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Abstract: In binary classification, imbalance refers to situations in which
one class is heavily under-represented. This issue is due to either a data
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balanced classification frequently arises in applications such as biology,
medicine, engineering, and social sciences. In this paper, for the first time,
we theoretically study the impact of imbalance class sizes on the linear
discriminant analysis (LDA) in high dimensions. We show that due to
data scarcity in one class, referred to as the minority class, and high-
dimensionality of the feature space, the LDA ignores the minority class
yielding a maximum misclassification rate. We then propose a new con-
struction of hard-thresholding rules based on a data splitting technique
that reduces the large difference between the misclassification rates. We
show that the proposed method is asymptotically optimal. We further study
two well-known sparse versions of the LDA in imbalanced cases. We eval-
uate the finite-sample performance of different methods using simulations
and by analyzing two real data sets. The results show that our method
either outperforms its competitors or has comparable performance based
on a much smaller subset of selected features, while being computationally
more efficient.
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1. Introduction

The rise of high-dimensional data has affected many areas of research in statis-
tics and machine learning, including classification. Linear Discriminant Analysis
(LDA) has been extensively studied in high-dimensional classification. [4], [12],
and [38] showed that when the number of features is larger than the sample
size, the LDA can perform as badly as a random guess. To deal with the curse
of dimensionality, several developments have been made over the last decade or
so. For example, among others, new developments include the nearest shrunken
centroids [40], shrunken centroids regularized discriminant analysis [18], features
annealed independence rule (fair) [12], sparse and penalized LDA [38, 42], reg-
ularized optimal affine discriminant (road) [13], multi-group sparse discrimi-
nant analysis [16], pairwise sure independent screening [29], and the ultra high-
dimensional multiclass LDA [23]. The general idea of these methods is to in-
corporate a feature selection strategy in a classifier in order to obtain certain
optimality properties in the sense of misclassification rates.

To the best of our knowledge, most of the existing developments in high di-
mensions focus on problems with comparable class sizes in the training data.
However, in applications such as clinical diagnosis [2], fraud detection [9], drug
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discovery [44], or equipment malfunction detection [31], classification often suf-
fers from imbalanced class sizes where, for example, in a binary problem one
class (referred to as the minority class) is heavily under-represented. This is due
to either a data collection process or because one class is indeed rare in a pop-
ulation. In such situations, the minority class is of primary interest as it carries
substantial information, and often has higher misclassification costs compared
to the larger class, referred to as the majority class. For example, in a study of
a certain rare disease, the cost of misclassifying a positive case is often higher
than the cost of misclassifying a negative one [36]. In banking or telecommuni-
cation studies, few customers are voluntarily willing to terminate their contracts
and leave their provider. In these applications, misclassification of a potential
churner is more expensive than that of a non-churner for a provider [41]. Due to
data scarcity in the minority class, conventional discriminant methods are of-
ten biased toward the majority class resulting in much higher misclassification
rate for the minority class. This error dramatically increases in high-dimensional
cases, as empirically shown by [7]. In this paper, we study imbalanced binary
classification with the class sizes n2 � n1, when the number of features, pn,
grows to infinity as the total sample size n = (n1 + n2) grows to infinity. We
refer to Class 1 with size n1 as the majority class, and Class 2 with size n2 as
the minority class. A specific limiting relationship between n1 and n2 is given
in Section 2.2.

Imbalanced classification under various settings have attracted attention in
recent years. A common approach to deal with the imbalanced issue is to make
virtual class sizes comparable by using resampling methods, for example, the
synthetic minority over-sampling technique (smote) of [10]. The recent work of
[15] provides a review of the common re-sampling techniques for fixed dimen-
sional imbalanced problems. In other methods, such as the weighted extreme
learning machine [45] and the cost-sensitive support vector machine (svm) [21],
the idea is to strengthen the relative impact of the minority class by either as-
signing different weights to sample units or different costs to misclassification
instances in each class. [3] studied distributional properties of the correct classifi-
cation probabilities of the minority and majority classes of a hard-thresholding
independence rule. Using a non-asymptotic approach, they adjusted the bias
of correct classification probabilities which is rooted on the imbalanced class
sizes. [20] and [30] proposed bias-corrected discriminant functions. [28] studied
limiting form of the logistic regression under a so-called infinitely imbalanced
case in which the size of one class is fixed and the other grows to infinity. [32]
proposed new evaluation criteria and weighted learning procedures that increase
the impact of a minority class. [33] developed a distance weighted discrimination
method (dwd), originally proposed to overcome the well-known data-piling issue
[1] in high-dimensions, by an adaptive weighting scheme to reduce sensitivity to
unequal class sizes. [34] proposed a linear classifier that is a hybrid of dwd and
svm, thus haivng advantages of both techniques. [35] introduced a new family
of classifiers including svm and dwd that provides a trade-off between imbal-
anced and high-dimensionality. [19, 27] theoretically showed that under certain
conditions, svm suffers from data-piling in high-dimensions, meaning that all
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data points become the support vectors which may result in ignorance of one of
the classes. [27] proposed a biased-corrected svm that improves its performance
even when the class sizes are imbalanced. [26] proposed a robust svm which is
less sensitive to class sizes and choice of a regularization parameter. [43] used a
repeated case-control sampling technique coupled with a fused feature screening
procedure to deal with imbalanced and high-dimensionality.

The behaviour of LDA in high-dimensional imbalanced classification has of-
ten been studied empirically. In this paper, we first theoretically show that in
such cases this classifier ignores the minority class, yielding a maximum misclas-
sification rate for this class. On the other hand, a common approach to deal with
high-dimensionality is to use a hard-thresholding operator for feature selection.
However, our simulations show large differences between the misclassification
rates of the hard-thresholding rule (hr) in imbalanced settings. Thus, we face
both high-dimensionality and an inflated bias in the difference between the two
misclassification rates. To address the issues, we propose a new construction of
the hr based a multiple data splitting (Msplit) technique as described below,
and thus called Msplit-hr. We randomly split the training data in each class into
two parts of sizes �nk/2�, k = 1, 2, and use one part only for feature selection and
the other part is then used to construct a bias-corrected classifier based on the
selected features. As shown in Section 3, the splitting facilitates the correction
of the inflated bias in the difference between the two misclassification rates. To
reduce the effect of randomness in single-split, we repeat the process several (L)
times which maximizes the usage of training data in finite-sample situations.
In general, as pointed out by [25], multiple splitting also helps reproducibility
of finite sample results. As shown numerically in Figures 1 and 2, respectively
discussed in Sections 3.1 and 3.2, the classification results of Msplit-hr corre-
sponding to L ≈ 30 are unsurprisingly more powerful than a single-split (L = 1).
We show that our method is asymptotically optimal. We also study asymptotic
properties of two well-known linear classifiers, namely the sparse LDA [38], and
the regularized optimal affine discriminant analysis [13], under the imbalanced
setting. Our simulations show that Msplit-hr either outperforms its competi-
tors or has comparable performance based on a much smaller subset of selected
features, while being computationally more efficient as discussed in Section 5.

The rest of the paper is organized as follows. Section 2 gives the problem
setup and investigates the behaviour of the LDA in high-dimensional imbal-
anced binary classification. Section 3 introduces our proposed method, Msplit-
hr. Large-sample properties of the method are also discussed in this section.
Two well-known high-dimensional variants of the LDA, under the imbalanced
setting, are studied in Section 4. The finite-sample performance of several binary
classifiers is examined using simulations in Section 5. Analysis of two real data
sets are given in Section 6. A summary and discussion are given in Section 7.
Technical Lemmas and proofs of our main results are given in Appendices A-C.

Notation: All vectors and matrices are shown in bold letters. For any vector
a ∈ R

p, ‖a‖0 = #{j : aj 	= 0}, ‖a‖1 =
∑p

j=1 |aj |, ‖a‖2 = (
∑p

j=1 a
2
j )

1/2,

‖a‖∞ = maxj=1,...,p |aj |. For any symmetric matrix A ∈ R
p×p , ‖A‖1 =
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maxi=1,...,p

∑p
j=1 |aij |, ‖A‖ = maxj=1,...,p |λj(A)|, where λj(A) are the eigen-

values of the matrix A, and ‖A‖∞ = maxi,j=1,...,p |aij |. A diagonal matrix is
denoted byD. For any two sequences an and bn, we write an � bn or an = O(bn),
if for sufficiently large n there exists a constant C such that an ≤ C bn. We write
an ∼ bn, if an/bn → 1, as n → ∞. And an � bn, if an = O(bn) and bn = O(an).
Also, an = o(bn), when an/bn → 0 as n → ∞. The notations op and Op are
respectively used to indicate convergence and boundedness in probability. An
indicator function is denoted by 1{·}.

2. The LDA

In this section, we first describe the setting of the binary classification problem
under our consideration. We then study the effect of dimension and imbalanced
class sizes on the LDA, which motives the topics of the remaining sections.

2.1. Overview

We consider the class labels Y ∈ {1, 2}, class prior probabilities πk = Pr(Y = k),
and a p-dimensional feature vector X = (X1, X2, . . . , Xp)

� such that X|Y =
k ∼ Np(μk,Σ), k = 1, 2. The LDA is a well-known classification technique for
this setting. More specifically, given the parameter vector θθθ = (μ1,μ2,Σ) and
assuming π1 = π2, the optimal rule classifies a subject with an observed feature
vector x∗ = (x∗

1, . . . , x
∗
p)

� to Class 1 if and only if

δopt(x∗;θθθ) = μ�
d Σ

−1(x∗ − μa) < 0, (2.1)

where μd = μ2 − μ1 	= 0, μa = (μ2 + μ1)/2.

The misclassification rate (MCR) of a classifier is typically used to quantity
its performance. The classifier in (2.1) which is the Bayes’ rule, is referred to
as the optimal rule since it has the smallest average MCR, Πopt in (2.2) below,
among all classifiers. For δopt, the class-specific MCRs are equal and given by

Πk = Pr

(
(−1)kδopt(X∗;θθθ) < 0

∣∣∣∣Y = k

)
= Φ(−Δp/2) ≡ Πopt, k = 1, 2, (2.2)

where Φ is the cumulative distribution function of the standard normal, and
Δ2

p = μ�
d Σ

−1μd is referred to as the discriminative power or signal value. It
is seen that as Δp → ∞, high discriminative power, then Πopt → 0; and as
Δp → 0, low discriminative power, then Πopt → 1

2 implying that the classifier
performs as a random guess. From now on, we assess the performance of other
classifiers under consideration by comparing them with the optimal rule.

In practice, the parameter vector θθθ is unknown and needs to be estimated
using a training data Dn = {xik, i = 1, ..., nk, k = 1, 2}, where xik is the i-th
observed value of X in Class k, and the nk are the class sample sizes with the
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total sample size n = n1 + n2. For a new feature vector x∗, a so-called plug-in
discriminant function based on the parameter estimates is given by

δlda(x∗; θ̂θθn) = μ̂�
d Σ̂

−1

n (x∗ − μ̂a), (2.3)

where θ̂θθn = (μ̂n,1, μ̂n,2, Σ̂n) and

μ̂n,k ≡ μ̂k =
1

nk

nk∑
i=1

xik, k = 1, 2, (2.4)

Σ̂n =
1

n− 2

2∑
k=1

nk∑
i=1

(xik − μ̂k)(xik − μ̂k)
�. (2.5)

The matrix Σ̂
−1

n in (2.3) is a generalized inverse when Σ̂n is not invertible.
Given Dn, the conditional MCR of the plug-in linear discriminant rule based on
(2.3) corresponding to Class k ∈ {1, 2}, is given by

Πlda

k (Dn) = Pr

(
(−1)kδlda(X∗; θ̂θθn) < 0

∣∣∣∣ Y = k, Dn

)
= Φ

(
Ψlda

k (θ̂θθn)√
Υlda(θ̂θθn)

)
,

(2.6)

where Ψlda

k (θ̂θθn) = (−1)kμ̂�
d Σ̂

−1

n (μ̂a − μk), and Υlda(θ̂θθn) = μ̂�
d Σ̂

−1

n ΣΣ̂
−1

n μ̂d.
As is common in the literature, we study large-sample properties of a classifier
through its conditional MCR.

2.2. Impact of the dimension and imbalanced class sizes

The effect of the dimension p on the LDA’s performance is well studied in the
literature. [38] showed that when p is fixed or diverges to infinity at a slower rate
than

√
n, the classifier is asymptotically optimal [38, Definition 1]. When p → ∞

such that p/n → ∞, [4], [12], and [38] showed that this classifier performs no
better than a random guess. Hence, feature selection is essential when p is large
compared to the sample size n.

In the aforementioned works, the impact of dimensionality is studied under
particular limiting settings on the class sizes n1 and n2. [4] and [38] respectively
considered equal class sizes (n1 = n2) and unequal sizes where n1, n2 → ∞ such
that n2

n → π, 0 < π < 1. [12] developed their results by considering compatible
class sizes, such that c1 ≤ n1

n2
≤ c2, with 0 < c1 ≤ c2 < ∞. [3] investigated

the case where n1, n2 → ∞, such that n1−n2

n1+n2
= ρ > 0 is fixed. All in all, it is

seen that the sizes of the two classes grow similarly and proportional to the total
sample size n, that is nk = O(n), k = 1, 2. We refer to these settings as a balanced
classification problem. [28] analyzed the binary logistic regression models with
fixed dimension p in a so-called infinitely imbalanced case in which n1 → ∞
but the class size n2 is fixed. In this paper, we study imbalanced classification
in which n1 and n2 grow to infinity such that n2 = o(n1), implying a different
growth rate of the class sizes.
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In the balanced classification, typically average (over the two classes) MCR
[38, 13] or the MCR of one arbitrary class [4, 12] is used as a performance
measure of a classifier. However, in imbalanced situations due to data scarcity
in the minority class, classification results have a tendency to favour the majority
class. Thus, the average MCR is not an appropriate performance measure for a
classifier T . This motivated us to adapt the optimality definition of a classifier
from [38] to our setting as follows.

