |X1, · · · , Xn) belongs to the row space of ∇Ψ(θ

(m)
∞ ), we stop and output θ

(m)
∞ .

The feasible set of (μ, σ2) forms a 1D solution manifold in R
2. It is difficult

to find the analytical form of the MLE under H0, but we may use the method
in Algorithm 2 to obtain a numerical approximation. The derivative of Ψ(μ, σ)
with respect to μ and σ has the following closed-form:

∂

∂μ
Ψ(μ, σ) = − 1

σ
φ

(
r1 − μ

σ

)
+

1

σ
φ

(
r0 − μ

σ

)
∂

∂σ
Ψ(μ, σ) = −r1 − μ

σ2
φ

(
r1 − μ

σ

)
+

r0 − μ

σ2
φ

(
r0 − μ

σ

)
,

where φ(y) = 1√
2π

e−y2/2 is the PDF of the standard normal. Algorithm 2 can

easily be implemented with the above derivatives. Figure 4 shows an example of
applying Algorithm 2 to this example with r1 = −5, r2 = 2 and s0 = 0.5 (and
1000 random numbers generated from N(1.5, 32)). All five random initial points
converge to the maximum on the manifold.

4.3.2. Partial identification and generalized method of moments

The solution manifolds appear in the partial identification problem [51] in
Econometrics. One example is the moment constraint problem [25], also known
as the generalized method of moments [38, 39]. In this case, we want to esti-
mate parameter θ ∈ R

d that solves the moment equation E(g(Y ; θ)) = 0, where
g(y; θ) ∈ R

s is a vector-valued function, and X is a random variable denoting
the observed data. When s < d, the solution set (also called an identified set in
[25]) M = {θ : E(f(Y ; θ)) = 0} forms a solution manifold.

Thus, the smoothness theorem (Theorem 3) and the stability theorem (The-
orem 5) can be applied to this case. When the estimator is obtained by the

empirical moment equation M̂n =
{
θ : 1

n

∑n
i=1 f(Yi; θ) = 0

}
, Theorem 5 im-

plies Haus(M̂n,M)
P→ 0 when the empirical moments 1

n

∑n
i=1 f(Yi; θ) and its
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Fig 4. An example illustrating how Algorithm 2 works. We consider the example of estimating
the tail probability in a Gaussian model N(μ, σ2) with the constraint P (−5 ≤ X ≤ 2) = 0.5.
We generate n = 1000 points from N(1.5, 32) and display the log-likelihood function in the
two panels (contours are the log-likelihood surface). Left: We initialize Algorithm 2 with
five random points (blue boxes) and the algorithm creates an ascending path (blue lines) to
the maximum point (orange cross). Right: We illustrate Algorithm 2 by showing points in
each iteration in the algorithm in a zoom-in area relative to the left panel. Starting from the
solid black point, we first perform a gradient ascent with respect to the log-likelihood function
(brown arrow) then apply Algorithm 1 to descent to the solution manifold. We keep repeating
this process until it converges.

derivatives with respect to θ converge to the population moments E(g(X; θ))
and its derivatives, respectively.

In generalized method of moments, a common approach of finding a solu-
tion to E(g(Y ; θ)) = 0 is by minimizing a criterion function Q(θ) = E(g(Y ;
θ))TΛE(g(Y ; θ)), where Λ is a positive definite matrix [39]. This is identical to
the function f defined in equation (6). Thus, the analysis in Section 3 can be
used to study the minimization problem in the generalized method of moments.

Remark 2. In econometrics, a similar problem to the solution manifold is
the inequality constraint problem, which occurs when we replace the equality
constraints with inequality constraints [75, 70], i.e., E(g�(Y ; θ)) ≤ 0 for � =
1, · · · , s. The goal is to find θ satisfying the above inequality constraint. A com-
mon approach to finding the feasible set is by defining an objective function

Q(θ) =

∣∣∣∣∣
s∑

�=1

[E(g�(Y ; θ))]+

∣∣∣∣∣
2

, [y]+ = max(y, 0)

such that the feasible set is {θ : Q(θ) = 0}. The inequality constraint implies
that {θ : Q(θ) = 0} may not form a lower-dimensional manifold but a subset of
the original parameter space.

A common estimator of {θ : Q(θ) = 0} is{
θ : Q̂n(θ) ≤ cn

}
, Q̂n(θ) =

∣∣∣∣∣
s∑

�=1

[
1

n

n∑
i=1

g�(Yi; θ)

]
+

∣∣∣∣∣
2
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Fig 5. An example of approximating a density level set. This is the Graft-versus-Host Disease
(GvHD) data that we borrowed from mclust package in R. We use the control group and
choose three variables: CD3, CD4, and CD8b. We apply a Gaussian kernel density estimator
with bandwidth h = 20 (same in all coordinates). The level set of interest is the density level
corresponding to 25% quantile of densities at all observations. The three panels display the
level set under three different angles.

for some sequence cn → 0. Note that by properly choosing cn, we may construct
both an estimator and a confidence region; see [25] and [70] for more details.

4.4. Nonparametric set estimation

Solution manifolds occur in many scenarios of nonparametric set estimation
problems. One famous example is the density level set problem in which the
parameter of interest is the (density) level set {x : p(x) = λ}, and p is the
PDF that generates our data, and λ is a pre-specified level. In this case, the
smoothness theorem (Theorem 3) yields the same result as [20]. Moreover, the
stability theorem (Theorem 5) suggests that the convergence rate under the
Hausdorff distance will be the rate of estimating the density function, which is
consistent with several existing works [12, 67, 66].

The methods developed in Section 3 can be used to find points on the level
set. As an illustration, Figure 5 shows an example of approximating the level
set using Algorithm 1 with the Graft-versus-Host Disease (GvHD) data [11]
from mclust package in R [6]. We use variables CD3, CD4, and CD8b and focus
on the control group. The density is computed using a Gaussian kernel density
estimator with an equal bandwidth h = 20 in all coordinates. We choose the
level as the 25% quantile of all observations’ densities. The three panels display
the approximated level sets from three angles. The three surfaces in the data
indicate three connected components in the regions where the density is above
this threshold.

In addition to the level set problem, the density ridges [18, 35] are also
examples of solution manifolds. The density k-ridges are the collection {x :
Vk(x)

T∇p(x) = 0, λk+1(x) < 0}, where Vk(x) = [vk+1(x), · · · , vd(x)] denotes
the matrix of d−k eigenvectors of ∇∇p(x) corresponding to the smallest eigen-
values and λk(x) is the k-th largest eigenvalue. If we only pick the lowest d− k
eigenvectors, we obtain a system of equations with d − k equations, leading to
a k-dimensional manifold (under smoothness conditions). The stability theorem
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(Theorem 5) states that the convergence rate of a density ridge estimator will
be at the rate of estimating the Hessian matrix, which is consistent with the
findings of [35].

