
Electronic Journal of Statistics
Vol. 16 (2022) 451–497
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1954

A general framework for tensor

screening through smoothing∗

Keqian Min and Qing Mai

Department of Statistics, Florida State University,
Tallahassee, Florida 32306, U.S.A.

e-mail: km17g@my.fsu.edu; qmai@fsu.edu

Abstract: Screening is an important technique for analyzing high-dimen-
sional data. Most screening tools have been developed for vectors and are
marginal in the sense that each variable is evaluated individually at a time.
Many multi-dimensional arrays (tensors) are generated nowadays. In addi-
tion to being high-dimensional, these data further have the tensor structure
that should be exploited for more efficient analysis. Variables adjacent to
each other in a tensor tend to be important or unimportant at the same
time. Such information is ignored by marginal screening methods. In this ar-
ticle, we propose a general framework for tensor screening called smoothed
tensor screening (STS). STS combines the strength of current marginal
screening methods with tensor structural information by aggregating the
information of its adjacent variables when evaluating one variable. STS
is widely applicable since the statistical utility used in screening can be
chosen based on the underlying model or data type of the responses and
predictors. Moreover, we establish the SURE screening property for STS
under mild conditions. Numerical studies demonstrate that STS has better
performance than marginal screening methods.
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1. Introduction

A large number of tensor datasets have been appearing in modern scientific re-
search, attracting much attention to the analysis of such datasets. For example,
advanced neuroimaging technology often generates imaging data in the form of
tensors. Electroencephalography monitors brain activity at several locations for
a period of time, resulting in 2-way tensors. Magnetic resonance imaging pro-
duces 3-way tensors as scans of brains. Similarly, functional magnetic resonance
imaging data are 4-way tensors with the 4th dimension being the time domain.
Tensor data are also frequently seen in other fields, such as computational biol-
ogy, personalized recommendation, and image recognition analysis.

In principle, we could vectorize the tensors and then apply existing vector
methods on the dataset. However, it is a wide consensus that vectorization could
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lead to loss of efficiency in analysis, as the tensor structure contains valuable
information that usually cannot be adequately modeled by existing vector mod-
els. In this article, we focus on an especially important tensor structure, the
smoothness structure.

Oftentimes, tensor data are collected in a way such that elements close to
each other are similar. Thus, the coefficients of them are smooth. For example,
[38, 39, 53] argue that brain images often have the smoothness structure in that
voxels adjacent to each other tend to be all important or unimportant at the
same time, because biologically voxels in the same brain region usually function
together. [59] consider tensor generalized linear models with low-rank and sparse
coefficients, as they want to perform region selection instead of variable selection.
[49] impose the smoothness structure to capture the dynamic nature of tensor.
When analyzing a brain image data collected over time, they assume that the
brain activities change smoothly along the time domain. More concretely, in
Section 5.2 we consider an electroencephalography (EEG) data, in which voltage
fluctuations are collected from 64 electrodes placed on the scalp, which are
sampled at 256 Hz for 1 second. As a result, the EEG images are stored as
2-way tensors, with smoothness structure along rows (i.e., time points) and
columns (i.e., locations of the electrodes). Vectorization of tensor data destroys
such smoothness structure; the adjacent elements may no longer be close to each
other after vectorization. Instead, it is highly desirable to preserve and leverage
the tensor structure rather than to vectorize the data.

Another common property of tensor data is their high dimensionality. Many
tensor data naturally have a large number of elements in them. For example,
the EEG dataset in Section 5.2 is of dimension 256 × 64, with 16,384 ele-
ments in total. [24] and [42] analyzed the attention deficit hyperactivity dis-
order (ADHD) data of dimension 30 × 36 × 30, with 32, 400 elements in total.
Such high dimensionality calls for additional assumptions for accurate modeling.
Therefore, many researchers borrow the popular sparsity assumption from high-
dimensional statistics to enforce variable selection and thus reduce the model
complexity in tensor data analysis [59, 48, 42, e.g].

However, these high-dimensional tensor methods generally take the penalized
approach, in which we consider an optimization problem that combines an ap-
propriate loss function and a sparsity-inducing penalty. When the dimension is
excessively high, penalized methods can be time-consuming or computationally
unstable [10]. In such cases, screening is widely regarded as a computationally
efficient preprocessing tool. For vector data, a large family of screening methods
have been proposed [10, 12, 18, 13, 8, 25, 35, 3, 19, 11, 36, 4, e.g]. These meth-
ods marginally rank the variables by some properly chosen screening utilities.
Only the variables that appear marginally important are preserved for further
analysis.

Although screening methods effectively mitigate the impact of high dimen-
sionality on vector data, when applied to tensor data, they are typically inca-
pable of utilizing the tensor data structure. Since the screening utilities are cal-
culated on individual variables, screening does not recognize the aforementioned
common spatial structure in tensor data, nor does it encourage the selection of
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important regions. Ignoring this important piece of information could drasti-
cally decrease the efficiency of our statistical analysis, especially in the presence
of the high dimensions and the relatively limited sample size in tensor data.

To tackle this challenge, we propose a general framework for tensor screen-
ing that explicitly takes advantage of the tensor structure. We incorporate the
common smoothness structure in tensor data into the screening procedure, re-
sulting in a smoothed tensor screening (STS) framework. When we calculate
the screening utility for one variable, we not only consider this individual vari-
able, but also aggregate the information from adjacent variables. Consequently,
adjacent variables tend to receive similar rankings, and we encourage the selec-
tion of important regions instead of scattered elements. STS can be combined
with any existing marginal screening method to exploit the tensor structure for
better variable selection. Moreover, STS can be completed with the same or-
der of computationally costs as the corresponding marginal screening method
and thus preserves the most attractive feature of marginal screening. We show
that STS enjoys the so-called SURE screening property that it preserves all the
important variables with a probability tending to 1 under mild conditions.

After STS, refined analysis can be performed on the reduced set. One could
use either vector-based methods or tensor-based methods for this purpose. There
are many methods developed for tensor model fitting. For example, for regres-
sion problems, see [59, 20, 43, 53, 24, 57, 31]. For classification problems, see
[32, 42]. Many of these methods utilize the low-rank assumption, which is re-
lated to tensor decomposition [5, 50, 28, 56, e.g]. Most model-fitting methods
can be easily combined with STS, either directly or with slight data augmen-
tation. Some of them consist of variable selection and thus can further exclude
more variables from the dataset. Others may not perform variable selection on
their own. STS is a convenient way to add variable selection to these methods,
besides boosting their computation efficiency. Our numerical studies demon-
strate superior performance for STS combined with many popular model-fitting
methods.

The rest of this article is organized as follows. In Section 2, we start with
a review of marginal screening. We also introduce some useful tensor notation.
Section 3 presents the procedure of STS and the analysis afterwards. The SURE
screening property is established in Section 4. In Section 5, we present simulation
results as well as a real data analysis example. Section 6 summarizes our con-
tributions and discusses some future research directions. Additional numerical
studies and technical proofs are given in the Appendix.

2. Background

2.1. Marginal screening

We first briefly review marginal screening for vector data, as the main purpose
of this article is to generalize these methods to tensor data. Consider a random
pair {U, Y }, where U ∈ Rp is a p-dimensional vector of predictors, and Y is
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the univariate response that can be either continuous or discrete. Some works
consider multivariate Y , but we focus on the univariate response case for ease
of presentation. Nevertheless, our framework easily extends to the multivari-
ate response. We observe n independent and identically distributed copies of
the random pair, denoted as

(
Ui, Y i

)
, i = 1, . . . , n. Consider high-dimensional

problems where p is much larger than n. In this scenario, fitting models with all
variables often leads to a drastic loss of efficiency and accuracy. Rather, statisti-
cians often perform variable selection under the celebrated sparsity assumption.
The sparsity assumption means that only a small subset of variables are related
to the response Y . More rigorously, we define the set of important variables [60]
as

D = {j : F (y | U) functionally depends on Uj for some y},
where Uj is the jth feature of U and F (y | U) = pr(Y < y | U) is the
conditional distribution function of Y given U. The sparsity assumption implies
that |D| � p. Hence, if we can identify D, estimation and prediction can be
performed within a much lower-dimensional space.

Marginal screening is a family of computationally efficient techniques to iden-
tify D. They are usually carried out in the following procedure. First, we choose
a proper screening utility φnj that measures the marginal dependence between
Uj and Y such that a larger value of φnj indicates stronger dependence. For
example, if Y is continuous, we can choose φnj to be the absolute value of the
Pearson correlation between Y and Uj [10]. If Y is binary, φnj could be the ab-
solute value of the t-statistic of Uj across the two levels of Y [7]. As mentioned
in Section 1, more sophisticated utilities have been proposed in the literature
as well to accommodate more complicated statistical models. With a chosen
screening utility, all the variables are ranked by their corresponding φnj . Only
the variables with the highest ranks are selected, i.e., we select the set

Ŝφ (dn) = {j : φnj is amongst the first dn largest of all} ,
where dn is a positive integer predefined by users. Since most penalized meth-
ods can only deal with o(n) variables, the common choices for dn are n and
�n/ logn�, where �a� = min{i : i ≥ a and i is an integer} for a > 0.

Since we only fit the model on Ŝφ(dn), it is of utmost importance that Ŝφ(dn)
contains all the important variables in D. More formally, a screening method
is said to enjoy the SURE screening property if D ⊆ Ŝφ (dn). Most existing
screening methods enjoy the SURE screening property under two types of in-
terpretable conditions. Define φj as the population counterpart of φnj . The two
conditions are:

Condition (V1). There exists S such that D ⊆ S and δS = minj∈S {φj} −
maxj∈Sc {φj} > 0.

Condition (V2). There exist a constant ε0 > 0 and a monotonically decreasing
function ζn such that for any 0 < ε < ε0,

pr

(
max
1≤j≤p

|φnj − φj | > ε

)
≤ pζn(ε).



Smoothed tensor screening 455

Condition (V1) guarantees the validity of screening on the population level;
if we knew the true model, φj should provide a reasonable ranking such that
the important variables are ranked higher than the unimportant ones. Condition
(V2) requires φnj to be accurate approximations of φj , such that we can preserve
the ranking on the sample level. Condition (V2) is replaced with suitable lower-
level conditions for specific screening methods (see, e.g., [13, 25, 35]).

2.2. Tensor notation

We introduce some tensor notation that will be used throughout the rest of the
article. See [21] for a review of notation and operations of tensor. A tensor is
a multi-dimensional array, and its dimension is called the order or ways of the
tensor. An R-dimensional array A ∈ Rp1×...×pR is a tensor of order R. Vectors
and matrices can also be viewed as order-one (R = 1) tensors and order-two
(R = 2) tensors. The order of a tensor is also known as modes. The mode-
r product of tensor A with a matrix α ∈ Rd×pr is defined as A ×r α and
it yields a tensor of size p1 × · · · × pr−1 × d × pr+1 × · · · × pR. The Tucker
decomposition of A, defined as A = C×1G1 · · ·×RGR, can decompose A into
the product of a core tensor C ∈ Rd1×···×dR and R factor matrices Gr ∈ Rpr×dr ,
r = 1, . . . , R. The Tucker decomposition is often written in a shorthand notation,
A = �C;G1, . . . ,GR�. If all elements in A independently follow the standard

normal distribution and X = μ+ �A;Σ
1/2
1 , . . . ,Σ

1/2
R �, then X follows a tensor

normal (TN) distribution, denoted as X ∼ TN(μ,Σ1, . . . ,ΣR). If R = 2, the
tensor normal distribution reduces to the matrix normal (MN) distribution [17].

3. Smoothed tensor screening

3.1. The proposed smoothed tensor screening procedure

We consider screening on tensor data. We are interested in the random pair
(X, Y ), where X ∈ Rp1×...×pR is a R-dimensional tensor predictor and Y is
the univariate response that can be either continuous or discrete. The tensor
predictor X has p =

∏R
r=1 pr elements, which is often an intimidating number.

We observe a random sample
{
Xi, Y i

}
, i = 1, . . . , n, where n is much smaller

than p.
We want to perform screening on the observed data to reduce the number of

variables. Also, recall that we want to leverage the tensor structure for better
screening results. To this end, we assume that variables adjacent to each other
tend to be important or unimportant at the same time. Let J = (j1, . . . , jR) be
an index and XJ be the J th element in X. The tensor version definition of the
set of important variables is

D = {J : F (y | X) functionally depends on XJ for some y}.

For high-dimensional tensors, we propose a general smoothed tensor screening
(STS) framework for (X, Y ). STS consists of the following three steps.
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First, we choose an appropriate measurement of the dependence between Y
and XJ , φnJ , for each J . Most existing marginal utilities can be candidates as
long as their corresponding models are reasonable. For example, if we believe
that Y and X are related through a linear regression model, φnJ could be the
Pearson correlation [10]. If a generalized linear model is suitable, we can take
φnJ to be the coefficient of the marginal generalized linear model [13]. If we
wish to perform screening in a model-free fashion, distance correlation can be
applied [25]. We will demonstrate our proposed framework with three popular
choices in later sections.

Second, we exploit the tensor structure by incorporating the neighborhood
information. For each J = (j1, . . . , jR), define ΩJ = {I = (i1, . . . , iR) : |ir −
jr| ≤ 1, r = 1, . . . , R}\{J }. Apparently, ΩJ contains all the predictors adjacent
to XJ . Then we obtain the smoothed screening utility

φSmooth
nJ = φnJ + c · φnΩJ , (3.1)

where φnΩJ = 1
|ΩJ |
∑

I∈ΩJ
φnI is the average dependence across the neighbor-

hood of XJ and c ≥ 0 is the user-specified weight. Since φSmooth
nJ is the weighted

sum of φnJ and φnΩJ , it combines the information from XJ with that from its

neighbors. The weight c determines the level of smoothness in φSmooth
nJ . When

c = 0, φSmooth
nJ reduces to the marginal screening utility φnJ that does not pro-

mote smoothness. As we increase c, φSmooth
nJ becomes smoother across J . For

variable XJ , if c = |ΩJ |, all adjacent variables are treated equally with XJ
itself.