Definition 1. Suppose T is a classifier in a binary classification problem.
The misclassification rates of T , given the training data Dn, are denoted by
ΠT

k (Dn), k = 1, 2. Then,

(i) T is asymptotically-strong optimal if ΠT
k (Dn)/Π

opt p−→ 1, k = 1, 2,

(ii) T is asymptotically-strong sub-optimal if ΠT
k (Dn)−Πopt p−→ 0, k = 1, 2,

(iii) T is asymptotically-strong worst if ΠT
k (Dn)

p−→ 1
2 , k = 1, 2,

(iv) T is asymptotically ignorant if mink=1,2 Π
T
k (Dn)

p−→ 0 and

maxk=1,2 Π
T
k (Dn)

p−→ 1.

Note that any classifier T satisfying either of the properties in parts (i)-(iii) of
the above definition also satisfies the properties discussed in the corresponding
parts of Definition 1 of [38] for a balanced case, but not vice versa. Part (iv)
of the above definition occurs when a classifier completely ignores one of the
classes, and more specifically the minority class. We now state our first result.

Theorem 2.1. Suppose that the estimator Σ̂
−1

n in δlda in (2.3) is replaced by

Σ−1, and Σ is known. When n2 = o(n1), such that p/n2 → ∞ and
√

n2

p Δ2
p =

o(1), as n1, n2 → ∞, then the LDA is asymptotically ignorant, that is,

Πlda

1 (Dn)
p−→ 0 , Πlda

2 (Dn)
p−→ 1.

This result implies that in the high-dimensional imbalanced cases, the MCR
of the majority class tends to 0 which will be even better than the optimal value
Πopt, but the MCR of the minority class approaches 1 which is worse than a
random guess. Note that the above result also holds in the case of p/n1 → c,
for some finite constant c ≥ 0. [19, 27] showed that, under certain conditions,
the svm ignores the minority class in high-dimensional imbalanced problems.

Remark 2.1. When p is fixed and n2 = o(n1), then the LDA is asymptotically-
strong optimal.

Remark 2.1 illustrates that in the fixed-dimensional case, the impact of im-
balanced class sizes asymptotically vanishes and Πlda

k (Dn), k = 1, 2, converge
to the optimal value Πopt. Hence, by Theorem 2.1, Shao’s results, and Remark
2.1, the effects of both dimension and imbalanced class sizes are responsible for
ignorance of the minority class.
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3. Proposed Method: Msplit hard-thresholding rule (Msplit-hr)

A common approach to deal with high-dimensionality in the LDA is to incorpo-
rate feature selection using a hard-thresholding rule (hr) based on a two-sample
t-statistic as in [12]. More specifically, by ignoring the correlation among fea-

tures, Σ is estimated by the diagonal matrix D̂n = diag{σ̂2
1 , ..., σ̂

2
p}, and the

discriminant function is given by

δhr(x∗; θ̂θθn) =

p∑
j=1

rj(x
∗; θ̂θθn) hj(θ̂θθn), (3.1)

where θ̂θθn = (μ̂μμ1, μ̂μμ2, D̂n), rj(x
∗; θ̂θθn) = (μ̂dj/σ̂

2
j )(x

∗
j − μ̂aj), and hj(θ̂θθn) = 1{|tj | >

τn} is the thresholding operator based on the t-statistic

tj =
μ̂j2 − μ̂j1

σ̂j

√
n/n1n2

. (3.2)

Here μ̂jk’s and σ̂2
j ’s are the entries of μ̂μμk and Σ̂n in (2.4) and (2.5), respectively.

The discriminant function of FAIR proposed by [12] for balanced problems be-
longs to the class of functions in (3.1). The authors select an optimal number of
statistically most significant features, or equivalently the threshold value τn of
t-statistic, by minimizing a common upper bound on its corresponding MCRs.
However, for the case of general Σ, such choice of τn does not necessarily result
in an asymptotically optimal classifier [38]. Thus, for generality, in the rest of
the paper, for any given sequence of τn, we refer to a classifier based on (3.1)
as an HR unless otherwise is specified.

If indeed Σ = D, [3] showed that the hr in (3.1) based on a fixed threshold
τn = τ , is asymptotically ignorant when ρ = (n1 − n2)/(n1 + n2) > 0 is fixed,
as n1, n2 → ∞. As stated after Theorem 3.1 below, it is interesting to note
that under the imbalanced setting n2 = o(n1) and by an appropriate choice of
τn, the hr is indeed asymptotically-strong optimal. However, our simulations
in Section 5 show an unsatisfactory finite-sample performance of the hr in the
sense of both the MCR in the minority class and large difference between the
two MCRs. We propose a new construction of the hr which outperforms (3.1)
in finite-samples, while maintaining the same desirable large-sample properties,
to be discussed below. To fix ideas, we first consider the imbalanced problem
with a diagonal Σ = D. The general case of a non-diagonal Σ is discussed
in Subsection 3.2, which is based on a feature screening technique. Note that
under this case, the hr based on (3.1) is not optimal, as it ignores the correlation
among the features.

3.1. Msplit-HR under a diagonal Σ

As discussed in Section 2, the class specific MCRs of the optimal rule are equal,
and are given in (2.2). Our numerical experiments show that, due to the im-
balanced class sizes, hr performs well in majority class but underperforms in
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minority class, though it has large-sample optimal property as discussed after
Theorem 3.1 below. Thus, the idea in our work is to reduce the difference be-
tween two conditional MCRs of hr toward that of the optimal rule which is
zero. More specifically, our main goal is to propose a new discriminant function
aiming to reduce the difference between the MCRs of the hr,

|Πhr

1 (Dn)−Πhr

2 (Dn)| = |Φ(ψ1,n)− Φ(ψ2,n)|,

where ψk,n = Ψhr

k (θ̂θθn)/
√
Υhr(θ̂θθn) and

Ψhr

k (θ̂θθn)=(−1)k+1
∑p

j=1 rj(μk; θ̂θθn)hj(θ̂θθn) , Υhr(θ̂θθn)=
∑p

j=1(μ̂dj/σ̂
2
j )

2σ2
jhj(θ̂θθn)

for k = 1, 2. To understand the above difference, [3] studied distributional prop-
erties of the quantities ψk,n, k = 1, 2. They focused on reducing the so-called
bias

Bhr

n = E
{
Ψhr

1 (θ̂θθn)−Ψhr

2 (θ̂θθn)
}

(3.3)

to zero, which results in decreasing the bias between ψ1,n and ψ2,n and conse-
quently of that between MCRs. However, it turns out that due to the depen-
dency between the random variables rj and hj , computing Bhr

n is not an easy
task. [3] studied the origin of the bias and proposed methods for its correction.
We instead propose a new construction of the hr that facilities the computation
of such bias by adapting a sample-splitting strategy as follows.

The training sample of each class is randomly partitioned into two sub-
samples of sizes n′

k = �nk/2�. The two sub-samples are used for computing
two quantities similar to the rj and hj in (3.1), for each j = 1, . . . , p, and then
the results are merged. To reduce the effect of randomness due to the data split-
ting, this process is repeated, say, L times. Our new discrimination function is
then constructed by averaging over the hr-type discriminant functions based
on each splitting. Thus, we chose the name Msplit-hr for our method. More
specifically, at the 
-th data splitting, for each 
 = 1, ...,L, the entire training

data Dn is partitioned into two parts D(1)
n,� and D(2)

n,�. The parameter estimates

based on each sub-sample are distinguished by the superscripts (1) and (2), that

is, θ̂θθ
(1)

n,� and θ̂θθ
(2)

n,�. A new observation with a feature vector x∗ is then classified
using the discriminant function

δMsplit-hr
0 (x∗; θ̂θθn) =

1

L

L∑
�=1

p∑
j=1

rj(x
∗; θ̂θθ

(2)

n,�) hj(θ̂θθ
(1)

n,�), (3.4)

where θ̂θθn = {(θ̂θθ
(1)

n,�, θ̂θθ
(2)

n,�) : for 
 = 1, . . . ,L}. Due to the statistical independence
of the two random functions hj and rj in (3.4), for all j = 1, . . . , p, calculation

of the bias Bn for δMsplit-hr
0 is straight forward, which is shown below. Recall

n′
k = �nk/2�, and let n′ = n′

1 + n′
2 and fn′ = n′/2− 1.

Proposition 3.1. The bias Bn in (3.3) corresponding to δMsplit-hr
0 is given by

BMsplit-hr
0,n = E

{
ΨMsplit-hr

0,1 (θ̂θθn)−ΨMsplit-hr
0,2 (θ̂θθn)

}
=

r̄n
L

L∑
�=1

p∑
j=1

E{hj(θ̂θθ
(1)

n,�)},
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where r̄n = fn′( 1
n′
1
− 1

n′
2
)Γ(fn′−1)

Γ(fn′ )
, and Γ(·) is the gamma function.

Finally, using the above result, we propose the bias-corrected discriminant
function

δMsplit-hr(x∗; θ̂θθn) =
1

L

L∑
�=1

p∑
j=1

{
rj(x

∗; θ̂θθ
(2)

n,�)−
r̄n
2

}
hj(θ̂θθ

(1)

n,�) (3.5)

which has its bias BMsplit-hr
n = 0. The term r̄n is a function of (n′

2 − n′
1) which

is negative since n2 < n1. Hence, for any new feature vector x∗, the resulting
discriminant function (3.5) tends to be more positive compared to the rule in
(3.4). This increases the chance (or probability) of classifying a new observation
to the minority class, and hence improving the classification results for this
class. In our simulations and the real-data analysis, we evaluate the performance
of Msplit-hr based on the bias corrected function δMsplit-hr. We now describe
Algorithm 1 that summarizes the steps for computing (3.5).

Algorithm 1 : Computing the discriminant function δMsplit-hr.

Require: Input n′
1 = �n1/2�, n′

2 = �n2/2�,x∗,L, r̄n and τn.
1: for � = 1, . . . ,L do

2: Split Dn into D(1)
n,� and D(2)

n,�

3: for j = 1, . . . , p do

4: Step1: Using D(1)
n,� compute hj(θ̂θθ

(1)
n,�)

5: Step2: Using D(2)
n,� compute rj(x

∗; θ̂θθ
(2)
n,�)− r̄n

2
6: end for
7: end for

8: return δMsplit-HR(x∗; θ̂θθn) = 1
L
∑L

�=1

∑p
j=1

{
rj(x

∗; θ̂θθ
(2)
n,�)− r̄n

2

}
hj(θ̂θθ

(1)
n,�).

In practice, a value of L is required to compute (3.5). Figure 1 shows the
class-specific MCRs of (3.5) as a function of L, corresponding to scenario (i)
in our simulations in Section 5.1. It can be seen that a value of L between 20
to 30 provides a satisfactory performance of Msplit-hr. We used L = 30 in our
numerical experiments.

The following results show the asymptotic behaviour of δMsplit-hr. First, we
state Lemma 3.1 that provides conditions under which the t-statistic (3.2) used
in the thresholding operator hj in δMsplit-hr selects all the important features.
Since L is fixed, the result of the lemma holds for all 
 = 1, . . . ,L.
Lemma 3.1. Assume that the mean difference vector μd = μ2 − μ1 is sparse.
Let S = {j : μdj 	= 0} be the the corresponding active set with the cardinality
s = |S|, and define d0,n = minj∈S |μdj |. Under Conditions (C1) and (C2) in
Appendix A, if τn = O(

√
n2d0,n), log s = o(n2d

2
0,n), log(p − s) = o(τ2n), n2 =

o(n1), and
√
n2d0,n → ∞, as n1, n2 → ∞, then

(a) Pr

( ⋂
j �∈S

{|tj | ≤ τn}
)

→ 1; (b) Pr

( ⋂
j∈S

{|tj | > τn}
)

→ 1.
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Fig 1. Effect of the number of sample-splits L on Msplit-hr performance for the Simulation
setting (i) and p = 1000.

In the above Lemma, if d0,n = d0, for some constant d0 > 0, then τn =
O(

√
n2) and log p = o(n2). On the other hand, if d0,n ∼ n−γ

2 αn2 , for 0 < γ < 1
and some αn2 → ∞, such that d0,n declines to zero and

√
n2d0,n → ∞, then

we have τn = O(n
1/2−γ
2 αn2) and log p = o(n1−2γ

2 α2
n2
). Therefore, in both cases

the divergence rate of the dimension p is smaller than that of the minority class
size n2, as opposed to the balanced case where log p = o(n), that is, a larger
dimension p allowance.

Theorem 3.1. Suppose that the conditions of Lemma 3.1 are satisfied. Let
κn = max{Δ−1

p

√
s/n2 ,

√
log p/n1}. For any fixed L,

(a) the MCRs of Msplit-hr are given by

ΠMsplit-hr
k (Dn) = Φ

(
− 1

2
Δp(1 +Op(κn))

)
, k = 1, 2

(b) if sΔ2
p = o(n2) and Δ2

p

√
log p/n1 = o(1), the Msplit-hr is asymptotically-

strong optimal.

