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Abstract: We introduce some new classes of unimodal rotational invariant
directional distributions, which generalize von Mises–Fisher distribution.
We propose three types of distributions, one of which represents axial data.
For each new type we provide formulae and short computational study of
parameter estimators by the method of moments and the method of maxi-
mum likelihood. The main goal of the paper is to develop the goodness of fit
test to detect that sample entries follow one of the introduced generalized
von Mises–Fisher distribution based on the maximum entropy principle.
We use kth nearest neighbour distances estimator of Shannon entropy and
prove its L2-consistency. We examine the behaviour of the test statistics,
find critical values and compute power of the test on simulated samples.
We apply the goodness of fit test to local fiber directions in a glass fibre
reinforced composite material and detect the samples which follow axial
generalized von Mises–Fisher distribution.
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1. Introduction

Directional distributions characterize randomness in unit vectors (directions).
Spherical data sets appear in a wide range of problems arising from Earth sci-
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ences [44], biology [39], and material science [16]. Directional data are important
in cosmology and astrophysics, for instance, in results of the Laser Interferome-
ter Gravitational-Wave Observatory [1] and the Alpha Magnetic Spectrometer
on the International Space Station [2]. Further applications and modern state
of the art on statistical theory on directional data can be found in Ley and
Verdebout [30], Pewsey and Garćıa-Portugués [43] and references therein.

In this paper, we consider some classes of random unit vectors with values
on sphere S

d−1 = {x ∈ R
d : ‖x‖ = 1}, which have the absolutely continuous

directional distributions with respect to the uniform distribution on S
d−1. We

denote by aTb the scalar product of vectors a,b ∈ R
d and by ‖a‖ the Euclidean

norm of a ∈ R
d.

The von Mises–Fisher distribution is a fundamental isotropic distribution
which is widely used in directional statistics [e.g. 36, p. 168]. It belongs to the
exponential family of distributions, is rotational invariant and has a density pro-
portional to exp(κμTx),x ∈ S

d−1, such that random vectors are concentrated
with rate κ ∈ R along direction μ ∈ S

d−1. The rotational invariant family of dis-
tributions is actively studied nowadays by Cutting, Paindaveine and Verdebout
[12], Duerinckx and Ley [17], Garćıa-Portugués, Paindaveine and Verdebout
[23], Paindaveine and Verdebout [40].

Among several important properties of the von Mises–Fisher distribution
we focus on maximum entropy characterization, that is, the von Mises–Fisher
distribution has maximum entropy in the class of continuous distributions on
S
d−1 with a given value of E(X) [see 35]. The von Mises-Fisher distribution is

widely used for analysis of neutrino arrival directions recorded by the IceCube
Neutrino Observatory, see e.g. [11, 14, 31] and arrival directions of ultrahigh
energy cosmic rays recorded by the Pierre Auger Observatory, see e.g. [3, 9, 27].

There are several generalizations, including the Fisher–Bingham distribu-
tion with a density proportional to exp(κμTx + xTAx),x ∈ S

d−1 [see 35],
and the generalized von Mises–Fisher distribution of order k (GvMFk) intro-
duced in Gatto and Jammalamadaka [24], having the density proportional to

exp
(∑k

j=1 κj(μ
T
j x)

rj
)
, where μj ∈ Sd−1, κj ∈ R, rj ∈ N (j = 1, . . . , k), and

r1 ≤ . . . ≤ rk.
In this paper, we introduce a new generalization of the von Mises–Fisher

distribution, which stays in the exponential family and is rotational invariant
with one mode. In contrast to the generalized von Mises–Fisher distribution of
order k with integer power r ∈ N, we consider densities with arbitrary positive
power r ∈ R+. The motivation of such choice is to provide the analogue of a
generalized Gaussian distribution for random vectors on the unit sphere. To
do so we introduce the following three types of distributions of order α ∈ R+,
whose densities f are proportional to

Type I, GvMF1,d(α, κ,μ) : f(x) ∝ exp
(κ
α
(μTx)<α>

)
,x ∈ S

d−1,

Type II, GvMF2,d(α, κ,μ) : f(x) ∝ exp
( κ

2αα
‖x− μ‖2α

)
,x ∈ S

d−1,

Axial Type, GvMF3,d(α, κ,μ) : f(x) ∝ exp
(κ
α
|μTx|α

)
,x ∈ S

d−1,
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where κ > 0 is a concentration parameter, and μ ∈ S
d−1 is a mean direction

parameter. In the paper we denote by x<α> = |x|αsgn(x), x ∈ R.
Apart from studying the properties, simulations and parameter estimation for

distributions GvMFj,d (j = 1, 2, 3), we develop the goodness of fit test based on
the estimation of the Shannon entropy and independent identically distributed
(i.i.d.) sample. These tests exploit the maximum entropy principle, which is also
proved in the paper as the spherical analogue of the results by Lutwak, Yang
and Zhang [34].

To do so, we employ the entropy estimators ĤN,k derived from kth nearest
neighbour distances. Starting from the pioneering paper [28], which proves by
direct probability methods the consistency of ĤN,1 for random vectors with
values in Euclidean space, many authors considered extending the class of ad-
missible distributions and improved the convergence of ĤN,k, see Berrett, Sam-
worth and Yuan [6], Bulinski and Dimitrov [8], Delattre and Fournier [13], Evans
[18], Evans, Jones and Schmidt [19], Gao, Oh and Viswanath [22], Goria et al.
[25], Leonenko, Pronzato and Savani [29], and the references therein. In [32, 38],
the kth nearest neighbour entropy estimation is generalized for hyperspherical
distributions.

Unlike the above mentioned works, the limit theory for point processes with a
fixed k allows to prove the Lp-consistency of functionals of kth nearest neighbour
distances for a wider class of distributions. The nearest neighbours method of
estimation of the Shannon entropy for manifolds, including spheres, was devel-
oped by Penrose and Yukich [42]. In the present paper, we continue their work
and prove the L2-consistency of ĤN,k, as N → ∞ with arbitrary k ≥ 1 and for
a random vector on a Riemannian manifold if its density is bounded and has
compact support, see Theorem 4.6. Therefore, we show that ĤN,k is a consis-
tent estimator for the samples from the introduced generalized von Mises–Fisher
distributions.

From the recent papers, we mention [6], where the efficient entropy estima-
tion is provided via the weighted kth nearest neighbour distances with k = kN
depending on sample size N . Moreover, Berrett and Samworth [5] introduced a
non-parametric entropy based test of independence for multidimensional data.
Lund and Jammalamadaka [33] considered the entropy based test of goodness
of fit for the von Mises distribution on the circle and use a different entropy
estimate. Our study is motivated, particularly, by the work of Cadirci et al.
[10], where the entropy based goodness of fit test for generalized Gaussian dis-
tribution is given.

We verify our theoretical results by computational study on simulated sam-
ples and show the inflation of variances of ĤN,k as k grows, which confirms the
conclusion of [6]. Moreover, we detect the evidence of generalized von Mises–
Fisher distributions in real world data by the presented entropy based good-
ness of fit test. Particularly, we find the evidence in 3D images of a glass fibre
reinforced composite material, where fiber directions follow a generelized von
Mises–Fisher distribution of axial type.

The manuscript is organized as follows. In Section 2, we revise the basic
facts for von Mises-Fisher distribution. In Section 3, we introduce our three
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types of generalized von Mises-Fisher distribution and compute their moments.
Section 4 is devoted to the Shannon entropy of generalized von Mises-Fisher
distributions and we show the maximum entropy principle for them in Section
4.1. Then we discuss the statistical estimation of an entropy and prove the L2

convergence of kth nearest neighbour estimator for random variables on com-
pact manifolds (Section 4.2). In Section 5, we formulate the maximum likelihood
estimators (Section 5.1) and estimators by the method of moments for distribu-
tions GvMF1,d,GvMF2,d, and GvMF3,d (Section 5.2). In Section 6 we develop
goodness of fit tests based on the maximum entropy principle for the introduced
distributions. Results of numerical experiments on simulated samples are given
in Section 7. We present the method of simulations in Section 7.1, entropy esti-
mation in Section 7.2, and study of the test statistics in Section 7.3. In Section
8, we detect the generalized von Mises-Fisher distributions in a real data set.
The study of the tests’ asymptotic distribution are given in Section 9. The nu-
merical results of parameter estimation and some auxiliary material are given
in the Appendix.

2. Preliminaries

In this section we provide some known facts needed for the sequel. Let σ(dx)
be spherical measure on the sphere S

d−1. It can be written in polar coordinates
x = (1,u),u ∈ S

d−1 as σ(dx) = 2−1π−d/2Γ (d/2) du. Further, we use Lemma
2.5.1 from [20] for computation of integrals with respect to σ. Namely, let g :
R → R+ be a non-negative Borel function and a ∈ S

d−1, then∫
xTx=1

g(aTx)σ(dx) =
2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

−1

g(y)(1− y2)
d−3
2 dy. (1)

We take κ ∈ R, μ ∈ S
d−1, d ≥ 2 and consider further the probability densities

with respect to the measure σ.

Definition 2.1. A unit random vector X has the (d−1)-dimensional von Mises-
Fisher distribution vMF1,d(μ, κ) if its probability density function is fX(x) =

(κ/2)
d/2−1

(2πd/2Id/2−1(κ))
−1 exp(κμTx),x ∈ S

d−1 where Iν is the modified
Bessel function of order ν ≥ 0, see [e.g. 26, (A5)]

In the case d = 3 von Mises-Fisher distribution M1,3(μ, κ) is called Fisher
distribution and its density simplifies to κ/(4π sinhκ) exp(κμTx),x ∈ S

2.
The density of vMF1,d can be written in the alternative form. We say that a

random vector X has the von Mises-Fisher distribution vMF2,d(μ, κ) if its den-

sity function is fX(x) = eκ (κ/2)
d/2−1

(2πd/2Id/2−1(κ))
−1 exp

(
−κ‖x− μ‖2/2

)
,

x ∈ S
d−1. Indeed, κ

2 ‖x − μ‖2 = κ
2 ‖x‖2 + κ

2 ‖μ‖2 − κμTx = κ − κμTx for
x,μ ∈ S

d−1.
Let us recall the standard directional statistics.

Definition 2.2. Let X be random vector with values in S
d−1 and EX 	= 0. The

mean direction of X is the vector EX/‖EX‖, while the mean resultant length is
‖EX‖.
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The mean resultant length is invariant and the mean direction is equivariant
under rotation. Formally, let U ∈ SO(d) be a rotation matrix, then ‖EUX‖ =
‖EX‖ and EUX/‖EUX‖ = UEX/‖EX‖.