If desired, c can be chosen by cross-validation. However, we discover that this
is generally not necessary if smoothness structure exists. The screening results
are not sensitive to the choice of c, as long as it is in a reasonable range. Define
ω = maxJ |ΩJ |. Generally, if pr ≥ 3 for r = 1, . . . , R, we have ω = 3R − 1. If
ω/2 ≤ c ≤ ω, the screening results are roughly constant in all our simulation
models that satisfy the smoothness assumption.

Finally, we rank the variables by φSmooth
nJ and select the following subset

ŜSmooth
φ (dn) =

{
J : φSmooth

nJ is amongst the first dn largest of all
}
. (3.2)

Following the convention in marginal screening, we could set dn to be �n/ log n�
or n.

Our proposed screening procedure is different from marginal screening in that
it smoothes the screening utilities across the locations over the tensor. Hence, we
refer to it as smoothed tensor screening (STS). STS is a general framework for
tensor screening because it can be combined with any marginal screening method
to achieve smoothed variable selection on tensor data. By summing φnJ with
its neighbors, we utilize the natural spatial structure in tensor data to obtain
better variable selection. Moreover, STS has the same order of computation cost
as marginal screening. For example, if the computation cost for φnJ is O(nγ) for
some γ > 0, then the computation cost for the corresponding marginal screening
is O(nγ · p). STS has an additional smoothing step, with the computation cost
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Fig 1. Heatmaps of TSmooth
nJ at different c. For each c, TSmooth

nJ is scaled to the range of [0, 1].
When c = 0, the procedure is equivalent to marginal screening that ignores the tensor structure
and does not effectively separate the signals and noises. After smoothing the statistics, we
have a better recovery of the true signal block.

of O(ωp) = o(nγ · p) as n becomes large. Hence, the total computation cost for
STS remains the same as the corresponding marginal screening in use.

We further present a toy example to illustrate the procedure of STS.

Example 1. Consider a binary classification problem where the response Y = 1
or 2 with equal probabilities and the predictor X ∈ R64×64. We generate X
from the matrix normal distribution X | (Y = k) ∼ MN (μk, I64, I64). Define
D = {(i, j) : 25 ≤ i, j ≤ 40}. In the first class, μ1,D = 0.35 and μ1,Dc = 0. In
the second class, μ2 = 0. For each class, we simulate 150 samples, which is a
small sample size compared to the 4,096 elements in X.

Our model is known as a tensor discriminant analysis model [42]. It is sim-
ilar to a discriminant analysis model, in which the t-statistics can be used for
marginal screening [7]. Denote TnJ as the absolute value of the t-statistic cal-
culated on (XJ , Y ). Then we compute T Smooth

nJ as in (3.1) with c = 0, 1, 4, 8,
where we note that c = 0 corresponds to marginal screening and 8 is the max-
imum number of neighbors in our model. See Figure 1 for the heatmaps of the
resulting T Smooth

nJ . Since the signals in our model are relatively weak, marginal
screening (Panel (b), c = 0) cannot effectively identify the important variables.
Many important elements have small TnJ , while many unimportant elements
have misleadingly large TnJ . However, as we exploit the tensor structure by in-
creasing c, the signal block stands out clearly. While the block for c = 1 (Panel
(c)) is somewhat blurry, it becomes much more distinctive for c = 4, 8 (Panels
(d) & (e)). Hence, by encouraging smoothness, STS is more efficient in distin-
guishing the important elements from the unimportant ones. Moreover, Panels
(d) & (e) look similar, which demonstrates our earlier claim that STS is not
sensitive to the choice of c as long as it is reasonably large.

With the screening utilities, STS chooses the top dn predictors. We let dn = n
and plot the proportion of selected active predictors and that of selected inactive
predictors, corresponding to c = 0, 1, . . . , 8 in Figure 2. With the increase of c,
most active predictors are selected and very few inactive predictors are selected.
Also, the proportions are very stable for c ≥ 2, indicating that there is no need
to finely tune c under the smoothness assumption.

Finally, we comment on the robustness of STS. STS is proposed to exploit the
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Fig 2. Proportions of active and inactive predictors that are picked out at different weights c.
After smoothing the statistics, more active predictors and fewer inactive predictors are kept.

smoothness structure in the data. If there is no smoothness, STS is not recom-
mended, as the screening results are expected to be not as accurate as marginal
screening. However, STS is resistant to partial violations of the smoothness as-
sumption. By our construction, STS is most efficient when the tensor is smooth
along all modes. But sometimes in practice, the tensor is only smooth along
some modes. For example, for a matrix predictor, it could be the case that
the tensor is only smooth along the rows, but not the columns. Our numerical
studies show that STS still works well in this partially smooth scenario. More-
over, recall that, in smooth models, we recommend ω/2 ≤ c ≤ ω. Among these
choices, c = ω/2 is the most robust to possible violations of the smoothness
assumption. See Section 5.1 for empirical evidence of our discussion.

3.2. Other possible approaches for smoothed tensor screening

Compared to marginal screening, the most important innovation for STS is
to aggregate information from neighbors to take advantage of the smoothness
structure. We achieve this goal by taking the weighted average of an element
and its immediately adjacent neighbors. However, there are other possible ways
to smooth the screening utilities. We discuss two possibilities.

First, STS only uses the immediately adjacent elements, resulting in neigh-
borhoods of size 3 along each mode. One could expand the neighborhoods to
obtain more smoothed results. We investigate the effect of neighborhood size
in Appendix C. We find that if there is strong smoothness structure, a neigh-
borhood of size 5 or 7 (i.e., two or three adjacent elements are used instead
of one along each direction) could have slightly better results than 3, but the
improvement is minimal. Further increasing the neighborhood size no longer
helps, and overly large neighborhood will eventually hurt the performance of
STS. Moreover, even for the size of 5, there is a notable drop in the robustness.
In other words, when the smoothness assumption is not fully satisfied, STS has
much worse results with a neighborhood size of 5 compared to 3. Therefore,
larger neighborhoods should only be used when the true model is very smooth.
Otherwise, the neighborhood size of 3 is safer.
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Second, there are other methods for the smoothing step in STS. For example,
Gaussian filter is a very popular imaging processing technique [16]. Although
Gaussian filter is often employed to smooth the data itself instead of screening
utilities, it is straightforward to be applied in the screening context. With Gaus-
sian filter, we still take the weighted average of the screening utilities within a
neighborhood, but the weights are generated by a Gaussian kernel instead of
being a constant as in STS. See Appendix D for an introduction of Gaussian
filter and the comparison between it and STS. In STS, the constant c controls
the degree of smoothness. In Gaussian filter, the standard deviation of the Gaus-
sian kernel has the same purpose. When the standard deviation is chosen well,
Gaussian filter performs almost identically to STS. Hence, throughout the rest
of this article, we restrict our attention to STS to avoid redundancy.

3.3. Analysis after smoothed tensor screening

After STS, we perform model fitting on the selected variables. This is usually
straightforward to do if we choose a vector-based method. We simply apply
a vector-based method on (Y,XSTS), where XSTS contains all the elements
preserved by STS. However, it might be difficult to directly use a tensor-based
analysis tool, because the reduced set XSTS may no longer be a tensor. Hence, if
we hope to use a tensor-based analysis tool, we first augment the reduced set into
a tensor. Given ŜSmooth

φ (dn), we find the index set for each mode. Specifically,
for r = 1, . . . , R, define

Mr = {kr : J = (j1, . . . , kr, . . . , jR) ∈ ŜSmooth
φ (dn)

for some (j1, . . . , jr−1, jr+1, . . . , jR)}. (3.3)

Then we keep all the variables in M = {J = (j1, . . . , jR) : j1 ∈ M1, . . . , jR ∈
MR} to form the new predictor X̃ ∈ R|M1|×...×|MR|. The resulting X̃ is the

smallest tensor that containsXSTS. Further analysis can be performed on X̃. We
continue to use the model setting in Example 1 to illustrate this augmentation
step.

Example 1. (Cont’d) Under the same setting in Example 1, we plot the se-
lected variables in Figure 3. Apparently, the selected variables (black) no longer
form a tensor. We augment the selection results by further including the grey
elements in Figure 4. The black and grey elements together form a smaller ten-
sor. When c is reasonably large and STS works well, the augmentation does not
include too many extra variables.

When the signal in tensor is smooth and STS produces an accurate selec-
tion result, the augmented data X̃ is often a small tensor, as is the case in
Example 1. But if one is concerned with the inclusion of extra variables in the
augmentation, the screening utilities can be combined with the penalty to filter
out these variables. For example, denote B ∈ R|M1|×···×|MR| as the parameter
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Fig 3. Selected variables after STS/marginal screening. Each black dot denotes a selected
variable, and the white regions contain the variables identified to be unimportant.

Fig 4. Selected variables after augmentation. Black dots are variables selected by STS and
grey dots are variables included to maintain the tensor form of the data. White dots are not
selected.

of interest and
∑

J λJP (BJ ) as the penalty function we choose. Then we can

let λJ = λ/φSmooth
nJ for some λ > 0 such that the added variables are more

heavily penalized than the ones preserved by screening. However, we do not
observe significant improvement in this penalized procedure because X̃ usually
only includes a small number of extra variables when STS is performed with a
suitable c.

3.4. Smoothed tensor screening with three popular screening
methods

In what follows, we present three examples for STS combined with three popular
marginal screening utilities: the t-statistic, the maximum marginal likelihood
estimator (MMLE), and the distance correlation. The t-statistic is a natural
screening statistic for classification problems, MMLE works for the general-
ized linear model, and distance correlation is a successful model-free screening
method. All these methods were originally proposed for vector data, but their
direct generalizations to tensor data are straightforward. We first give a short
review of the three statistical utilities in their original model setting, and then
we extend them to tensor data. Throughout the rest of this section, we use
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U ∈ Rp to denote the vector predictors and X ∈ Rp1×···×pR to denote the
tensor predictors. Our observations are denoted as {Xi, Y i}ni=1.

3.4.1. The t-statistic

Consider a binary classification problem where Y ∈ {1, 2} denotes the class label
and U ∈ Rp denotes the vector predictor. When Y = k, k = 1, 2, we assume
that

Uk = μk + εk,

where μk ∈ Rp is the mean vector of class k and εk ∈ Rp is the error term,
in which each element has mean zero. [7] proposed to calculate the t-statistic
of each Uj across the two levels of Y and rank the importance of Uj by the
magnitude of its corresponding t-statistic.

For tensor data, consider the class label Y ∈ {1, 2} and the R-way tensor
predictor X ∈ Rp1×...×pR . When Y = k, we assume that

Xk = μk + εk, (3.4)

where μk ∈ Rp1×...×pR is the mean tensor of class k and εk ∈ Rp1×...×pR is the
error term where each element has a mean of zero. We continue to use the two
sample t-statistic on tensor data. In a dataset with n observations, assume that
there are nk samples within the class Y = k. We calculate

φt
nJ =

|X1J −X2J |
n1/2(H2

1J /n1 +H2
2J /n2)1/2

, (3.5)

where XkJ = 1
nk

∑
Y i=k X

i
J and H2

kJ = 1
nk−1

∑
Y i=k

(
Xi

J −XkJ
)2
. Note that

φt
nJ is the t-statistic divided by n1/2. Since φt

nJ and n1/2φt
nJ give us the same

ranking of predictors, they are the same for the sake of screening. But such
rescaling helps us define the population statistical utility

φt
J =

|μ1J − μ2J |
(σ2

1J /π1 + σ2
2J /π2)1/2

, (3.6)

where μkJ and σ2
kJ are the true population mean and variance of the J th

variable in class k and πk = pr(Y = k).
With φt

nJ , we apply STS by calculating

φt.STS
nJ = φt

nJ +
c

|ΩJ |
∑

I∈ΩJ

φt
nI .

The variables are then ranked by φt.STS
nJ and we select the following subset

Ŝt.STS
φ (dn) =

{
J : φt.STS

nJ is amongst the first dn largest of all
}
.

We refer to this procedure as STS-t screening. Similar to the t screening, STS-t
screening is suitable when the response Y is a categorical variable. However,
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STS-t screening is designed for tensor predictors instead of vector predictors.
By taking into account the smoothness structure of tensor data, we achieve
more efficient screening. After STS-t screening, we could apply a wide range of
model-fitting methods. For example, if we focus on XD̂, we can apply sparse
discriminant analysis methods for vector data, such as [2, 6, 45, 54, 9, 37, 55, 34].
Alternatively, with the data augmentation in Section 3.3, we can apply tensor
classification methods such as covariate-adjusted tensor classification (CATCH,
[42]) and tensor regression based on CP decomposition (CP-GLM, [59]). Note
that the tensor methods cannot be easily combined with marginal t-screening
because t-screening does not honor the tensor structure.

3.4.2. The marginal maximum likelihood estimator

Suppose that the response Y is from an exponential family whose probability
density function has the canonical form

fY (y; θ) = exp{yθ − b(θ) + c(y)},

where b(·), c(·) are known functions and θ is an unknown function. Suppose
that the predictor U is a p-dimensional vector and β = (β0, β1, . . . , βp) is the
parameter. The following generalized linear model is assumed:

E(Y | U = u) = b′(θ(u)) = g−1

⎛⎝β0 +

p∑
j=1

βjuj

⎞⎠ ,

where g = (b′)−1
is the link function. Under this model, [13] proposed the screen-

ing method based on the maximum marginal likelihood estimator (MMLE),

which is obtained from componentwise regression. The marginal estimator β̂M
j

is defined by

(
β̂M
j,0, β̂

M
j

)
= argmin

β0,βj

{
1

n

n∑
i=1

l
(
β0 + βjU

i
j , Y

i
)}

,

where l(Y ; θ) = −[θY − b(θ)− log c(Y )]. Then the marginal screening utility is

chosen to be φGLM
nj = |β̂M

j |.
For tensor predictor X, we assume a similar model:

E(Y | X = x) = b′(θ(x)) = g−1

(
β0 +

∑
J

βJ xJ

)
.