Note that the result of Theorem 3.1 also holds for the hr. Part (b) of the
theorem implies that the growth rates of both the sparsity size s and the dis-
criminative power Δp are controlled by the minority class size n2.

3.2. Msplit-HR under a general Σ

When the dimension p is large compared to the sample size n, the sample
covariance matrix in (2.5) is ill-conditioned. To deal with the singularity issue,
many existing methods in the literature involve a feature selection strategy. In
what follows, we use a variable screening method [14, 29] to select a subset of
features xj ’s that have the highest discriminative power.
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At the 
-th data splitting stage of Msplit-hr, we consider the mean difference

estimators μ̂μμ
(1)
d,� = μ̂

(1)
2,� − μ̂

(1)
1,� , which are computed based on the training sub-

samples D(1)
n,�, for 
 = 1, ...,L. For a given threshold parameter τn, we select those

features xj whose indices belong to the set S(1)
n,� = {1 ≤ j ≤ p : |μ̂(1)

dj,�| > τn},
where μ̂

(1)
dj,� is the j-th entry of μ̂μμ

(1)
d,� .

For any p-dimensional feature vector x∗, we define the discriminant function

δMsplit-hr
0 (x∗; θ̂θθn) =

1

L

L∑
�=1

μ̃μμ�
d,�Σ̃

−1

n,� (x∗
� − μ̃μμa,�), (3.6)

where θ̂θθn is the vector of corresponding parameter estimates, and x∗
� = (x∗

j :

j ∈ S(1)
n,�)

� are sub-vectors of the full feature vector x∗. Furthermore, for all

 = 1, . . . ,L, we have μ̃d,� = μ̃2,�− μ̃1,�, μ̃a,� = (μ̃1,�+ μ̃2,�)/2, such that μ̃k,� =

(μ̂
(2)
jk,� : j ∈ S(1)

n,�)
� for k = 1, 2, and Σ̃n,� = [σ̂

(2)
jj′,� : j, j

′ ∈ S(1)
n,�] are respectively

the sub-vectors and sub-matrices of the sample means and covariance matrix

given in (2.4) and (2.5). Note that for the existence of Σ̃
−1

n,�, for all 
 = 1, 2, . . . ,L,
we include at most (n′ − 2) features in each S(1)

n,�.
As discussed in Subsection 3.1, the data splitting technique facilitates com-

putation of the bias Bn (3.3) corresponding to (3.6).

Proposition 3.2. If |S(1)
n,�| < n′ − 3, for all 
 = 1, ..,L, then

BMsplit-hr
0,n = E{ΨMsplit-hr

0,1 (θ̂θθn)−ΨMsplit-hr
0,2 (θ̂θθn)} =

1

L

L∑
�=1

E{r̄n,�},

where

r̄n,� =

(
1

n′
1

− 1

n′
2

)
n′ − 2

n′ − 3− |S(1)
n,�|

× |S(1)
n,�|. (3.7)

Finally, our bias-corrected discriminant function is

δMsplit-hr(x∗; θ̂θθn) =
1

L

L∑
�=1

{μ̃μμ�
d,�Σ̃ΣΣ

−1

n,�(x
∗
� − μ̃μμa,�)−

r̄n,�
2

} (3.8)

which has its bias BMsplit-hr
n = 0. The term r̄n,� as a function of (n′

2−n′
1) makes

the corrected discriminant function (3.8) more positive compared to the rule
in (3.6). This increases the probability of classifying a new observation to the
minority class, and hence improving the results for this class. Algorithm 2 below
summarize the steps for computing in (3.8).

Figure 2 shows the class-specific MCRs of (3.8) as a function of L, corre-
sponding to scenario (iv) in our simulations in Section 5.2. Based on these
results, we used L = 30 in our numerical experiments.

The following lemma shows that the variable screening method used to obtain

the selection sets S(1)
n,t have a so-called strong screening consistency property, as
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Algorithm 2 Computing the discriminant function in (3.8)

Require: Input n′
1 = �n1/2�, n′

2 = �n2/2�,x∗,L, and τn.
1: for � = 1, . . . ,L do

2: Split Dn into D(1)
n,� and D(2)

n,�

3: Using D(1)
n,�, obtain S(1)

n,� = {1 ≤ j ≤ p : |μ̂(1)
dj,�| > τn} and compute r̄n,� in (3.7)

4: if |S(1)
n,�| < n′

1 + n′
2 − 3 then

5: Using S(1)
n,� and D(2)

n,�, compute μ̃μμ�
d,�Σ̃ΣΣ

−1
n,�(x

∗
� − μ̃μμa,�)

6: else
7: Step 1: Select the first (n′

1 + n′
2 − 4) features in S(1)

n,� with highest value of |μ̂(1)
dj,�|

8: Step 2: Using D(2)
n,� and the selected features in Step 1, compute μ̃μμ�

d,�Σ̃ΣΣ
−1
n,�(x

∗
� − μ̃μμa,�)

9: end if
10: end for
11: return δMsplit-HR(x∗; θ̂θθn) = 1

L
∑L

�=1{μ̃μμ�
d,�Σ̃ΣΣ

−1
n,�(x

∗
� − μ̃μμa,�)−

r̄n,�

2
}.

Fig 2. Effect of the number of sample-splits L on Msplit-hr performance for the Simulation
setting (iv) and p = 500.

discussed in [29]. We then establish the asymptotic optimality of δMsplit-hr in
Theorem 3.2.

Lemma 3.2. Let β = Σ−1μd, and define the active set S = {1 ≤ j ≤ p : βj 	=
0} with its cardinality denoted by |S|. Furthermore, let d0,n = minj∈S |μdj | and
mmax = c1(maxj∈S β2

j )|S|/d20,n, for some constant c1 > 0 such that mmax ≥
|S|. Under Condition (C2) in Appendix A, if τn � d0,n, log p = o(n2d

2
0,n),

n2 = o(n1), and
√
n2d0,n → ∞, as n1, n2 → ∞, for any 
 = 1, ...,L, we have

that

(a) Pr

(
S(1)
n,� ⊃ S

)
→ 1 ; (b) Pr

(
|S(1)

n,�| ≤ mmax

)
→ 1.

Part (a) implies that that for large sample sizes n, with probability tending

to one, all the active features will be included in the selection sets S(1)
n,�, for each


 = 1, 2, . . . ,L. Part (b) shows that the size of each set S(1)
n,� is of order mmax.

These properties are obtained under the conditions that the divergence rate of
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the dimension p is lower than that of the minority class size n2.

Theorem 3.2. Suppose that the conditions of Lemma 3.2 are satisfied. Let
κ′
n = max{Δ−1

p

√
mmax/n2 , mmax

√
log p/n1}. If mmax

√
log p/n1 = o(1), then

for any fixed L,
(a) the MCRs of Msplit-hr are given by

ΠMsplit-hr
k (Dn) = Φ

(
− 1

2
Δp(1 +Op(κ

′
n))

)
, k = 1, 2

(b) if Δ2
pmmax = o(n2) and Δ2

pmmax

√
log p/n1 = o(1), then the Msplit-hr is

asymptotically-strong optimal.

Condition Δ2
pmmax = o(n2) in the above theorem implies that the maximum

size of the selection sets Sn,�, that is mmax, is affected by the minority class
size n2. Note that the results of the theorem also holds for the pairwise sure
independence screening of [29] in the imbalanced binary cases, as well as in the
balanced cases which was not studied before.

4. Two existing high-dimensional variants of LDA

In this section, we investigate conditions under which two well-known sparse
variants of the LDA obtain certain optimality properties under the imbalanced
setting.

4.1. Sparse LDA (slda)

This method, proposed by [38], uses thresholding-type estimators for both the
mean-difference vector μd = μ2 − μ1 and Σ. In slda, a new feature vector x∗

is allocated to Class 1 if and only if

δslda(x∗; θ̂θθn) = μ̃�
d Σ̃

−1

n (x∗ − μ̂a) < 0,

where μ̂μμa = (μ̂μμ1 + μ̂μμ2)/2, and (Σ̃n, μ̃d) are thresholded estimates of Σ and μd,
respectively, with the entries,

σ̃ij = (1− 2/n) σ̂ij 1{(1− 2/n)|σ̂ij | > tn}, i, j = 1, . . . , p

μ̃dj = μ̂dj 1{|μ̂dj | > an}, j = 1, . . . , p,

where σ̂ij is (i, j)-th element of Σ̂n in (2.5), and μ̂dj is the j-th entry of μ̂μμd

in (2.4). Further, tn = M1

√
log p/n with M1 > 0, and an = M2(log p/n)

α,
0 < α < 1/2,M2 > 0.

[38] derived conditions under which the slda is optimal according to their
Definition 1, when p/n → ∞ and n1/n → π with 0 < π < 1, as n → ∞. It
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turns out that their conditions do not yield an optimal slda in the imbalanced
case. In Theorem 4.1 below, we investigate conditions under which the slda is
asymptotically-strong optimal under the imbalanced case. We then discuss and
compare these conditions with those of [38] under the balanced case.

First, for ease of comparison, we recall some notations introduced in [38].
Let q̂n be the number of features for which the value |μ̂dj | is greater than an.
Further, let qn0 and qn be the number of features for which the value of |μdj |
is greater than ran and an/r, respectively, for some fixed constant r > 1. Also
let Dg,p =

∑p
j=1 μ

2g
dj , 0 ≤ g < 1, and Ch,p = max1≤i≤p

∑p
j=1 |σij |h, 0 ≤ h < 1,

be the sparsity measures corresponding to μd and Σ, respectively. Here, 00 is
defined to be 0. Furthermore, let dn1 = Ch,p(n1

−1 log p)(1−h)/2, and

bn1 = Δ−1
p max

{
Δpdn1 ,

√
a
2(1−g)
n Dg,p,

√
qn/n2,

√
Ch,pqn/n1

}
,

bn2 = Δ−1
p max

{
Δpdn1 ,

√
a
2(1−g)
n Dg,p,

√
Ch,pqn/n2

}
,

where Δ2
p = μ�

d Σ
−1μd. Note that under the imbalanced setting n2 = o(n1), we

have dn1 ∼ dn, where dn = Ch,p(n
−1 log p)(1−h)/2.

The following Lemma shows that the set {1 ≤ j ≤ p : |μ̂dj | > an} has indeed
a sure screening property, which is essential in Theorem 4.1 for the assessment
of slda.

Lemma 4.1. Suppose that,

(log p) (n1/ log p)
2α

= o(n2), (4.1)

and n2 = o(n1), then as n1, n2 → ∞,

(a) Pr

(⋂
j:|μdj |>ran

{|μ̂dj | > an}
)

→ 1,

(b) Pr

(⋂
j:|μdj |≤an/r

{|μ̂dj | ≤ an}
)

→ 1,

(c) Pr

(
qn0 ≤ q̂n ≤ qn

)
→ 1.

Condition (4.1) replaces the condition log p/n = o(1) in [38]. One implication
of (4.1) is log p/n2 = o(1), which shows the impact of the minority class size n2

on the dimension allowance p.

Theorem 4.1. Suppose that the conditions of Lemma 4.1, and Conditions (C2)
and (C3) in Appendix A are satisfied. Then, as n1, n2 → ∞,

(a) the MCRs of slda are given by

Πslda

k (Dn) = Φ

(
− 1

2
Δp {1 +Op(bnk

)}
)
, k = 1, 2.

(b) the slda is asymptotically-strong optimal if
i. Δ2

p is bounded, and bn2 = o(1), or
ii. Δ2

p → ∞, such that Δ2
pbn2 = o(1) holds.
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The difference between the above theorem and Theorem 3 of [38] appears
in bn2 . To simplify the comparison in this case as in [38], suppose that Σ is a
diagonal matrix (C0,p = 1), and let s be the number of nonzero (active) entries
of the mean difference vector μd. If there are two constant c1, c2 > 0, such
that c1 ≤ |μdj | ≤ c2, for the active j’s, then we have qn = s. This implies
that, by the Conditions (C2) and (C3), Δ2

p and D0,p are of order s. Now, in
this case, if s → ∞, according to Theorem 4.1-(b)-ii above, under condition
(4.1), Δ2

pbn2 = o(1) is equivalent to s = o((n1/ log p)
α). This implies that under

the imbalanced setting, the growth rate of the sparsity factor s is smaller than√
n2 and consequently is smaller than the growth rate of s in the balanced

setting. Therefore, due to the data scarcity in the minority class (n2) in the
imbalanced setting, in order for the slda to be asymptotically-strong optimal
more restrictive conditions are required on both the dimension p and the sparsity
size s compared to the balanced case.