Consider the class of distributions on S
d−1 with rotational symmetry, that is

their distribution functions have a form f(x) = g(μTx), x,μ ∈ S
d−1, e.g. [7].

Such random vectors X posses a tangent-normal decomposition

X = (μTX)μ+
√

1− (μTX)2Y, (2)

where μTX and Y are independent, μ ⊥ Y, and Y is uniformly distributed on
the tangent space S

d−1
μ := {y ∈ S

d−1|μTy = 0}. It follows from (2), that the
mean resultant length is ‖EX‖ = E[μTX] and the mean direction equals μ.

3. Generalized von Mises-Fisher distributions

In this section we introduce our generalizations of the von Mises-Ficher distri-
bution. We call κ ∈ R a concentration parameter and μ ∈ S

d−1 a mean direction
parameter.

Definition 3.1. A unit random vector X has the (d − 1)-dimensional I-type
generalized von Mises-Fisher distribution GvMF1,d(α, κ,μ) of order α > 0 if its
probability density function is

fX(x) = c1,d(κ, α) exp
(κ
α
(μTx)<α>

)
,x ∈ S

d−1, (3)

where

c−1
1,d(κ, α) =

2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

0

(
e

κ
αyα

+ e−
κ
αyα

)
(1− y2)

d−3
2 dy. (4)

As an analogue of von Mises-Fisher distribution in the form vMF2,d, we
introduce the following class.

Definition 3.2. A unit random vector X has the (d − 1)-dimensional II-type
generalized von Mises-Fisher distribution GvMF2,d(α, κ,μ) of order α > 0 if its
probability density function is

fX(x) = c2,d(κ, α) exp
(
− κ

2αα
‖x− μ‖2α

)
,x ∈ S

d−1, (5)

where

c−1
2,d(κ, α) =

2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

0

(
e−

κ
α (1−y)α + e−

κ
α (1+y)α

)
(1− y2)

d−3
2 dy. (6)

In the case of α = 1, the introduced distributions GvMF1,d and GvMF2,d

become the von Mises-Fisher distributions vMF1,d and vMF2,d respectively.
If we do not distinguish opposite directions we deal with axes. Commonly

used technique in this case is to consider symmetric density functions f such
that f(x) = f(−x),x ∈ S

d−1. Since our motivation is to stay in the class of
rotational invariant densities and to generalize the von Mises-Fisher distribution,
we propose the following model for an axial data.
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Definition 3.3. A unit random vector X has the (d − 1)-dimensional axial
generalized von Mises-Fisher distribution GvMF3,d(α, κ,μ) (or distribution of
axial type) of order α > 0 if its probability density function is

fX(x) = c3,d(κ, α) exp
(κ
α
|μTx|α

)
,x ∈ S

d−1, (7)

where

c−1
3,d(κ, α) =

4π(d−1)/2

Γ ((d− 1)/2)

∫ 1

0

e
κ
αyα

(1− y2)
d−3
2 dy. (8)

Remark 3.1. We find cj,d, j = 1, 2, 3 by checking
∫
Sd−1 fX(x)σ(dx) = 1. for

example, the constant c−1
2,d(κ, α) equals∫

Sd−1

exp
(
− κ

2αα
‖x− μ‖2α

)
σ(dx) =

∫
Sd−1

exp
(
−κ

α
(1− μTx)

α
)
σ(dx)

(1)
=

2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

−1

exp
(
−κ

α
(1− y)

α
)
(1− y2)

d−3
2 dy.

Remark 3.2. As usual for axial distributions, parameter μ is defined up to a
sign, in a sense that GvMF3,d(α, κ,μ) and GvMF3,d(α, κ,−μ) are equal. In the
case α = 2, the generalized von Mises-Fisher distribution of axial type reduces
to the Watson distribution.

Remark 3.3. For d = 3 and α = 1, one can represent an expansion of the
von Mises-Fisher vMF1,3(μ, κ) density into the series of orthogonal functions
Y m
l ,−l ≤ m ≤ l, l = 0, 1, 2, . . ., on the sphere (real spherical harmonics, see [e.g.

26, p. 437], [e.g. 37, S. 13.2]). For example, [26, (5)] gives

f(x) =

∞∑
l=0

√
2l + 1

4π

Il+1/2(κ)

I1/2(κ)
Y 0
l (μ

Tx),x ∈ S
2,

which can be used potentially for computational purposes. However, it is difficult
for general α to express coefficients of expansions in terms of some known special
functions (this is true even for α = 2, see formulae (7) and (8) in [26]).

Let us consider the moments characteristics of GvMFj,d(α, κ,μ), j = 1, 2, 3
distributions. Denote by

A1(κ, α, β) =

∫ 1

0

e
κ
αyα

yβ(1− y2)
d−3
2 dy, (9)

A2(κ, α, β) =

∫ 2

0

e−
κ
αyα

(2− y)
d−3
2 y

d−3
2 +βdy. (10)

Proposition 3.1. Let β ≥ 0 and X ∼ GvMF1,d(α, κ,μ), then

E
(
(μTX)<β>

)
=

A1(κ, α, β)−A1(−κ, α, β)

A1(κ, α, 0) +A1(−κ, α, 0)
. (11)
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Proof. Let f be the density of the form (3), then

E
(
(μTX)<β>

)
=

∫
Sd−1

(μTx)<β>f(x)σ(dx)

(1)
= c1,d(κ, α)

2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

−1

y<β> exp
(κ
α
y<α>

)
(1− y2)

d−3
2 dy

= c1,d(κ, α)
2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

0

(
e

κ
αyα − e−

κ
αyα

)
yβ(1− y2)

d−3
2 dy

=

∫ 1

0

(
e

κ
αyα − e−

κ
αyα)

yβ(1− y2)
d−3
2 dy∫ 1

0

(
e

κ
αyα

+ e−
κ
αyα

)
(1− y2)

d−3
2 dy

.

Proposition 3.2. Let β ≥ 0 and X ∼ GvMF2,d(α, κ,μ), then

E‖X− μ‖2β = 2βA2(κ, α, β)/A2(κ, α, 0). (12)

Proof. Let f be the density of the form (5), then

E‖X− μ‖2β =

∫
Sd−1

‖x− μ‖2βf(x)σ(dx) =
∫
Sd−1

(2− 2μTx)βf(x)σ(dx)

(1)
= c2,d(κ, α)

2π(d−1)/2

Γ ((d− 1)/2)

∫ 1

−1

(2− 2y)β exp
(
−κ

α
(1− y)α

)
(1− y2)

d−3
2 dy

= 2β
∫ 1

−1
(1− y)βe−

κ
α (1−y)α(1− y2)

d−3
2 dy∫ 1

−1
e−

κ
α (1−y)α(1− y2)

d−3
2 dy

= 2β
∫ 2

0
e−

κ
α zα

(2− z)
d−3
2 z

d−3
2 +βdz∫ 2

0
e−

κ
α zα

(2− z)
d−3
2 z

d−3
2 dz

.

Similarly, we get the moments for the distribution GvMF3,d(α, κ,μ).

Proposition 3.3. Let β ≥ 0 and X ∼ GvMF3,d(α, κ,μ), then

E
(
|μTX|β

)
= A1(κ, α, β)/A1(κ, α, 0). (13)

Remark 3.4. Particularly, the mean direction of Xj ∼ GvMFj,d(α, κ,μ) (j =
1, 2) is μ. Note that, the mean direction of X3 ∼ GvMF3,d(α, κ,μ) is not de-
fined and its mean resultant length ‖E(X3)‖ = E(μTX3) equals 0. The mean
resultant length of X1 equals ‖E(X1)‖ = E(μTX1) and computed by (11)
with β = 1. The mean resultant length of X2 equals ‖E(X2)‖ = E(μTX2) =
1−A2(κ, α, 1)/A2(κ, α, 0).

4. Entropy

In this section we find the entropy of generalized von Mises–Fisher distributions,
and show the maximum entropy principle for them. Then we discuss the statis-
tical estimation of an entropy and prove the L2-convergence of the kth nearest
neigbour estimator for random variables on compact manifolds.
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4.1. Maximum entropy principle for generalized von-Mises Fisher
distributions

Recall that the entropy of a continuous random vector X ∈ S
d−1 with a density

f is H(X) = −
∫
Sd−1(log f(x))f(x)σ(dx). For a density version f we denote its

support by suppf = {x ∈ Sd−1 : f(x) > 0}. Clearly, the integral in H(X) is
taken over suppf .

Theorem 4.1. Let Xj ∼ GvMFj,d(α, κ,μ), j = 1, 2, 3, then

H(X1) = − log c1,d(κ, α)−
κ

α
E
(
(μTX1)

<α>
)
, (14)

H(X2) = − log c2,d(κ, α) +
κ

2αα
E‖X2 − μ‖2α (15)

H(X3) = − log c3,d(κ, α)−
κ

α
E|μTX3|α. (16)

Proof. Let X1 have density f1, then the entropy of X1 equals

−
∫
Sd−1

(log f1(x))f1(x)σ(dx) = − log c1,d(κ, α)

∫
Sd−1

f1(x)σ(dx)

− κ

α

∫
Sd−1

(μTx)<α>f1(x)σ(dx) = − log c1,d(κ, α)−
κ

α
E
(
(μTX1)

<α>
)
.

The cases of X2 and X3 are similar.

Theorem 4.2. Let a unit random vector Z ∈ S
d−1 have a generalized von

Mises-Fisher distribution GvMF1,d(α, κ,μ). Then Z has the maximum entropy
value over all continuous random variables X on S

d−1 with

E
(
(μTX)<α>

)
= E

(
(μTZ)<α>

)
. (17)

Proof. Let X be a random unit vector on S
d−1, d ≥ 2 such that (17) holds true.

Let f and f∗ be the densities of X and Z respectively. By Jensen’s inequality,∫
Sd−1

f(x) log f∗(x)σ(dx)−
∫
Sd−1

f(x) log f(x)σ(dx)

=

∫
Sd−1

f(x) log
f∗(x)

f(x)
σ(dx) ≤ log

(∫
Sd−1

f(x)
f∗(x)

f(x)
σ(dx)

)
= 0

with equality if and only if f = f∗ almost everywhere with respect to σ. So,
H(X) = −

∫
Sd−1 f(x) log f(x)σ(dx) ≤ −

∫
Sd−1 f(x) log f

∗(x)σ(dx). In this case

f∗(x) = log c1,d(κ, α) +
κ
α (μ

Tx)<α>,x ∈ S
d−1 and hence

H(X) ≤ −
∫
Sd−1

f(x) log f∗(x)σ(dx) = − log c1,d(κ, α)

− κ

α

∫
Sd−1

(μTx)<α>f(x)σ(dx) = − log c1,d(κ, α)−
κ

α
E
[
(μTX)<α>

]
= − log c1,d(κ, α)−

κ

α
E
[
(μTZ)<α>

]
= − log c1,d(κ, α)
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− κ

α

∫
Sd−1

(μTx)<α>f∗(x)σ(dx) = −
∫
Sd−1

f∗(x) log f∗(x)σ(dx) = H(Z).