Define the marginal estimator

(
β̂M
J ,0, β̂

M
J

)
= argmin

β0,βJ

{
1

n

n∑
i=1

l
(
β0 + βJXi

J , Y i
)}

.
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The marginal screening utility is chosen to be φGLM
nJ = |β̂M

J |. Its population ver-
sion φGLM

J is similarly obtained by minimizing E(l (β0 + βJXJ , Y )). To apply
STS, we further calculate

φGLM.STS
nJ = φGLM

nJ +
c

|ΩJ |
∑

I∈ΩJ

φGLM
nI .

The variables are then ranked by φGLM.STS
nJ and we select the following subset

ŜGLM.STS
φ (dn) =

{
J : φGLM.STS

nJ is amongst the first dn largest of all
}
.

We refer to this procedure as STS-GLM screening. For various types of response
such as Y is binomial or normal, whenever the generalized linear model is suit-
able, we can apply the STS-GLM screening. Through using the smoothness
structure of tensor data, STS-GLM screening is more efficient than the vector-
based GLM screening on tensor data. After obtaining the screened data, we can
apply vector-based methods such as [14], or, with the data augmentation step,
we can also apply tensor regression methods such as CP-GLM [59].

3.4.3. Distance correlation screening

Distance correlation screening [25] is a model-free screening method that works
for any statistical model. It uses distance correlation [51] to measure the depen-
dence between the response and the predictor. We first briefly review distance
correlation.

Consider two random variables V,W . Distance correlation can be calculated
for a pair of vectors, but we only consider univariate random variables V,W ∈ R

here for ease of presentation. The squared distance covariance is defined as:

dcov2(V,W ) =
1

π2

∫
R2

|αV,W (s, t)− αV (s)αW (t)|2
s2t2

d t d s, (3.7)

where αV,W is the joint characteristic function of (V,W ), αV is the character-
istic function of V and αW is the characteristic function of W . The distance
correlation dcorr(V,W ) between V and W is defined as

dcorr(V,W ) =
dcov(V,W )

(dcov(V, V ) dcov(W,W ))1/2
. (3.8)

The distance correlation is a measurement of dependence between V,W be-
cause dcorr(V,W ) = 0 if and only if V and W are independent. In practice,
with n samples, the distance covariance is estimated by

d̂cov
2
(V,W ) =

1

n2

n∑
i=1

n∑
j=1

|V i − V j ||W i −W j |

+
1

n2

n∑
i=1

n∑
j=1

|V i − V j | 1
n2

n∑
i=1

n∑
j=1

|W i −W j |
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− 2

n3

n∑
i=1

n∑
j=1

n∑
l=1

|V i − V l||W j −W l|,

and d̂corr(V,W ) can be obtained accordingly. In distance correlation screening,
the estimated distance correlation is used as the screening utility.

To apply distance correlation screening with tensor predictors, we consider
the response Y and the tensor predictor X ∈ Rp1×···×pR . We define the marginal
screening utility

φDC
nJ = d̂corr

2
(XJ , Y ) .

To apply STS, we further compute the smoothed screening utility

φDC.STS
nJ = φDC

nJ +
c

|ΩJ |
∑

I∈ΩJ

φDC
nI .

Then we keep the variables with the top dn values of φDC.STS
nJ , that is

ŜDC.STS
φ (dn) =

{
J : φDC.STS

nJ is amongst the first dn largest of all
}
.

We refer to this procedure as STS-DC screening. Since the distance correlation
screening is a model-free screening method, the STS-DC screening is also model-
free. Almost all model-fitting methods can be applied after STS-DC screening.
Moreover, STS-DC is a screening method for tensor predictors and is expected
to achieve better screening results when there is a smoothness structure in the
tensor.

4. Theoretical properties

4.1. A generic theorem

In this section, we present the theoretical properties of STS. Since STS is a gen-
eral framework that can be combined with any screening utility, we first consider
its properties for a generic utility φnJ . Then we present more concrete results
for STS with the three popular screening methods mentioned in Section 3.4. All
our proofs are included in Appendix A.

For a generic φnJ and its smoothed version φSmooth
nJ , we respectively define

their population counterparts as φJ and

φSmooth
J = φJ + c · φΩJ , (4.1)

where φΩJ = 1
|ΩJ |
∑

I∈ΩJ
φI . We make the following assumptions on φSmooth

J .

Condition (T1). There exists S1 such that D ⊆ S1 and

δSmooth
S1

= min
J∈S1

{
φSmooth
J

}
− max

J∈Sc
1

{
φSmooth
J

}
> 0.
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Condition (T2). There exist a constant ε0 > 0 and a monotonically decreasing
function ζn such that for any 0 < ε < ε0, we have

pr

(
max
J

|φnJ − φJ | > ε

)
≤ (

R∏
r=1

pr)ζn(ε).

Apparently Conditions (T1) & (T2) are similar to Conditions (V1) & (V2)
introduced in Section 2.1 for marginal screening; see more discussion after Theo-
rem 4.1. Recall that ω is the maximum number of neighbors, and c is the weight
for neighbors. We have the following theorem.

Theorem 4.1. Suppose that Condition (T2) holds. We have the following con-
clusions.

(i) There exists ε0 > 0 such that for any 0 < ε < ε0,

pr

{
max
J

|φSmooth
nJ − φSmooth

J | > (1 + c)ε

}
≤ (

R∏
r=1

pr)(1 + ω)ζn(ε).

(ii) If in addition Condition (T1) holds and dn ≥ |S1|, there exists a positive
constant ε1 = min{ε0, δSmooth

S1
/(2(1 + c))} such that

pr
{
D ⊆ ŜSmooth

φ (dn)
}
≥ 1− (

R∏
r=1

pr)(1 + ω)ζn(ε1).

The first conclusion in Theorem 4.1 implies that, if φnJ uniformly converges
to φJ (i.e., if Condition (T2) holds), its STS version φSmooth

nJ uniformly converges
to φSmooth

J at the same rate. Most, if not all, existing marginal screening meth-
ods satisfy a certain form of Condition (T2), including the three discussed in
Section 3.4. Hence, φSmooth

nJ in general are very good approximations of φSmooth
J ,

and provide the same rank of the variables as that of φSmooth
J .

The second conclusion in Theorem 4.1 indicates that, under the additional
Condition (T1), STS enjoys the SURE screening property. Condition (T1) re-
quires φSmooth

J to produce a good ranking of the variables; the important vari-
ables have larger φSmooth

J than the unimportant ones on the population level.
Then by the first conclusion, the estimates φSmooth

nJ should be able to accurately
detect the important variables. In this sense, Condition (T1) is similar to Con-
dition (V1) for vector methods. In what follows, we further show that when
the true signal is smooth, (T1) is a natural generalization of (V1) to tensor
data. First, we rewrite Condition (V1) for tensor data. With a little abuse of
terminology, we still refer to the tensor version as Condition (V1).

Condition (V1). There exists S such that D ⊆ S and δS = minJ∈S {φJ } −
maxJ∈Sc {φJ } > 0.

Next, we consider a smoothness assumption. Let Φ ∈ Rp1×···×pR denote the
tensor with its J th element being the screening utility φJ . We make the fol-
lowing assumption:



466 K. Min and Q. Mai

Assumption (A1). Assume that there exist J0 non-overlapping blocks {B1, . . . ,
BJ0}, such that each block contains the indices of a subarray of Φ. The indices
of all the other variables that do not fall into any block are in set BJ0+1. Assume
that D ⊆ ∪J0

j=1Bj and there is a vector v ∈ RJ0 such that the true signal Φ can
be written as

Φ =

J0∑
j=1

vj1Bj ,

where v > 0 and 1B is the indicator function of set B.

Assumption (A1) is an ideal case where the true signals are piece-wise con-
stant. It can be seen as an approximation to the practical case where the true
signals slightly fluctuate within each region. A similar assumption has been used
by [44] to study the theoretical properties of the fused lasso.

For a set S that satisfies Condition (V1), we consider the set S1 = S ∪
{∪J∈SΩJ }. The set S1 contains all the elements in S and their neighbors. We
have the following lemma.

Lemma 4.1. Under Condition (V1) and Assumption (A1), for any non-nega-
tive c, we have S1 satisfies Condition (T1) and δSmooth

S1
> min{1, c/ω}δS . More-

over, |S1| ≤ 3R−1(|S|+ 2J0).

It can be seen that Conditions (V1) & (A1) together imply Condition (T1).
Hence, Condition (T1) is very intuitive. Moreover, we generally hope that gap
δSmooth
S1

is large. Lemma 4.1 suggests that, when c is considerably smaller than ω,

the lower bound for δSmooth
S1

is also much smaller than δS . Hence, it makes sense
to only consider c comparable to ω, which is in accordance to our proposal of c =
ω/2 or c = ω. In the meantime, since R is a fixed constant and J0 ≤ |S|, |S1| ≤
3R−1(|S| + 2J0) indicates that |S1| is at the same order of |S|. Consequently,
STS can handle the same level of sparsity as the marginal screening utility it is
combined with.

Finally, we note an important difference between screening and hypothesis
testing, although many screening utilities are historically test statistics, such as
the t-statistic we discussed. In screening, the refined analysis will be performed
exclusively on the reduced data. Consequently, if an important variable is falsely
removed by screening, it is impossible to recover it in the final modeling. This
is why we need the SURE screening property to ensure that there is no false
negative. On the other hand, if an unimportant variable survives the screening
step, a sparse method in the second step can still identify it. Screening is tolerant
of false positives in this sense.

In contrast, in multiple testing problems, it is essential to control the false
discovery rate. For example, [41] proposed to use a smoothing procedure to
detect clusters. In particular, a bias adjustment is developed to prevent the
smoothing from inflating the false discovery rate. No such adjustment is needed
in STS because STS is concerned with false negatives rather than false positives.
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4.2. Theoretical properties for STS-t, STS-GLM and STS-DC

In what follows, we study the theoretical properties for STS-t, STS-GLM, and
STS-DC. For all the three examples, our study verifies that φSmooth

nJ uniformly
converges to φSmooth

J at the same rate as φnJ converges to φJ by showing that
they have the same order in their probability bounds. For each method, we also
replace Condition (T2) with suitable lower-level conditions.

4.2.1. The STS-t screening

According to Theorem 4.1, the SURE screening property of STS-t depends on
Conditions (T1) and (T2). We introduce the following condition that guarantees
Condition (T2). To apply STS-t screening, we assume the model in (3.4).

Condition (T3). Within Class Y = k, εkJ is sub-Gaussian with variance
proxy σ2

kJ . Also, we assume that μ1J −μ2J is bounded uniformly; σ2
1J and σ2

2J
are bounded away from 0 uniformly.

Straightforward proof shows that Condition (T3) implies Condition (T2);
see Appendix A.3 for the proof. Condition (T3) is a widely used assumption
in high-dimensional statistics. Hence, Condition (T2) is indeed very mild. As a
consequence of Theorem 4.1, we have the following result concerning the SURE
screening property of STS-t.

Corollary 4.1. Suppose that Condition (T3) holds. We have the following con-
clusions.

(i) There exists ε0 > 0 such that for any 0 < ε < ε0,

pr

{
max
J

|φt.STS
nJ − φt.STS

J | > (1 + c)ε

}
≤(1 + ω)(

R∏
r=1

pr){γ1 exp(−γ2nε
2) + γ3 exp(−γ4n)},

for some positive constants γ1, γ2, γ3 and γ4.
(ii) If in addition Condition (T1) holds, dn ≥ |S1| and δSmooth

S1
�

(
∑R

r=1 log(pr)/n)
1/2, then STS-t enjoys the SURE screening property with a

probability tending to 1.

Corollary 4.1 implies that φt.STS
nJ converges to its population counterpart at

the same rate of φt
nJ . Moreover, STS-t enjoys the SURE screening property

even when the dimension of each mode of X grows at an exponential rate of n.
Thus, STS-t is suitable for very high-dimensional tensor datasets.

4.2.2. The STS-GLM screening

For STS-GLM, we study the SURE screening property for two most important
generalized linear models, the linear regression model and the logistic regression
model. We use the following condition.
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Condition (T4). Both X and Y satisfy the sub-exponential tail probability
uniformly. That is, there exists a positive constant s0 such that, for all 0 ≤ s ≤
2s0,

max
J

E{exp
(
sX2

J
)
} < ∞ and E{exp

(
sY 2
)
} < ∞.

Condition (T4) is a mild condition that implies Condition (T2). Detailed
proof can be seen in Appendix A.4. Similar conditions have been used in [13]
to guarantee the SURE screening property of MMLE for vector data. Under
Condition (T4), we establish the SURE screening property of STS-GLM using
Theorem 4.1.

Corollary 4.2. Suppose that Condition (T4) holds. We have the following con-
clusions.

(i) For logistic regression, there exist some positive constants α and ε0 such
that for any 0 < ε < ε0,

pr

{
max
J

|φGLM.STS
nJ − φGLM.STS

J | > (1 + c)ε

}
≤(1 + ω)(

R∏
r=1

pr){γ1 exp(−γ2n
α/(α+2)ε2) + γ3n exp(−γ4n

α/(α+2))},

for some positive constants γ1, γ2, γ3 and γ4. Moreover, if Condition (T1) holds,

dn ≥ |S1| and δSmooth
S1

� (
∑R

r=1 log(pr)/n
α/(α+2))1/2, then STS-GLM enjoys

the SURE screening property with a probability tending to 1.
(ii) For linear models, there exist some positive constants α and ε0 such that

for any 0 < ε < ε0,

pr

{
max
J

|φGLM.STS
nJ − φGLM.STS

J | > (1 + c)ε

}
≤(1 + ω)(

R∏
r=1

pr){γ1 exp(−γ2n
α/Aε2)},

for some positive constants γ1, γ2 and A = max(α + 4, 3α + 2). Moreover, if

Condition (T1) holds, dn ≥ |S1| and δSmooth
S1

� (
∑R

r=1 log(pr)/n
α/A)1/2, then

STS-GLM enjoys the SURE screening property with a probability tending to 1.