Next, we compare the optimality conditions of Msplit-hr and slda. The
relation between these conditions for a general Σ is not straightforward, and
thus to get some insight we consider a diagonal case. Suppose that Σ is diagonal
(C0,p = 1), and g = 0 such that D0,p = s = |S|, where S = {1 ≤ j ≤
p : μdj 	= 0}. By condition (4.1), we have log p = o(n2) which implies the
necessary conditions of Lemma 3.1 on (s, p), if d0,n = minj∈S |μdj | = d0 > 0 and
τn = M

√
n2, for some constant M > 0. On the other hand, if d0,n decays, the

same conclusion holds when an = O(d0,n) and τn = M
√
n2d0,n. Furthermore,

by (4.1) the conditions of Theorem 4.1-(b) are equivalent to sΔ2
p(log p/n1)

2α =
o(1) implying sΔ2

p = o(n2) which is required for the optimality of Msplit-hr.
Therefore, the conditions of Theorem 4.1 for slda on the dimension p and the
sparsity size s are more restrictive than those in Theorem 3.1 for Msplit-hr.
In terms of feature selection, Lemma 3.2-(b) provides an upper bound mmax =
o(n2Δ

−2
p ) on the size of the set of selected features by Msplit-hr, whereas the

slda allows the number of nonzero estimators of μdj ’s or σl,j ’s to be much larger
than the class sizes to ensure optimality of the classifier, see [38]. Therefore, the
number of selected features by slda could be potentially larger than the class
sizes which we have also observed in our numerical study in Section 5.

4.2. Regularized optimal affine discriminant (road)

This method, proposed by [13], is constructed based on a sparse estimate of w =
Σ−1μd, unlike the slda which uses sparse estimates of μd and Σ, separately.
The road assigns x∗ to Class 1 if and only if

δroad(x∗; θ̂θθn, c) = ŵ�
c (x

∗ − μ̂μμa) < 0, (4.2)

where θ̂θθn = (μ̂μμ1, μ̂μμ2, Σ̂n), μ̂μμa = (μ̂μμ1 + μ̂μμ2)/2, and

ŵc ∈ arg min
‖w‖1≤c, w�μ̂μμd=1

w�Σ̂nw (4.3)

with μ̂μμd = μ̂μμ2 − μ̂μμ1, and (μ̂μμk, Σ̂n) are the estimates in (2.4)-(2.5). Note that in
(4.3) the smaller the c, the sparser the solution ŵc, and as c → ∞ the solution
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is equivalent to the regular weight wc ∝ Σ−1μd. [13] studied the asymptotic
difference between the average MCR of the road and its oracle version for
which the true values of (μ1,μ2,Σ) are used in (4.3). However, as discussed in
Section 2.2, under the imbalanced setting the average MCR is not an appropriate
performance measure for a classifier. Therefore, in the following theorem, we
study the class-wise MCRs of the road.

Theorem 4.2. Let sc = ‖wc‖0, s
(1)
c = ‖w(1)

c ‖0 and ŝc = ‖ŵc‖0, where wc,

w
(1)
c , and ŵc are respectively the solutions of (4.3) when (μd,Σ), (μ̂μμd,Σ) and

(μ̂μμd, Σ̂n) are used. Furthermore, let Πroad

k (Dn; c) be the MCR of Class k = 1, 2,
associated with road, and Πorc

k (c) denotes its oracle value. Under Condition
(C2) in Appendix A, if n2 = o(n1) and log p = o(n2), then as n1, n2 → ∞,

Πroad

k (Dn; c)−Πorc
k (c) = Op(en), k = 1, 2, (4.4)

where en = max

{
c2(log p)/n1 ,

√
(log p)/n2 ×

√
max{sc, s

(1)
c , ŝc}

}
.

By Theorem 4.2, a necessary condition for convergency of the MCRs of road
to their oracle values is that the sparsity size sc of the vector wc and the
dimension p are controlled by the minority class size n2 (similar to the slda),
which in turn shows the effect of imbalanced class sizes on the performance of
road.

In general, the conditions of Theorem 4.2 do not guarantee the optimality of
road according to Definition 1. [13] showed that when the penalty parameter
c is chosen as c ≥ Δ−2

p ‖ Σ−1μd ‖1, then wc ∝ Σ−1μd and the oracle MCRs
Πorc

k (c) reduce to those of the optimal rule in (2.2). Hence, by Definition 1, for
such c’s, Theorem 4.2 shows that road is asymptotically-strong sub-optimal
as long as en → 0. Furthermore, road becomes asymptotically-strong optimal
if Δp is bounded. The condition en → 0 is the same as log p = o(n1/c

2) and

log p = o(n2/smax), where smax = max{sc, s
(1)
c , ŝc}. Note that, the larger

the c, the larger the quantities sc, ŝc and s
(1)
c , and hence more restrictions on

(n1, n2, p) compared to those in Theorem 4.2, and the conditions of Msplit-hr.
In our numerical study, we observe that the performance of road in terms of
MCR2 improves for lower dimensions.

5. Simulation study

In this section, we assess the finite-sample performance of Msplit-hr and several
binary classification methods using simulations. We consider two settings of di-
agonal and general covariance matrixΣ under the modelX|Y = k ∼ Np(μk,Σ),
k = 1, 2.

5.1. Diagonal Σ

We compare the following methods: the bias adjusted independence (bai) and
leave-one-out independence rules (loui) [3], diagonal road method (droad)
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[13], the bias corrected LDA (blda) [20], the hr and its under-sampling version
(us-hr), and our proposed method Msplit-hr. Note that the aforementioned
methods use the knowledge of a diagonalΣ. In our comparison, we also include a
bias-corrected support vector machines proposed by [27] coupled with an under-
sampling method (us-bcsvm). In regards to over-sampling techniques such as
the somte, [3] and [8] showed that such techniques deduce larger differences
between the MCRs in high-dimensional imbalanced problems. For example, we
examined the performance of hr and bcsvm coupled with smote (under both
diagonal and general Σ) and since their performances were not satisfactory, we
did not report the results here.

We implemented the methods using R software. The droad results are based
on the authors’ MATLAB codes available on their website 1. Our computations
are carried out on a computer with an AMD Opteron(tm) Processor 6174 CPU
2.2GHz.

The above methods involve certain tuning (threshold) parameters that need
to be chosen using data-driven methods. We chose best threshold parameters
in blda, bai and loui by a grid search using the techniques outlined by the
authors. As in [20], an F-statistic is used to select the important features in
blda method. In both hr and Msplit-hr, we choose the tuning parameter τ by
minimizing MCR of the minority class based on a leave-one-out cross validation.

We consider the binary classification problem X|(Y = k) ∼ Np(μk,D), k =
1, 2, and D = diag{σ2

1 , ..., σ
2
p}. We generated training data with different class

sizes n1 and n2, and test data sets of size 50 in both classes. We considered
two dimensions p = 1000, 3000, and class-wise sample sizes (n1, n2) = (25, 5),
(50, 10), (100, 10) for the training data. The simulation results are based on 100
randomly generated data sets, and the two parameter settings:

(i) μ1 = (1, 1,0p−2)
�, μ2 = (2, 2.2,0p−2)

�, σ2
1 = 1.52, σ2

2 = 0.752, and
σ2
j = 1, for j = 3, ..., p.

(ii) μ1 = (19,0p−9)
�, μ2 = (2 ∗ 14, 2.5 ∗ 13, 3 ∗ 12,0p−9)

�, σ2
j = 10, for

j = 1, ..., 4, σ2
j = 2.252, for j = 5, 6, 7, σ2

j = 1.52, j = 8, 9, and σ2
j = 1, for

j = 10, ..., p.

The number (s) of active features xj ’s that distinguish the two classes, and
also the value of Δp in the two settings are respectively s = 2,Δ2

p = 3 and
s = 9,Δ2

p = 8.7. Since the signal strength is measured by Δp, setting (i) has
a weaker signal than (ii). Under these settings, the value of the optimal MCR,
Πopt in (2.2), are respectively 19.32% and 7%. Also, the active features have
different marginal signal values |μdj |/σj , in each of the settings.

The performance measures used to compare different methods are: per-class
misclassification rates (MCR1, MCR2), and the geometric mean (GM) of the
MCRs. The results reported in the tables are average and standard deviations
(in parentheses) of the measures over 100 generated samples. We also reported
median number of true selected features, denoted by A, and falsely selected
features denoted by N , respectively. For the new method Msplit-hr, similar to

1<https://github.com/statcodes/ROAD>

<https://github.com/statcodes/ROAD>
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the stability selection technique of [24], the selected features for each simulated
sample are those with a relative frequency more than 50%, that is the set Sn =
{j : fj

L ≥ 0.5}, where fj is selection frequency of j-th feature among L splits.

5.1.1. Discussion of the results

The results for the cases (n1, n2, p) = (25, 5, 1000), (50, 10, 1000) and (100, 10,
1000) are given in Table 1. The results corresponding to dimension p = 3000
are given in Table 2.

From Table 1, under both settings (i) and (ii), we can see that droad, hr,
and blda have smaller error rates in the majority class (MCR1) compared to
the other methods, but the differences between their MCR1 and MCR2 are
larger. The class-wise error rates corresponding to us-hr and us-bcsvm have
smaller differences than those of droad, hr, and blda. Furthermore, the us-

hr outperforms us-bcsvm, droad, hr, and blda in terms of MCR2. Under
setting (i), Msplit-hr outperforms all the other methods in terms of MCR2; for
example, its MCR2 is better than the next best method loui up to about 8%,
depending on class sizes (n1, n2) and dimension p, while having balanced results
for both classes. In setting (ii), Msplit-hr behaves similarly to loui and bai,
with its MCR2 better than loui and bai respectively up to about 3% and 7%.
Note that in (i), we have a weaker signal strength (Δ2

p) and fewer number of
active features (s) than (ii), which matches the conditions of Theorem 3.1 for
Msplit-hr on controlling the size of sΔ2

p. In other words, we can see that the
weaker the signal, the better the performance of Msplit-hr in terms of MCRs
in both classes. On the other hand, from the columns A and N of Table 1,
Msplit-hr tends to select fewer number of inactive (noise) features compared to
the two its competitors bai and loui. In bcsvm, the bias caused by dimension
is corrected by using all features in the model and therefore this method does
not perform any feature selection.

Table 2 consists of the results for dimension p = 3000. As expected, the
class-specific MCRs of all the methods increase compared to p = 1000. Msplit-
hr outperforms all the other techniques in terms of MCR2 while having balanced
misclassification rates. For example, the MCR2 of Msplit-hr is smaller than the
next best method loui up to about 7%. In addition, we observe that Msplit-hr
has better performance than bai and loui even in setting (ii) in which they
have comparable performance for p = 1000.

We now assess the computational efficiency of the different methods. For a
fixed threshold, the computational complexity of bai and loui is O(n2p) and
that of all the other methods is O(np). In our simulations, the threshold (or
tuning) parameter in each method was chosen using a cross validation criterion.
Table 3 provides the average computational time (in seconds) taken by each
method to complete per-sample results. Note that since us-bcsvm does not
involve any feature selection step, as expected, this method is among the faster
methods discussed here. It can be seen that the hr and blda, followed by us-hr

and us-bcsvm, are the fastest among all the methods we considered, but they
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Table 1

Classification results for the simulation settings (i)-(ii) with a diagonal Σ and p = 1000.

(n1, n2) Setting Methods MCR1% MCR2% GM% A N

(25,5) (i)

us-bcsvm 48.96(13.99) 47.46(14.38) 46.33(5.99) 2 998
DROAD 2.62(7.45) 93.14(15.91) 5.45(11.37) 2 364
HR 15.96(13.02) 67.3(26.43) 26.25(15.45) 1 2
US-HR 44.34(16.45) 45.14(16.49) 42.73(8.91) 1 143.5
BLDA 14.72(11.05) 70.16(22.47) 28.04(11.75) 1 5
BAI 38.86(15.16) 48.2(17.23) 41.15(10.06) 1 75.5
LOUI 41.46(18.14) 43.9(19.43) 39.05(11.75) 1 20.5
Msplit-HR 42.66(16.97) 40.04(16.65) 39.12(11.01) 1 2

(25,5) (ii)

us-bcsvm 46.42(14.04) 41.22(12.27) 41.99(5.75) 9 991
DROAD 5.46(8.63) 58.48(30.27) 9.84(10.24) 6 17
HR 12.38(10.52) 55.78(27.55) 20.80(12.40) 1 2
US-HR 39.34(14.75) 35.48(15.43) 35.13(9.11) 4 124
BLDA 11.06(8.74) 57.48(26.60) 20.85(11.30) 2 3
BAI 30.72(13.94) 35.06(16.32) 30.53(10.12) 3 33
LOUI 29.86(14.54) 31.24(16.37) 27.95(10.83) 3 36.5
Msplit-HR 32.2(15.57) 28.22(15.44) 27.61(9.91) 1 3.5

(50,10) (i)

us-bcsvm 47.88(10.19) 44.56(10.78) 45.25(5.71) 2 998
DROAD 6.30(9.10) 75.28(30.25) 11.23(11.61) 2 68
HR 19.36(7.47) 40.82 (20.99) 26.15(7.68) 1 1
US-HR 34.22(14.05) 32.66(14.34) 32.12(10.72) 1 0
BLDA 18.26(8.82) 48.68(21.24) 25.27(8.81) 1 3
BAI 31.94(14.39) 36.92(15.19) 32.71(10.52) 1 11
LOUI 29.28(12.21) 34.12(17.04) 29.99(10.39) 1 8.5
Msplit-HR 30.22(12.66) 26.68(13.42) 26.99(9.75) 1 0

(50,10) (ii)

us-bcsvm 41.72(9.03) 38.02(10.21) 38.93(5.23) 9 991
DROAD 5.60(6.04) 30.72(19.67) 9.39(6.22) 7 17.5
HR 11.02(7.04) 25.42(15.69) 14.59(6.84) 2 0
US-HR 22.84(10.14) 19.04(8.49) 19.74(7.23) 1 0
BLDA 11.72(6.70) 24.36(15.71) 14.80(6.13) 2 0
BAI 17.6(8.76) 19.8(11.79) 17.18(8.07) 3 3
LOUI 16.72(8.55) 19.16(10.99) 16.55(7.39) 3 3.5
Msplit-HR 19.22(9.58) 17.82(9.07) 17.08(6.84) 2 0

(100,10) (i)

us-bcsvm 47.96(10.08) 44.1(10.50) 45.09(5.42) 2 998
DROAD 2.60(5.25) 85.74(22.67) 6.28(9.67) 2 494
HR 19.96(8.53) 34.82(19.40) 24.31(8.09) 1 0
US-HR 34.08(13.17) 30.52(13.07) 31.14(9.29) 1 0
BLDA 16.84(7.60) 45.48(22.81) 25.08(8.01) 1 2
BAI 28.86(12.15) 33.64(16.62) 29.72(9.85) 1 7
LOUI 26.26(11.03) 32.48(16.76) 27.81(9.26) 1 6
Msplit-HR 27.94(12.09) 24.84(13.11) 24.95(8.93) 1 0

(100,10) (ii)

us-bcsvm 41.66(9.67) 37.38(10.88) 38.51(6.02) 9 991
DROAD 3.22(4.23) 37.96(20.38) 6.57(6.07) 8 31.5
HR 10.02(6.20) 22.14(12.49) 13.11(5.77) 3 0
US-HR 20.64(10.65) 18.98(10.47) 18.30(7.76) 1 0
BLDA 10.44(6.26) 22.28(14.29) 12.96(5.83) 3 0
BAI 16.44(9.70) 17.08(10.19) 15.49(7.89) 3.5 2
LOUI 15.02(8.37) 15.94(9.32) 14.13(6.42) 3 2
Msplit-HR 16.56(8.98) 14.38(7.88) 14.04(5.36) 3 0
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Table 2

Classification results for Simulation settings (i)-(ii) with a diagonal Σ and p = 3000.