The maximum entropy principle for generalized von Mises-Fisher distribution
of type II has the following form.

Theorem 4.3. Let a unit random vector Z ∈ S
d−1 have a generalized von

Mises-Fisher distribution GvMF2,d(α, κ,μ). Then Z has the maximum entropy
value over all continuous random variables X on S

d−1 with E‖X − μ‖2α =
E‖Z− μ‖2α.

Proof. Let f and f∗ be the densities of X and Z respectively. The proof is
similar to Theorem 4.2. Indeed, f∗(x) = log c2,d(κ, α)− κ

2αα‖x−μ‖2α,x ∈ S
d−1

and hence

H(X) ≤ −
∫
Sd−1

f(x) log f∗(x)σ(dx) = − log c2,d(κ, α) +
κ

2αα
E‖X− μ‖2α

= − log c2,d(κ, α) +
κ

2αα
E‖Z− μ‖2α = −

∫
Sd−1

f∗(x) log f∗(x)σ(dx) = H(Z).

Theorem 4.4. Let a unit random vector Z ∈ S
d−1 have an axial generalized

von Mises-Fisher distribution GvMF3,d(α, κ,μ). Then Z has the maximum en-
tropy value over all continuous random variables X on S

d−1 with E|μTX|α =
E|μTZ|α.

Proof. The proof is similar to Theorems 4.2 and 4.3.

4.2. Entropy estimation

In this section, we describe the method of entropy estimation for random unit
vectors. Actually, we extend the phase-space S

d−1 to the arbitrary compact
Riemannian manifold. Let m, d ∈ N, m ≤ d, and M be a m-dimensional C1

manifold embedded in R
d with the atlas ((Ui, gi), i ∈ I0), i.e., for each y ∈ M

there exists an open subset Ui of R
m and a continuously differentiable injection

gi : Ui → R
d, such that y ∈ gi(U) ⊂ M, and gi is an open map from Ui to M,

and the linear map g′i(u) has full rank for all u ∈ Ui.
For bounded measurable h : M → R, the integral

∫
M h(y)ν(dy) is defined by∫

M
h(y)ν(dy) =

∑
i∈I0

∫
Ui

h(gi(x))ψi(gi(x))
√

det(Jgi(x))
′(Jgi(x))dx,

where ν is a σ-finite measure on M, Jgi is the Jacobian of gi and {ψi, i ∈ I0}
is the partition of unity, see [42, pp. 3–4] and [4, Chapter 2] for more detailed
setting.
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Let f : M → R+ be a probability density of independent random elements
X,Xi, i ∈ N with values in M, i.e.,

∫
M f(x)ν(dx) = 1. Let a natural number

k be fixed. Denote by XN = {X1, . . . , XN}, N ≥ k the samples of the first
N elements. The entropy of X equals H(X) = −

∫
M log(f(x))f(x)ν(dx). Let

F be a finite subset of {Xi, i ≥ k} and ρk(x, F ) be the Euclidean distance
between x and its kth nearest neighbour in F \ {x}. Let γ ≈ 0.5772 be the
Euler–Mascheroni constant.

Definition 4.1. The kth nearest neighbour estimator of the entropy H(X) is
defined by

ĤN,k(XN ) =
1

N

N∑
i=1

log
(
ρmk (Xi,XN )Vm(N − 1)e−ψ(k)

)
, (18)

where ψ(k) =
∑k−1

j=1 j
−j − γ, Vm = πm/2Γ−1(1 +m/2).

For example, if k = 1, then the nearest neighbour distances estimator is
ĤN,1(XN ) = m

N

∑N
i=1 log ρ1(Xi,XN ) + log Vm + γ + log(N − 1). We start the

proof of L2-consistency of ĤN,k by writing down the particular case of Theorem
3.1 from [42] for the functional ξ(x,X ) := log

(
e−ψ(k)Vmρmk (x,X )

)
.

Theorem 4.5. Let k ≥ 1, put q = 1 or q = 2. Suppose there exists p ≥ q such
that

sup
N≥k

E

∣∣∣ξ (N 1
mX1, N

1
mXN

)∣∣∣p < ∞. (19)

Then as N → ∞ we have Lq convergence

1

N

∑
x∈XN

ξ
(
N

1
mx,N

1
mXN

)
→
∫
M

E[ξ
(
0,Pf(x)

)
]f(x)ν(dx), (20)

where Pλ denotes a homogeneous Poisson point process of intensity λ > 0 in
R

m (embedded in R
d).

For the bounded random variables Xi, i ≥ 1 and ρk(x,XN ), we generalize
Lemma 7.8 from [42], which was proved for the case k = 1.

Lemma 4.1. Let f be bounded and have a compact support on M, then for any

δ ∈ (0,m) it holds supN≥k E

[
ρδk

(
N

1
mX1, N

1
mXN

)]
< ∞.

Proof. The proof is very similar to [42, Lemma 7.8]. Recall that M has the atlas
((Ui, gi), i ∈ I0), where I0 = {1, . . . , i0}, and there exist δi, xi, i ∈ I0 such that
M ∈ ∪i∈I0Bδi(yi).

Denote Ai = Bδi \ ∪j<iBδj (yj). Since supp(f) is bounded then there exist
i0 ∈ N and constant C > 0 such that

E

[
N

δ
m ρδk(X1,XN )

]
= N

δ
m−1

E

( ∑
x∈XN

ρδk(x,XN )

)
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≤ N
δ
m−1

[
i0∑
i=1

∑
x∈Ai∩XN

ρδk(x,Ai ∩ XN ) + C

]
. (21)

Now we prove that
∑

x∈Y ρδk(x,Y) ≤ Ci [card(Y)]
1−δ/m

for all finite Y ⊂ Ai,
where Ci > 0. Let Y ⊂ Ai and yj ∈ Y be a the jth nearest neighbour of x ∈ Y .
Taking zj ∈ Y such that g−1

i (zj) to be j-th nearest neighbour of g−1
i (x) in

g−1
i (Y), we have from [42, Lemma 4.1] that

ρk(x,Y) = max{‖y1 − x‖, . . . , ‖yk − x‖} ≤ max{‖z1 − x‖, . . . , ‖zk − x‖}
≤ Ci max

{∥∥g−1
i (z1)− g−1

i (x)
∥∥ , . . . , ∥∥g−1

i (zk)− g−1
i (x)

∥∥}
= Ciρk(g

−1
i (x), g−1

i (Y)).

Thus, from [46, Lemma 3.3] we have for any δ ∈ (0,m)∑
x∈Ai∩XN

ρδk(x,Ai ∩ XN )

≤ Ci[diam(g−1
i (Ai ∩ XN ))]δ[card(g−1

i (Ai ∩ XN ))]1−
δ
m ≤ C̃iN

1− δ
m .

Hence, the right-hand side of (21) is bounded above uniformly.

Now we prove the L2-convergence of the kth nearest neighbour estimator
ĤN,k(XN ) = N−1

∑
x∈XN

ξ
(
N1/mx,N1/mXN

)
, which is an extension from the

case k = 1 to k ≥ 1 of Theorem 2.4. from [42].

Theorem 4.6. Suppose f is bounded and has compact support. Then for every
fixed k ≥ 1

E

[
ĤN,k(XN )−H(X)

]2
→ 0 as N → ∞. (22)

Proof. We apply Theorem 4.5. Repeating the lines of the proof of [10, Theo-
rem 3], we have that

∫
M E[ξ

(
0,Pf(x)

)
]f(x)ν(dx) = −

∫
M(log f(x))f(x)ν(dx) =

H(X). Second, we check condition (19). Note that for every δ ∈ (0, 1) and p > 1
there exists C > 0 such that | log t|p ≤ Ct−δ1[0,1](t) +Ctδ1[1,∞)(t), t > 0. Then

E

∣∣∣ξ (N 1
mX1, N

1
mXN

)∣∣∣p ≤ 2p−1 |log Vm − ψ(k)|p

+ 2p−1
E

∣∣∣log ρmk (N 1
mX1, N

1
mXN

)∣∣∣p ≤ 2p−1 |log Vm − ψ(k)|p

+ 2p−1CEρ−δ
k

(
N

1
mX1, N

1
mXN

)
1[0,1]

(
ρδk

(
N

1
mX1, N

1
mXN

))
(23)

+ 2p−1CEρδk

(
N

1
mX1, N

1
mXN

)
1[1,∞)

(
ρδk

(
N

1
mX1, N

1
mXN

))
. (24)

Term (23) is finite because

sup
N≥k

Eρ−δ
k

(
N

1
mX1, N

1
mXN

)
1[0,1]

(
ρδk

(
N

1
mX1, N

1
mXN

))
≤ sup

N≥k
Eρ−δ

1

(
N

1
mX1, N

1
mXN

)
< ∞, (25)
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where (25) is ensured by [42, Lemma 7.5] if f is bounded and δ ∈ (0,m).

Thus, applying Lemma 4.1 we get that supN≥k Eρ
δ
k

(
N

1
mX1, N

1
mXN

)
< ∞ if

0 < δ < m. Hence, (19) is satisfied.

The 2-dimensional sphere S
2 is a compact manifold with d = 3, m = 2 and

ν = σ. Thus, Theorem 4.3 is valid for all bounded densities on S
2, kth nearest

neighbour estimator has the form ĤN,k(XN ) = 2N−1
∑N

i=1 log ρk(Xi,XN ) −
ψ(k) + log(N − 1) + log π, and ĤN,k(XN ) → H(X) in L2(Ω). This yields, that

ĤN,k(XN ) is a consistent estimator of the Shannon entropy.

5. Estimation of parameters

5.1. Fisher’s maximum likelihood estimation

Let XN = {x1, . . . ,xN} be a random sample. From direct calculations we write
down the log-likelihood l(XN ) for random samples from the introduced gen-
eralized von Mises-Fisher distributions. Let Xj,N follow GvMFj,d(α, κ,μ) dis-

tribution, then l(X1,N ) = N log c1,d(κ, α) + (κ/α)
∑N

i=1(μ
Txi)

<α>, l(X2,N ) =

N log c2,d(κ, α) − 2−α(κ/α)
∑N

i=1 ‖xi − μ‖2α, and l(X3,N ) = N log c3,d(κ, α) +

(κ/α)
∑N

i=1 |μTxi|α. In each case, we use numerical methods to find the max-
imum likelihood estimates (α̂L, κ̂L, μ̂L) of (α, κ,μ) which maximize the log-
likelihood l(Xj,N ).