Corollary 4.2 suggests that STS-GLM can also handle the tensor data with
very high dimensionality along each mode.

4.2.3. The STS-DC screening

To study the theoretical properties of STS-DC, we again consider Condition
(T4). Condition (T4) was used in [25] to guarantee the SURE screening property
of the distance correlation screening method for vector data. In Appendix A.4,
we showed that Condition (T4) implies Condition (T2). Therefore, we establish
the SURE screening property of STS-DC in the following corollary.
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Corollary 4.3. Suppose that Condition (T4) holds. We have the following con-
clusions.

(i) There exists ε0 > 0 such that for any 0 < ε < ε0 and for any 0 < v < 1/2,

pr

{
max
J

|φDC.STS
nJ − φDC.STS

J | > (1 + c)ε

}
≤ (1 + ω)(

R∏
r=1

pr){γ1 exp
(
−γ2n

1−2vε2
)
+ γ3n exp(−γ4n

v)},

for some positive constants γ1, γ2, γ3 and γ4.
(ii) If in addition Condition (T1) holds, dn ≥ |S1| and δSmooth

S1
�

(
∑R

r=1 log(pr)/n
1/3)1/2 where we let v = 1/3, then STS-DC enjoys the SURE

screening property with a probability tending to 1.

By Corollaries 4.1, 4.2 and 4.3, all the three STS screening methods enjoy
the SURE screening property when the dimension of each mode of the tensor
grows at an exponential rate of the sample size. We also note that their conver-
gence rates are identical to those of their marginal counterparts. Hence, the STS
procedure reserves the nice theoretical properties of their marginal counterparts
while taking advantage of the tensor structure.

4.3. Structure of the screened data

As suggested by a referee, we further examine the impact of screening on mod-
eling. We are interested in whether the screened data follow the same type of
model as the original data. For such study, although screening can be performed
in a model-free fashion, we consider two popular tensor models that could be
fitted after screening, the tensor discriminant analysis (TDA) model [42], and
the generalized linear tensor regression model [59].

There are two possible results of STS. On one hand, if we simply apply STS,
the predictor may no longer be a tensor and cannot be modeled by tensor models.
On the other hand, if we combine STS with the augmentation introduced in
Section 3.3, we will end up with a sub-tensor of X. For simplicity, we pay more
attention to the latter case, as it is more relevant for tensor data analysis. The
former case is briefly discussed afterwards.

Denote V as a subset of indices such that XV is also a tensor. In the context
of screening, V could be the target set for STS with augmentation. Note that,
since XV is a tensor, there exist Vr ⊂ {1, . . . , pr}, r = 1, . . . , R such that V =
V1 × · · · × VR, where × denotes the Cartesian product.

For the TDA model, Y ∈ {1, . . . ,K} is the class label. We assume that

pr(Y = k) = πk, X | (Y = k) ∼ TN (μk,Σ1, . . . ,ΣR) ,

where 0 < πk < 1,
∑

k πk = 1 are the prior probabilities for Class k, μk ∈
Rp1×···×pR is the within-class mean, and Σr, r = 1, . . . , R are positive definite
covariance matrices.
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Note that STS-t, STS-GLM and STS-DC are all applicable under this model.
For example, STS-t is suitable because the TDA model satisfies Condition (T3),
which eventually leads to the SURE screening property. To see why Condi-
tion (T3) is true, we note that the TDA model can be equivalently written as
(3.4) with the additional assumption that εk ∼ TN(0,Σ1, . . . ,ΣR). It follows

that, for each J , εkJ ∼ N(0, σ2
kJ ) with σ2

kJ =
∏R

r=1 σr,jrjr . Hence, εkJ is
sub-Gaussian with variance proxy σ2

kJ , as required by Condition (T3).
Under the TDA model, we have the following lemma for the sub-tensor XV .

Lemma 4.2. Under the TDA model, for any index set V, we have

XV | (Y = k) ∼ TN
(
μk,V ,Σ1,V1 , . . . ,ΣR,VR

)
,

where Σr,Vr is the sub-matrix of Σr containing elements with indices in Vr×Vr.

Lemma 4.2 implies that any sub-tensor XV preserves the TDA model. There-
fore, if (X, Y ) follows the TDA model, we can still fit a TDA model after STS
with data augmentation.

Meanwhile, the generalized linear tensor regression model considers a uni-
variate response Y that could be continuous or discrete. It assumes that

g(μ) = β0 + 〈B,X〉 (4.2)

where g(·) is the link function, μ = E(Y | X), β0 is the intercept and B has rank
H. The inner product between two tensors is defined as 〈B,X〉 =

∑
J BJXJ .

We also refer to this model as the rank-H generalized linear tensor regression
model to highlight the low-rank structure. Recall that, we assume that B is
sparse and is only nonzero over a set D. We have the following lemma for XV .

Lemma 4.3. Under the rank-H generalized linear tensor regression model, if
D ⊆ V, we have

g(μ) = β0 + 〈BV ,XV〉, (4.3)

where BV also has rank H.

Lemma 4.3 indicates that, if a sub-tensor XV contains all the important el-
ements, then it is connected to Y with the rank-H generalized linear tensor
regression model. In our context, take V to be the target set of STS with data
augmentation. If D ⊆ V , the rank-H generalized linear tensor regression is pre-
served after STS with data augmentation. The assumption D ⊆ V is reasonable
because we expect STS to enjoy the SURE screening property when we apply
it.

Finally, we point out that STS alone (without data augmentation) also pre-
serves some important properties of the original model. For example, if (X, Y )
follows the TDA model, then it can be shown that the screened data follows the
linear discriminant analysis model, which is the counterpart for the TDA model
on vector data. Similarly, if (X, Y ) follows the generalized linear regression ten-
sor model, the screened data follow the generalized linear model as long as all
the important variables are kept.
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5. Numerical studies

5.1. Simulations

We present the numerical performance of STS. In all simulations, we generate in-
dependent training, validation, and testing sets. The training set and validation
set contain n observations to be specified, while the testing set contains 10000
observations. All matrix predictors (R = 2) have dimension 64× 64. Three-way
tensor predictors (R = 3) have dimension 30× 36× 30.

We study classification models and regression models under both smooth and
non-smooth settings. We first introduce the classification models with smooth-
ness. In each model, there are 2 classes and 75 observations within each class.
The predictor X is generated from the tensor discriminant model with K = 2:
X | (Y = k) ∼ TN (μk,Σ1, . . . ,ΣR) where μk ∈ Rp1×...pR , Σr ∈ Rpr×pr , r =
1, . . . , R and πk = pr(Y = k), k = 1, 2. By [42], the best classifier under this
model is

Ŷ = 1 {log (π2/π1) + 〈B,X− (μ1 + μ2) /2〉 > 0}+ 1,

where B = �μ2−μ1;Σ
−1
1 , . . . ,Σ−1

R �. Therefore, to ensure sparsity on the popu-
lation level, we specify sparse B, along with Σ1, . . . ,ΣR. Then the mean tensors
are set to be μ1 = 0 and μ2 = �B;Σ1, . . . ,ΣR�. The active set D of B is defined
as

D = {J : bJ �= 0} .

In our model settings we only specify elements of B in D. It is always assumed
that bJ = 0 for any J ∈ Dc. For an index set A, we use the notation BA =
a to denote that bJ = a for any J ∈ A where a is a number. For ease of
presentation, we define two sets of integers, L1 = 31 : 34 and L2 = 21 : 23. For
a covariance matrix Σ, we use the following notations. Let Σ = AR(ρ) denote
that Σ is autoregressive, i.e., σij = ρ|i−j|. Let Σ = CS(ρ) denote that Σ has
the compound symmetry structure, i.e., σij = ρ, i �= j. In all simulations we
consider π1 = π2 = 1/2. We consider the following three smooth classification
models.

Model 1: K = 2, R = 2, Σ1 = Σ2 = I64, D = {(i, j) : i, j ∈ L1}, BD = 0.6.
Model 2: K = 2, R = 2, Σ1 = AR(0.3), Σ2 = I64, D is a diamond area with

25 variables where the four vertexes are located at (30, 20), (36, 20), (33, 17),
(33, 23) and BD = 0.4.

Model 3: K = 2, R = 3, Σ1 = I30, Σ2 = CS(0.2), Σ3 = CS(0.2), D =
{(i, j, k) : i, j, k ∈ L2}, BD = 0.4.

For regression models, we set n = 200. Define B as the regression coefficient.
The active set D is defined as

D = {J : bJ �= 0} .

We consider the following four models.



472 K. Min and Q. Mai

Model 4: Y = 〈B,X〉 + ε where R = 2, X ∼ MN(0, I64, I64), ε ∼ N(0, 1),
D = {(i, j) : i, j ∈ L1} and BD = 2.

Model 5: Y = 2
∑

J∈D1
XJ + 0.8

∑
J∈D2

X3
J + ε, where R = 2, X ∼

MN(0,AR(0.5), I64), ε ∼ N(0, 1), D = D1

⋃
D2, D1 = {(i, j) : i, j ∈ L1},

D2 is a triangle area with 9 variables and the three vertexes are located at
(50, 50), (52, 48), (52, 52).

Model 6: Y = 〈B,X〉 + ε where R = 3, X ∼ MN(0,AR(0.6), I36,CS(0.3)),
ε ∼ N(0, 1), D = {(i, j, k) : i, j, k ∈ L2} and BD = 0.8.

Model 7: Y ∼ Poisson(exp{〈B,X〉}) where R = 2, X ∼ MN(0, I64, I64),
D = {(i, j) : i, j ∈ L2} and BD = 0.3.

To study the robustness of our proposed method, we also include the following
four models with model misspecification. Models 8 & 9 are classification models
and Models 10 & 11 are regression models. In Models 8 & 10, the important
variables are chosen completely at random and there is no smoothness structure.
In Models 9 & 11, the active set is a vertical line segment and only has smooth-
ness along one direction. In other words, in Models 8 & 10 the smoothness
assumption does not make sense at all, but in Models 9 & 11 the smoothness
assumption is partially true.

Model 8: (X, Y ) follows the tensor discriminant analysis model with K =
2, R = 2, Σ1 = Σ2 = I64, the active set D consists of 16 randomly chosen
predictors, BD = 1. There are 75 observations within each class.

Model 9: (X, Y ) follows the tensor discriminant analysis model with K = 2,
R = 2, Σ1 = Σ2 = I64, D = {(i, j) : 21 ≤ i ≤ 30, j = 10}, BD = 0.7. There are
75 observations within each class.

Model 10: n = 200, Y = 〈B,X〉 + ε where R = 2, X ∼ MN(0, I64, I64),
ε ∼ N(0, 1), the active set D consists of 9 randomly chosen predictors, BD = 2.

Model 11: n = 200, Y = 〈B,X〉 + ε where R = 2, X ∼ MN(0, I64, I64),
ε ∼ N(0, 1), D = {(i, j) : 21 ≤ i ≤ 32, j = 10}, BD = 0.8.

For classification models (Models 1–3, 8–9), we consider STS-t, STS-GLM
and STS-DC. For regression models (Models 4–7, 10–11), we use STS-GLM
and STS-DC. We choose c from {ω/2, ω}, that is, {4, 8} for matrix models
and {13, 26} for three-way tensor models. We compare these methods with the
corresponding marginal screening methods.

The minimum numbers of variables needed to recover all active predictors are
reported in Table 1. The reported numbers are medians from 500 replicates and
their standard errors computed from bootstrap. A closer number to |D| indicates
a better screening technique. It can be seen that the STS methods are uniformly
more efficient than their marginal counterparts in identifying the important
variables in Models 1–7. This demonstrates the benefits of leveraging the tensor
structure for better screening when the smoothness structure is present. In these
models, often both c = ω/2 and c = ω give good results. For Models 8 & 10
where there is completely no smoothness structure, STS is worse than marginal
screening due to model misspecification, although c = ω/2 is significantly better
than c = ω. Thus, when the smoothness assumption does not hold at all, STS is
not recommended. However, for Models 9 & 11 where there is partial smoothness
structure along one direction, STS again outperforms marginal screening with
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Table 1

Minimum numbers needed to recover all active predictors for all models. Bootstrap is used
to calculate the standard errors which are reported in the parentheses. In the second row,

ω/2 and ω are the values for c. Since Models 4–7 and 10–11 are regression models, STS-t is
not applicable.

Model |D| STS-t STS-DC STS-GLM

Marginal ω/2 ω Marginal ω/2 ω Marginal ω/2 ω

1 16 238.5 17 20 326 18 21 265 17 20

(14.5) (0) (0.3) (15.2) (0.3) (0.2) (17.7) (0.3) (0.5)

2 25 571 32 34 724.5 33 34 597.5 33 35

(34.4) (0.4) (0.3) (40.8) (0.2) (0.2) (35.2) (0.4) (0.4)

3 27 340.5 61 73 411 44 48 458.5 63 74

(21.0) (1.4) (1.4) (22.7) (0.5) (0.4) (26.3) (1.3) (1.6)

4 16 - - - 536 19 22 312 17 21

- - - (36.0) (0.2) (0.2) (21.1) (0.4) (0.5)

5 25 - - - 1437.5 133 129.5 986.5 90.5 88

- - - (86) (9.8) (10) (80) (8.5) (5.3)

6 27 - - - 353 54 57 201 93 99

- - - (20.8) (1.1) (1.2) (13.3) (1.9) (2.0)

7 9 - - - 416 11 13 375 11 13

- - - (21.8) (0.2) (0.4) (29.5) (0.1) (0.5)

8 16 16 83.5 671.5 16 79 176 16 108 734.5

(0) (3.4) (17.2) (0) (1.8) (3.9) (0.3) (3.9) (24.4)

9 10 36 25 45 47 26 31 51 26 48

(2.1) (0.6) (1.5) (2.4) (0.4) (0.5) (3.0) (0.6) (2.2)

10 9 - - - 18 95.5 446.5 13 182 1161

- - - (1.2) (5.2) (23.2) (0.5) (7.7) (34.5)

11 12 - - - 179.5 35 47 92 37 88

- - - (12.4) (0.8) (1.9) (6.7) (1.5) (5.9)

both choices of c, but c = ω/2 is better than c = ω. Therefore, if it is believed
that some level of smoothness exists, c = ω/2 is a robust choice to be used in
STS.