Note that the density local modes can be viewed as 0-dimensional ridges. In
this special case, the matrix V1(x) is full rank under assumption (F); thus,

{x : V0(x)
T∇p(x) = 0, λ1(x) < 0} = {x : ∇p(x) = 0, λ1(x) < 0}.

As a result, the function Ψ that generates the local modes does not involve the
Hessian matrix, leading to the convergence rate of the mode estimator to be
the same as the gradient estimation rate rather than the rate of estimating the
Hessian.

5. Discussion

In this paper, we investigate both geometric and algorithmic properties of solu-
tion manifolds. While the solution manifolds may seem to be abstract, we showed
that they appear in various statistical problems including missing data, algorith-
mic fairness, likelihood inference, and nonparametric set estimation. Hence, the
methodologies and theories developed in this paper provide a generic framework
for analyzing all these problems. This framework may inform us of the hidden
relation among all these seemingly different statistical problems. In what follows,
we discuss some relevant topics to the solution manifolds.

5.1. Smoothness, stability, and convergence of gradient flow

We developed 5 major theoretical results: smoothness theorem (Theorem 3),
stability theorem (Theorem 5), gradient flow theorem (Theorem 7), local center
manifold theorem (Theorem 8), and algorithmic convergence theorem (Theo-
rem 9). These results characterize different properties of solution manifolds and
are often studied in various fields. In our work, we showed that they all rely on
a similar set of assumptions: (D), the smoothness of Ψ, and (F), the curvature
assumption of Ψ around M .

Assumption (D) is more than enough for some theoretical results. The
smoothness theorem can be relaxed to assuming that Ψ satisfies β-Hölder con-
dition with various β. For instance, the (D-1) condition in the weak stability
result (Proposition 4) can be relaxed to the 1-Hölder condition. The condition
(D-2) in the smoothness theorem (Theorem 3) can be replaced by the 2-Hölder
condition.

Moreover, we observe a hierarchy of smoothness corresponding to different
theoretical results. If we only have (D-1), the first order derivatives, we have a
weak stability result from Proposition 4. If we make a further assumption (D-
2), we have a stability theorem (Theorem 5), a characterization of smoothness
(Theorem 3), and an algorithmic convergence (Theorem 9). Under an additional
assumption (D-3), we can derive an even stronger result of the corresponding
gradient flow (Theorem 7 and 8)
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5.2. Connections to other fields

We would like to point out that the results of this paper have several connections
to other fields.

• Econometrics. Solution manifolds occur in the partial identification
problem (Section 4.3.2); hence, our analysis provides some insights into
the moment equality constraint problem [25]. Our analysis on the gradi-
ent descent (e.g., Theorem 7) can be applied to investigate the property of
the minimization problem in the generalized method of moments approach
[38, 39].

• Dynamical systems. As mentioned before, Theorem 8 is related to the
stable manifold theorem and the local center manifold theorem in dynam-
ical systems [53, 54, 5, 61]. Our analysis provides statistical examples that
these theorems may be useful in data analysis.

• Computational geometry. If we stop the gradient descent process early,
we do not obtain points that are on the manifold. The resulting points
Z1, · · · , Zn may be viewed as from Zi = Xi + εi, where Xi ∈ M is from a
distribution over the manifold and εi is some additive noise. This model is
a common additive noise model in the computational geometry literature
[24, 23, 30, 31, 16, 8]. Our proposed method provides another concrete
example of the manifold additive noise model.

• Optimization. In general, a gradient descent method has a linear con-
vergence rate when the objective function is strongly convex and has a
smooth gradient [10, 58]. However, in our setting, the objective function
f(x) is non-convex (and is not locally convex), but the gradient descent al-
gorithm still obtains a linear (algorithmic) convergence rate (Theorem 7).
This reveals a class of non-convex objective functions that can be mini-
mized quickly using a gradient descent algorithm.

5.3. Future work

The framework developed in this paper has many potentials in other problems.
We provide some possible directions that we plan to pursue in the future.

• Log-linear model. The log-linear model of categorical variables is an in-
teresting example in the sense that it can be expressed as a solution man-
ifold when there are constraints like conditional independence but it may
be unnecessary to use the developed techniques. Consider a d-dimensional
categorical random vector X that takes values in {0, 1, 2, · · · , J − 1}d.
The joint PMF of X p(x1, · · · , xd) has J

d entries with the constraint that∑
x p(x1, · · · , xd) = 1, so it has Jd − 1 degrees of freedom. In the log-

linear model, we reparametrize the PMF using the log-linear expansion:
log p(x) =

∑
A ψA(xA), where A is any non-empty subset of {1, 2, · · · , J}

and xA = (xj : j ∈ A) with the constraint that ψA(xA) = 0 if any xj = 0
for j ∈ A. Under the log-linear model, we reparametrize the joint PMF
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using the parameters ΘLL = {ψA(xA) : A ⊂ {1, 2, · · · , J}, xA ∈ {0, 1}|A|},
where |A| is the cardinality of A. The feasible parameters in ΘLL forms a
solution manifold due to the aforementioned constraints. However, com-
mon constraints in the log-linear model are that interaction terms ψA = 0
for some A. This leads to a flat manifold; hence, there is no need to use
the developed technique. We may need to use techniques from the solution
manifold when the constraint is placed on the PMF p(x1, · · · , xd) rather
than the log-linear models because the constraints on the PMF lead to an
implicit constraint on ΘLL. We leave this as future work.

• Confidence regions of solution manifolds. Another future direction
is to develop a method for constructing the confidence regions of solution
manifolds. There are two common approaches to construct a confidence
region of a set. The first one is based on the “vertical uncertainty”, which
is the uncertainty due to Ψ̂−Ψ. This idea has been applied in generalized
method of moment problems [25, 70, 17] and level set estimations [48, 63,
22] The other approach is based on the “horizontal uncertainty”, which

is the uncertainty due to Haus(M̂,M). This technique has been used in
constructing confidence sets of density ridges and level sets [18, 20]. Based
on these results, we believe that it is possible to develop a procedure for
constructing the confidence regions of solution manifolds. We leave this as
future work.