(n1, n2) Setting Methods MCR1% MCR2% GM% A N

(25,5) (i)

us-bcsvm 50.84(13.78) 47.32(13.75) 47.32(5.03) 2 2998
DROAD 3.14(7.66) 94.40(12.91) 6.71(13.44) 1 529
HR 14.92(12.68) 73.64(24.84) 26.10(16.85) 0 1.5
US-HR 46.38(16.21) 46.86(16.10) 44.25(7.23) 1 255
BLDA 13.6(11.63) 76.44(23.64) 26.03(14.53) 1 5
BAI 38.04(15.86) 50.92(17.61) 41.77(9.48) 1 107.5
LOUI 41.02(18.00) 47.04(18.60) 41.16(10.20) 1 42
Msplit-HR 43.06(19.61) 44.08(19.25) 40.09(9.18) 1 3

(25,5) (ii)

us-bcsvm 47.12(13.88) 45.32(13.29) 44.37(5.11) 9 2991
DROAD 5.54(8.59) 60.58(28.94) 10.24(11.52) 6 16
HR 14.04(12.40) 62.44(27.65) 23.41(14.78) 1 1
US-HR 43.78(15.90) 41.52(15.33) 40.35(8.22) 3 251.5
BLDA 11.04(10.41) 65.64(27.20) 20.50(13.70) 1 3
BAI 33.04(15.35) 41.68(17.60) 34.84(10.61) 3 79.5
LOUI 31.64(16.28) 41.84(18.91) 33.63(10.90) 3 78
Msplit-HR 37.78(17.62) 36.32(17.68) 34.18(10.36) 1 3

(50,10) (i)

us-bcsvm 48.46(11.56) 47.98(11.55) 47.04(5.29) 2 998
DROAD 5.7(9.27) 81.02 (24.78) 11.01(13.54) 2 77
HR 18.68(8.29) 40.88 (24.32) 24.61(9.61) 1 0
US-HR 35.62(13.25) 36.66(14.57) 34.87(10.01) 1 0
BLDA 17.16(8.35) 48.18(24.08) 25.74(8.52) 1 2
BAI 32.08(11.86) 37.42(17.28) 33.32(11.03) 1 12.5
LOUI 31.1(12.33) 34.82(17.41) 31.48(11.18) 1 9.5
Msplit-HR 32.3(12.81) 30.98(16.05) 30.35(11.34) 1 0

(50,10) (ii)

us-bcsvm 44.08(10.75) 44.16(10.42) 43.04(4.85) 9 991
DROAD 5.12(5.21) 32.40(17.42) 9.24(6.25) 1 25.50
HR 12.98(8.14) 28.7 (18.25) 17.14(8.18) 2 0
US-HR 26.8(12.13) 24.72(12.17) 24.48(8.81) 1 0
BLDA 12.7(6.88) 29.1(19.32) 16.70(7.20) 2 1
BAI 20.24(10.71) 22.44(13.68) 19.55(9.60) 3 4
LOUI 19.02(10.22) 22.74(13.48) 19.45(9.35) 3 9
Msplit-HR 21.4(11.07) 19.2(10.14) 18.93(7.47) 2 0

(100,10) (i)

us-bcsvm 48.3(10.85) 48.58(11.83) 47.32(5.50) 2 998
DROAD 1.80(4.23) 88.66(20.70) 4.49(8.31) 2 861.50
HR 18.42(8.24) 42.38(24.65) 25.08(9.02) 1 0.50
US-HR 36.94(14.20) 37.1(13.93) 35.91(10.47) 1 0
BLDA 15.64(8.56) 50.18(26.11) 24.00(9.47) 1 2
BAI 29.92(10.65) 39.64(16.46) 33.37(10.74) 1 14.5
LOUI 27.04(10.72) 36.04(17.31) 29.95(10.71) 1 7
Msplit-HR 31.46(11.87) 29.1(15.09) 29.14(11.13) 1 0

(100,10) (ii)

us-bcsvm 44.52(10.96) 44.74(10.91) 43.52(5.09) 9 991
DROAD 3.28(4.47) 38.90(20.50) 6.74(6.38) 1 31.5
HR 10.18(6.08) 27.96(18.17) 14.07(6.17) 2 0
US-HR 24.28(11.97) 24.48(12.20) 22.97(8.76) 1 0
BLDA 10.06(6.06) 28.26(18.13) 14.25(6.17) 2 1
BAI 17.32(9.01) 20.94(14.02) 17.39(8.37) 3 3
LOUI 16.08(8.97) 21.32(13.90) 17.06(8.32) 3 3
Msplit-HR 18.64(9.41) 18.04(11.09) 16.84(8.28) 2 0
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are outperformed by the other methods in terms of the error rate in the minority
class. In addition, while bai and loui’s performances in terms of the error rates
in the minority class are comparable to our proposed method Msplit-hr; the
former are slower in terms of computational time.

Table 3

Average computational time (in seconds) taken by a method to complete per-sample results:
Simulation setting (i).

(n1, n2, p) us-bcsvm DROAD HR US-HR BLDA BAI LOUI Msplit-HR
(25,5,1000) 2.8 21.73 0.9 4.66 1.05 6 6.39 9.27
(50,10,1000) 5.12 30.77 1.47 19.98 3.53 58 260 92
(100,10,1000) 4.76 35.00 5.43 42.22 11.20 421 365 185
(25,5,3000) 7.5 97.58 1.13 9.05 1.75 14.72 13.83 19.63
(50,10,3000) 12.38 146.17 4.40 62.54 12.24 225 219 282
(100,10,3000) 10.67 141.82 19.90 169.97 29.34 1517 2294 1200

5.2. General Σ

We considered the same binary classification problem as in Section 5.1, i.e.
X|(Y = k) ∼ Np(μk,Σ), k = 1, 2, but with a general non-diagonal Σ. We
generated training data with different class sizes n1 and n2, and test data sets
of sizes 50 in both classes. The simulation results are based on 100 randomly
generated data sets. The parameter settings are:

(iii) μ1 = 0p, μ�
2 = (1, 0.5 ∗ 1�

5 , 0.1 ∗ 1�
5 ,0

�
p−11), (Σ)ij = 0.8, for i 	= j,

(Σ)ii = 4, for i = 1, ..., p and Δ2
p = 0.71.

(iv) μ1 = 0p, μ
�
2 = (1,0�

4 , 0.1,0
�
p−6), Σ =

[
Σ1 0

Σ2

0
. . .

]
, where (Σ1)ij = 0.3,

and (Σ2)ij = 0.8, for i 	= j, (Σ1)ii = (Σ2)ii = 1, for i = 1, ..., 5 and
Δ2

p = 1.27.

In what follows, using the same performance measures described in Section 5.1,
we compare these methods: fair, slda, road, Msplit-hr, a binary version of
the pairwise sure independent screening (psis) method by [29], bias adjusted
road (ba-road) and leave-one-out road (lou-road) by [3], and us-bcsvm

mentioned in Section 5.1. For the fair, road, ba-road, lou-road, we used
the techniques based on cross-validation described in the related papers for
selecting tuning parameters. We applied the bi-section method of [22] for tuning
parameter selection in slda by minimizing the MCR of the minority class (called
sldamcr2 , in the tables).

All the aforementioned methods provide sparse estimates, say β̂, of the vec-
tor β = (βj : 1 ≤ j ≤ p)� = Σ−1μd by either plugging in particular sparse
estimates of μd and Σ, or by directly finding sparse estimate of β. Thus, in our
simulation results for each method, we also report the number of j’s for which
β̂j 	= 0, denoted by S in the tables. For Msplit-hr, we report the cardinality

of the set Sn = {1 ≤ j ≤ p :
fj
L ≥ 0.5}, where fj is the selection frequency
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corresponding to index j over the splits 
 = 1, ...,L. Table 4 contains the sim-
ulation results for (n1, n2, p) = (25, 5, 200), (50, 10, 200) and (100, 10, 200), and
the results for the dimension p = 500 are given in the Table 5.

5.2.1. Discussion of the results

From Tables 4 and 5, under both settings (iii) and (iv), we can see that fair,
slda, psis and road tend to classify more observations to the majority class,
and resulting in large differences between the two MCRs. Overall, the techniques
us-bcsvm, ba-road, lou-road and Msplit-hr perform better than fair, slda,
psis and road in terms of MCR2 and the geometric mean. For the setting (iii),
in the case (n1, n2) = (25, 5), Msplit-hr outperforms others, and in the cases,
(n1, n2) = (50, 10) and (100, 10), the us-bcsvm and lou-road have better
performance than others; for example, when (n1, n2) = (100, 10), lou-road
outperforms Msplit-hr about 4%. For the setting (iv), Msplit-hr outperforms
all the other techniques in terms of MCR2; for example outperforms bc-svm and
lou-road respectively up to about 10% and 12% depending on the values of
(n1, n2, p). Moreover, this performance of Msplit-hr is based on a much smaller
set of selected features compared to its competitors. In summary, Msplit-hr has
better performance in the setting (iv) which includes more features with weak
signals than (iii).

Next, we assess the computational efficiency of different methods by studying
the average computational time (in seconds) taken by each method to complete
per-sample results, which are given in Table 6. We can see that psis is the
fastest method followed by fair and us-bcsvm. However, as seen above, these
methods do not perform well in terms of the MCRs. As mentioned before, us-
bcsvm is computationally fast, since it does not involve any feature selection
step. The slda is slower than the Msplit-hr when the dimension p is increased
from p = 200 to 500. On the other hand, Msplit-hr is computationally more
efficient than its two competitors ba-road and lou-road. Note that, for a
fixed value of tuning parameter, the computational complexity of ba-road and
lou-road is O(n2p2), and that of Msplit-hr is O(np2). Therefore, even without
a tuning selection procedure, our technique has lower computational cost.

In summary, given the difficulty of the imbalanced problem, our current simu-
lation study shows that (considering all the three factors: misclassification rates,
feature selection, and computational efficiency) Msplit-hr has a good perfor-
mance compared to the methods discussed here, and is yet another reliable
technique for high-dimensional imbalanced problems.

6. Real-data analysis

We now demonstrate the performance of different methods on two real data
sets. 2

2Both data sets are publicly available from the R package datamicroarray [37], and are
available at <https://github.com/>.

<https://github.com/>
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Table 4

Classification results for the simulation settings (iii)-(iv) with a general Σ and p = 200.