To further demonstrate that STS can improve the analysis accuracy, we apply
different classification and regression methods on the screened data. For all mod-
els, if screening is applied, we let dn = �n/ logn�. For classification, we include
two tensor-based methods, covariate-adjusted tensor classification (CATCH,
[42]) and tensor regression based on CP decomposition (CP-GLM, [59]), and
two vector-based methods, �1-penalized generalized linear model (�1-GLM, [14])
and �1-penalized Fisher’s discriminant analysis (�1-FDA, [54]). For regression,
we include CP-GLM and �1-GLM. For the implementation of CATCH, �1-GLM,
�1-FDA, we used the R packages catch, glmnet and penalizedLDA. For the im-
plementation of CP-GLM, we used the MATLAB toolbox TensorReg downloaded



474 K. Min and Q. Mai

from https://hua-zhou.github.io/TensorReg.
STS based on the three statistical utilities give similar patterns of perfor-

mance. For the sake of space, here we only present the results using regression-
based screening, that is, logistic regression for Models 1–3 & 8–9, linear regres-
sion for Models 4–6 & 10–11 and Poisson regression for Model 7. The simulation
results using t-statistic and distance correlation for classification models can be
found in Appendix B.

We report the model fitting results of 100 replicates in Table 2. For classifica-
tion models, we report the classification errors and their standard errors, while
for regression models we report the root mean square error (RMSE), which is
defined as

RMSE =

√√√√ n∑
i=1

(Ŷ i − Y i)2

n
.

We further report the true positive rate (TPR) and the false positive rate (FPR)

for classification models in Table 3. Let D̂ be the set of active predictors in the
final model. The TPR and FPR are defined as

TPR =
|D̂ ∩ D|
|D| , FPR =

∣∣∣D̂ ∩ Dc
∣∣∣

|Dc| .

According to Table 2, the comparison among different c and the original data
suggests that smoothing screening statistics is critical to tensor screening when
smooth structure exists (i.e., Models 1–7). Even though the classification errors
and RMSE are reduced for some methods with marginal screening, the minimum
error is obtained at c = ω/2 or ω, and the decrease is significant. In Table 3, STS
successfully increases the true positive rate while reducing the false positive rate.
Higher TPR and lower FPR are achieved at c = ω/2 or ω compared to c = 0.
This coincides with the changing trend in classification errors, which further
shows the importance of smoothing screening statistics. Moreover, in several
cases such as CP-GLM in Models 3, 5 & 6, the standard errors are lowered after
applying screening with or without STS. This indicates that screening tends to
make the analysis more stable. For non-smooth models (Models 8 & 10), STS
has lower accuracy and worse variable selection results compared to marginal
screening, which is a consequence of model misspecification. However, STS is
again better than marginal screening combined with most model-fitting methods
when partial smoothness exists (Models 9 & 11).

5.2. Real data analysis

Electroencephalography (EEG) is used to record the electrical activity of human
brains and to detect the associated brain disorders. The dataset we use arises
from a study that analyzes the relationship between EEG and alcoholism, avail-
able at http://kdd.ics.uci.edu/databases/eeg/eeg.data.html. There are
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Table 2

Classification errors (%) for Models 1-3, 8-9, RMSE for Models 4-7, 10-11 and their
standard errors are reported. The Bayes errors for Models 1-3, 8-9 are 11.48%, 10.74%,

7.26%, 2.27% and 13.44% respectively. STS-GLM is used for screening. For each model, the
column X corresponds to the results on the original dataset; the other three columns are
results on data with different screening methods: marginal screening, and STS with two

choices of c.

Model 1 Model 2 Model 3

X 0 ω/2 ω X 0 ω/2 ω X 0 ω/2 ω

CATCH 20.04 19.24 15.71 15.00 18.11 17.48 13.90 13.66 13.17 11.74 9.55 9.60

(0.27) (0.27) (0.16) (0.16) (0.18) (0.18) (0.14) (0.12) (0.15) (0.15) (0.09) (0.09)

CP-GLM 21.87 21.74 21.50 21.50 20.95 22.14 19.52 19.22 19.81 14.15 12.85 12.98

(0.70) (0.35) (0.30) (0.30) (0.38) (0.38) (0.36) (0.27) (1.26) (0.35) (0.30) (0.38)

�1-GLM 23.10 22.89 17.63 16.27 20.15 19.70 15.73 15.49 15.69 15.28 12.55 12.82

(0.32) (0.32) (0.22) (0.15) (0.19) (0.22) (0.14) (0.14) (0.19) (0.23) (0.14) (0.14)

�1-FDA 31.95 21.34 15.01 13.90 18.77 16.37 12.37 12.30 16.08 12.79 10.18 10.64

(0.36) (0.28) (0.11) (0.10) (0.24) (0.18) (0.09) (0.07) (0.30) (0.18) (0.08) (0.09)

Model 4 Model 5 Model 6

CP-GLM 1.69 1.04 1.04 1.04 11.60 7.93 7.37 7.33 2.70 1.04 1.03 1.03

(2.32) (0.02) (0.02) (0.02) (2.67) (0.73) (0.38) (0.38) (3.56) (0.02) (0.02) (0.02)

�1-GLM 1.57 4.58 1.10 1.19 9.49 10.04 7.67 7.73 1.56 2.46 2.47 2.71

(0.14) (0.93) (0.03) (0.35) (0.77) (1.01) (0.47) (0.43) (0.15) (0.63) (0.70) (0.74)

Model 7 Model 8 Model 9

CATCH - - - - 3.30 3.26 4.54 14.33 18.98 18.96 17.09 16.75

- - - - (0.06) (0.06) (0.12) (0.36) (0.20) (0.19) (0.17) (0.17)

CP-GLM 3.05 3.03 2.99 2.99 26.17 20.91 21.34 27.08 23.53 22.16 19.27 19.27

(0.20) (0.22) (0.18) (0.17) (0.56) (0.37) (0.39) (0.50) (0.59) (0.41) (0.35) (0.34)

�1-GLM 1.89 1.91 1.62 1.52 4.82 4.58 5.74 22.70 20.97 20.76 18.18 18.50

(0.12) (0.11) (0.12) (0.12) (0.10) (0.10) (0.12) (0.61) (0.25) (0.25) (0.19) (0.19)

�1-FDA - - - - 3.18 3.34 4.59 23.06 26.89 20.08 16.82 17.25

- - - - (0.04) (0.05) (0.10) (0.63) (0.47) (0.22) (0.15) (0.16)

Model 10 Model 11

CP-GLM 6.30 5.56 5.39 5.63 1.23 1.35 1.22 1.30

(0.44) (0.29) (0.26) (0.30) (0.06) (0.03) (0.02) (0.02)

�1-GLM 1.26 1.31 3.52 5.56 1.38 1.60 1.30 1.59

(0.06) (0.53) (0.89) (0.37) (0.01) (0.03) (0.02) (0.03)

122 subjects, including 77 alcoholic individuals and 45 nonalcoholic individuals.
Each subject is exposed to either a single stimulus or to two stimuli that are
pictures chosen from [47]. For two stimuli, the two pictures can be either iden-
tical or different. Each subject completes 120 trials under different stimuli. In
all trials, 64 electrodes are placed on a subject’s scalp which are sampled at 256
Hz (3.9-msec epoch) for 1 second and the voltage fluctuates are collected. More
information about the collection process can be found in [58]. The same dataset
is also analyzed in [23]. They only consider the single stimulus condition and
take the average of all the trials under that condition. We use the same part of
the data. Thus, we have each predictor being an EEG image of size 256 × 64
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Table 3

TPR and FPR (%) comparison for Models 1-3 and 8-9. STS-GLM is used in screening. For
each model, the column X corresponds to the results on the original dataset; the other three
columns are results on data with different screening methods: marginal screening, and STS

with two choices of c.

X 0 ω/2 ω X 0 ω/2 ω X 0 ω/2 ω

Model 1 Model 2 Model 3

CATCH FPR 0.90 0.64 0.55 0.60 0.91 0.40 0.23 0.8 0.12 0.07 0.05 0.05

S.E. (0.07) (0.05) (0.05) (0.05) (0.09) (0.03) (0.02) (0.01) (0.01) (0.01) (0.00) (0.00)

TPR 81.56 87.44 97.06 97.75 68.24 71.04 89.44 89.04 68.33 79.52 91.30 90.52

S.E. (1.43) (1.48) (0.60) (0.66) (1.34) (1.52) (1.07) (0.91) (1.07) (1.22) (0.84) (0.83)

CP-GLM FPR 13.20 4.26 1.98 1.76 13.35 3.17 0.62 0.51 7.39 0.63 0.13 0.14

S.E. (0.48) (0.16) (0.07) (0.07) (0.39) (0.12) (0.03) (0.02) (0.59) (0.04) (0.01) (0.01)

TPR 96.38 98.63 99.38 99.50 87.76 85.68 94.20 93.40 85.33 99.15 98.78 99.59

S.E. (1.71) (0.62) (0.21) (0.28) (1.06) (0.78) (0.53) (0.63) (3.04) (0.39) (0.41) (0.20)

�1-GLM FPR 0.55 0.24 0.16 0.14 0.48 0.17 0.05 0.05 0.07 0.02 0.01 0.01

S.E. (0.05) (0.01) (0.01) (0.01) (0.05) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

TPR 67.81 66.13 92.13 93.00 55.28 56.96 76.56 76.96 53.07 51.93 64.63 61.67

S.E. (1.38) (1.29) (0.94) (0.71) (1.00) (1.08) (1.22) (1.13) (0.89) (0.89) (0.81) (0.74)

�1-FDA FPR 33.15 0.40 0.25 0.22 9.26 0.27 0.10 0.11 9.45 0.04 0.02 0.02

S.E. (1.49) (0.01) (0.01) (0.01) (0.48) (0.01) (0.00) (0.00) (1.23) (0.00) (0.00) (0.00)

TPR 98.38 72.75 99.00 98.69 94.48 70.76 95.44 94.60 95.59 62.00 77.30 74.04

S.E. (0.70) (1.03) (0.34) (0.31) (0.89) (0.87) (0.48) (0.39) (1.10) (0.86) (0.46) (0.46)

Model 8 Model 9

CATCH FPR 0.42 0.23 0.19 0.14 0.66 0.38 0.28 0.26

S.E. (0.08) (0.04) (0.03) (0.02) (0.07) (0.03) (0.03) (0.03)

TPR 98.50 98.94 80.81 32.69 90.90 88.90 93.70 92.40

S.E. (0.40) (0.32) (0.88) (0.94) (1.12) (1.02) (0.81) (0.79)

CP-GLM FPR 10.65 4.45 3.75 3.78 9.62 2.63 0.60 0.50

S.E. (0.56) (0.16) (0.11) (0.16) (0.62) (0.22) (0.06) (0.05)

TPR 37.81 60.25 58.06 29.69 92.60 92.50 96.00 93.10

S.E. (1.02) (1.22) (1.15) (0.93) (1.97) (0.77) (0.60) (0.63)

�1-GLM FPR 0.21 0.08 0.05 0.09 0.44 0.22 0.15 0.12

S.E. (0.03) (0.01) (0.01) (0.01) (0.05) (0.01) (0.01) (0.01)

TPR 92.44 93.56 77.00 16.75 82.50 83.60 91.00 84.00

S.E. (0.79) (0.72) (0.89) (0.67) (1.23) (1.10) (0.95) (0.93)

�1-FDA FPR 0.68 0.29 0.26 0.28 11.46 0.44 0.25 0.26

S.E. (0.06) (0.01) (0.01) (0.02) (0.86) (0.01) (0.01) (0.02)

TPR 99.88 99.88 78.50 16.75 95.60 89.10 94.90 86.40

S.E. (0.09) (0.09) (0.89) (0.67) (1.35) (0.94) (0.66) (0.87)

and a binary response variable indicating whether the subject is alcoholic or
nonalcoholic.

Given the large number of predictors, we assume a sparse model for the
prediction of the alcoholic status. For the predictor X ∈ R256×64, we assume
that there exist a few entries Xij that are responsible for the prediction. In
the context of the EEG data, we assume that only the measurements of a small
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number of electrodes at a few time points are helpful for predicting the alcoholic
status. We further assume that the sparsity pattern is smooth, in thatXij ’s close
to each other tend to be important or unimportant at the same time.

The smoothness of EEG data results from two aspects. First, for each row of
an EEG observation, the numbers are the voltages collected over a continuous
time period. The voltage will fluctuate when the brain responds to the stimulus
and then decay gradually in time. Second, each column of the image represents
the voltages collected from 64 different electrodes. Most of these electrodes are
entered into the dataset in a way such that two adjacent columns correspond to
electrodes positioned symmetrically on the left and right sides of the brain. For
example, Column 1 contains measurements from the position FP1, and Column
2 contains those from FP2. FP1 and FP2 are on the same location of the left
and right hemispheres [46]. Symmetric locations are functionally similar and
thus may resemble each other in the response to stimuli.