The problem becomes easier when parameter α is known. In such a case, we
can derive maximum likelihood estimates taking derivatives of l(XN ). We have
the estimates of μ as κ as

• Let XN ∼ GvMF1,d(α, κ,μ), then μ̂L = argmaxμ∈Sd−1

∑N
i=1(μ

Txi)
<α>,

A1(κ̂L, α, α)−A1(−κ̂L, α, α)

A1(κ̂L, α, 0) +A1(−κ̂L, α, 0))
=

1

N

N∑
i=1

(μ̂T

Lxi)
<α>.

• Let XN ∼ GvMF2,d(α, κ,μ), then μ̂L = argminμ∈Sd−1

∑N
i=1 ‖xi − μ‖2α,

and 2αA2(κ̂L, α, α)/A2(κ̂L, α, 0) = N−1
∑N

i=1 ‖xi − μ̂L‖2α.
• Let XN ∼ GvMF3,d(α, κ,μ), then μ̂L = argmaxμ∈Sd−1

∑N
i=1 |μTxi|α, and

A1(κ̂L, α, α)/A1(κ̂L, α, 0) = N−1
∑N

i=1 |μ̂
T

Lxi|α.

5.2. Method of moments

In this section we consider parameter estimation of generalized von Mises-Fisher
distributions based on the moments estimation.

In the case of non-axial random vector X ∈ S
d−1 we assume that ‖EX‖ 	= 0.

We know from Definition 2.2 that μ̂ := X̄N/‖X̄N‖, where X̄N = 1
N

∑N
i=1 xi, is

the natural estimator for mean direction parameter μ. In order to find estimates
for parameters α and κ we need at least two more moment statistics. A standard
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approach involves the use of the resultant length. For the second relations we
choose E(sgn{X1

T
EX1}) and E(‖X2 − μ‖4) for vectors Xj ∼ GvMFj,d(α, κ,μ)

(j = 1, 2). By Remark 3.4 one can get the estimators κ̂, α̂ as a solution of the
following equations

A1(κ̂, α̂, 1)−A1(−κ̂, α̂, 1)

A1(κ̂, α̂, 0) +A1(−κ̂, α̂, 0)
= ‖X̄1,N‖,

A1(κ̂, α̂, 0)−A1(−κ̂, α̂, 0)

A1(κ̂, α̂, 0) +A1(−κ̂, α̂, 0)
=

∑N
i=1 sgn(x

T
i X̄1,N )

N‖X̄1,N‖ ;

A2(κ̂, α̂, 1)

A2(κ̂, α̂, 0)
= 1− ‖X̄2,N‖, A2(κ̂, α̂, 2)

A2(κ̂, α̂, 0)
=

1

4N

N∑
i=1

∥∥∥∥xi −
X̄2,N

‖X̄2,N‖

∥∥∥∥4
for the samples X1,N ∼ GvMF1,d(α, κ,μ) and X2,N ∼ GvMF2,d(α, κ,μ), re-
spectively.

Remark 5.1. If the parameter α is known, we can reduce the problem of the
moment estimation to the solution of one equation. Namely,

A1(κ̂, α, 1)−A1(−κ̂, α, 1)

A1(κ̂, α, 0) +A1(−κ̂, α, 0)
= ‖X̄1,N‖, and

A2(κ̂, α, 1)

A2(κ̂, α, 0)
= 1− ‖X̄2,N‖.

In the case of a symmetrically distributed random vector X ∈ S
d−1, EX = 0

and the value EX/‖EX‖ is not defined. Recall the tangent-normal decompo-

sition (2) of a random vector X ∈ S
d−1, that is X = μξ +

√
1− ξ2Y, where

μ ∈ S
d−1 is a mean direction parameter, ξ is a random variable on [−1, 1] inde-

pendent of a uniformly distributed random vector Y ∈ Sd−1
μ such that μ ⊥ Y.

To find relations which determine the parameter μ and distribution ξ we
consider an orientation tensor given by

T (X) = XXT = ξ2μμT + ξ
√

1− ξ2 (μYT +YμT) + (1− ξ2)YYT. (26)

Therefore, the mean orientation tensor is ET (X) = E[XXT] = μμT
Eξ2 +

(1− Eξ2)EYYT.

Theorem 5.1. Let a random vector X has a representation as above, i.e.,
X = μξ +

√
1− ξ2Y. Then

μμT =

√
d− 1

dE[XT(ET (X))X]− 1

(
ET (X)− 1

d
Id

)
+

1

d
Id, (27)

Eξ2 =
1

d
+

√
d− 1

d

√
E[XT(ET (X))X]− 1

d
, (28)

Eξ4 = E

[
XT

ET (X)X− 1− Eξ2

d− 1

]2
d− 1

dE[XT(ET (X))X]− 1
. (29)

where Id is d× d identity matrix.
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Proof. Let Uμ ∈ SO(d), such that μ = Uμex, where ex = (1, 0, . . . , 0)T. De-

note by Ỹ = U−1
μ Y. The vector Ỹ is uniformly distributed on S

d−1
ex

with

the first coordinate equal 0. Then X = Uμ

(
ξex +

√
1− ξ2Ỹ

)
and EXXT =

Uμ

(
exe

T
xEξ

2 + (1− Eξ2)EỸỸT

)
U−1
μ . It follows from the symmetry of Ỹ that

EỸỸT = 1
d−1

(
0 0
0 Id−1

)
. Therefore, EXXT equals

Uμ

(
exe

T

xEξ
2 +

1− Eξ2

d− 1
(Id − exe

T

x)

)
UT

μ = Eξ2μμT +
1− Eξ2

d− 1
(Id − μμT).

(30)
Thus, μμT = (d − 1)(dEξ2 − 1)−1

(
EXXT − (1− Eξ2)/d− 1

)
. From (30), we

have that XT
ET (X)X equals

XTμμTXEξ2 +
1− Eξ2

d− 1
(1−XTμμTX) = ξ2Eξ2 +

1− Eξ2

d− 1
(1− ξ2),

and E[XT
ET (X)X] = (Eξ2)2 + (1− Eξ2)2/(d− 1). This yields

Eξ2 =
1

d
+

√
d− 1

d

√
E[XT(EXXT)X]− 1

d

and

μμT =

√
d− 1

dE[XT(EXXT)X]− 1

(
EXXT − 1

d
Id

)
+

1

d
Id.

Finally, E
[
XT

ET (X)X− (1− Eξ2)/(d− 1)
]2

=
(
dEξ2 − 1

)2
(d− 1)−2

Eξ4.

Note, that for an axial vector X, the random variable ξ has a symmetric
distribution on [−1, 1], therefore Eξ = 0. So, if ξ has two-dimensional parametric
distribution, one get from Theorem 5.1 the parameter estimates for ξ.

We apply Theorem 5.1 for the random sample XN = {x1, . . . ,xN} from
GvMF3,d(α, κ,μ). Then Eξ2 = E(μ′x1)

2 and Eξ4 = E(μ′x1)
4 are given in

Proposition 3.3.

Corollary 5.1.1. Let XN ∼ GvMF3,d(α, κ,μ). Denote by T̄ = 1
N

∑N
i=1 xixi

T

and V̄ = 1
N

∑N
i=1 x

T
i T̄xi. Then the solutions μ̂, κ̂, α̂ of the following equations

are the estimators of the parameters μ, κ, α by the method of moments.

μ̂μ̂T =

√
d− 1

dV̄ − 1

(
T̄ − 1

d
Id

)
+

1

d
Id,

A1(κ̂, α̂, 2)

A1(κ̂, α̂, 0)
=

1

d
+

√
d− 1

d

√
V̄ − 1

d
,

A1(κ̂, α̂, 4)

A1(κ̂, α̂, 0)
=

d− 1

(dV̄ − 1)N

N∑
i=1

(
xi

TT̄xi −
1

d
−

√
dV̄ − 1

d
√
d− 1

)2

.
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6. Goodness of fit test based on the maximum entropy principle

In this section we provide the statistical test for verification that a random
sample follows a generalized von Mises-Fisher distribution. The methodology
for all three introduced distributions is very similar. For simplicity, we provide
a detailed explanation for the Type-II distribution.

Denote by GvMF2,d the class of generalized von Mises-Fisher distributions
GvMF2,d(α, κ,μ), α > 0, κ > 0 and μ ∈ S

d−1. Let XN = {x1, . . . ,xN} be

a random sample of vectors on a sphere S
d−1 and xj

d
= X, j = 1, . . . , N with

unknown distribution.
Let Z ∼ GvMF2,d(α, κ,μ). From (10), (12), and Theorem 4.3 we know that

H(Z) ≥ H(X) for all continuous random vectors X ∈ S
d−1 with E‖X−μ‖2α =

E‖Z− μ‖2α = 2α A2(κ,α,α)
A2(κ,α,0)

. Using Theorem 4.1, we get that

inf
α,κ>0,

μ∈S
d−1

{
− log c2,d(κ, α) +

κ

α

A2(κ, α, α)

A2(κ, α, 0)

∣∣∣∣ E‖X− μ‖2α =
2αA2(κ, α, α)

A2(κ, α, 0)

}
(31)

does not exceed H(X). Moreover, equality in (31) appears if and only if X
belongs to some distribution from the family GvMF2,d. We substitute now the

unobservable value E‖X−μ‖2α by its statistical counterpart 1
N

∑N
i=1 ‖xi−μ‖2α

and define the statistic S2(XN ) by

inf
α,κ>0,

μ∈S
d−1

{
− log c2,d(κ, α) +

κ

α

A2(κ, α, α)

A2(κ, α, 0)

∣∣∣∣ ∑N
i=1 ‖xi − μ‖2α

N2α
=

A2(κ, α, α)

A2(κ, α, 0)

}
.

Under the condition N−12−α
∑N

i=1 ‖xi − μ‖2α = A2(κ, α, α)/A2(κ, α, 0), we
have

log c2,d(κ, α)−
κ

α

A2(κ, α, α)

A2(κ, α, 0)
= log c2,d(κ, α)−

κ

α

∑N
i=1 ‖xi − μ‖2α

N2α
=

l2(XN )

N
.

Thus,

S2(XN ) = − 1

N
sup

α,κ>0,μ∈Sd−1

{
l2(XN )

∣∣∣∣∣
∑N

i=1 ‖xi − μ‖2α
N2α

=
A2(κ, α, α)

A2(κ, α, 0)

}
.