• A new class of non-convex problems. We observe an interesting phe-
nomenon in Theorem 9. Although the objective function f(x) = ΨTΛΨ(x)
is non-convex, we still obtain a linear (algorithmic) convergence. Note that
for a non-convex but locally convex around the minimizer, the linear con-
vergence can be established via assuming a local strong convexity of the
objective function [4], i.e., f(x) is strongly convex within B(x∗, r) for some
radius r > 0 and x∗ is the global minimizer. However, our problem is more
complicated in the sense that f(x) is flat along M , so it is not locally
strongly convex. The key element in our result is assumption (F) stat-
ing that f(x) behaves like being “locally strongly-convex” in the normal
direction of M . Thus, with some additional structure on the non-convex
function, we may still obtain a fast convergence. We will investigate how
this may be useful in other non-convex optimization problems. In addition,
the analysis may be applied to other forms of f(x) that are not limited
to a “squared”-type transformation of Ψ(x) (f(x) behaves like the square
of Ψ), which may further improve the convergence rate. For instance, the
gradient descent over f1(x) = ‖Ψ(x)‖1 may also converge faster than over
the function f(x). We will investigate this in the future.
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Appendix A: Bayesian inference

The techniques we developed for solution manifolds can be used for the Bayesian
inference after some modifications. One example is the univariate Gaussian with
unknown mean μ and variance σ2, and a second moment constraint. The pa-
rameter space is Θ(s0) = {(μ, σ2) : E(Y 2) = μ2 + σ2 = s20}. We place a prior
π(θ) over Θ(s0) that reflects our prior belief about the parameter θ = (μ, σ).
However, how to sample from π (and the posterior) is a non-trivial task because
π is supported on a manifold.

The Monte Carlo approximation method in Section 3 offers a solution to
sampling from π. With a little modification of Algorithm 1, we can approximate
the posterior distribution defined on the solution manifold. Let π be a prior PDF
defined over the solution set M = {θ : Ψ(θ) = 0} where Ψ : Θ �→ R

k. We observe
IID observations X1, · · · , Xn that are assumed to be from a parametric model
p(x|θ). The posterior distribution of θ will be

π(θ|X1, · · · , Xn) ∝
{
π(θ)

∏n
i=1 p(Xi|θ), if θ ∈ M ;

0, if θ /∈ M .

We propose a method that approximates the posterior distribution using a
weighted point cloud. Our approach is formally described in Algorithm 3. Note
that the algorithm we develop only requires the ability to evaluate a function
ρ(θ) ∝ π(θ). We do not need the exact value of the prior density.

Example 7 (Bayesian analysis of Example 6). Figure 6 shows an example
of 90% credible intervals and the MAPs under three scenarios: prior distribu-
tion only (left panel), posterior distribution with n = 100 (middle panel), and
posterior distribution with n = 1000 (right panel). This is the same setting
in Example 6 and Figure 4, where the manifold is formed by the constraint
P (−5 < X < 2) = 0.5 with X ∼ N(μ, σ). We choose the prior distribution
(density) as

π(μ, σ) ∝ φ(μ; 2, 0.2)φ(σ; 2.5, 0.2)I((μ, σ) ∈ M),

where φ(x; a, b) is the density of N(a, b2). In the left panel, the credible interval is
completely determined by the prior distribution and the MAP is the mode of the
prior. In the middle and right panels, the data are incorporated into the posterior
distributions. Both the credible intervals and MAPs are changing because of the
influence of the data. Our method (Algorithm 3 and equation (12)) provides
a simple and elegant approach of approximating the credible intervals on the
manifold.

To see why the outputs from Algorithm 3 are a valid approximation to the
posterior density, note that the density score ρ̂i,N is proportional to the under-
lying density of Z1, · · · , ZM defined over M . Hence, the weighted point cloud
(Z1, ρ̂

−1
i,N ), · · · , (ZN , ρ̂−1

N,N ) behaves like a uniform sample over M . Thus, to ac-
count for the unweighted point cloud density, we have to rescale the posterior
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Algorithm 3 Approximated manifold posterior algorithm
1. Apply Algorithm 1 to generate many points Z1, · · · , ZN ∈ M .
2. Estimate a density score of Zi using

ρ̂i,N =
1

N

N∑
j=1

K

( ‖Zi − Zj‖
h

)
,

where h > 0 is a tuning parameter and K is a smooth function such as a Gaussian.
3. Compute the posterior density score of Zi as

ω̂i,N =
1

ρ̂i,N
· π̂i,N , π̂i,N = π(Zi) ·

n∏
j=1

p(Xj |Zi), (10)

return Weighted point clouds (Z1, ω̂i,N ), · · · , (ZN , ω̂N,N ).

Fig 6. An example showing the credible interval (credible region) and MAP on the
manifold. We use the same example in Figure 4 and the prior distribution π(μ, σ) ∝
φ(μ; 2, 0.2)φ(σ; 2.5, 0.2)I((μ, σ) ∈ M), where φ(x; a, b) is the density of N(a, b2). Left: 90%
credible interval along with the MAP using only the prior distribution. Middle: we randomly
generate n = 100 observations from N(1.5, 32) and compute 90% credible interval and MAP
from the posterior distribution. Right: the same analysis as the middle panel but now we use
a sample of size n = 1000. Note that the background gray contours show the log-likelihood
function (as an indication of how the likelihood function will influence posterior).

score of Zi in equation (10) by the factor ρ̂−1
i,N . Note that the value π̂i,N is pro-

portional to the posterior density π(Zi|X1, · · · , Xn) evaluated at point θ = Zi.
The quantity h is the smoothing bandwidth in the kernel density estimation.
Because this is a density estimation problem, we would recommend to choose
it using the Silverman’s rule of thumb [74] or other popular approaches such
as least square cross-validation [71, 9]; see the review paper of [73] for a list of
reliable methods.

With the output from Algorithm 3, the posterior density π(θ|X1, · · · , Xn) is
represented by the collection of points Z1, · · · , ZN along with the corresponding
weights ω̂1,N , · · · , ω̂N,N . The posterior mean can be approximated using

θ̂Pmean =

∑n
i=1 ω̂i,NZi∑n
i=1 ω̂i,N

.

This estimator is essentially the importance sampling estimator. The posterior
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mode (MAP: maximum a posteriori) can be approximated using

θ̂MAP = Zi∗ , i∗ = argmaxi∈{1,··· ,N}π̂i,N .

The weighted point cloud also leads to an approximated credible region. Let
1− α be the credible level and Z(1), · · · , Z(N) be the ordered points such that

π̂(1),N ≥ π̂(2),N ≥ · · · ≥ π̂(N),N .