(n1, n2) Setting Methods MCR1% MCR2% GM% S

(25,5) (iii)

us-bcsvm 46.26(15.97) 51.22(15.50) 46.20(6.30) 200
FAIR 23.22(9.64) 78.56(10.26) 40.53(8.04) 6.87
SLDAmcr2 42.04(14.38) 57.38(14.87) 47.02(6.55) 147.07
PSIS 31.56(9.44) 66.98(10.51) 45.02(6.21) 1
ROAD 15.47(8.03) 82.67(8.87) 34.16(6.89) 26.17
BA-ROAD 48.20 (12.51) 48.91(12.36) 46.83(4.55) 56.45
LOU-ROAD 48.07(12.27) 49.03(12.40) 46.97(2.55) 54.09
Msplit-HR 53.58(15.06) 45.76(16.23) 47.12(6.65) 4

(25,5) (iv)

us-bcsvm 49.96(15.76) 46(15.44) 45.39(5.62) 200
FAIR 20.96(8.00) 76.38(10.82) 38.83(6.85) 8.07
SLDAmcr2 37.18(14.30) 60.74(14.84) 45.31(7.84) 124.39
PSIS 30.02(9.15) 62.52(16.16) 42.17(8.64) 1
ROAD 15.77(7.24) 78.93(11.66) 33.94(6.09) 24.38
BA-ROAD 46.52(15.06) 46.63(16.65) 43.92(7.17) 48.53
LOU-ROAD 46.34(15.79) 46.22(17.97) 43.17(7.63) 47.26
Msplit-HR 52.32(18.66) 43.02(18.51) 43.77(7.92) 4.5

(50,10) (iii)

us-bcsvm 46.34(11.67) 48.88(12.77) 46.27(5.25) 200
FAIR 28.98(8.96) 69.1(8.95) 43.96(6.76) 6
SLDAmcr2 44.5(11.65) 55.84(12.40) 48.57(5.37) 195
PSIS 37.96(8.26) 60.72(8.67) 47.47(5.54) 1
ROAD 19.98(8.79) 77.54(9.02) 38.07(7.11) 44
BA-ROAD 48.36(14.40) 48.50(14.15) 45.99(9.29) 53.50
LOU-ROAD 47.38(11.90) 49.14(12.19) 46.99(6.34) 53
Msplit-HR 50.76(13.85) 47.64(12.15) 47.65(6.11) 3

(50,10) (iv)

us-bcsvm 47.88(11.98) 48.42(12.55) 46.76(5.53) 200
FAIR 23.98(8.65) 64.5(12.53) 38.33(7.57) 6
SLDAmcr2 37.5(13.23) 54.58(16.77) 43.61(9.53) 189.5
PSIS 32.16(8.79) 51.04(17.23) 39.64(9.48) 1
ROAD 21.68(9.25) 64.44(18.71) 35.45(7.40) 19.50
BA-ROAD 37.82(13.06) 44.74(15.80) 39.00(10.23) 26
LOU-ROAD 39.74(12.51) 42.46(13.50) 39.80(8.27) 27
Msplit-HR 44.62(13.96) 40.1(14.25) 40.77(8.48) 1

(100,10) (iii)

us-bcsvm 46.54(11.31) 48.46(12.50) 46.19(5.04) 200
FAIR 26.08(7.63) 70.62(7.94) 42.27(6.27) 6.68
SLDAmcr2 47.24(13.75) 54.18(12.48) 49.09(6.46) 169.26
PSIS 36.06(8.41) 63(8.95) 46.52(6.62) 1.01
ROAD 11.16(6.67) 86.04(8.46) 29.49(7.64) 71.70
BA-ROAD 44.50(13.57) 50.94(13.67) 45.40(8.71) 85.41
LOU-ROAD 44.62(10.18) 42.44(9.37) 42.79(6.12) 66.22
Msplit-HR 50.42(15.15) 46.46(14.43) 46.22(6.99) 11.45

(100,10) (iv)

us-bcsvm 47.76(12.15) 47.26(12.50) 46.03(5.56) 200
FAIR 22(7.97) 67.54(11.80) 37.63(7.61) 8.03
SLDAmcr2 34.2(11.71) 50.54(17.12) 40.03(8.67) 96.77
PSIS 31.36(8.13) 47.58(18.24) 37.74(9.75) 1
ROAD 11.16(6.67) 86.04(8.46) 29.49(7.64) 71.70
BA-ROAD 44.50(13.57) 50.96(13.67) 45.39(8.71) 85.41
LOU-ROAD 44.12(12.27) 50.54(11.72) 45.84(5.82) 97
Msplit-HR 45.86(17.28) 37.6(14.92) 39.19(8.68) 9.25
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Table 5

Classification results for the simulation settings (iii)-(iv) with a general Σ and p = 500.

(n1, n2) Setting Methods MCR1% MCR2% GM% S

(25,5) (iii)

us-bcsvm 49.18(17.81) 50.46(17.69) 46.39(8.47) 500
FAIR 20.48(8.72) 79(8.91) 38.79(8.29) 8.91
SLDAmcr2 44.84(15.58) 54.56(16.11) 46.97(5.57) 350.18
PSIS 23.22(9.64) 75.68(10.26) 40.53(8.05) 6
ROAD 12.01(8.27) 87.16(8.70) 30.21(8.08) 30.79
BA-ROAD 44.63(13.74) 53.71(14.30) 45.01(9.74) 57.49
LOU-ROAD 45.82(12.19) 52.32(12.41) 47.40(2.84) 69.18
Msplit-HR 55.96(16.92) 44.58(17.43) 46.77(7.11) 3

(25,5) (iv)

us-bcsvm 48.9(15.18) 47.66(13.96) 46.17(5.45) 500
FAIR 15.1(8.91) 84.08(8.87) 33.15(10.97) 13.38
SLDAmcr2 41.04(15.56) 58.3(15.45) 46.52(7.29) 315.96
PSIS 30.26(9.52) 65.9(13.01) 43.60(7.70) 1
ROAD 12.50(8.10) 85.07(10.66) 30.67(7.51) 27.82
BA-ROAD 48.07(13.10) 48.40(14.23) 46.20(6.71) 60.06
LOU-ROAD 48.47(13.37) 47.48(14.94) 45.97(5.10) 59.19
Msplit-HR 53.06(17.66) 43.16(17.54) 44.50(8.83) 2

(50,10) (iii)

us-bcsvm 48.46(12.44) 48.64(14.25) 46.94(5.82) 500
FAIR 26.1(8.65) 72.12(8.35) 42.48(6.57) 9
SLDAmcr2 43.76(12.28) 55.18(11.98) 47.78(5.51) 493.5
PSIS 35.44(8.02) 63.02(9.33) 46.67(5.37) 1
ROAD 14.10(9.43) 83.70(11.63) 31.80(9.44) 59.50
BA-ROAD 48.32(14.03) 49.66(12.68) 47.15(7.68) 64.50
LOU-ROAD 48.18(13.51) 48.26(12.33) 46.71(6.01) 68
Msplit-HR 50.06(15.67) 48.26(14.52) 46.91(5.78) 1

(50,10) (iv)

us-bcsvm 49.04(10.87) 49.28(11.96) 48.01(5.56) 500
FAIR 17.38(6.91) 76.14(10.84) 35.41(7.35) 13.5
SLDAmcr2 38.58(13.19) 51.14(14.79) 42.98(9.05) 473
PSIS 32.02(8.58) 54.56(17.60) 40.97(9.69) 1
ROAD 15.46(9.32) 73.56(19.75) 30.97(7.64) 38.50
BA-ROAD 42.20(13.08) 44.26(15.04) 41.40(8.97) 38
LOU-ROAD 42.60(13.97) 43.16(14.41) 41.25(8.55) 47
Msplit-HR 46.4(14.65) 40.7(15.10) 41.55(8.81) 1

(100,10) (iii)

us-bcsvm 47.96(11.92) 49.98(13.98) 47.47(5.67) 500
FAIR 23.91(8.31) 74.6(7.48) 41.28(7.55) 8.22
SLDAmcr2 44.28(12.54) 54.34(12.45) 47.61(5.27) 403.99
PSIS 33.32(7.73) 65.48(8.83) 46.24(5.87) 1.01
ROAD 4.60(3.47) 94.60(4.99) 19.02(8.42) 96.49
BA-ROAD 45.40(13.39) 51.16(14.24) 45.90(8.21) 105.05
LOU-ROAD 46.24(8.52) 43.12(10.44) 43.99(6.11) 103.05
Msplit-HR 51.76(14.45) 46(14.62) 46.61(6.55) 5.67

(100,10) (iv)

us-bcsvm 48.72(11.81) 48.94(12.06) 47.65(5.53) 500
FAIR 15.1(7.41) 79.42(9.89) 33.09(8.62) 17.18
SLDAmcr2 36.98(12.42) 53.58(14.94) 43.12(9.01) 226.33
PSIS 30.28(7.57) 54.96(18.29) 39.94(9.12) 1.01
ROAD 4.64(3.47) 94.60(4.99) 19.02(8.42) 96.49
BA-ROAD 45.40(13.39) 51.16(14.24) 45.90(8.21) 105.05
LOU-ROAD 45.64(13.15) 49.18(12.87) 45.79(5.82) 107.80
Msplit-HR 43.52(12.21) 44.02(14.34) 42.38(8.26) 5.74
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Table 6

Average computational time (in seconds) taken by a method to complete per-sample results:
Simulation setting (iv).

(n1, n2, p) us-bcsvm FAIR SLDAmcr2 PSIS ROAD BA-ROAD LOU-ROAD Msplit-HR
(25,5,200) 1.91 1.75 8.75 0.28 50.23 110.34 59.93 11.42
(50,10,200) 1.48 4.73 25.71 4.11 66.00 192.10 189.86 39.31
(100,10,200) 1.86 5.56 66.46 3.06 120.93 468.02 443.23 114.44
(25,5,500) 3.00 29.3 80.05 0.41 204.52 254.64 184.99 16.4
(50,10,500) 3.01 27.09 234.35 3.00 272.15 483.82 477.45 62.23
(100,10,500) 3.58 29.66 451.75 3.61 219.95 974.34 1084.75 176.65

Table 7

Classification results for Breast Cancer data set. S denotes the median number of selected
features.

Σ Methods MCR1% MCR2% GM% S

Diagonal

DROAD 19.62(10.20) 46.31(13.38) 28.72(7.77) 201.50
HR 16.82(6.70) 46.72(10.24) 27.08(5.98) 26
US-HR 20.67(7.58) 39.79(9.78) 27.93(6.10) 32
BLDA 16.8(6.14) 45.59(10.86) 26.78(5.63) 35
BAI 22.24(7.09) 37(10.08) 27.83(5.40) 99
LOUI 22.65(7.05) 37.03(10.82) 28.06(5.20) 83.5
Msplit-HR 20.96(7.00) 39.56(10.74) 27.83(5.19) 6

General

us-bcsvm 19.78(5.74) 34.79(10.01) 25.50(4.24) 1500
FAIR 16.24(5.54) 45.41(9.31) 26.43(4.95) 22
SLDAmcr2 22.91(12.32) 47.76(12.19) 31.58(9.17) 1500
PSIS 27.47(14.62) 46.17(15.30) 33.77(9.85) 1
ROAD 19.51(10.03) 47.41(13.81) 28.96(7.26) 25
BA-ROAD 22.16(5.95) 38.83(9.72) 28.62(4.24) 51.50
LOU-ROAD 22.16(5.90) 38.10(9.84) 28.37(4.32) 56.50
Msplit-HR 24.11(8.85) 40.55(10.76) 30.35(6.50) 5

The first data set, on breast cancer [17], consists of the expression profiles of
2905 genes for 168 patients of whom 111 patients with no event after diagnosis
were labelled as “good” and the remaining 57 patients with early metastasis were
labelled as “poor”. In our analysis, we randomly split the data into training data
of sizes 56 and 28 of respectively good cases (the majority Class 1) and poor cases
(the minority Class 2). The rest of the data is used for testing. The classification
results, under the assumptions of (a) uncorrelated and (b) correlated features,
are given in Table 7. Under (a), the results suggest that bai, loui, Msplit-hr,
and us-hr have comparable performance, with bai and loui performing slightly
better than the other two in terms of the MCR of the minority class (MCR2).
Under (b), ba-road, lou-road, and Msplit-hr perform similar in terms of the
MCRs. us-bcsvm has smaller MCRs compared to the others but by using the
set of all features as it is not able to perform any feature selection. Note that
in both cases, Msplit-hr selects a much smaller number of features toward the
classification task.

The second data set, on multiple-myeloma cancer [39], consists of the expres-
sion profiles of 12, 2625 genes for 173 patients with newly diagnosed multiple-
myeloma, of whom 137 were with bone lytic lesions and the remaining 36 pa-
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Table 8

Classification results for Myeloma Cancer data set. S denotes the median number of
selected features.

Σ Methods MCR1% MCR2% GM% S

Diagonal

DROAD 26.03(11.29) 49.33(10.30) 34.93(8.58) 5
HR 25.94(11.60) 57.78(11.92) 37.43(8.47) 19
US-HR 41.6(9.74) 41(12.75) 40.17(6.66) 92.5
BLDA 25.58(9.10) 53.28(11.23) 35.89(6.36) 11
BAI 34.31(10.44) 44.17(13.20) 37.50(5.98) 30
LOUI 35.14(10.54) 44.39(11.35) 38.26(5.95) 27.5
Msplit-HR 38.18(13.68) 41.94(14.37) 37.89(7.51) 7

General

us-bcsvm 53.78(27.56) 39.44(28.32) 46.06(18.47) 1500
FAIR 27.92(7.64) 49.56(11.16) 36.50(6.15) 14
SLDAmcr2 28.83(9.79) 47.22(10.34) 36.18(7.59) 13
PSIS 31.42(15.24) 50.11(10.33) 38.43(10.72) 1
ROAD 26.01(10.27) 53.22(10.63) 36.47(8.13) 7.50
BA-ROAD 34.01(13.75) 43.17(13.92) 35.52(9.38) 20
LOU-ROAD 33.74(9.63) 42.78(10.67) 38.05(6.43) 23.50
Msplit-HR 34.74(11.84) 42.61(11.66) 37.27(7.16) 6

tients were without bone lytic lesions. We randomly choose a training set con-
taining 18 observations from patients labelled by MRI-no-lytic-lesion (the mi-
nority Class 2), and 72 observations from patients labelled by MRI-lytic-lesion
(the majority Class 1). The rest of the data were used for testing. Table 8 con-
tains the classification results under the aforementioned assumptions (a) and
(b). Under (a), the results show that Msplit-hr and us-hr outperform the other
methods in terms of the error rate in the minority class, MCR2. In addition,
Msplit-hr outperforms us-hr in terms of the error rate in the majority class,
MCR1. Under (b), the three methods ba-road, lou-road, and Msplit-hr per-
form similar in terms of the MCRs. For this data set, the overall performances of
the aforementioned three methods are better than us-bcsvm. Note that in both
cases, Msplit-hr selects a smaller number of features toward the classification
task.