Let us consider unconditional maximization of log-likelihood l2(XN ). Partial
derivative with respect to κ equals

∂l2(XN )

∂κ
=

∂

∂κ

(
log

Γ
(
d−1
2

)
2π

d−1
2

− logA2(κ, α, 0)−
κ

α2α
1

N

N∑
i=1

‖xi − μ‖2α
)

=
1

α

A2(κ, α, α)

A2(κ, α, 0)
− 1

α2αN

N∑
i=1

‖xi − μ‖2α,
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where we used ∂
∂κA2(κ, α, 0) = − 1

αA2(κ, α, α). Thus, the supremum in S2(XN )
with respect to κ coincides with the unconditional supremum of l2(XN ) and
S2(XN ) = −N−1 sup{l2(XN )|α, κ > 0,μ ∈ Sd−1}.

Let Θ0 be a compact subset of R
2
+ large enough to contain all values of

parameters (α, κ) appearing in practice. Consider the following hypotheses

• H2,0 : XN ∼ GvMF2,d, for some (α, κ) ∈ Θ0, and μ ∈ S
d−1,

• H2,1 : XN 	∼ GvMF2,d for all (α, κ) ∈ Θ0, and μ ∈ S
d−1.

Since Θ0 is compact, maximum likelihood estimators α̂L, κ̂L are consistent.
We proved in Theorem (4.6) that the kth nearest neighbour estimator ĤN,k

of H(X) is L2-consistent for any k ∈ N. Thus, we test H2,0 vs. H2,1 with the
statistic

T̂L
2,k(XN ) := − log c2,d(κ̂L, α̂L) +

κ̂L

α̂L

A2(κ̂L, α̂L, α̂L)

A2(κ̂L, α̂L, 0)
− ĤN,k (32)

which tends in probability to 0, as N → ∞. We reject H2,0 with level of

significance β if |T̂L
2,k(XN )| ≥ xβ , where xβ is a critical value determined by

PH0(|T̂L
2,k(XN )| ≥ xβ) ≤ β.

Remark 6.1. It is easy to see that maximum likelihood estimates of α, κ, es-
timator ĤN,k and the statistics T̂L

2,k are rotational invariant. Furthermore, by
Slutsky’s theorem, we can replace the maximum likelihood estimates of α, κ in
(32) by any consistent estimates α̂, κ̂. Indeed, if x1 ∼ GvMF2,d(α, κ,μ) under
hypothesis H2,, then 2α̂A2(κ̂, α̂, α̂)/A2(κ̂, α̂, 0) → 2αA2(κ, α, α)/A2(κ, α, 0) =

E‖x1 − μ‖α and T̂2,k(XN ) := − log c2,d(κ̂, α̂) + (κ̂/α̂)A2(κ̂, α̂, α̂)/A2(κ̂, α̂, 0) −
ĤN,k → H(x1)−H(x1) = 0 in probability as N → ∞.

The critical values xβ can be found by Monte Carlo simulations of test statis-

tics T̂L
2,N or T̂2,N .

The goodness of fit test for the axial generalized von-Mises distribution and
the distribution of the I-type are constructed similarly to II-type distributions.
Let Θ0 be a compact subset of R2

+ large enough to contain all values of pa-
rameters (α, κ) appearing in practice. Let j = 1, 3 and consider the following
hypotheses

• Hj,0 : XN ∼ GvMFj,d, for some (α, κ) ∈ Θ0 and μ ∈ S
d−1,

• Hj,1 : XN 	∼ GvMFj,d for all (α, κ) ∈ Θ0 and μ ∈ S
d−1.

For testing H1,0 vs. H1,1 and H3,0 vs. H3,1 we use the statistics T̂1,N and T̂3,N ,
respectively, which are given by

T̂1,k(XN ) : = − log c1,d(κ̂, α̂)−
κ̂

α̂

A1(κ̂, α̂, α̂)−A1(−κ̂, α̂, α̂)

A1(κ̂, α̂, 0) +A1(−κ̂, α̂, 0)
− ĤN,k, (33)

T̂3,k(XN ) : = − log c3,d(κ̂, α̂)−
κ̂

α̂

A1(κ̂, α̂, α̂)

A1(κ̂, α̂, 0)
− ĤN,k, (34)

where α̂, κ̂ are some consistent estimates of α, κ.
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Remark 6.2. Note, that our goodness of fit tests do not detect some particular
generalized von Mises-Fisher distribution but tell whether a sample belongs to
the parametric family GvMFj,d, j = 1, 2, 3.

7. Numerical experiments

In this section, we provide the simulation method for GvMFj,d distributions and

study the behaviour of the test statistic T̂j,k on simulated samples, j = 1, 2, 3.

7.1. Simulation

Let Xj ∼ GvMFj,d(α, κ,μ), j = 1, 2, 3. Due to the tangent-normal decomposi-

tion Xj = (μTXj)μ+
√
1− (μTXj)2Yj, where Yj is uniformly distributed on

S
d−2
μ , j = 1, 2, 3. So, in order to simulate Xj we can easily simulate random

vectors Yj and independent random variables μTXj . The probability densities
fj of μTXj are given in [30, (2.22)] or can be found by applying (1):

f1(y) =
2π(d−1)/2c1,d(κ, α)

Γ ((d− 1)/2)
exp

(κ
α
y<α>

)
(1− y2)

d−3
2 , y ∈ [−1, 1], (35)

f2(y) =
2π(d−1)/2c2,d(κ, α)

Γ ((d− 1)/2)
exp

(
−κ

α
(1− y)α

)
(1− y2)

d−3
2 , y ∈ [−1, 1], (36)

f3(y) =
2π(d−1)/2c3,d(κ, α)

Γ ((d− 1)/2)
exp

(κ
α
|y|α

)
(1− y2)

d−3
2 , y ∈ [−1, 1]. (37)

Applying the described simulation procedure, we generate several samples
of generalized von Mises–Fisher distributions with 1000 sample points on a 2-
dimensional sphere. In the Appendix, we present the locations of the sample
points on S2 in Figures 16, 18, 20, 22, 24, 26. We want to emphasize, that larger
values of the parameter κ correspond to more concentrated samples along the
direction μ. The histograms for samples of random variables μTXj (j = 1, 2, 3)
and the plots of the probability densities f1, f2, f3 are in Figures 15, 17, 19, 21,
23, 25.

We provide a short computational study of the parameter estimation methods
from sections 5.1 and 5.2 in the Appendix.

The method of moments is preferable for Types I and II, if the computing
power plays a decisive role. For axial data this method has no such advantages
because we need to operate with an orientation tensor. The experiments show
that the speed of convergence α̂ → α and κ̂ → κ depend on the values of α, and
κ and κ̂ → κ faster than α̂ → α. We conclude also that the errors of maximum
likelihood estimators are generally less than moment estimators. Comparing the
errors by the distribution type, we observe that samples of Type II very often
carry the smallest error.
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Fig 1. Histograms of ĤN,3(XN ), XN ∼ GvMFj,3(α, κ) with α = 1.5 and κ = 2.

7.2. Entropy estimation

In this section, we apply the kth nearest neighbour estimator (18) to the sim-

ulated set of samples. We compute estimates ĤN,k(XN ) and their sample vari-

ances sVar(ĤN,k(α, κ)) for k = 1, 2, 3, 4, 5, κ ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7},
and α ∈ {0.5, 1, 1.5, 2, 2.5, 3}. In Figure 1, we illustrate the distribution of

ĤN,k(XN ) with k = 3 by histograms for samples simulated from distributions
GvMFj,3(1.5, 2), j = 1, 2, 3.

In order to choose the right value of k we compare the sample variances
sVar(ĤN,k(α, κ)) for k = 1, 2, 3, 4, 5. The minimum and maximum values of

sVar(ĤN,k(α, κ)) with respect to α and κ are presented in Table 1. Our results

confirm the conclusion in [6], that is, the asymptotic variance of ĤN,k decreases
rapidly up to k = 3. One can observe that the kth nearest neighbour estimates
depend on values α and κ. Although, the sample variances are quite small for
all examined values of α and κ and sample size N = 1000.

Table 1

Sample variance sVar(ĤN,k(α, κ)) for distribution of type I

Distribution k = 1 k = 2 k = 3 k = 4 k = 5
GvMF1,3(α, κ) minα,κ(sVar) 0.00214 0.00092 0.00058 0.00042 0.00034

maxα,κ(sVar) 0.00388 0.00239 0.00208 0.00185 0.00152
GvMF2,3(α, κ) minα,κ(sVar) 0.00212 0.00093 0.00059 0.00043 0.00034

maxα,κ(sVar) 0.00404 0.00304 0.00275 0.00152 0.00257
GvMF3,3(α, κ) minα,κ(sVar) 0.00212 0.00093 0.00059 0.00043 0.00034

maxα,κ(sVar) 0.00334 0.00207 0.00170 0.00152 0.00144

Thus, we choose k = 3 for computations in the next sections.

7.3. Test statistic

In this section, we present our study of the goodness of fit tests from Section 6
and their test statistics T̂j,k(XN ), j = 1, 2, 3 from (32), (33) and (34) with k = 3
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Table 2

Sample variances sVar(T̂j,3(α, κ))

The method of moments Maximum likelihood method
Distribution GvMF1,3 GvMF2,3 GvMF3,3 GvMF1,3 GvMF2,3 GvMF3,3

minα,κ(sVar) 0.000563 0.000538 0.000573 0.000558 0.000535 0.000544
maxα,κ(sVar) 0.001014 0.001558 0.000734 0.000665 0.000688 0.000667

and N = 1000. We compute T̂L
j,k(XN ) and T̂M

j,k(XN ) separately with maximum
likelihood estimates and estimates be the method of moments of parameters
α, κ, respectively.

For comparison of different types of estimates, we look on the sample vari-
ances sVar(T̂M

j,3(α, κ)) and sVar(T̂L
j,3(α, κ)) of T̂M

j,3(XN ) and T̂L
j,3(XN ), respec-

tively, for all combinations of parameters κ ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7}
and α ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Numbers in the Table 2, where the minimum and
maximum values of sVar(T̂M

j,3(α, κ)) and sVar(T̂L
j,3(α, κ)) are presented, demon-

strate significant benefits of the maximum likelihood method over the method
of moments for distributions of I and II types. For axial data, one can also prefer
T̂L
j,k. Additionally, one can observe from Table 2 and tables with errors of esti-

mates κ̂L, κ̂M , α̂L, α̂M that the statistics T̂M
j,k and T̂L

j,k are much more accurate
than estimators of parameters, and they have small variances even for small α, κ
in contrast to α̂, κ̂, whose deviations are large.

In Section 6, we choose the two-sided test with rejection criteria |T̂L
j,k| > xβ,j .

We confirm this choice by the histograms of T̂L
j,3 with α = 1.5 and κ = 2, see

Figure 2.