Data are standardized before use. The data is randomly split 500 times. In
each replicate, we randomly split the data with a 4 : 1 ratio into a training set
of 97 subjects and a testing set of 25 subjects. For all classification methods
available for cross-validation, we set the number of folds to be 5. We choose
dn = �n/ log(n)� = 21 and weight c is chosen from the set {0, 4, 8} in screening.
We use STS based on three different statistical utilities, the t-statistic, logistic
regression, and distance correlation. Classification errors on the original data
and the screened data for the three methods are reported in Table 4. The results
show that screening can either maintain or lower the error rate for most methods.
Comparing the results at c = ω/2 or ω with the results at c = 0, it can be seen
that error rates are further reduced after we add a weight in screening, which
supports the application of STS. We also want to mention that, in almost all
the analyses, we directly perform screening and/or model fitting on the original
dataset of dimension 256 × 64, with the only exception for CP-GLM without
screening. CP-GLM requires the sample size to be no smaller than the dimension
of X on each mode, so when it is applied to the original dataset, we downsize
the predictor to 32 × 32 first and then fit a rank-1 model. This can also be
viewed as an advantage of STS. With STS, the dimension of predictor is largely
reduced so that CP-GLM can be easily fit without further downsizing, and we
observe a uniform decrease in classification errors this way.

To further validate the smoothness assumption among electrodes, we ran-
domly shuffle the columns of the matrix predictors so that it is certain that no
smoothness structure exists along this mode. We perform STS and model fitting
on the shuffled data. The classification error rates are reported in Table 5. It can
be seen that the error rates are generally higher when we change the order of
the columns, indicating that the original ordering has some useful information.
Moreover, the lowest error rate achieved after shuffling is significantly larger
than the error rate without shuffling. Since the lowest error rate is achieved
by �1-GLM in Table 4, we perform a paired t-test for the results before and
after shuffling for �1-GLM at c = ω/2. The p-values under STS-t, STS-GLM,
STS-DC are 2.0 × 10−12, 1.2 × 10−7, 9.6 × 10−10, respectively. Thus, analysis
on the original dataset is significantly better, which again provides evidence of
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Table 4

The means and standard errors of binary classification error rates on EEG dataset. The
column X corresponds to the classification error rates for models fitted on the original
dataset; the other three columns are error rates for models fitted on data, with different

screening methods: marginal screening, and STS with two choices of c.

Screening Method
X Marginal c = ω/2 c = ω

Mean S.E. Mean S.E. Mean S.E. Mean S.E.

t-statistic

CATCH 23.66 (0.34) 23.18 (0.31) 21.93 (0.31) 22.19 (0.30)

CP-GLM 24.66 (0.36) 24.57 (0.34) 22.40 (0.35) 22.72 (0.34)

�1-GLM 24.20 (0.32) 23.51 (0.33) 21.45 (0.33) 21.74 (0.34)

�1-FDA 26.11 (0.38) 23.86 (0.34) 21.73 (0.32) 22.19 (0.32)

Logistic Regression

CATCH 23.66 (0.34) 23.26 (0.33) 22.22 (0.32) 22.48 (0.32)

CP-GLM 24.66 (0.36) 24.42 (0.35) 23.10 (0.34) 23.50 (0.35)

�1-GLM 24.20 (0.32) 23.09 (0.35) 21.68 (0.33) 21.77 (0.33)

�1-FDA 26.11 (0.38) 23.12 (0.35) 22.17 (0.33) 22.21 (0.33)

Distance Correlation

CATCH 23.66 (0.34) 23.31 (0.34) 22.13 (0.31) 22.35 (0.31)

CP-GLM 24.66 (0.36) 25.02 (0.35) 22.61 (0.34) 22.15 (0.34)

�1-GLM 24.20 (0.32) 23.07 (0.33) 21.41 (0.33) 21.78 (0.32)

�1-FDA 26.11 (0.38) 23.23 (0.34) 21.90 (0.32) 22.31 (0.32)

the smoothness among electrodes. Another interesting fact is that, even without
smoothness along the columns, STS continues to give comparable error rates to
marginal screening. This is likely because we still have smoothness along the
time domain, and, as noted in Section 5.1, STS is capable of exploiting partial
smoothness.

Moreover, the average computation time to perform screening is reported in
Table 6, which confirms that STS is as computationally efficient as the corre-
sponding marginal screening methods.

6. Conclusion

In this article, we propose STS, a general screening framework for tensors. STS
integrates the traditional marginal screening methods with the tensor structural
information. With a wide selection of statistical utilities in screening, STS is not
limited to any model setting or data type of the responses and predictors. We
establish the SURE screening property for the procedure and give three ex-
amples. Moreover, we examine the performance by comparing the classification
error and regression accuracy on screened data. STS gives better results than
directly applying traditional screening methods on the vectorized tensor in both
simulation and real data study. In practice, researchers can combine STS with
other suitable screening utilities to improve their performance on tensor data.
But an exhaustive study along this direction is apparently out of the scope of
this article.
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Table 5

The means and standard errors of binary classification error rates on EEG dataset after
shuffling electrodes. We only report the results for STS because the results without screening

and those with marginal screening are the same as in Table 4 and omitted.

Screening Method
c = ω/2 c = ω

Mean S.E. Mean S.E.

t-statistic

CATCH 22.87 (0.32) 22.74 (0.31)

CP-GLM 23.43 (0.32) 23.36 (0.33)

�1-GLM 23.01 (0.32) 22.82 (0.32)

�1-FDA 23.61 (0.33) 24.33 (0.33)

Logistic Regression

CATCH 22.34 (0.31) 22.42 (0.32)

CP-GLM 23.67 (0.34) 23.61 (0.34)

�1-GLM 22.81 (0.33) 22.46 (0.33)

�1-FDA 22.86 (0.32) 23.35 (0.32)

Distance Correlation

CATCH 22.50 (0.31) 22.39 (0.31)

CP-GLM 23.60 (0.32) 23.72 (0.33)

�1-GLM 22.71 (0.31) 22.49 (0.32)

�1-FDA 23.08 (0.32) 23.73 (0.32)

Table 6

Average computation time for 100 replicates. The STS has similar computation cost as
marginal screening.

Time (s) Marginal c = ω/2 c = ω

t-statistic 2.18 2.19 2.18

Logistic Regression 19.16 19.15 19.16

Distance Correlation 9.71 9.71 9.71

If we are fitting a specific kind of tensor model, it is also possible to modify
the screening utilities to further take advantage of the tensor structure (with
or without the smoothness assumption). For example, under the TDA model,
the variance σkJ can be estimated much more accurately [33, 42, 40] than the
sample estimate. The improved estimation could benefit screening. We tested
this idea on our simulations models, and the results are comparable to those of
STS, so we do not report them. However, it is still likely that screening utilities
calculated utilizing the tensor structure will be helpful in other settings or under
other models. It is a topic worth exploring in future research.

We focus on the problem where the predictor is a tensor, but the response
is a scalar. There are considerable interests in the literature where the response
is a tensor as well [20, 31, 29, 15, 26, 30, 1, 27, e.g.]. These papers generally
study fitting tensor-on-tensor regression models. It will be interesting to develop
screening methods under such models as well, but such developments are out
of the scope of this paper for two reasons. On one hand, it is unclear how to
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generalize the smoothness assumption to tensor-on-tensor problems. There are
several possibilities that could be explored, such as smoothness in the response
alone, in the predictor alone, or both. On the other hand, it is critical for screen-
ing methods to enjoy the SURE screening property under ultra-high dimensions,
but the aforementioned tensor-on-tensor works either have few results on the
statistical properties, or only have results in low-dimensional problems. Hence,
full developments on the theory could be challenging for screening methods in
the same context. A relevant screening method is proposed in [22], where the re-
sponse is a matrix (two-way tensor), and the predictor is a vector. Our problem
is different in that our predictor, instead of the response, is a tensor of arbitrary
order. Nevertheless, it will be intriguing to investigate in the future whether
some of their results can assist in tensor-on-tensor screening.

Appendix A: Proofs

A.1. Proof of Theorem 4.1

Proof of Theorem 4.1. We first give proof of the first conclusion. By definition,
for 0 < ε < ε0, we have

pr
{∣∣φSmooth

nJ − φSmooth
J

∣∣ > (1 + c)ε
}

=pr

⎧⎨⎩
∣∣∣∣∣∣|φnJ | − |φJ |+ c

|ΩJ |
∑

I∈ΩJ

(|φnI | − |φI |)

∣∣∣∣∣∣ > (1 + c)ε

⎫⎬⎭
≤ pr (|φnJ − φJ | > ε) + pr

⎛⎝ c

|ΩJ |
∑

I∈ΩJ

|φnI − φI | > cε

⎞⎠
≤ pr (|φnJ − φJ | > ε) +

∑
I∈ΩJ

pr (|φnI − φI | > ε)

≤(1 + |ΩJ |) pr (|φnJ − φJ | > ε)

≤(1 + ω)ζn(ε).

Thus,

pr

{
max
J

∣∣φSmooth
nJ − φSmooth

J
∣∣ > (1 + c)ε

}
≤
∑
J

pr
{∣∣φSmooth

nJ − φSmooth
J

∣∣ > (1 + c)ε
}

≤ (

R∏
r=1

pr)(1 + ω)ζn(ε). (A.1)

The proof of the first part is finished.
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Next, we prove the second part. Let ε1 = min{ε0, δSmooth
S1

/(2(1 + c))}, using
(A.1), we have

pr

(
max
J

∣∣φSmooth
nJ − φSmooth

J
∣∣ > δSmooth

S1
/2

)
≤
∑
J

pr
(∣∣φSmooth

nJ − φSmooth
J

∣∣ > δSmooth
S1

/2
)

≤
∑
J

pr
(∣∣φSmooth

nJ − φSmooth
J

∣∣ > (1 + c)ε1
)

≤ (

R∏
r=1

pr)(1 + ω)ζn(ε1).

Then pr
{
D ⊆ ŜSmooth (dn)

}
≥ 1− (

∏R
r=1 pr)(1 + ω)ζn(ε1).

A.2. Proof of Lemma 4.1

Proof of Lemma 4.1. Under the setting in Assumption (A1), we let S=∪j≤J0Bj .
The set S satisfies Condition (V1) with δS = minj≤J0 vj > 0. Denote vS,max =
maxj≤J0 vj , vS,min = minj≤J0 vj and vSc = 0. We consider the set S1 =
S ∪ {∪J∈SΩJ }. If J ∈ S1,

φSmooth
J > min{vS,min + cvSc , vSc +

c

|ΩJ |vS,min +
c(|ΩJ | − 1)

|ΩJ | vSc}.

If J ∈ Sc
1 ,

φSmooth
J = (1 + c)vSc .

Thus,

δSmooth
S1

= min
J∈S1

{
φSmooth
J

}
− max

J∈Sc
1

{
φSmooth
J

}
> min{1, c

ω
}δS .

Next, we derive the upper bound for |S1|. Suppose that Bj ∈ Rd1×···×dR , then
|Bj | = d1 × · · · × dR. We use B′

j to denote the set containing all elements in Bj

and their neighbors. By definition, we have that |B′
j | = (d1+2)×· · ·× (dR+2).

For fixed |Bj |, when dk = |Bj | for some k and di = 1 for all i �= k, |B′
j | reaches its

maximum at 3R−1(|Bj |+2). Therefore, we have |S1| ≤
∑

j≤J0
|B′

j | ≤ 3R−1(|S|+
2J0).

A.3. Proof of Corollary 4.1

The proof of Corollary 4.1 relies on the following proposition. We first prove
Proposition A.1 and then prove Corollary 4.1.
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Proposition A.1. Under Condition (T3), we have that pr(maxJ |φt
nJ −φt

J | >
ε) ≤ (

∏R
r=1 pr)ζ

t
n(ε), where

ζtn(ε) = γ1 exp(−γ2nε
2) + γ3 exp(−γ4n),

for some positive constants γ1, γ2, γ3 and γ4.

By Proposition A.1, Condition (T3) implies Condition (T2). Condition (T3)
is a widely used assumption in high-dimensional statistics. Hence, this demon-
strates that Condition (T2) is indeed very mild.

The proof of Proposition A.1 is straightforward, but we include it for com-
pleteness. To prove Proposition A.1, we start with some propositions that are
used in our proofs and they are extracted from [52].

Proposition A.2 (Hoeffding bound, [52], cf. Proposition 2.5). Suppose that
the variables Xi, i = 1, . . . , n, are independent, and Xi has mean μi and sub-
Gaussian parameter σi. Then for all t ≥ 0, we have

pr

{
n∑

i=1

(Xi − μi) ≥ t

}
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Proposition A.3 ([52], cf. Proposition 2.9). Suppose that the random variable
X with mean μ = E(X) is sub-exponential with parameters (v, α). Then

pr(X − μ ≥ t) ≤
{

e−
t2

2v2 if 0 ≤ t ≤ v2

α ,

e−
t

2α for t > v2

α .

Proposition A.4 ([52], cf. equation (2.18)). Suppose that {Xk}nk=1 is an in-
dependent sequence of random variables, such that Xk has mean μk, and is
sub-exponential with parameters (vk, αk), then the variable

∑n
k=1 (Xk − μk) is

sub-exponential with the parameters (v∗, α∗), where

α∗ = max
k=1,...,n

αk and v∗ =

(
n∑

k=1

v2k

)1/2

.

And we have the tail bound

pr

{
1

n

n∑
k=1

(Xk − μk) ≥ t

}
≤

⎧⎨⎩ e
− nt2

2(v2∗/n) for 0 ≤ t ≤ v2
∗

nα∗
,

e−
nt
2α∗ for t >

v2
∗

nα∗
.

Proposition A.5. Let X ∼ subG
(
σ2
)
. Then the random variable Z = X2 −

E
(
X2
)
is sub-exponential: Z ∼ subE

(
ψ1σ

2, ψ2σ
2
)
with positive constants ψ1

and ψ2.