To reduce the computational cost of each method, and by using a t-statistic,
we screened the initial number of features in each of the above data sets by
selecting a subset of p = 1500 genes.

7. Conclusion

In this paper, we have studied linear discriminant analysis (LDA) in high-
dimensional imbalanced binary classification. To the best of our knowledge, this
is the first work that rigorously investigates such problems which frequently
arise in a wide range of applications.

First, we showed that in the aforementioned settings the standard LDA
asymptotically ignores the so-called minority class. Second, using a multiple
data splitting technique, we proposed a new method, called Msplit-hr, that
obtains desirable large-sample properties. Third, we derived conditions under
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which two well-known sparse versions of the LDA in our setting obtain certain
desirable large-sample properties. We then examined the finite-sample perfor-
mance of different methods via simulations and by analyzing two real data sets.
In our simulations, the Msplit-hr either outperforms competing methods or has
comparable performance in terms of misclassification rate in the minority class,
while it has a lower computational cost.

The methodology (Msplit-hr) and theory developed in this paper are based
on normal distribution for the feature vector X. The normality is used for bias
calculations in Propositions 3.1-3.2, and to establish feature selection consis-
tency in Lemmas 3.1-3.2. On the other hand, [11] showed that feature selection
methods based on mean-differences are sensitive to heavy-tailed distributions
for X, and they suggested transformation approaches in feature space which are
more resistant to extreme observations from heavy-tailed distributions. Proper-
ties of such transformations with respect to our theoretical guidelines, and in
general, extension of our results to non-normal models require further investi-
gation and is a topic of future research.

If the covariance matrix differs between the two classes, i.e. X|(Y = k) ∼
N(μk,Σk), k = 1, 2, the optimal (Bayes) rule is the quadratic discriminant
analysis (QDA). Our limited numerical experiment shows that the QDA in im-
balanced high-dimensional problems behaves similarly to the LDA ignoring the
minority class. A potential approach to alleviate the impact of imbalanced class
sizes is to reduce the difference between MCRs of an empirical QDA toward
that of the optimal rule. However, the main challenge is that none of the afore-
mentioned MCRs have workable closed forms. [22] studied such differences for
sparse QDA, and their results might be useful toward imbalanced problems in
the context of QDA. This, however, requires a careful investigation and is a
subject of future work.

Another possible future research direction is to investigate the possibility of
extending the methodology and theory developed in this paper to imbalanced
multi-class classification problems.

Appendix A: Technical lemmas

In this Appendix, we first state the technical conditions (C1)-(C3) required in
our theoretical developments. Next, we state several lemmas that are used in
the proofs of our main results. Lemmas A.1 and A.2 are from [6] and [38].
Lemmas A.3-A.5 are the results from other papers adapted to the imbalanced
setting under our consideration. Lemma A.6 states an upper bound for the tail
of Student’s t-distribution.

Technical Conditions:

(C1) log p = o(n1), where n1 is the majority class size.
(C2) 0 < c−1

0 < λmin(Σ) ≤ λmax(Σ) < c0 < ∞, for a constant c0 > 0.
(C3) 0 < c−1

0 < maxj=1,...,p μ
2
dj < c0 < ∞, where μd = μ2 − μ1.
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Lemma A.1. [6, Lemma A.3] Let Zi be independent and identically random
variables from Np(0,Σ) and λmax(Σ) ≤ ε−1

0 < ∞. Then,

P

(
|

n∑
i=1

(ZijZik − σjk) |> nν

)
≤ C1 exp(−C2nν

2) for all |ν| ≤ δ

where σjk’s are entries of Σ, and C1, C2, and δ depend on ε0 only.

Lemma A.2. [38, Lemma 1] Let ξn and νn be two sequence of positive numbers
such that ξn → ∞ and νn → 0 as n → ∞. If limn→∞ ξnνn = γ, where γ may
be 0, positive or ∞, then

lim
n→∞

Φ(−
√
ξn(1− νn))

Φ(−
√
ξn)

= eγ .

Lemma A.3. Denote the sets

Uτ (h, c0(p),M) =

{
Σ : σii ≤ M,

p∑
j=1

|σij |h ≤ c0(p), ∀i, 0 ≤ h < 1

}
,

Uτ (h, c0(p),M, ε0) =

{
Σ : Σ ∈ Uτ (h, c0(p),M), λmin(Σ) ≥ ε0 > 0

}
.

Let Σ̃n be a thresholded version of the pooled sample covariance matrix Σ̂n in

(2.5), such that σ̃ij = (1 − 2/n)σ̂ij1{(1 − 2/n)|σ̂ij | > tn}, with tn = M1

√
log p
n

and some positive constant M1. Then uniformly on Uτ (h, c0(p),M), and for
sufficiently large M1, under the Condition (C3) and n2 = o(n1), as n1, n2 → ∞,
then

‖ Σ̃n −Σ ‖= Op

(
c0(p) (log p/n1)

1−h
2

)
,

and uniformly on Uτ (h, c0(p),M, ε0),

‖ Σ̃
−1

n −Σ−1 ‖= Op

(
c0(p) (log p/n1)

1−h
2

)
.

Proof. The proof is a straight forward extension of Theorem 1 of [5] to imbal-
anced case, and thus omitted here. �
Lemma A.4. Let Xik = (Xi1k, ..., Xipk)

�, for i = 1, ..., nk, and k = 1, 2,
be random samples from p-variate normal distribution with mean vector 0 and
diagonal covariance matrix D = diag{σ2

1 , ..., σ
2
p}. If the Conditions (C1) and

(C2) are satisfied and n2 = o(n1), then as n1, n2 → ∞, we have

max
1≤j≤p

| σ̂2
j − σ2

j |= Op(
√

(log p)/n1),

where σ̂2
j , j = 1, . . . , p, are the diagonal elements of the pooled sample variance

Σ̂n in (2.5).
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Proof. Let Xjk = 1
nk

∑nk

i=1 Xijk, for k = 1, 2, j = 1, ..., p. We have,

Pr

(
max
1≤j≤p

| σ̂2
j − σ2

j |> η

)
≤

p∑
j=1

Pr
(
| σ̂2

j − σ2
j |> η

)
≤

2∑
k=1

p∑
j=1

Pr

(
1√
nk

|
nk∑
i=1

(X2
ijk − σ2

j ) |>
1√
nk

η

4
(n1 + n2 − 2)

)

+

2∑
k=1

p∑
j=1

Pr
(
| nkX

2

jk − σ2
j |> η

4
(n1 + n2 − 2)

)

≤
2∑

k=1

pC1 exp

{
− C2

η2

16

(n− 2)2

nk

}
+ pC3 exp

{
− C4

η2

16
(n− 2)2

}
for |η| < δ, where C1, C2, C3, C4, and δ are constants depending only on c0.
The last inequality follows from Lemma A.1. By taking η = M

√
log p/n1, for

sufficiently large M > 0, under the imbalanced setting and the Condition (C1),
the result holds. �
Lemma A.5. Under conditions of Lemma 3.2 and the imbalanced setting n2 =
o(n1), assume that mmax

√
log p/n1 = o(1). Then for 
 = 1, . . . ,L, as long as

n1, n2 → ∞,

‖ Σ̃n,� −Σ� ‖= Op

(
mmax

√
log p/n1

)
.

where Σ̃n,� = [σ̂
(2)
jj′,� : j, j′ ∈ S(1)

n,�] and Σ� = [σjj′ : j, j′ ∈ S(1)
n,�].

Proof. Note that if A = [ajj′ ] be a symmetric p × p matrix then ‖ A ‖≤
maxj′

∑p
j=1 |ajj′ |. Thus, the result is implied by

Pr

(
max
j∈S(1)

n,�

∑
j′∈S(1)

n,�

|σ̂(2)
jj′,�−σjj′ | > η

)
≤

∑
j,j′∈S(1)

n,�

Pr

(
|σ̂(2)

jj′,�−σjj′ | >
η

mmax

)
(A.1)

where mmax = c1|S|(maxj∈S β2
j )/d

2
0,n. The inequality follows from part (ii) of

Lemma 3.2. Let μk,� = [μjk : j ∈ S(1)
n,�], Zijk,� = Xijk,� − μjk,�, and Z̄jk,� =∑n′

k
i=1 Xijk,�/n

′
k, where Xijk,� ∈ D(2)

n,�, for i = 1, ..., n′
k, j = 1, ..., p, k = 1, 2, and


 = 1, ...,L, where Xik,� ∼ Np(μk,�,Σ�). For the first probability term in (A.1),
we have

Pr

(
|σ̂(2)

jj′,� − σjj′ | >
η

mmax

)
≤

2∑
k=1

Pr

(∣∣∣∣ n′
k∑

i=1

Zijk,�Zij′k,� − n′
kZ̄jk,�Z̄j′k,� − (n′

k − 1)σjj′

∣∣∣∣ > (n′ − 2)η

mmax

)

≤
2∑

k=1

{
Pr

(∣∣∣∣ n′
k∑

i=1

Zijk,�Zij′k,� − n′
kσjj′

∣∣∣∣ > (n′ − 2)η

mmax

)
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+Pr

(
|n′

kZ̄jk,�Z̄j′k,� − σjj′ | >
(n′ − 2)η

mmax

)}
.

Finally, using Lemma A.1,∑
j,j′∈S(2)

n,t

Pr

(
|σ̂(2)

jj′,� − σjj′ | >
η

mmax

)

≤
2∑

k=1

C1p
2 exp

{
− C2

(n− 2)2η2

m2
maxnk

}
+ C ′

1p
2 exp

{
− C ′

2

(n− 2)2η2

m2
max

}
,

where C1, C
′
1, C2, C

′
2 are some positive constants. If mmax

√
log p/n1 = o(1) and

by taking η = M × mmax

√
log p/n1, for sufficiently large M > 0, the desired

result is obtained. �
Lemma A.6. Suppose that T has the Student’s t-distribution with n > 1 degrees
of freedom. Then, for any large constant τ > 0, we have

Pr(T > τ) ≤ cn
τ

n

n− 1

(
1 +

1

n
τ2
)−n−1

2

,

where cn =
Γ(n+1

2 )

Γ(n
2 )

√
nπ

, and Γ(.) is the gamma function.

Proof. For any τ > 0,

Pr(T > τ) =

∫ ∞

τ

cn

(1 + x2

n )
n+1
2

dx <

∫ ∞

τ

x

τ

cn

(1 + x2

n )
n+1
2

dx

=
cn
τ

n

n− 1

(
1 +

1

n
τ2
)−n−1

2

.

The result follows from the facts that τ > 0 and τ < x < ∞. �

Appendix B: Proofs of the main results

In this Appendix, we provide the proofs of Theorems 2.1-4.2.

Proof of Theorem 2.1. Let εεεik = Xik − μk, for i = 1, ..., nk, and k = 1, 2,
where Xik = (Xi|Yi = k) ∼ Np(μk,Σ), and the vectors ε̄εεk = (ε̄1k, ε̄2k, ..., ε̄pk)

�

with entires ε̄jk = 1
nk

∑nk

i=1 εijk. Also, recall Δ
2
p = μ�

d Σ
−1μd and μd = μ2−μ1.

The quantities Ψlda

1 (θ̂θθn), Ψ
lda

2 (θ̂θθn), and Υlda(θ̂θθn) in (2.6) can be decomposed as

Ψlda

1 (θ̂θθn) = (μ1 − μ̂μμa)
�Σ−1(μ̂μμ2 − μ̂μμ1)

=
1

2
(−ε̄εε2 − ε̄εε1 − μd)

�Σ−1(ε̄εε2 − ε̄εε1 + μd)

=
1

2

{
ε̄εε�1 Σ

−1ε̄εε1 − ε̄εε�2 Σ
−1ε̄εε2 − 2ε̄εε�2 Σ

−1μd − μ�
d Σ

−1μd

}
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=
1

2

{
I1 − I2 − 2I3 − μ�

d Σ
−1μd

}
,

Ψlda

2 (θ̂θθn) = −(μ2 − μ̂μμa)
�Σ−1(μ̂μμ2 − μ̂μμ1)

= −1

2
(−ε̄εε2 − ε̄εε1 + μd)

�Σ−1(ε̄εε2 − ε̄εε1 + μd)

= −1

2

{
−ε̄εε�2 Σ−1ε̄εε2 + ε̄εε�1 Σ

−1ε̄εε1 − 2ε̄εε�1 Σ
−1μd + μ�

d Σ
−1μd

}
=

1

2

{
I2 − I1 + 2I4 − μ�

d Σ
−1μd

}
,

and

Υlda(θ̂θθn) = (μ̂μμ2 − μ̂μμ1)
�Σ−1ΣΣ−1(μ̂μμ2 − μ̂μμ1)

= (ε̄εε2 − ε̄εε1 + μd)
�Σ−1(ε̄εε2 − ε̄εε1 + μd)

= (ε̄εε2 − ε̄εε1)
�Σ−1(ε̄εε2 − ε̄εε1) + 2(ε̄εε2 − ε̄εε1)

�Σ−1μd + μ�
d Σ

−1μd

= I5 + 2I6 + μ�
d Σ

−1μd.