Fig 2. Histograms of T̂L
j,3(XN ),XN ∼ GvMFj,3(α, κ) with α = 1.5 and κ = 2. The maximal

sample variance is 0.0006118

We see that the statistics T̂L
j,3 have approximately symmetric distribution

with mode at 0. Therefore, we put rejection region as (−∞,−xβ) ∪ [xβ ,+∞),

where critical values xβ are obtained as a samples quantiles PH0(|T̂i,3| > xβ,j) ≤
β, j = 1, 2, 3 The corresponding values of xβ,j with significance level β = 0.05

are presented in Table 3 for T̂L
1,3, in Table 4 for T̂L

2,3, and in Table 5 for T̂L
3,3.

We provide also the study of the goodness of fit test’s power for the samples
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Table 3

Critical values xβ,1 for test statistic T̂L
1,3 and β = 0.05, with respect to α (rows) and κ

(columns), multiplied by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7
0.5 4.884 4.626 5.128 5.281 5.069 4.960 4.726 4.999 5.132 5.360 5.301
1 4.727 4.792 4.879 4.736 4.757 4.843 4.920 5.217 4.951 5.278 5.091
1.5 4.935 4.914 4.657 4.731 4.745 4.879 4.849 4.995 5.152 4.990 5.009
2 4.916 4.873 4.839 4.982 4.801 4.987 4.752 4.934 4.829 5.076 5.010
2.5 4.916 4.921 5.276 4.932 4.854 4.852 4.711 4.700 4.860 4.983 5.373
3 4.687 4.821 4.783 4.626 4.926 4.704 4.656 4.690 4.631 4.706 4.844

Table 4

Critical values xβ,2 for test statistic T̂L
2,3 and β = 0.05, with respect to α (rows) and κ

(columns), multiplied by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7
0.5 4.921 4.795 4.750 4.962 4.711 5.015 4.742 5.182 5.430 5.374 5.388
1 4.718 4.688 4.858 4.937 4.996 4.829 4.870 5.065 5.234 5.287 5.449
1.5 4.698 4.916 4.943 4.714 4.824 4.988 4.964 4.613 4.975 5.267 5.263
2 4.920 4.989 4.852 4.611 4.890 4.869 5.147 5.037 4.941 5.423 5.217
2.5 5.066 4.753 5.034 4.805 4.768 4.930 4.973 5.346 5.283 5.138 5.074
3 4.713 4.417 4.731 4.907 5.001 5.007 4.870 5.023 5.015 5.083 5.116

Table 5

Critical values xβ,3 for test statistic T̂L
3,3 and β = 0.05, with respect to α (rows) and κ

(columns), multiplied by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7
0.5 4.932 5.095 4.843 4.863 5.040 4.995 5.000 5.477 5.810 5.219 5.527
1 4.956 4.793 4.636 4.912 4.896 4.873 4.959 5.251 5.196 5.565 5.917
1.5 4.620 4.873 4.781 4.892 4.839 5.006 4.806 4.824 5.016 5.239 5.370
2 4.727 5.049 4.804 4.567 4.811 4.651 4.842 4.999 4.836 5.162 5.191
2.5 4.925 4.799 4.938 4.831 4.735 4.834 5.024 4.739 4.917 4.899 4.703
3 4.960 4.901 4.904 4.649 5.037 4.843 4.898 4.852 4.828 4.895 4.974

from Fisher-Bingham distribution. In these simulations we put μ1 = (1, 0, 0)T,
μ2 = (0,

√
2/2,

√
2/2)T, and consider the following series of hypotheses.

For type I:

• H1
0 : XN ∼ GvMF1,3,

• H1
1,j : XN has the Fisher-Bingham distribution with density ∝ exp(3μT

1x+

0.35j(μT
2x)

2), x ∈ S2, j = 1, . . . , 20.

For axial type:

• H2
0 : XN ∼ GvMF3,3,

• H2
1,j : XN has the Fisher-Bingham distribution with density proportional

to exp(0.05j(μT
1x) + 6(μT

2x)
2), x ∈ S

2, j = 1, . . . , 20.

For each j = 1, . . . , 20, we simulate 500 samples X 1
j,N under H1

1,j and X 2
j,N under

H2
1,j with sample size N = 1000. We use the simulation procedure from the R

package ‘Directional’. In order to simplify commutations, we reject H1
0 and H2

0

if |T̂L
1,3(X 1

j,N )| > x
(1)
β and |T̂L

2,3(X 2
j,N )| > x

(2)
β respectively, where critical values
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Fig 3. Powers of goodness of fit tests H1
0 vs H1

1,j (left) and H2
0 vs H2

1,j (right), j = 1, . . . , 20.

x
(1)
β = 0.05373 and x

(2)
β = 0.05917 are taken as maximum of xβ from Tables 3

and 5 for significance level β = 0.05.
The ratios of rejections H1

0 and H2
0 are presented in Figure 3.

8. Application to a real data set

In this section, we apply the introduced goodness of fit test to the data set
consists of fiber directions in a glass fibre reinforced composite material. The
3D-images of a fibre composite obtained by micro computed tomography and
are provided by the Institute for Composite Materials (IVW) in Kaiserslautern,
Germany, see Fig. 4b (left). The detailed description of the material can be
found in [45] and it was the object of studies in [15] and [16], where the regions
of anomaly behaviour of the fibres were found. The data set is provided by
Prof. Claudia Redenbach (TU Kaiserslautern) and consists of local direction
of fibres estimated by the tools of MAVI software [21]. Each data set entry
Yk, k = ([1, 97] × [1, 80]× [1, 64]) ∩ N

3 is the average of fibre local directions in
small observation windows W̃ with 75 × 75 × 75 voxels each. Note that some
of such windows can be empty, or they might contain not enough material for
direction computation. We denote by JW the collection of indexes k such that
Yk is non-empty. In the considered data set |JW | = 430741 and its precise
construction is in [15].

The estimating procedure of directions in MAVI software produces vectors
on a unit sphere which are not necessarily symmetrically distributed. However,
the fibres are not oriented, therefore we expect an axial distribution of their
directions. We propose the symmetrization of the original sample by XN =
{Xk = Ykξk,k ∈ JW }, where ξk,k ∈ JW are i.i.d random variables with
P(ξk = +1) = P(ξk = −1) = 1

2 . We separate the whole material into blocks
Wl, each of size 16 × 15 × 16, such that Jl = JW ∩ [l1, l1 + 16) × [l2, l2 +
15)× [l3, l2 + 16) and consider subsamples Xl = {Xk,k ∈ Jl} with simple sizes
2736 ≤ |Xl| ≤ 3745. For each subsample Xl we provide the introduced goodness



Goodness of fit tests for generalized von Mises-Fisher distributions 6365

Fig 4. Testing on a glass fibre reinforced composite material.

of fit test for distributions GvMF3,3, i.e., we test H0,l : Xl ∼ GvMF3,3 vs. H1,l :
Xl 	∼ GvMF3,3.

At first, we provide maximum likelihood estimation of parameters α and κ
(for the variety of their values α̂l and κ̂l see Figure 4b). Second, we need to simu-
late the samples of statistics T̂3,k(Xl) under hypotheses Xl ∼ GvMF3,3(α̂l, κ̂l, ·)
based on samples sizes |Xl|. Unfortunately, our computational resources were
limited and we have to group simulations with close values of α̂l and κ̂l. One can
observe that the majority of α̂l belongs to the interval [3, 11] and the ratios κ̂l

α̂l

are mostly in [3, 7]. Therefore, we simulate 800 samples YN ∼ GvMF3,3(α, κ, ·)
each of size N = 3500 for all combinations of α ∈ {4, 6, 8, 10} and κ

α ∈ {4, 6} to

obtain the corresponding empirical distributions of T̂3,3(YN ).

Then we compute statistics T̂3,3(Xl) for each l and their p-values. We obtain
that our goodness of fit test rejects almost all hypotheses H0,l with significance
level 0.05, and detects 3 regions with directional distributions GvMF3,3 (see
Table 6 for the samples Xl with p-values greater than 0.01). In order to illustrate
how tight the fitted distributions are, we present for two blocks Wl with l =
(49, 61, 1) and l = (49, 61, 1), the QQ-plots for samples {μ̂T

l Xl} and distribution
f3 defined in (37) with parameters α̂l, κ̂l, see Figure 5.

Table 6

Results of goodness of fit tests H0,l vs. H1,l for fiber directions in glass fibre reinforced
composite material.

l1 l2 l3 |Xl| α̂ κ̂ ĤN,3 T̂3,3(Xl) p-value
49 46 1 3434 8.80 53.90 0.4369 0.02344 0.0775
49 61 1 3222 8.53 47.62 0.7132 0.01976 0.1234
49 16 17 3474 8.84 53.63 0.4690 0.02987 0.0263
49 61 17 3364 10.22 60.91 0.4628 0.02946 0.0263
1 46 65 3319 7.25 36.45 1.0455 0.02057 0.1275
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Fig 5. QQ plots for samples μ̂T
l Xl and distributions with density f3 (37).

9. Asymptotic behaviour of the test statistics

In this section we analyse the convergence in distribution of dN (T̂j,k(XN )−aN )
as N → ∞ with suitable sequences {dn}n≥1 and {an}n≥1.

Denote by Ej,d(α, κ) the entropy values for the GvMFj,d(α, κ, ·) distribution.
Theorem 4.1 and Propositions 3.1, 3.2, 3.3 give

E1,d(α, κ) = − log c1,d(κ, α)−
κ

α

A1(κ, α, α)−A1(−κ, α, α)

A1(κ, α, 0) +A1(−κ, α, 0)
, (38)

E2,d(α, κ) = − log c2,d(κ, α) +
κ

α

A2(κ, α, α)

A2(κ, α, 0)
, (39)

E3,d(α, κ) = − log c3,d(κ, α)−
κ

α

A1(κ, α, α)

A1(κ, α, 0)
. (40)

Therefore, statistics T̂j,k(XN ) have the form Tj,k(XN ) = Ej,d(α̂, κ̂) − ĤN,k.
Considering distributional convergence, we could apply the delta method for the

first component Ej,d(α̂, κ̂) in order to show that
√
N(Ej,d(α̂, κ̂)−Ej,d(α, κ))

d→
N(0, σ2

1,j), N → ∞ for some σ1,j > 0 and asymptotically normal estimators κ̂

and α̂. Meanwhile for the entropy component ĤN,k, we know that
√
N(ĤN,k −

EĤN,k)
d→ N(0, σ2

2,j), N → ∞ under some additional conditions, c.f. [6, 13, 41].