Define

i(α) = argmin

{
i :

∑i
j=1 ω̂(j),N∑N
�=1 ω̂(�),N

≥ 1− α

}
. (11)

Then we may use the collection of points

{Z(1), · · · , Z(i(α))} (12)

as an approximation of a 1− α credible region. Alternatively, one may use the
set

{θ ∈ M : π(θ|X1, · · · , Xn) ≥ π(Zi(α)|X1, · · · , Xn)}
as another approximation of a 1− α credible region.

Here is an explanation of the choice in equation (11). π̂i,N is proportional to
the posterior value at Zi; hence,

π(Z(1)|X1, · · · , Xn) ≥ π(Z(2)|X1, · · · , Xn) ≥ · · · ≥ π(Z(N)|X1, · · · , Xn).

Define the upper-level set of level λ of the posterior distribution as

L(λ) = {θ : π(θ|X1, · · · , Xn) ≥ λ}.

The posterior probability within L(λ) is

π(L(λ)|X1, · · · , Xn) =

∫
I(θ ∈ L(λ))π(θ|X1, · · · , Xn)dθ.

A 1 − α credible region can be constructed by choosing the minimal value λα

such that
λα = inf {λ : π(L(λ)|X1, · · · , Xn) ≥ 1− α} . (13)

With the weights ω̂1,N , · · · , ω̂N,N , an approximation to π(L(λ)|X1, · · · , Xn) is

π̂(L(λ)|X1, · · · , Xn) =

∑n
j=1 ω̂j,NI(Zj ∈ L(λ))∑n

�=1 ω̂�,N
.

The posterior levels π̂1,N , · · · , π̂N,N form a discrete approximation of all levels
of λ. Thus, an approximation to equation (13) is

λ̂α = min

{
π̂i,N :

∑n
j=1 ω̂j,NI(Zj ∈ L(π̂i,N ))∑n

�=1 ω̂�,N
≥ 1− α

}
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= min

{
π̂i,N :

∑n
j=1 ω̂j,NI(π̂j,N ≥ π̂i,N )∑n

�=1 ω̂�,N
≥ 1− α

}

= min

{
π̂(i),N :

∑i
j=1 ω̂(j),N∑n
�=1 ω̂(�),N

≥ 1− α

}

= π̂(i(α)),N , i(α) = argmin

{
i :

∑i
j=1 ω̂(j),N∑N
�=1 ω̂(�),N

≥ 1− α

}
.

The choice in equation (11) is from the above approximation to the level λα.

Remark 3. Note that the posterior mean may not be on the manifold. One may
replace it by the posterior Fréchet mean [37] defined as

θ̂PFmean = Zi† , i† = argmini∈{1,··· ,N}

N∑
j=1

ω̂j,N (Zi − Zj)
2.

The Fréchet mean defines a mean of a random variable X using the minimiza-
tion problem argminμE(X−μ)2 and constraints the minimizer to be in the man-
ifold. Here, we use the weighted point approximation to this minimization.

Appendix B: Derivation of equation (2)

To derive the constraint in equation (3) from equation (2), we expand the first
term and consider s = 1:

P (Y =1|Q=1, A=0)=
P (Y =1, Q=1|A=0)

P (Q=1|A=0)

=

∑
w P (Y =1, Q=1,W =w|A=0)∑

w′ P (Q=1,W =w′|A=0)

(∗)
=

∑
w P (Q=1|W =w,A=0)P (W =w, Y =1|A=0)∑

w′ P (Q=1|W =w′, A=0)P (W =w′|A=0)

=

∑
w qw,0P (W =w, Y =1|A=0)∑

w′ qw′,0P (W =w′|A=0)
.

Note that the equality labeled with (*) is due to Q ⊥ Y |A,W . The two prob-
abilities P (W = w, Y = 1|A = 0) and P (W = w′|A = 0) are identifiable from
the data. A similar calculation shows that

P (Y = 1|Q = 1, A = 1) =

∑
w qw,1P (W = w, Y = 1|A = 1)∑

w′ qw′,1P (W = w′|A = 1)
.

So the test fairness constraint in equation (3) requires∑
w qw,0P (W = w, Y = 1|A = 0)∑

w′ qw′,0P (W = w′|A = 0)
=

∑
w qw,1P (W = w, Y = 1|A = 1)∑

w′ qw′,1P (W = w′|A = 1)
.



Solution manifold 435

Also, for the case of s = 0, the above constraint becomes∑
w(1− qw,0)P (W =w, Y =1|A=0)∑

w′(1− qw′,0)P (W =w′|A=0)
=

∑
w(1− qw,1)P (W =w, Y =1|A=1)∑

w′(1− qw′,1)P (W =w′|A=1)
.

The above two equations are what equation (3) refers to as.

Appendix C: Proofs

Proof of Lemma 2. Essentially, we only need to show that when d(x,M) ≤
3λ2

M

8‖Ψ‖∗
∞,1‖Ψ‖∗

∞,2
, the minimal eigenvalue λmin(GΨ(x)GΨ(x)

T ) ≥ 1
4λ

2
M .

For any point x with d(x,M) ≤ 3λ2
M

8‖Ψ‖∗
∞,1‖Ψ‖∗

∞,2
, let xM be the projection on

M . The minimal eigenvalue

λmin(GΨ(x)GΨ(x)
T )=λmin(GΨ(xM )GΨ(xM )T )

+ (λmin(GΨ(x)GΨ(x)
T )− λmin(GΨ(xM )GΨ(xM )T ))

≥λ2
M − |λmin(GΨ(x)GΨ(x)

T )− λmin(GΨ(xM )GΨ(xM )T )|.
(14)

The Weyl’s theorem (see, e.g., Theorem 4.3.1 of [41]) shows that the eigenvalue
difference can be bounded via

|λmin(GΨ(x)GΨ(x)
T )− λmin(GΨ(xM )GΨ(xM )T )|

≤ ‖GΨ(x)GΨ(x)
T −GΨ(xM )GΨ(xM )T ‖max

≤ 2‖Ψ‖∗∞,1‖Ψ‖∗∞,2‖x− xM‖ (by Taylor’s theorem)

= 2‖Ψ‖∗∞,1‖Ψ‖∗∞,2d(x,M).

Thus, as long as

2‖Ψ‖∗∞,1‖Ψ‖∗∞,2d(x,M) ≤ 3

4
λ2
M

we have λmin(GΨ(x)GΨ(x)
T ) ≥ 1

4λ
2
M , which completes the proof.

Proof of Theorem 3. The proof is modified from the proof of Lemma 4.11 and
Theorem 4.12 in [33].

Let r0 = min{ δ0
2 ,

λ0

‖Ψ‖∗
∞,2

}. We will show that r0 is a lower bound of reach

(M). We proceed by the proof of contradiction.
Suppose that the conclusion is incorrect that the reach is less than r0. Then

there exists a point x such that d(x,M) < r0 and x has two projections onto
M , denoted as b, c ∈ M .