The screening utility is defined as

φt
nJ =

|X1J −X2J |

n1/2
(

σ̂2
1J
n1

+
σ̂2
2J
n2

)1/2 =
|X1J −X2J |(
σ̂2
1J

n1/n
+

σ̂2
2J

n2/n

)1/2 ,
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where σ̂2
kJ is the sample variance of variable J within class k. Recall the screen-

ing utility and its population counterpart defined in (3.5) & (3.6). We further
define an intermediate quantity

φt
J

(1)
=

|μ1J − μ2J |(
σ2
1J

n1/n
+

σ2
2J

n2/n

)1/2 .
To make the proof easier to read, we introduce the following shorthand no-

tations. For a given J , let

anJ = X1J −X2J , aJ = μ1J − μ2J ,

bnJ =

(
σ̂2
1J

n1/n
+

σ̂2
2J

n2/n

)1/2

, bJ =

(
σ2
1J

n1/n
+

σ2
2J

n2/n

)1/2

.

For Condition (T3), we use positive constants a, σ2
1,min, σ

2
1,max, σ

2
2,min and σ2

2,max

to define the bounds. Then we have

|aJ | ≤ a, σ2
1,min ≤ σ2

1J ≤ σ2
1,max, σ2

2,min ≤ σ2
2J ≤ σ2

2,max.

In the proof, we use γi, i = 1, 2, . . . to denote positive constants. They can have
different value each time they appear.

Proof of Proposition A.1. Since we have

pr
(∣∣φt

nJ − φt
J
∣∣ > ε
)
≤ pr

(∣∣∣φt
nJ − φt

J
(1)
∣∣∣ > ε

2

)
+ pr

(∣∣∣φt
J

(1) − φt
J

∣∣∣ > ε

2

)
= L1 + L2,

we will bound the probabilities L1 and L2 separately.
For L1,

|φt
nJ − φt

J
(1)| ≤

∣∣∣∣anJbnJ
− aJ

bJ

∣∣∣∣ ≤ |anJ − aJ |
bnJ

+
|aJ |
bnJ bJ

|bnJ − bJ |. (A.2)

First, we give an upper bound to |anJ − aJ |. Note that

pr (|anJ − aJ | > ε | Y )

= pr
(∣∣X1J −X2J − (μ1J − μ2J )

∣∣ > ε | Y
)

≤ pr
(∣∣X1J − μ1J

∣∣ > ε

2
| Y
)
+ pr

(∣∣X2J − μ2J
∣∣ > ε

2
| Y
)

(A.3)

≤ 2 exp

(
− n1ε

2

8σ2
1J

)
+ 2 exp

(
− n2ε

2

8σ2
2J

)
, (A.4)

where we use Proposition A.2 to get (A.4) from (A.3).
As n1 and n2 are sums of n independent and identically distributed Bernoulli

random variables, by Hoeffding’s inequality, we have

pr
(
|n1 − nπ1| >

nπ1

2

)
< 2 exp

(
−nπ2

1

2

)
,
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pr
(
|n2 − nπ2| >

nπ2

2

)
< 2 exp

(
−nπ2

2

2

)
.

Let A = {n1, n2 : nπ1

2 < n1 < 3nπ1

2 , nπ2

2 < n2 < 3nπ2

2 }, we have

pr (|anJ − aJ | > ε)

= E
[
pr
{∣∣X1J −X2J − (μ1J − μ2J )

∣∣ > ε | Y
}]

≤ E

[{
2 exp

(
− n1ε

2

8σ2
1J

)
+ 2 exp

(
− n2ε

2

8σ2
2J

)}
· 1A

]
+ 2E(1Ac)

≤ 2 exp

(
− nπ1ε

2

16σ2
1J

)
+ 2 exp

(
− nπ2ε

2

16σ2
2J

)
+ 2pr

(
|n1 − nπ1| >

nπ1

2

)
+ 2pr

(
|n2 − nπ2| >

nπ2

2

)
≤ γ1 exp

(
−γ2nε

2
)
+ γ3 exp (−γ4n) . (A.5)

Next, we give an upper bound to |bnJ − bJ |,

pr (|bnJ − bJ | > ε | Y )

≤ pr

(∣∣b2nJ − b2J
∣∣

bnJ + bJ
> ε | Y

)

≤ pr

(∣∣b2nJ − b2J
∣∣

bJ
> ε | Y

)

≤ pr

(∣∣∣∣ σ̂2
1J − σ2

1J
n1/n

∣∣∣∣ > bJ ε

2
| Y
)
+ pr

(∣∣∣∣ σ̂2
2J − σ2

2J
n2/n

∣∣∣∣ > bJ ε

2
| Y
)
.

By definition, we have

σ̂2
1J − σ2

1J

=
1

n1 − 1

n1∑
i=1

(Xi
1J −X1J )2 − σ2

1J

=
1

n1 − 1

{
n1∑
i=1

(Xi
1J − μ1J )2 − n1(X1J − μ1J )2

}
− σ2

1J

=
n1

n1 − 1

[
1

n1

n1∑
i=1

{(
Xi

1J − μ1J
)2 − σ2

1J

}
−
{(

X1J − μ1J
)2 − σ2

1J
n1

}]
=

n1

n1 − 1
(I1 − I2) .

Hence,

pr

(∣∣∣∣ σ̂2
1J − σ2

1J
n1/n

∣∣∣∣ > bJ ε

2
| Y
)
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=pr

(
|I1 − I2| >

n1 − 1

n

bJ ε

2
| Y
)

≤ pr

(
|I1| >

π̂1bJ ε

8
| Y
)
+ pr

(
|I2| >

π̂1bJ ε

8
| Y
)
.

Under Condition (T3), Xi
1J − μ1J ∼ subG(σ2

1J ). In addition, X1J − μ1J ∼
subG(

σ2
1J
n1

). Using Proposition A.5, we can show that
(
Xi

1J − μ1J
)2 − σ2

1J ∼
subE(ψ1σ

2
1J , ψ2σ

2
1J ) and

(
X1J − μ1J

)2 − σ2
1J
n1

∼ subE(ψ3
σ2
1J
n1

, ψ4
σ2
1J
n1

), where
ψ1, ψ2, ψ3, ψ4 are positive constants. Then by Propositions A.3 and A.4, we have

pr

(
|I1| >

π̂1bJ ε

8
| Y
)

≤ 2 exp
(
−min{g1Jnε2, g2Jnε}

)
,

pr

(
|I2| >

π̂1bJ ε

8
| Y
)

≤ 2 exp
(
−min{h1Jn2ε2, h2Jnε}

)
,

where g1J , g2J , h1J , h2J are functions of σ2
1J , σ2

2J , π̂1, π̂2 that are not related

to n or p. Recall that A = {n1, n2 : nπ1

2 < n1 < 3nπ1

2 , nπ2

2 < n2 < 3nπ2

2 }.
When A holds and under Condition (T3), the four functions are bounded as
well. Therefore, for small ε, we have

pr

(∣∣∣∣ σ̂2
1J − σ2

1J
n1/n

∣∣∣∣ > bJ ε

2
| A
)

≤ 2 exp
(
−min{γ1nε2, γ2nε}

)
+ 2 exp

(
−min{γ3n2ε2, γ4nε}

)
≤ γ1 exp

(
−γ2nε

2
)
.

We can derive an upper bound for |σ̂2
2J −σ2

2J | in the same way. By reorganizing
the constants, we finally get

pr (|bnJ − bJ | > ε)

= E{pr (|bnJ − bJ | > ε | Y )}

≤ pr

(∣∣∣∣ σ̂2
1J − σ2

1J
n1/n

∣∣∣∣ > bJ ε

2
| A
)
+ pr

(∣∣∣∣ σ̂2
2J − σ2

2J
n2/n

∣∣∣∣ > bJ ε

2
| A
)
+ 2E{1Ac}

≤ γ1 exp
(
−γ2nε

2
)
+ γ3 exp (−γ4n) . (A.6)

Let |bnJ − bJ | < ε < bJ
2 , then bnJ > bJ

2 . When event A holds, we can find a
constant u such that bJ ≥ u for all J . Thus, under the conditions |anJ − aJ | < ε
and |bnJ − bJ | < ε < bJ

2 , (A.2) becomes

|φt
nJ − φt

J
(1)| < 2

bJ
ε+

2|aJ |
b2J

ε <

(
2

u
+

2|a|
u2

)
ε = η1ε. (A.7)

Define bmin = minJ bJ . Combining the results (A.5), (A.6) and (A.7), we have
for any 0 < ε < bmin

2 and fixed J ,

pr
(
|φt

nJ − φt
J

(1)| < η1ε
)
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≥pr ({|bnJ − bJ | < ε} ∩ {|anJ − aJ | < ε} ∩A)

≥1− pr (|bnJ − bJ | > ε)− pr (|anJ − aJ | > ε)− pr(Ac)

≥1− γ1 exp(−γ2nε
2)− γ3 exp(−γ4n).

Let ν
2 = η1ε. By reorganizing the constants, we have that for any 0 < ν <

min{η1bmin, 2η1},

pr
(
|φt

nJ − φt
J

(1)| > ν

2

)
≤ γ1 exp(−γ2nν

2) + γ3 exp(−γ4n). (A.8)

Next, we consider L2. Let b0J =
(

σ2
1J
π1

+
σ2
2J
π2

)1/2
≥
(

σ2
1,min

π1
+

σ2
2,min

π2

)1/2
=

b0,min, then

φt
J

(1)
=

|aJ |
bJ

, φt
J =

|aJ |
b0J

.

Let |π̂1 − π1| < ε < π1

2 , |π̂2 − π2| < ε < π2

2 , then we have π̂1 > π1

2 and
√

2
3b0J <

bJ <
√
2b0J . Under these conditions, we can get

|φt
J

(1) − φt
J | ≤

∣∣∣∣aJbJ − aJ
b0J

∣∣∣∣ = |aJ | |bJ − b0J |
bJ b0J

<
|aJ |√
2
3b

2
0J

|bJ − b0J |. (A.9)

Furthermore, we have

|bJ − b0J | ≤
∣∣b2J − b20J

∣∣
b0J

≤ 1

b0J

(
σ2
1J

∣∣∣∣ 1π̂1
− 1

π1

∣∣∣∣+ σ2
2J

∣∣∣∣ 1π̂2
− 1

π2

∣∣∣∣) , (A.10)

and ∣∣∣∣ 1π̂1
− 1

π1

∣∣∣∣ = |π̂1 − π1|
π1π̂1

<
2

π2
1

ε,

∣∣∣∣ 1π̂2
− 1

π2

∣∣∣∣ = |π̂2 − π2|
π2π̂2

<
2

π2
2

ε. (A.11)

Combining the results in (A.9), (A.10) and (A.11), we obtain

|φt
J

(1) − φt
J | < |aJ |√

2
3b

2
0J

2

b0J

(
σ2
1J
π2
1

+
σ2
2J
π2
2

)
ε

≤ 2|a|√
2
3b

3
0,min

(
σ2
1,max

π2
1

+
σ2
2,max

π2
2

)
ε = η2ε.

Thus, for any given ε < min{π1

2 , π2

2 },

pr
(
|φt

nJ − φt
J

(1)| < η2ε
)
≥ pr ({|π̂1 − π1| < ε} ∩ {|π̂2 − π2| < ε})

≥ 1− pr (|π̂1 − π1| > ε)− pr (|π̂2 − π2| > ε)

≥ 1− 4 exp
(
−2nε2

)
. (A.12)
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Let ν
2 = η2ε, then (A.12) is equivalent to

pr
(
|φt

nJ − φt
J

(1)| > ν

2

)
≤ γ5 exp

(
−γ6nν

2
)
, for any 0 < ν < min{η2π1, η2π2}.

(A.13)

Finally, we combine the results (A.8) and (A.13). Then for any ε such that
0 < ε < ε0 = min{η1bmin, 2η1, η2π1, η2π2}, we have

pr
(∣∣φt

nJ − φt
J
∣∣ > ε
)
≤ pr

(∣∣∣φt
nJ − φt

J
(1)
∣∣∣ > ε/2

)
+ pr

(∣∣∣φt
J

(1) − φt
J

∣∣∣ > ε/2
)

= γ1 exp(−γ2nε
2) + γ3 exp(−γ4n) + γ5 exp

(
−γ6nε

2
)

≤ γ1 exp(−γ2nε
2) + γ3 exp(−γ4n)

= ζn(ε).

Proof of Corollary 4.1. Given the explicit expression of ζtn in Proposition A.1,
Corollary 4.1 is the direct consequence of Theorem 4.1.

A.4. Proof of Corollaries 4.2 and 4.3

To prove Corollaries 4.2 and 4.3, we need Propositions A.6 and A.7 respectively.

Proposition A.6. Assume that Condition (T4) holds.
(i) For the logistic regression model, there exists some positive constant α

such that if nα/(α+2)ε2 → ∞, we have that pr
(
maxJ |φGLM

nJ − φGLM
J | > ε

)
≤

(
∏R

r=1 pr)ζ
logistic
n (ε), where

ζ logisticn (ε) = γ1 exp(−γ2n
α/(α+2)ε2) + γ3n exp(−γ4n

α/(α+2)),

for some positive constants γ1, γ2, γ3 and γ4.
(ii) For linear models, there exists some positive constant α such that if

nα/Aε2 → ∞, we have that pr
(
maxJ |φGLM

nJ − φGLM
J | > ε

)
≤(
∏R

r=1 pr)ζ
linear
n (ε),

where

ζ linearn (ε) = γ1 exp
(
−γ2n

α/Aε2
)
,

for some positive constants γ1, γ2 and A = max(α+ 4, 3α+ 2).

Proposition A.7. Under Condition (T4), for any 0 < v < 1/2, we have that

pr
(
maxJ |φDC

nJ − φDC
J | > ε

)
≤ (
∏R

r=1 pr)ζ
DC
n (ε), where

ζDC
n (ε) = γ1 exp

(
−γ2n

1−2vε2
)
+ γ3n exp(−γ4n

v),

for some positive constants γ1, γ2, γ3 and γ4.