However, the covariance between two components Ej,d(α̂, κ̂)) and ĤN,k seems

to be analytically intractable and the decay of EĤN,k remains unknown. That
is why, we can not provide analytical derivation of the asymptotic distribution
of T̂j,k(XN ) and use Monte-Carlo simulations.

We consider the case of known α = 1.5, unknown κ and μ. We simulate 1000
samples Xj,N from GvMFj,3(α, κ,μ) for each combination of N ∈ 50{2, . . . , 20},
κ ∈ {0.5, 2, 6} and μ = (0, 0, 0)T. For each sample we estimate the parameter
κ by the method of moments (Remark 5.1) and by the maximum likelihood
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estimator (Section 5.1). The entropy is estimated via ĤN,3. Therefore, we obtain

1000 values of T̂M
j,3 and T̂L

j,3 for each combination of parameters N, κ,μ.

At first, we investigate the rate of convergence of ET̂M
j,3(XN ) and ET̂L

j,3(XN )
as N → ∞. We examine the model

log |ET̂j,3(XN )| = aj,κ + bj,κ logN − 1

2
logN, Var(T̂j,3(XN )) =

σj,κ

N

via the standard linear regression based on described Monte-Carlo simulations
(see Figure 6). Table 7 shows that the slope values bj,κ are negative or close to

zero for all three types of distributions, which means that the decay of ET̂j,3(XN )
is faster or equal than N−1/2.

Table 7

Slope values b in Log-Log regression log |ET̂j,3(XN )| = aj,κ + bj,κ logN − 1
2
logN .

Statistic T̂M
1,3 T̂L

1,3 T̂M
2,3 T̂L

2,3 T̂M
3,3 T̂L

3,3

κ = 0.5 -0.7177 -0.7313 -0.3846 -0.3864 -0.4576 -0.4698
κ = 2 -0.7611 -0.9725 -0.2940 -0.3040 -0.2368 -0.2003
κ = 6 -0.2522 -0.2492 0.0120 0.0264 -0.2088 -0.2201

It is interesting to investigate the impact of each component Ej,d(α, κ)) and

ĤN,3 in the statistic T̂j,3. Figures 7 and 8 show the similar Log-Log regres-

sion for biases EEj,d(α, κ̂) − Ej,d(α, κ) and EĤN,3 − Ej,d(α, κ), respectively.
On can observe that the decay for the entropy component is definitely slower
than N−1/2 for κ = 6, which means that

√
N(ĤN,k − Ej,d(α, κ)) does not con-

verge to N(0, σ2
2,j), N → ∞. Meanwhile, the decay of EEj,d(α̂, κ̂)) is close to

N−1/2. Although the results for each component separately, the decay of the
mean ET̂j,3(XN ) is still faster that N−1/2, which can be explained by strong
correlation between two components (see Figure 9).

We present values of
√
N

√
Var(T̂j,3(XN )) as box-plots in Figure 10 and

deduce that they are approximately a constant with the mean value σ2 = 0.7842.
Figure 2 suggests that the distribution of T̂j,3(XN ) is asymptotically normal

for large N . The corresponding Q-Q plots for T̂L
j,3(XN ) with N = 1000 and

κ = 2 in Figure 11 confirm that the distributions belong to a Gaussian fam-
ily. We verify the assumption about an asymptotic Gaussian distribution of
test statistics T̂L

j,3 via Shapiro-Wilk test for normality and record the p-value
returned by the test. Figure 12 shows how these p-values behave as N increases.
One can observe that the normal hypothesis cannot be rejected for samples of
size N = 500 or more.

Thus, we confirm numerically that the limiting distribution of T̂L
j,3 is Gaus-

sian and its variance decays with order N−1. We use this fact to construct the
approximation of the empirical critical values xβ for tests from Section 7.3 by

xβ ≈ xa
β :=

zβσ + μj,κ√
N

, (41)

where zβ is a quantile of a standard normal law. Then, μj,κ must be approxi-

mately equal to
√
N(xβ − zβσ). We put these values with β = 0.05 in Figure



6368 N. Leonenko et al.

Fig 6. Log-Log regression log |ET̂j,3(XN )| = aj,κ + bj,κ logN − 1
2
logN .

13 and compute μj,κ as maxN∈[500,1000]

√
N(x0.05 − z0.05σ) (see Table 8). In

Table 8

Values of μj,κ for β = 0.05.

Statistic T̂L
1,3 T̂L

2,3 T̂L
3,3

κ = 0.5 0.0555 0.1077 0.0394
κ = 2 0.1499 0.2557 0.1487
κ = 6 0.3813 0.5392 0.4984
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Fig 7. Log-Log regression log |EEj,d(α, κ̂)− Ej,d(α, κ)| = aj,κ + bj,κ logN − 1
2
logN .

such case, xa
0.05 ≥ x0.05 and the I-type errors of the tests based on approximated

quantiles xa
0.05 are less or equal 0.05 but remain separated from 0, see Figure 14.

Appendix

Here we present tables of mean square errors of estimates of κ and α and plots
with realizations of the generalized von Mises-Fisher distributions.

For each type of distributions GvMF1,3, GvMF2,3, GvMF3,3 we simulate 1000
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Fig 8. Log-Log regression log |EĤN,3 − Ej,d(α, κ)| = aj,κ + bj,κ logN − 1
2
logN .

Fig 9. Correlations between ĤN,3 and Ej,d(1.5, κ̂).

samples withN = 1000 entries each for several values of α ∈ {0.5, 1, 1.5, 2, 2.5, 3}
and κ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6}. For each sample we compute maximum
likelihood estimates μ̂L, α̂L, κ̂L and moment estimates μ̂M , α̂M , κ̂M . We present
the sample mean square errors of α̂L and α̂M in Tables 9 (type I), 11 (type II),
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Fig 10. Values of
√

NVar(T̂j,3(XN ))

Fig 11. Q-Q plots of empirical distribution of T̂L
j,3(XN ) with κ = 2 and a Gaussian distribu-

tion.

and 13 (axial type). The mean square errors of κ̂L and κ̂M can be found in
Tables 10 (Type I), 12 (Type II), and 14 (axial data). We group error values of
κ̂L, κ̂M and α̂L, α̂M in order to decide which method is more appropriate for
parameter estimation.

Let us illustrate the generalized von Mises-Fisher distributions on 2-dimen-
sional sphere by several samples with 1000 entries. For all samples we fix mean
direction μ = (0,

√
2/2,

√
2/2). For different values of α and κ we present loca-

tions of samples entries on a unit sphere: for Type I, see Figure 16 (with α = 0.5)
and Figure 18 (with α = 1.5); for Type 2, Figures 20 and 22 with α = 0.5 and
α = 1.5, respectively, and the samples of axial data are presented in Figures 24
(with α = 0.5) and 26 (with α = 1.5). The corresponding histograms and prob-
ability densities of random variables μTXi, i = 1, 2, 3 can be found in Figures 15
(α = 0.5) and 17 (α = 1.5) for Type I, in Figures 19 (α = 0.5) and 21 (α = 1.5)
for Type II, and in Figures 23 (α = 0.5) and 25 (α = 1.5) for axial data.
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Fig 12. Shapiro-Wilk p-values as N increases for different values of κ (1000 repetitions).

Fig 13. Values of
√
N(xβ − zβσ) for β = 0.05.
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Rényi information estimators for multidimensional densities. Ann. Statist.
38, 3837–3838. MR2458183 MR2766870

[30] Ley, C. and Verdebout, T. (2017). Modern Directional Statistics. Chap-
man & Hall/CRC Interdisciplinary Statistics Series. CRC Press, Boca Ra-
ton, FL. MR3752655 MR3752655

[31] Leyton, M., Dye, S. and Monroe, J. (2017). Exploring the hidden
interior of the Earth with directional neutrino measurements. Nature com-
munications 8 1–11.

[32] Li, S., Mnatsakanov, R. M. and Andrew, M. E. (2011). k-nearest
neighbor based consistent entropy estimation for hyperspherical distribu-
tions. Entropy 13 650–667. MR2784148 MR2784148

[33] Lund, U. and Jammalamadaka, S. R. (2000). An entropy-based test for
goodness of fit on the von Mises distribution. J. Statist. Comput. Simulation
67 319–332. MR1806900 MR1806900

[34] Lutwak, E., Yang, D. and Zhang, G. (2004). Moment-entropy inequal-
ities. Ann. Probab. 32 757–774. MR2039942 MR2039942

[35] Mardia, K. V. (1975). Statistics of directional data. J. Roy. Statist. Soc.
Ser. B 37 349–393. MR0402998

[36] Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley
Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester.
MR1828667

[37] Marinucci, D. and Peccati, G. (2011). Random Fields on the Sphere:
Representation, Limit Theorems and Cosmological Applications. London
Mathematical Society Lecture Note Series 389. Cambridge University
Press, Cambridge Representation, limit theorems and cosmological appli-
cations. MR2840154

[38] Misra, N., Singh, H. and Hnizdo, V. (2010). Nearest neighbor estimates
of entropy for multivariate circular distributions. Entropy 12 1125–1144.
MR2653296

[39] Mouritsen, H. and Mouritsen, O. (2000). A Mathematical Expecta-
tion Model for Bird Navigation based on the Clock-and-Compass Strategy.

https://www.ams.org/mathscinet-getitem?mr=2129834
https://www.ams.org/mathscinet-getitem?mr=2129834
https://www.ams.org/mathscinet-getitem?mr=3910506
https://www.ams.org/mathscinet-getitem?mr=0908626
https://www.ams.org/mathscinet-getitem?mr=2458183
https://www.ams.org/mathscinet-getitem?mr=2766870
https://www.ams.org/mathscinet-getitem?mr=3752655
https://www.ams.org/mathscinet-getitem?mr=3752655
https://www.ams.org/mathscinet-getitem?mr=2784148
https://www.ams.org/mathscinet-getitem?mr=2784148
https://www.ams.org/mathscinet-getitem?mr=1806900
https://www.ams.org/mathscinet-getitem?mr=1806900
https://www.ams.org/mathscinet-getitem?mr=2039942
https://www.ams.org/mathscinet-getitem?mr=2039942
https://www.ams.org/mathscinet-getitem?mr=0402998
https://www.ams.org/mathscinet-getitem?mr=1828667
https://www.ams.org/mathscinet-getitem?mr=2840154
https://www.ams.org/mathscinet-getitem?mr=2653296


6376 N. Leonenko et al.

Journal of Theoretical Biology 207 283 - 291.
[40] Paindaveine, D. and Verdebout, T. (2020). Inference for spherical lo-

cation under high concentration. Ann. Statist. 48 2982–2998. MR4152631
MR4152631

[41] Penrose, M. D. and Yukich, J. E. (2011). Laws of large numbers and
nearest neighbor distances. In Advances in directional and linear statistics
189–199. Physica-Verlag/Springer, Heidelberg. MR2767541 MR2767541