Since b, c ∈ M , Ψ(b) = Ψ(c) = 0 and by Taylor’s remainder theorem and
condition (D-2) and (F),

‖GΨ(b)(b− c)‖2 = ‖f(b)− f(c)−GΨ(b)(b− c)‖2

≤ 1

2
‖b− c‖22‖Ψ‖∗∞,2.

(15)
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By the nature of projection, we can find a vector tb ∈ R
s such that x −

b = tTb GΨ(b) because the normal space is spanned by the row space of GΨ(b)
(Lemma 1). Together with (15), this implies

2|(x− b)T (b− c)| = 2|tTb GΨ(b)(b− c)|
≤ ‖GΨ(b)(b− c)‖2‖tb‖2
≤ ‖Ψ‖∗∞,2‖b− c‖22‖tb‖2.

(16)

Since b, c are projections of x onto M ,

‖x− b‖2 = ‖x− c‖2.

As a result,
0 = ‖x− c‖22 − ‖x− b‖22
= ‖b− c‖22 + 2(b− c)T (x− b)

≥ ‖b− c‖22 − ‖Ψ‖∗∞,2‖b− c‖22‖tb‖2 (16)

= ‖b− c‖22(1− ‖Ψ‖∗∞,2‖tb‖2).

(17)

However, starting from the definition of r0, we have

λ0

‖Ψ‖∗∞,2

> r0 ≥ ‖x− b‖2 = ‖tTb GΨ(b)‖2

≥︸︷︷︸
(F )

λ0‖tb‖2.
(18)

As a result,

‖Ψ‖∗∞,2‖tb‖2 < 1

so ‖b − c‖22 = 0 by (17), which implies b = c, a contradiction. Accordingly, x
must have a unique projection so the reach has a lower bound r0.

Proof of Proposittion 4. Consider a point x ∈ M̃ . By the condition ‖Ψ̃−Ψ‖∗∞,0

< c0 and assumption (F), we know that d(x,M) ≤ δ0, where c0 and δ0 are the
constants in (F).

Define

h(x) = ‖Ψ(x)‖2 =
√

Ψ(x)TΨ(x) (19)

to be the L2 norm for Ψ. The derivative of h(x)

∇h(x) =
Ψ(x)TGΨ(x)

‖Ψ(x)‖2
(20)

is a vector of Rd. Note that GΨ(x) = ∇Ψ(x) ∈ R
s×d is the Jacobian.

For any point x ∈ M̃ , we define a flow

φx : R �→ R
d (21)
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such that

φx(0) = x,
∂

∂t
φx(t) =−∇h(φ(t)). (22)

Later we will prove in Theorem 7 that φx(∞) ∈ M when x ∈ M ⊕ δc, where δc
is defined in Theorem 7.

By Theorem 3.39 in [42], φx(t) is uniquely defined since the gradient ∇h(x) is
well-defined for all x /∈ M . We define an arc-length flow (i.e., a constant velocity
flow) based on φx:

γx(0) = x,
∂

∂t
γx(t) =− ∇h(γx(t))

‖∇h(γx(t))‖2
. (23)

The time traveled in this flow is the same as the distance traveled (due to the
velocity being a unit vector). Let Tx = inf{t > 0 : γx(t) ∈ M} be the terminal
time point and let γx(Tx) ∈ M as the endpoint of the flow. This means that Tx

is the length of the flow from x to the destination on M . The goal is to bound Tx

since the length must be greater or equal to the projection distance for x ∈ M̃ .
We define ξx(t) = h(γx(t))− h(γx(Tx)) = h(γx(t)). Differentiating ξx(t) with

respect to t leads to

ξ′x(t) = − d

dt
h(γx(t))

= −[∇h(γx(t))]
T d

dt
γx(t)

= −‖∇h(γx(t))‖

= −‖Ψ(γx(t))
TGΨ(γx(t))‖2

‖Ψ(γx(t))‖2
≤ −λmin(GΨ(γx(t))GΨ(γx(t))

T )

≤ −λ0

(24)

because γx(t) ∈ M ⊕ δ0 for all t.
Let ε0 = ‖Ψ − Ψ̃‖∗∞,0 = supx ‖Ψ(x) − Ψ̃(x)‖max and recall that x ∈ M̃ so

Ψ̃(x) = 0. Then by the fact that ‖v‖2 ≤
√
d× ‖v‖max for vector v,

√
d · ε0 =

√
d sup

x
‖Ψ(x)− Ψ̃(x)‖max

≥ sup
x

‖Ψ(x)− Ψ̃(x)‖

≥ ‖Ψ(x)− Ψ̃(x)‖
≥ h(x)

= h(γx(0))− h(γx(Tx)) (since h(γx(Tx)) = 0)

= ξ(0)− ξ(Tx) (ξ(Tx) = 0 and ξ(0) = h(0))

= −Txξ
′(T ∗

x ) (mean value Theorem)

≥ Txλ0 by equation (24).



438 Y.-C. Chen

Hence, Tx ≤
√
d

λ0
ε0 = O(ε0) which is independent of x. This implies that

sup
x∈M̃

d(x,M) ≤
√
d

λ0
ε0 = O(‖Ψ̃−Ψ‖∗∞,0).

Proof of Theorem 5. 1. Since condition (F) involves only Ψ and its deriva-
tive, when ‖Ψ− Ψ̃‖∗∞,2 is sufficiently small, (F) holds for Ψ̃.

2. By the first assertion, condition (F) holds for Ψ̃.
Thus, we can exchange M̃ and M and repeat the proof of Proposittion 4,
which leads to

sup
x∈M

d(x, M̃) ≤
√
d

λ0
ε0.

As a result, we conclude that Haus(M̃,M) ≤
√
d

λ0
ε0 = O(ε0).

3. By Theorem 3, the reach of M has lower bound min{δ0/2, λ0/‖Ψ‖∗∞,2}.
Note that δ0, λ0 depends on the first derivative of Ψ. Hence, the lower
bound for reach of M and M̃ will be bounded at rate O(‖Ψ− Ψ̃‖∗∞,2).

Before moving forward, we would like to note that the Jacobian and Hessian
of f can be expressed as

Gf (x) = ∇f(x) = 2Ψ(x)TΛ[∇Ψ(x)] (25)

Hf (x) = ∇∇f(x) = 2[∇Ψ(x)]TΛ[∇Ψ(x)] + 2Ψ(x)Λ[∇∇Ψ(x)], (26)

∇∇∇f(x) = 6[∇Ψ(x)]TΛ[∇∇Ψ(x)] + 2Ψ(x)Λ[∇∇∇Ψ(x)], (27)

where ∇Ψ(x) ∈ R
s×d and ∇∇Ψ(x) ∈ R

s×d×d.