488 K. Min and Q. Mai

Proposition A.6 is a straightforward extension of the main result in Theorem 4
in [13] to tensor case. Proposition A.7 is a straightforward extension of Theorem
1 in [25] to tensor case. The original theorems were developed for vectors. We
simply rewrite them in tensor notations. Moreover, we replace n−κ with ε in
the probability bounds. By Propositions A.6 and A.7, Condition (T4) implies
Condition (T2).

Proof of Corollaries 4.2 and 4.3. Given the explicit expression of ζlogisticn ,
ζlinearn , ζDC

n in Propositions A.6 and A.7, Corollaries 4.2 and 4.3 are the di-
rect consequences of Theorem 4.1.

A.5. Proof of Lemmas 4.2 and 4.3

We first present the following proposition and its proof. It is used to prove
Lemma 4.2.

Proposition A.8. Let X ∈ Rp1×···×pR be a R-way random tensor and X
follows a tensor normal distribution such that X ∼ TN (μ,Σ1, . . . ,ΣR). Let
M ∈ Rd1×···×dR be a constant tensor and Ur ∈ Rdr×pr , r = 1, . . . , R be matrices
with full row rank. If

Y = M+X×1 U1 · · · ×R UR,

then Y follows a tensor normal distribution with parameters (M′,Σ′
1, . . . ,Σ

′
R)

where M′ = M+ μ×1 U1 · · · ×R UR and Σ′
r = UrΣrU

T
r for r = 1, . . . , R.

Proof of Proposition A.8. By definition, there exists a random tensor Z such
that Z ∼ TN (0, I1, . . . , IR) and

X = μ+ Z×1 Σ
1/2
1 · · · ×R Σ

1/2
R .

Therefore, we have

Y = M+X×1 U1 · · · ×R UR

= M+ (μ+ Z×1 Σ
1/2
1 · · · ×R Σ

1/2
R )×1 U1 · · · ×R UR

= M+ μ×1 U1 · · · ×R UR + Z×1 Σ
1/2
1 · · · ×R Σ

1/2
R ×1 U1 · · · ×R UR

= M+ μ×1 U1 · · · ×R UR + Z×1 (U1Σ
1/2
1 ) · · · ×R (URΣ

1/2
R )

where we use the property that X ×r A ×r B = X ×r (BA) from [21]. Since

UrΣ
1/2
r (UrΣ

1/2
r )T = UrΣrU

T
r = Σ′

r, we finish the proof.

Proof of Lemma 4.2. In TDA model, we have

X | (Y = k) ∼ TN (μk,Σ1, . . . ,ΣR) .

By construction, XV is the sub-tensor ofX. Therefore, there exist some matrices
G1, . . . ,GR such that

XV = X×1 G1 · · · ×R GR
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where Gr ∈ Rlr×pr and lr = |Vr|. Specifically, the ith row of Gr is the Vr,ith
standard basis eVr,i for the space Rpr where Vr,i is the ith element in set Vr.
Therefore, Gr has full row rank. By Proposition A.8, we have

XV | (Y = k) ∼ TN
(
μk ×1 G1 · · · ×R GR,G1Σ1G

T
1 , . . . ,GRΣRG

T
R

)
.

Similar to the construction of XV , we have μk ×1 G1 · · · ×R GR = μk,V . More-

over, the (i, j)th element in matrix GrΣrG
T
r can be written as eTVr,i

ΣreVr,j ,

which is exactly the (i, j)th element of matrix Σr,V . Therefore, we show that
GrΣrG

T
r = Σr,V and we complete the proof of Lemma 4.2.

Proof of Lemma 4.3. In the rank-H generalized linear tensor regression model
[59], we have

g(μ) = β0 + 〈B,X〉 (A.14)

where g(·) is the link function, μ = E(Y | X) and β0 is the intercept. In addition,
the coefficient tensor B ∈ Rp1×...×pR can be decomposed as

B =

H∑
h=1

a1h ◦ · · · ◦ aRh

for arh ∈ Rpr , h = 1, . . . , H. Elementwise,

Bi1,...,iR =

H∑
h=1

a1i1h · · · a
R
iRh for ir = 1, . . . , pr and r = 1, . . . , R,

where arikh is the ikth element of arh. Since V = V1×· · ·×VR, we let [a
r
h]Vr denote

the sub-vector of arh restricted on the index set Vr, i.e. [a
r
h]Vr = (arih1i∈Vr ).

Similar to the construction of XV , we define BV . It is easy to see that

BV =

H∑
h=1

[a1h]V1 ◦ · · · ◦ [aRh ]VR
.

Therefore, BV is also a tensor of rank-H. When D ⊆ V , BJ = 0 for J /∈ V . The
tensor regression model (A.14) can be rewritten as

g(μ) = β0 + 〈BV ,XV〉. (A.15)

Thus, we can fit a rank-H generalized linear tensor regression model on XV and
Y .

Appendix B: Additional simulation results

We show additional simulation results for Models 1–3 and 8–9 using t-statistic
and distance correlation in the screening procedure. Tables 7 and 8 report the
classification errors on the original data and on the screened data with different
screening weights. The results at c = ω/2 and ω are generally similar, and they
are better than the results at c = 0. This indicates that STS outperforms the
marginal screening methods and is not overly sensitive to the choice of c.
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Table 7

Classification errors for Models 1-3 and 8-9. STS-t is used for screening. Standard errors
are reported in parentheses. For each model, the column X corresponds to the results on the

original dataset; the other three columns are results on data with different screening
methods: marginal screening, and STS with two choices of c.

X 0 ω/2 ω X 0 ω/2 ω X 0 ω/2 ω

Model 1 Model 2 Model 3

CATCH 20.04 19.41 15.78 14.87 18.11 17.60 13.91 13.67 13.17 11.58 9.57 9.59

(0.27) (0.20) (0.17) (0.15) (0.18) (0.19) (0.14) (0.12) (0.15) (0.16) (0.10) (0.09)

CP-GLM 21.87 21.50 21.36 21.38 20.95 21.58 19.40 18.93 19.81 14.03 12.93 12.66

(0.70) (0.29) (0.29) (0.33) (0.38) (0.32) (0.24) (0.25) (1.26) (0.40) (0.27) (0.23)

�1-GLM 23.10 22.70 17.38 16.33 20.15 19.42 15.70 15.51 15.69 14.34 12.52 12.80

(0.32) (0.33) (0.19) (0.16) (0.19) (0.23) (0.14) (0.14) (0.19) (0.18) (0.14) (0.14)

�1-FDA 31.95 20.89 14.88 13.73 18.77 15.99 12.31 12.28 16.08 11.86 10.16 10.64

(0.36) (0.26) (0.11) (0.09) (0.24) (0.17) (0.09) (0.07) (0.30) (0.16) (0.08) (0.09)

Model 8 Model 9

CATCH 3.30 3.26 4.23 14.18 18.98 18.88 16.95 16.74

(0.06) (0.05) (0.10) (0.41) (0.20) (0.19) (0.17) (0.17)

CP-GLM 26.17 20.82 20.85 26.62 23.53 22.35 19.40 19.11

(0.56) (0.37) (0.42) (0.47) (0.59) (0.43) (0.33) (0.35)

�1-GLM 4.82 4.61 5.35 22.37 20.97 20.66 17.99 18.46

(0.10) (0.09) (0.11) (0.46) (0.25) (0.22) (0.17) (0.20)

�1-FDA 3.18 3.30 4.21 22.45 26.89 19.94 16.62 17.03

(0.04) (0.05) (0.09) (0.46) (0.47) (0.22) (0.14) (0.15)

Appendix C: Effect of the neighborhood size

Define neighborhood size to be the number of elements in a neighborhood along
each mode. The default STS proposed in Section 3.1 has a neighborhood size of
3. To study the effect of the neighborhood size in STS, we let the neighborhood
size vary from 3 to 9. For all the models, we select the first dn = �n/ log n�
predictors and compare the true positive rates (TPR) of the screened data.

We conducted our simulations with all methods on all models considered in
Section 5.1. The pattern is similar across all models. For the sake of space, we
only present the results for STS-GLM of two models, the smooth Model 1 and
the non-smooth Model 8. The TPRs are plotted in Figure 5. Results show that,
in the smooth Model 1, sizes of 5 and 7 give the best results, but the size of
3 is only slightly worse. If we take a large neighborhood size of 9, there is a
notable decrease in TPR. On the other hand, in the non-smooth Model 8, the
size of 3 with c = ω/2 gives a reasonable TPR that is close to 80%, but the
larger neighborhoods have drastically worse performance. Hence, unless there is
a very strong belief in smoothness, a neighborhood size of 3 should be preferred.

Appendix D: Comparison with Gaussian filter

In this section, we compare STS with Gaussian filter, which is an image pro-
cessing technique that blurs an image with the Gaussian function [16]. Gaussian
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Table 8

Classification errors for Models 1-3 and 8-9. STS-DC is used for screening. Standard errors
are reported in parentheses. For each model, the column X corresponds to the results on the

original dataset; the other three columns are results on data with different screening
methods: marginal screening, and STS with two choices of c.

X 0 ω/2 ω X 0 ω/2 ω X 0 ω/2 ω

Model 1 Model 2 Model 3

CATCH 20.04 19.33 15.41 14.25 18.11 17.46 13.79 13.62 13.17 11.60 9.43 9.50

(0.27) (0.26) (0.20) (0.12) (0.18) (0.18) (0.13) (0.12) (0.15) (0.14) (0.08) (0.08)

CP-GLM 21.87 21.34 21.68 20.62 20.95 22.05 19.43 18.66 19.81 14.03 12.22 12.84

(0.70) (0.35) (0.32) (0.31) (0.38) (0.40) (0.28) (0.22) (1.26) (0.30) (0.22) (0.31)

�1-GLM 23.10 22.69 17.31 15.96 23.31 19.46 15.70 15.55 21.62 14.48 12.14 12.39

(0.32) (0.33) (0.20) (0.16) (0.31) (0.20) (0.14) (0.14) (0.31) (0.19) (0.13) (0.12)

�1-FDA 31.95 20.79 14.65 13.56 26.59 16.15 12.29 12.33 32.37 12.16 9.39 9.81

(0.36) (0.25) (0.12) (0.09) (0.42) (0.17) (0.08) (0.07) (0.70) (0.16) (0.08) (0.08)

Model 8 Model 9

CATCH 3.30 3.27 4.03 15.95 18.98 18.87 16.50 16.08

(0.06) (0.06) (0.10) (0.34) (0.20) (0.19) (0.18) (0.15)

CP-GLM 26.17 20.69 19.75 26.89 23.53 22.71 18.85 18.64

(0.56) (0.37) (0.32) (0.43) (0.59) (0.47) (0.41) (0.32)

�1-GLM 4.82 4.62 5.22 20.98 20.97 20.65 17.61 17.61

(0.10) (0.10) (0.11) (0.47) (0.25) (0.22) (0.19) (0.17)

�1-FDA 3.18 3.31 3.84 20.76 26.89 19.79 16.11 16.05

(0.04) (0.05) (0.08) (0.48) (0.47) (0.22) (0.16) (0.11)

filter is usually used in a somewhat different context from ours. It is often applied
on two-way or three-way tensors, and it smoothes images instead of screening
utilities. However, it is straightforward to generalize it to our problem of in-
terest. For easy presentation, we directly present a definition for R-way tensor
screening. The Gaussian filter function for the R-dimensional space is defined
as follows:

H (u1, . . . , uR) = exp{−(u2
1 + · · ·+ u2

R)/(2η
2)}.

where ur is the distance from the origin in the r-th mode and η is the standard
deviation. Let dnb be an odd number that denotes the size of the filter. Then ur

can take discrete values from the setDnb = {−(dnb−1)/2, . . . ,−1, 0, 1, . . . , (dnb−
1)/2}. Within the neighborhood, H (u1, . . . , uR) is normalized such that

H (u1, . . . , uR) = H (u1, . . . , uR) /
∑

u1,...,uR∈Dnb

H (u1, . . . , uR) .

Then we have a R-way filter tensor which is also referred to as Gaussian kernel.
After obtaining the kernel, we do a convolution between the kernel and the
screening utility tensor. Let Φ ∈ Rp1×···×pR denote the screening utility tensor
where Φj1,...,jR is the screening statistic corresponding to the predictor Xj1,...,jR .
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Fig 5. TPR of STS-GLM for Models 1 & 8 with different neighborhood sizes.

The filtered screening utility matrix ΦGF is obtained by

ΦGF
j1,...,jR =

∑
u1,...,uR∈Dnb

H (u1, . . . , uR) Φj1+u1,...,jR+uR
. (D.1)

We will pad the tensor on the boundary if jr+ur exceeds the index range. Then
we will use ΦGF

j1,...,jR
to do screening.

We performed screening with Gaussian filter combined with the three screen-
ing utilities on all the models in Section 5.1. For all models, we select the first
dn = �n/ log n� predictors and calculate the true positive rate (TPR). We con-
sider two neighborhood sizes of 3, 5 and a range of η ∈ [0.2, 2]. For the sake of
space, only results for STS-GLM in the classification Model 1 and the regression
Model 4 are shown in Figure 6. Other models exhibit the same pattern. Figure 6
shows that when the parameters in the Gaussian filter are chosen appropriately,
it performs similarly to STS with c = ω/2. It is particularly important to choose
η in a reasonable range, but the screening results are not sensitive within this
range. Note that the larger η is, the flatter is the Gaussian filter, and thus the
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Fig 6. Plots of TPR in screening for Models 1 & 4. Solid line and dashed line show the results
of Gaussian filter and STS-GLM with c = ω/2, respectively.

smoother is the screening result. Figure 6 confirms that η should be somewhat
large so that smoothness is encouraged to achieve better screening results.

Given the similar performance, we recommend using STS in practice unless
there is strong prior knowledge that the Gaussian filter should be preferred. In
general, the weighted average in STS is easier to interpret, and the role of c in
STS can be more easily understood than the parameter η for researchers with
relatively less background in statistics.
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