[42] Penrose, M. D. and Yukich, J. E. (2013). Limit theory for point
processes in manifolds. Ann. Appl. Probab. 23 2161–2211. MR3127932
MR3127932
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Table 9

Mean square errors of α̂M (top raw) and α̂L (bottom raw) for GvMF1,3 distribution, for
different values of α (rows) and κ (columns)

0.5 1 1.5 2 2.5 3 4 5 6
0.5 0.01131

0.01103
0.00309
0.00294

0.00229
0.00209

0.00334
0.00290

0.00720
0.00600

0.00234
0.01028

0.00067
0.01568

0.00044
0.02000

0.00046
0.02222

1 0.27260
0.21929

0.03760
0.03207

0.01778
0.01518

0.01126
0.00838

0.00766
0.00569

0.00633
0.00480

0.00686
0.00508

0.00950
0.00644

0.02210
0.00850

1.5 2.89363
2.75421

0.44954
0.20300

0.12728
0.07216

0.07166
0.03613

0.04616
0.02355

0.03330
0.01725

0.02049
0.01081

0.01535
0.00904

0.01465
0.00793

2 8.34069
10.1685

2.90354
1.30990

0.89834
0.30051

0.44383
0.13914

0.27728
0.08601

0.16970
0.05726

0.08593
0.03554

0.05445
0.02187

0.04011
0.01650

2.5 8.68665
15.4429

6.79656
4.46642

3.96727
1.21787

2.18844
0.42840

1.23084
0.23206

0.62982
0.16395

0.35996
0.08478

0.18528
0.05083

0.13112
0.03633

3 10.1863
18.7129

8.74483
8.33385

6.31636
3.35711

6.33024
1.24416

3.48461
0.60680

2.84763
0.36062

1.35829
0.20265

0.62283
0.11569

0.50274
0.08699

Table 10

Mean square error of κ̂M (top raw) and κ̂L (bottom raw) for GvMF1,3 distribution, for
different values of α (rows) and κ (columns)

0.5 1 1.5 2 2.5 3 4 5 6
0.5 0.01899

0.01717
0.01699
0.01598

0.01898
0.01727

0.02602
0.02396

0.03563
0.03306

0.03419
0.04987

0.03749
0.07889

0.04394
0.10651

0.06683
0.13889

1 0.22319
0.11194

0.07076
0.05895

0.06534
0.05552

0.06965
0.05215

0.06449
0.05029

0.06737
0.05277

0.08770
0.06947

0.11201
0.08617

0.19431
0.10606

1.5 2.11049
1.19008

0.64790
0.19097

0.26637
0.14496

0.25165
0.12205

0.23415
0.11508

0.22145
0.11355

0.20812
0.10874

0.20797
0.12384

0.23012
0.12786

2 3.68444
3.19240

4.15468
0.92650

1.72159
0.39620

1.18887
0.29374

1.05376
0.27322

0.82951
0.24016

0.63399
0.24388

0.54231
0.20779

0.49912
0.19860

2.5 2.17772
4.02490

6.54718
2.52365

7.27056
1.19600

5.81158
0.61967

4.41608
0.50278

2.47149
0.50154

2.26686
0.41390

1.43704
0.35365

1.34411
0.35024

3 1.87215
4.29139

5.16488
3.63187

7.11001
2.47833

13.3072
1.40486

10.1227
0.99006

11.0565
0.80562

7.43739
0.74920

4.25858
0.62553

4.56458
0.61910

Table 11

Mean square error of α̂M (top raw) and α̂L (bottom raw) for GvMF2,3 distribution, for
different values of α (rows) and κ (columns)

0.5 1 1.5 2 2.5 3 4 5 6
0.5 0.04439

0.03719
0.00892
0.00571

0.00384
0.00244

0.00240
0.00131

0.00200
0.00111

0.00176
0.00082

0.00174
0.00069

0.00208
0.00073

0.00112
0.00072

1 0.11476
0.15498

0.02662
0.02641

0.01238
0.01200

0.00779
0.00721

0.00620
0.00555

0.00508
0.00469

0.00415
0.00369

0.00424
0.00357

0.00384
0.00341

1.5 0.20015
0.30670

0.05429
0.05952

0.02785
0.02937

0.01742
0.01765

0.01432
0.01473

0.01291
0.01303

0.00981
0.01006

0.00956
0.01004

0.00925
0.00962

2 0.30415
0.40585

0.09795
0.09406

0.05169
0.05020

0.03786
0.03618

0.02962
0.02640

0.02579
0.02466

0.02137
0.01993

0.02306
0.02191

0.02314
0.02198

2.5 0.56165
0.51124

0.12324
0.12344

0.08668
0.06832

0.06643
0.05349

0.05643
0.04539

0.05414
0.04304

0.05298
0.04235

0.04757
0.03748

0.05055
0.04087

3 0.71927
0.52430

0.18736
0.16199

0.14068
0.09598

0.11660
0.08051

0.11100
0.07280

0.11534
0.07200

0.09450
0.06493

0.10280
0.07062

0.10102
0.06307
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Table 12

Mean square error of κ̂M (top raw) and κ̂L (bottom raw) for GvMF2,3 distribution, for
different values of α (rows) and κ (columns)

0.5 1 1.5 2 2.5 3 4 5 6
0.5 0.00593

0.00585
0.00788
0.00619

0.01080
0.00815

0.01751
0.01132

0.03210
0.02080

0.05088
0.02932

0.14597
0.06803

0.39689
0.16595

0.26720
0.29599

1 0.00460
0.00504

0.00611
0.00602

0.00912
0.00885

0.01508
0.01432

0.02487
0.02260

0.03871
0.03695

0.08568
0.07654

0.18878
0.16276

0.31815
0.28533

1.5 0.00382
0.00433

0.00496
0.00497

0.00712
0.00715

0.01159
0.01170

0.02027
0.02050

0.03192
0.03221

0.07540
0.07713

0.16707
0.17453

0.28675
0.29832

2 0.00507
0.00594

0.00512
0.00515

0.00658
0.00663

0.01078
0.01090

0.01733
0.01729

0.02968
0.02992

0.07776
0.07590

0.17039
0.16294

0.33426
0.32125

2.5 0.00725
0.00797

0.00705
0.00761

0.00885
0.00847

0.01145
0.01155

0.01878
0.01850

0.03171
0.03021

0.08975
0.07865

0.19040
0.16314

0.36456
0.29699

3 0.01072
0.01004

0.01052
0.01033

0.01256
0.01179

0.01447
0.01420

0.02044
0.02058

0.03274
0.03070

0.09333
0.07711

0.24011
0.17748

0.45512
0.30782

Table 13

Mean square error of α̂M (top raw) and α̂L (bottom raw) for GvMF3,3 distribution, for
different values of α (rows) and κ (columns)

0.5 1 1.5 2 2.5 3 4 5 6
0.5 0.18987

0.16463
0.05705
0.04162

0.02550
0.02490

0.01188
0.01907

0.00814
0.01631

0.00512
0.01637

0.00236
0.02073

0.00128
0.02427

0.00045
0.02521

1 0.72857
1.99071

0.23713
0.21501

0.11809
0.08130

0.07490
0.04956

0.05300
0.03309

0.03753
0.02432

0.02852
0.02189

0.01925
0.01923

0.01203
0.02272

1.5 1.41746
7.55889

0.69305
1.11221

0.28007
0.28031

0.16580
0.14598

0.09577
0.08200

0.07204
0.06144

0.04872
0.04110

0.03733
0.03296

0.03224
0.02763

2 2.16193
11.8352

1.34087
4.29336

0.66370
1.22665

0.37039
0.40504

0.20955
0.20974

0.15980
0.16143

0.09065
0.08807

0.05605
0.05484

0.04741
0.04622

2.5 3.14653
17.0535

2.42570
7.75701

1.51950
3.11424

0.79157
1.16675

0.47397
0.52106

0.33253
0.34421

0.17312
0.18537

0.11837
0.12071

0.08002
0.08197

3 4.87133
17.9717

4.04307
10.7576

2.64681
5.75811

1.72811
2.78415

1.07167
1.28941

0.70276
0.74024

0.33226
0.35797

0.20734
0.22610

0.15167
0.15511

Table 14

Mean square error of κ̂M (top raw) and κ̂L (bottom raw) for GvMF3,3 distribution, for
different values of α (rows) and κ (columns)

0.5 1 1.5 2 2.5 3 4 5 6
0.5 0.06602

0.06010
0.05435
0.04156

0.05186
0.04885

0.04292
0.05101

0.04582
0.05939

0.04249
0.06571

0.05097
0.10154

0.05318
0.12560

0.06447
0.15621

1 0.14994
0.64104

0.12997
0.14258

0.13578
0.10734

0.14216
0.10834

0.14670
0.10368

0.12929
0.09266

0.14336
0.11498

0.14140
0.12950

0.14276
0.17055

1.5 0.22813
1.96361

0.22610
0.54431

0.21028
0.25810

0.22102
0.22148

0.19741
0.18410

0.19829
0.17962

0.21212
0.18814

0.23031
0.21156

0.24706
0.21623

2 0.15945
2.32459
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0.45843
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0.35382

0.33244
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0.30274
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0.31870

2.5 0.15577
3.15115

0.37208
2.58508

0.55335
1.76622

0.55512
0.99471

0.51438
0.65380

0.51368
0.58423

0.48383
0.53832

0.49249
0.50869

0.42680
0.43904

3 0.14980
3.34039

0.44026
3.09945

0.67499
2.79798

0.86090
1.99287

0.84880
1.32447

0.85450
1.07203

0.69410
0.79730

0.67099
0.75204

0.66948
0.69418
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Fig 15. Density f1 from (35) for α = 0.5.

Fig 16. Realisations of X ∼ GvMF1,3(κ, α,μ) with α = 0.5.

Fig 17. Density f1 from (35) for α = 1.5.

Fig 18. Realisations of X ∼ GvMF1,3(κ, α,μ) with α = 1.5.
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Fig 19. Density f2 from (36) for α = 0.5.

Fig 20. Realisations of X ∼ GvMF2,3(κ, α,μ) with α = 0.5.

Fig 21. Density f2 from (36) for α = 1.5.

Fig 22. Realisations of X ∼ GvMF2,3(κ, α,μ) with α = 1.5.
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Fig 23. Density f3 from (37) for α = 0.5.

Fig 24. Realisations of X ∼ GvMF3,3(κ, α,μ) with α = 0.5.

Fig 25. Density f3 from (37) for α = 1.5.

Fig 26. Realisations of X ∼ GvMF3,3(κ, α,μ) with α = 1.5.
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