Proof of Lemma 6. Property 1 (For each x ∈ M).
1-(a). By equation (26) and the fact that Ψ(x) = 0 whenever x ∈ M , we

obtain
Hf (x) = 2[∇Ψ(x)]TΛ[∇Ψ(x)].

Because Λ is positive definite, it can be decomposed into Λ = UDUT where D
is a diagonal matrix so the eigenvectors corresponding to non-zero eigenvalues
of Hf will be the the rows of UT [∇Ψ(x)], which spans the same subspace as
the row space of [∇Ψ(x)] so by Lemma 1, the non-zero eigenvectors spans the
normal space of M at x.

1-(b). Because Hf (x) = 2[∇Ψ(x)]TΛ[∇Ψ(x)] when x ∈ M , the minimal non-
zero eigenvalue

λmin,>0(Hf (x)) = 2λmin,>0(GΨ(x)
TΛGΨ(x)).

Since Λ is positive definite and symmetric, we can decompose

GΨ(x)
TΛGΨ(x) = GΨ(x)

TΛ1/2Λ1/2GΨ(x)

so we obtain

λmin,>0(Hf (x)) = 2λmin,>0(GΨ(x)
TΛGΨ(x))
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= 2λmin(Λ
1/2GΨ(x)GΨ(x)

TΛ1/2)

≥ 2Λminλmin(GΨ(x)GΨ(x)
T )

≥ 2Λminλ
2
0.

1-(c). Because the normal space of M at x is spanned by the rows of GΨ(x) =
∇Ψ(x), which by 1-(a) is spanned by the non-zero eigenvectors of Hf (x), the
result follows.

Property 2. Because d(x,M) < δc so x is within the reach of M and thus,
xM , the projection from x onto M , is unique. As a result, the normal space of
xM , NM (x), is well-defined.

We can decompose

λmin,⊥,M (Hf (x)) = min
v∈NM (x)

vTHf (x)v

‖v‖2

= min
v∈NM (x)

vT (Hf (xM ) +Hf (x)−Hf (xM ))v

‖v‖2

≥ min
v∈NM (x)

vTHf (xM )v

‖v‖2 − max
v∈NM (x)

vT (Hf (x)−Hf (xM ))v

‖v‖2

≥ min
v∈NM (x)

vTHf (xM )v

‖v‖2 − d‖Hf (x)−Hf (xM )‖max

≥ 2λ2
0Λmin − d‖Hf (x)−Hf (xM )‖max

By equation (26),

‖Hf (x)−Hf (xM )‖max ≤ 2‖GΨ(x)
TΛGΨ(x)−GΨ(xM )TΛGΨ(xM )‖max

+ 2‖Ψ(x)ΛHΨ(x)−Ψ(xM )ΛHΨ(xM )‖max

≤ 4‖Ψ‖∗∞,1Λmax‖Ψ‖∗∞,2‖x− xM‖
+ 4‖Ψ‖∗∞,2Λmax‖Ψ‖∗∞,3‖x− xM‖
≤ 8‖Ψ‖∗∞,2Λmax‖Ψ‖∗∞,3‖x− xM‖.

Thus, as long as

‖x− xM‖ = d(x,M) ≤ λ2
0Λmin

8dΛmax‖Ψ‖∗∞,2‖Ψ‖∗∞,3

,

we have
λmin,⊥,M (Hf (x)) ≥ λ2

0Λmin,

which completes the proof.

Proof of Theorem 7. 1. Convergence radius. We prove this by showing that
for any x ∈ M ⊕ δc and x /∈ M , the destination πx(∞) ∈ M . The idea of the
proof relies on two properties:

(P1) Any stationary point of f inside M ⊕ δc must be a point in M .
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(P2) Let xM be a point on M that is closest to x. For any point x ∈ M ⊕ δc,
(x − xM )T∇f(x) > 0. Namely, the gradient flow only moves πx(t) closer
toward M .

With the above two properties, it is easy to see that if we start a gradient flow
πx from x ∈ M ⊕ δc, then by (P2) this flow must stays within M ⊕ δc. Because
stationary points within M ⊕ δc are all in M by (P1) and the destination of a
gradient flow must be a stationary point, we conclude that πx(∞) ∈ M , which
completes the proof of convergence radius. In what follows, we show the two
properties.

Property P1: Any stationary point inside M ⊕δc must be a point in
M . Because ∇f(x) = Ψ(x)ΛGΨ(x) and Λ is positive definite, there are only two
cases that ∇f(x) = 0: 1. Ψ(x) = 0 and 2., row space of GΨ(x) has a dimension
less than s (in fact, if Ψ(x) �= 0, then the second case is a necessary condition).
The first case is the solution manifold M so we only need to focus on showing
that the second case will not happen for x ∈ M ⊕ δc.

The row space of GΨ(x) has a dimension less than s when there exists a singu-
lar value of GΨ(x) being 0; or equivalently, λmin(GΨ(x)GΨ(x)

T ) = 0. However,
assumption (F) already requires that this will not happen within M ⊕ δc. Thus,
this property holds.

Property P2: For any x ∈ M ⊕ δc, the directional gradient (x −
xM )T∇f(x) > 0. By Taylor expansion and property 2 of Lemma 6,

(x− xM )T∇f(x) = (x− xM )T (∇f(x)−∇f(xM )︸ ︷︷ ︸
=0

)

= (x− xM )T
∫ ε=1

ε=0

Hf (xM + ε(x− xM ))(x− xM )dε

≥ ‖x− xM‖2 inf
y∈M⊕δc

λmin,⊥,M (Hf (y))

≥ d(x,M)2λ2
0Λmin > 0

(28)

2. Terminal flow orientation. To study the gradient flow close to M , it
suffices to analyze the behavior of gradient close to M . Let x ∈ M and define u
to be a unit vector in the normal space of M at x. By Lemma 1, u belongs to
the row space of ∇Ψ(x) = GΨ(x).

Now we consider the gradient at x + εu when ε → 0. By Taylor’s theorem
and the fact that f has bounded third derivatives (from (D-3)),

Gf (x+ εu) ≡ ∇f(x+ εu) = ∇f(x+ εu)−∇f(x) = εHf (x)u+O(ε2).

Thus,

lim
ε→0

1

ε
Gf (x+ εu) = Hf (x)u.

By equation (26),

Hf (x) = 2GΨ(x)
TΛGΨ(x) + 2Ψ(x)ΛHΨ(x) = 2GΨ(x)

TΛGΨ(x)
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because Ψ(x) = 0 when x ∈ M . Using the fact that GΨ(x)
T = [∇Ψ1(x), · · · ,

∇Ψs(x)], it is easy to see that

Hf (x)u =

s∑
�=1

a�∇Ψ�(x),

where a� = eT� ΛGΨ(x)u with e� = (0, 0, · · · , 0, 1, 0, · · · , 0)T ∈ R
s is the coor-

dinate vector pointing toward �-th coordinate. Thus, by Lemma 1 ∇∇f(x)u
belongs to the normal space of M at x, which completes the proof of terminal
orientation.

Proof of Theorem 8. We prove this result using the idea of the Lyapunov-Perron
method [61]. Recall that A(z) = {x : πx(∞) = z} for z ∈ M is the basin of
attraction of point z. Consider a ball B(z, r) such that any gradient flow πx(t)
that converges to z = πx(∞) intersects one and only one point at the boundary
∂B(z, r) = {y : ‖y − z‖ = r}. This occurs when r < δc due to property (P2) in
the proof of Theorem 7.

Consider the gradient flow πx(t) with x ∈ ∂B(z, r) and πx(∞) = z. By
Taylor’s theorem, this flow solves the following equation

π′
x(t) = −Gf (πx(t)) = −Gf (πx(t)) +Gf (πx(∞))︸ ︷︷ ︸

=0

= −Hf (πx(∞))(πx(t)− πx(∞)) + ε(πx(t)),

(29)

where ‖ε(πx(t))‖ ≤ C0‖πx(t)−πx(∞)‖ ≤ C0r for some finite constant C0 due to
Assumption (D-3). Equation (29) is a perturbed ODE with a fixed point πx(∞)
and by the variation of parameters, its solution can be written as

πx(t)−πx(∞)=e−tHf (πx(∞))(πx(0)−πx(∞))+

∫ s=t

s=0

e−(t−s)Hf (πx(∞))ε(πx(s))ds.

Denoting vx = πx(0)− πx(∞), we can rewrite the flow as

πx(t)− πx(∞) = e−tHf (πx(∞))vx +

∫ s=t

s=0

e−(t−s)Hf (πx(∞))ε(πx(s))ds.

By Lemma 1, the normal space of M at z = πx(∞) is the row space of
GΨ(z) = ∇Ψ(z), which will also be the space spanned by the eigenvectors
of Hf (πx(∞)) that corresponds to non-zero eigenvalues (Lemma 6 1-(a)). The
spectral decomposition shows Hf (πx(∞)) =

∑s
�=1 λ�u�u

T
� and we define the

projection matrix onto the normal space of M as ΠN =
∑s

�=1 u�u
T
� and the pro-

jection matrix onto the tangent space of M as ΠT = Id −ΠN . By construction,
ΠNHf (πx(∞)) = Hf (πx(∞)) and ΠTHf (πx(∞)) = 0 so ΠNe−tHf (πx(∞)) =
e−tHf (πx(∞)) and ΠT e

−tHf (πx(∞)) = ΠT .
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We decompose

πx(t)− πx(∞) = ΠT (πx(t)− πx(∞)) + ΠN (πx(t)− πx(∞))

= ΠT e
−tHf (πx(∞))vx +ΠT

∫ s=t

s=0

e−(t−s)Hf (πx(∞))ε(πx(s))ds

+ΠNe−tHf (πx(∞))vx +ΠN

∫ s=t

s=0

e−(t−s)Hf (πx(∞))ε(πx(s))ds

= vx,T +

∫ s=t

s=0

εT (πx(s))ds+ e−tHf (πx(∞))vx,N

+

∫ s=t

s=0

e−(t−s)Hf (πx(∞))εN (πx(s))ds,

(30)
where

vx,T =ΠT vx, vx,N =ΠNvx, εT (πx(s))=ΠT ε(πx(s)), εN (πx(s))=ΠN ε(πx(s)).

In the tangent direction, when t → ∞

0 = lim
t→∞

ΠT (πx(t)− πx(∞))

= lim
t→∞

ΠT e
−tHf (πx(∞))vx + lim

t→∞
ΠT

∫ s=t

s=0

e−(t−s)Hf (πx(∞))ε(πx(s))ds

= ΠT vx +

∫ s=∞

s=0

ΠT ε(πx(s))ds

= vx,T +

∫ s=∞

s=0

εT (πx(s))ds.

Thus,

vx,T = −
∫ s=∞

s=0

εT (πx(s))ds (31)

and equation (30) can be rewritten as

πx(t)− πx(∞) = −
∫ s=∞

s=0

εT (πx(s))ds+

∫ s=t

s=0

εT (πx(s))ds

+ e−tHf (πx(∞))vx,N +

∫ s=t

s=0

e−(t−s)Hf (πx(∞))εN (πx(s))ds

= e−tHf (πx(∞))vx,N +

∫ s=t

s=0

e−(t−s)Hf (πx(∞))εN (πx(s))ds

−
∫ s=∞

s=t

εT (πx(s))ds.

(32)
The latter two terms involving integral are determined entirely by the Taylor
remainder terms ε(πx(t)). Thus, to uniquely determine a point on the gradient
flow πx(t) that converges to z (and is inside B(z, r)), we only need to specify
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the time t and the vector vx,N that belongs to the normal space of M at z with
‖vx,N‖ = r. Namely, there exists a mapping (due to equation (32)) Ω such that

πx(t) = Ω(t, vx,N )

for all πx(t) with ‖x−z‖ = r. Note that equation (32) implies that the mapping
Ω has bounded derivative with respect to both t and vx,N . Therefore, the set

A(z) ∩B(z, r) =

{
πx(t) = Ω(t, vx,N ) : t ∈ [0,∞), vx,N =

s∑
�=1

a�u�,

s∑
�=1

a2� = r2

}

is parameterized by (t, a1, · · · , as) with a constraint
∑s

�=1 a
2
� = r2 so it is an

s-dimensional manifold.
To generalize this to the entire set A(z), note that every gradient flow ending

at z must pass the boundary ∂B(z, r) so allowing the gradient πx(t) to move
toward t → −∞ covers the entire basin, i.e.,

A(z) =

{
πx(t) = Ω(t, vx,N ) : t ∈ R, vx,N =

s∑
�=1

a�u�,

s∑
�=1

a2� = r2

}
.

This implies that A(z) is parametrized by (t, a1, · · · , as) with a constraint∑s
�=1 a

2
� = r2 so again it is an s-dimensional manifold.

Proof of Theorem 9. Convergence of f(xt). Because xt+1 = xt − γGf (xt),
simple Taylor expansion shows that

f(xt)− f(xt+1) = f(xt)− f(xt − γGf (xt))

= γ‖Gf (xt)‖2 −
1

2
γ2

∫ ε=1

ε=0

Gf (xt)Hf (xt − εγGf (xt))Gf (xt)dε

≥ γ‖Gf (xt)‖2 −
1

2
γ2‖Gf (xt)‖2 sup

z
‖Hf (z)‖2.

Note that one can also use the fact that the gradient Gf is Lipschitz to obtain
a similar bound.

Thus, when γ < 2
supz ‖Hf (z)‖2

, we obtain

f(xt)− f(xt+1) > 0

which implies that f(xt+1) < f(xt), i.e., the objective function is decreasing.
We can summarize the result as

f(xt+1) ≤ f(xt)− γ‖Gf (xt)‖2
(
1− 1

2
γ sup

z
‖Hf (z)‖2

)
. (33)

To obtain the algorithmic convergence rate, we need to associate the objective
function f(x) and the squared gradient ‖Gf (x)‖2. We focus on the case of t = 0,
and investigate

f(x1) ≤ f(x0)− γ‖Gf (x0)‖2
(
1− 1

2
γ sup

z
‖Hf (z)‖2

)
. (34)



444 Y.-C. Chen

Because d(x0,M) ≤ δc ≤ reach(M), there is a unique projection xM ∈ M
from x0. Note that d(x0,M) = ‖x0−xM‖. The gradient has a lower bound from
the following Taylor expansion:

‖Gf (x0)‖ = ‖Gf (x0)−Gf (xM )︸ ︷︷ ︸
=0

‖

=

∥∥∥∥∫ ε=1

ε=0

Hf (xM + ε(x0 − xM ))(x0 − xM )dε

∥∥∥∥
≥ ‖x0 − xM‖ inf

ε∈[0,1]
λmin,⊥(Hf (xM + ε(x0 − xM )))

≥ ‖x0 − xM‖λ2
0Λmin

≥ d(x0,M)λ2
0Λmin,

where the second to the last inequality is due to property 2 in Lemma 6. Thus,

‖Gf (x0)‖2 ≥ d(x0,M)2λ4
0Λ

2
min. (35)

The distance d(x0,M) and the objective function f(x0) can also be associated
using another Taylor expansion:

f(x0) = f(x0)− f(xM )

= (x0 − xM )T Gf (xM )︸ ︷︷ ︸
=0

+
1

2
(x0 − xM )T

∫ ε=1

ε=0

Hf (xM + ε(x0 − xM ))dε(x0 − xM )

≤ 1

2
d2(x0,M) sup

z
‖Hf (z)‖2.

Thus,

d2(x0,M) ≥ 2f(x0)

supz ‖Hf (z)‖2
which implies an improved bound on equation (35) as

‖Gf (x0)‖2 ≥ d(x0,M)2λ4
0Λ

2
min ≥ λ4

0Λ
2
min

supz ‖Hf (z)‖2
2f(x0). (36)

By inserting equation (36) into equation (34), we obtain

f(x1) ≤ f(x0)− γ‖Gf (x0)‖2
(
1− 1

2
γ sup

z
‖Hf (z)‖2

)
≤ f(x0)− γ

(
1− 1

2
γ sup

z
‖Hf (z)‖2

)
λ4
0Λ

2
min

supz ‖Hf (z)‖2
2f(x0)

= f(x0)

(
1− 2γ

(
1− 1

2
γ sup

z
‖Hf (z)‖2

)
λ4
0Λ

2
min

supz ‖Hf (z)‖2

)
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When γ < 1
supz ‖Hf (z)‖2

, the above inequality can be simplified as

f(x1) ≤ f(x0) ·
(
1− γ

λ4
0Λ

2
min

supz ‖Hf (z)‖2

)
.

Thus, we have proved the result for t = 0. The same derivation works for other
t (by treating xt as x0). By telescoping, we conclude that

f(xt) ≤ f(x0) ·
(
1− γ

λ4
0Λ

2
min

supz ‖Hf (z)‖2

)t

.

Finally, using the fact that supz ‖Hf (z)‖2 ≤ Λmax‖Ψ‖∗∞,2, we obtain the desired
bound.

Convergence of d(xt,M). Let xt,M ∈ M be the point on the manifold that
is closest to xt; again, due to the reach condition this projection is unique. The
Taylor expansion along with property 2 in Lemma 6 shows that

−f(xt) = f(xt,M )− f(xt)

= (xt,M − xt)
TGf (xt)

+
1

2
(xt,M − xt)

T

∫ ε=1

ε=0

Hf (xt + ε(xt,M − xt))(xt − xt,M )dε

≥ (xt,M − xt)
TGf (xt) +

1

2
‖xt − xt,M‖2λ2

0Λmin.

Thus,

− f(xt)−
1

2
‖xt,M − xt‖2λ2

0Λmin ≥ −(xt − xt,M )TGf (xt). (37)

Because of equation (33) and that supz ‖Hf (z)‖2 ≤ d‖Ψ‖∗∞,2, we have

f

(
x− 1

dΛmax‖Ψ‖∗∞,2

Gf (x)

)
− f(x) ≤ − 1

2dΛmax‖Ψ‖∗∞,2

‖Gf (x)‖2.

Using the fact that f
(
x− 1

dΛmax‖Ψ‖∗
∞,2

Gf (x)
)
≥ 0, we conclude that

1

2dΛmax‖Ψ‖∗∞,2

‖Gf (x)‖2 ≤ f(x),

which implies
‖Gf (x)‖2 ≤ 2dΛmax‖Ψ‖∗∞,2f(x). (38)

For any t, we have

d(xt+1,M)2 ≤ ‖xt+1 − xt,M‖2

= ‖xt − xt,M − γGf (xt)‖2

= ‖xt − xt,M‖2 − 2(xt − xt,M )TGf (xt) + γ2‖Gf (xt)‖2
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(37)

≤ ‖xt − xt,M‖2(1− γλ2
0Λmin)− 2γf(xt) + γ2‖Gf (xt)‖2

(38)

≤ ‖xt − xt,M‖2(1− γλ2
0Λmin)− 2γf(xt)

(
1− dγΛmax‖Ψ‖∗∞,2

)︸ ︷︷ ︸
≥0

≤ ‖xt − xt,M‖2(1− γλ2
0Λmin)

= d(xt,M)2(1− γλ2
0Λmin)

whenever γ < 1
Λmax‖Ψ‖∗

∞,2
. By telescoping, the result follows.
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