We first show that

I1 = ε̄εε�1 Σ
−1ε̄εε1 = p/n1 + op(

√
p/n1).

Note that ε̄εε1 ∼ Np(0, n
−1
1 Σ). By Chebyshev’s inequality, for any τ > 0,

Pr

(√
n1

p
| I1 −

p

n1
|> τ

)
≤ 1

τ2
V ar{I1.

√
n1/p}.

This together with the fact that V ar{I1.
√

n1/p} → 0, when n1, n2 → ∞ such

that n2 = o(n1), implies that I1 = p/n1 + op(
√

p/n1). Similarly, we have

I2 = p/n2 + op(
√

p/n2) , I3 = ε̄εε�2 Σ
−1μd = Op

(√
Δ2

p/n2

)
,

I4 = ε̄εε�1 Σ
−1μd = Op

(√
Δ2

p/n1

)
,

I5 = (ε̄εε2 − ε̄εε1)
�Σ−1(ε̄εε2 − ε̄εε1) =

√
np

n1n2
op(1) +

np

n1n2
,

and

I6 = (ε̄εε2 − ε̄εε1)
�Σ−1μd = Op

(√
n

n1n2
Δ2

p

)
.

By combining the above results, we have

Ψlda

1 (θ̂θθn)√
Υlda(θ̂θθn)

=
I1 − I2 − 2I3 −Δ2

p

2
{
I5 + 2I6 +Δ2

p

}1/2
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=

p
n1

+ op(
√
p/n1)− p

n2
+ op(

√
p/n2) +Op(

√
Δ2

p/n2)−Δ2
p

2
{√

np
n1n2

op(1) +
np

n1n2
+Op(

√
nΔ2

p/n1n2) + Δ2
p

}1/2

=
−
√

p
n2

(1− n2

n1
) + op(

√
n2/n1) +Op(

√
Δ2

p/p)−
√

n2

p Δ2
p

2
{
1 + op(

√
n2/p) +Op(

√
n2Δ2

p/p) + n2Δ2
p/p
}1/2

and

Ψlda

2 (θ̂θθn)√
Υlda(θ̂θθn)

=
I2 − I1 + 2I4 −Δ2

p

2
{
I5 + 2I6 +Δ2

p

}1/2
=

p
n2

− p
n1

+ op(
√

p/n2) + op(
√

p/n1) +Op(
√
Δ2

p/n1)−Δ2
p

2
{√

np
n1n2

op(1) +
np

n1n2
+Op(

√
nΔ2

p/n1n2) + Δ2
p

}1/2

=

√
p
n2

(1− n2

n1
) + op(

√
n2/n1) +Op(

√
n2Δ2

p/pn1)−
√

n2

p Δ2
p

2
{
1 + op(

√
n2/p) +Op(

√
n2Δ2

p/p) + n2Δ2
p/p
}1/2

.

Since
√

n2

p Δ2
p = o(1), as long as n1, n2 → ∞, thus we obtain

Ψlda

1 (θ̂θθn)√
Υlda(θ̂θθn)

p−→ −∞,
Ψlda

2 (θ̂θθn)√
Υlda(θ̂θθn)

p−→ +∞.

Hence, Πlda

1 (Dn)
p−→ 0 and Πlda

2 (Dn)
p−→ 1, which completes the proof. �

Proof of Lemma 3.1. (a) Note that

Pr

( ⋂
j �∈S

{|tj | ≤ τn}
)

= 1− Pr

(
max
j �∈S

|tj | > τn

)
.

By Lemma A.6 of the Appendix A, with cn =
Γ(n−1

2 )

Γ(n−2
2 )

√
(n−2)π

, we have

Pr

(
max
j �∈S

|tj | > τn

)
≤

∑
j �∈S

Pr

(
|tj | > τn

)

≤ (p− s)
n− 2

n− 3

cn
τn

(
1 +

1

n− 2
τ2n

)−n−3
2

:= u(n1, n2, p− s, τn),

where n = n1 + n2. The last inequality follows from the upper bound described
in Lemma A.6, for the tail of a Student’s t-distributed random variable, with
n− 2 degrees of freedom. Since n2 = o(n1) as n1, n2 → ∞, we then obtain

u(n1, n2, p− s, τn) ∼
p− s

τn

(
1 +

1

n1
τ2n

)−n1
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and hence, as n1 → ∞,

u(n1, n2, p− s, τn) ∼
p− s

τn
e−τ2

n .

Since log(p−s) = o(τ2n), therefore Pr(maxj �∈S |tj | > τn) → 0, and this completes
the proof.

(b) Note that

Pr

( ⋂
j∈S

{|tj | > τn}
)

= Pr

(
min
j∈S

|tj | > τn

)
= 1− Pr

(
min
j∈S

|tj | ≤ τn

)
.

Let t̃j = tj − μdj

σ̂j

√
n/n1n2

. We have

Pr

(
min
j∈S

|tj | ≤ τn

)
= Pr

(
max
j∈S

|t̃j | ≥ min
j∈S

|μdj |
σ̂j

√
n/(n1n2)

− τn

)
≤

∑
j∈S

Pr

(
|t̃j | ≥ min

j∈S

|μdj |
σ̂j

√
n/(n1n2)

− τn

)
.

Also by Lemma A.4 and under the Condition (C2),

min
j∈S

|μdj |
σ̂j

√
n/(n1n2)

= d0,n(1 + op(1)).

Hence,

Pr

(
min
j∈S

|tj | ≤ τn

)
≤
∑
j∈S

Pr

(
|t̃j | >

d0,n√
n/n1n2

(1 + op(1))− τn

)

≤ s
n− 2

n− 3

cn
d0,n(1+op(1))√

n/n1n2

− τn

(
1 +

1

n− 2

[
d0,n(1 + op(1))√

n/n1n2

− τn

]2)−n−3
2

:= u(n1, n2, s, d0,n, τn),

where the last inequality follows from Lemma A.6, when τn = O(
√
n2d0,n).

Since
√
n2d0,n → ∞, log s = o(n2d

2
0,n), and n2 = o(n1), then as n1, n2 → ∞,

we have
√

n
n1n2

∼ 1√
n2

, n−2
n−3 ∼ 1 and cn =

Γ(n−1
2 )

Γ(n−2
2 )

√
(n−2)π

→ 1√
2π

. Therefore,

u(n1, n2, s, d0,n, τn) → 0

and it completes the proof. �

Proof of Theroem 3.1. (a) The class-specific misclassification rates of Msplit-
hr in (3.5) are given by

ΠMsplit-hr
k (Dn) = Φ

(
ΨMsplit-hr

k (θ̂θθn)√
ΥMsplit-hr(θ̂θθn)

)
, k = 1, 2,
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where

ΨMsplit-hr
k (θ̂θθn) =

(−1)k+1

L

L∑
�=1

p∑
j=1

{
rj(μk; θ̂θθ

(2)

n,�)−
r̄n
2

}
hj(θ̂θθ

(1)

n,�),

ΥMsplit-hr(θ̂θθn) =
1

L2

L∑
�=1

p∑
j=1

σ2
j

(
μ̂
(2)
dj,�/σ̂

(2),2
j,�

)2

hj(θ̂θθ
(1)

n,�).

By Lemma 3.1, if
√
n2d0,n → 0, τn = O(

√
n2d0,n), log(p − s) = o(τ2n), and

log s = o(n2d0,n), as n1, n2 → ∞, then

max
j∈S

∣∣∣∣hj(θ̂θθ
(1)

n,�)− 1

∣∣∣∣ p−→ 0 , max
j �∈S

hj(θ̂θθ
(1)

n,�)
p−→ 0.

Using these results, for any ε > 0, we have, for k = 1, 2,

Pr

⎛⎝∣∣∣∣∑
j �∈S

rj(μk; θ̂θθ
(2)

n,�)hj(θ̂θθ
(1)

n,�)

∣∣∣∣ > ε

⎞⎠ ≤ Pr

(
max
j �∈S

hj(θ̂θθ
(1)

n,�) > ε

)
p−→ 0,

and consequently,

ΨMsplit-hr
k (θ̂θθn) =

(−1)k+1

L

L∑
�=1

∑
j∈S

{
rj(μk; θ̂θθ

(2)

n,�)−
r̄n
2

}
(1 + op(1)), k = 1, 2.

Similarly, we have

ΥMsplit-hr(θ̂θθn) =
1

L2

L∑
�=1

∑
j∈S

σ2
j

(
μ̂
(2)
dj,�/σ̂

(2),2
j,�

)2

(1 + op(1)).

Let ε̄
(2)
jk,� = μ̂

(2)
jk,� − μjk, Ik,� =

∑
j∈S(ε̄

(2)
jk,�/σj)

2, for k = 1, 2, and I3,� =∑
j∈S(ε̄

(2)
j2,�μdj/σ

2
j ), for each 
 = 1, ..,L. By the result of Lemma A.4 in the

Appendix A, we have∑
j∈S

rj(μj1, θ̂θθ
(2)

n,�)hj(θ̂θθ
(1)

n,�) =
1

2

{
I1,� − I2,� − 2I3,� −Δ2

p

}(
1 +Op(

√
log p/n1)

)
,

(B.1)∑
j∈S

rj(μj2, θ̂θθ
(2)

n,�)hj(θ̂θθ
(1)

n,�) =
1

2

{
I1,� − I2,� − 2I4,� +Δ2

p

}(
1 +Op(

√
log p/n1)

)
,

(B.2)

where Δ2
p =

∑
j∈S(μ

2
dj/σ

2
j ). Now, for η > 0, and k = 1, 2

Pr

(
|Ik,�| > η

)
≤ s

nkη
, (B.3)
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by taking η = M.s/nk, for sufficiently large M > 0, then Ik,� = Op(s/nk), for

k = 1, 2.. By Cauchy-Schwartz inequality, we have I3,� = Op(Δp

√
s/n2) and

I4,� = Op(Δp

√
s/n1). In addition, we have

∑p
j=1 r̄nhj(θ̂θθ

(2)

n,�) = op(s/n2). By
combining these results in (B.1)-(B.2), we arrive at

ΨMsplit-hr
k (θ̂θθn) = Op(s/n2) +Op

(
Δp

√
s/n2

)
− 1

2
Δ2

p +Op

(
Δ2

p

√
log p/n1

)
,

(B.4)
for k = 1, 2. Let I5,� =

∑
j∈S(ε̄j2,�− ε̄j1,�)

2/σ2
j , I6,� =

∑
j∈S(ε̄j2,�− ε̄j1,�)μdj/σ

2
j

for each 
 = 1, ..,L. Similar to (B.3), we result I5,� = Op(s/n2) and also I6,� =
Op(Δp

√
s/n2). Therefore

ΥMsplit-hr(θ̂θθn) =
1

L2

L∑
�=1

{
I5,� + 2I6,� +Δ2

p

}
= Op(s/n2) +Op

(
Δp

√
s/n2

)
+Δ2

p +Op

(
Δ2

p

√
log p/n1

)
. (B.5)

By combining (B.4) and (B.5), we have, for k = 1, 2,

ΠMsplit-hr
k (Dn)

= Φ

⎛⎜⎜⎜⎝
Op(s/n2) +Op(Δp

√
s/n2)− 1

2Δ
2
p +Op

(
Δ2

p

√
log p
n1

)
{
Op(s/n2) +Op(Δp

√
s/n2) + Δ2

p +Op

(
Δ2

p

√
log p
n1

)}1/2

⎞⎟⎟⎟⎠
= Φ

(
− 1

2
Δp{1 +Op(κn)}

)
,

where κn = max{Δ−1
p

√
s/n2,

√
log p/n1}.

(b) When Δp → ∞, by Lemma A.2, if Δ2
pκn = o(1), then Msplit-hr is

asymptotically-strong optimal and the result follows. The condition Δ2
pκn =

o(1) is equivalent to Δ2
p

√
log p/n1 = o(1), and Δ2

ps = o(n2). �

Proof of Lemma 3.2. We follow a similar line of proof as in [29, Theorem 1],
to show the results of both parts (a) and (b), under the imbalanced setting.

(a) It is enough to show that for any 
 = 1, ...,L, as n1, n2 → ∞,

Pr

(
S 	⊂ S(1)

n,�

)
→ 0.

Suppose that there exist an index j in S for which j 	∈ S(1)
n,�. Thus, |μdj | ≥ d0,n

and |μ̂(1)
dj,�| < τn, where d0,n = minj∈S |μdj |. It results in |μ̂(1)

dj,�−μdj | > d0,n− τn.
By conditions τn � d0,n and λmax(Σ) < c0, and for some constants C1, C2 > 0,
we have

Pr

(
S 	⊂ S(1)

n,�

)
≤

p∑
j=1

Pr

(
|μ̂(1)

dj,� − μdj | > d0,n − τn

)
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≤ C1

(
p

d0,n − τn

)√
n′
1 + n′

2

n′
1n

′
2

exp

{
− C2

n′
1n

′
2(d0,n − τn)

2

n′
1 + n′

2

}
.

The last term tends to zero, since log p = o(n2d
2
0,n) and n2 = o(n1), and thus

the result follows.
(b) By condition λmax(Σ) < c0, we have

μ�
d μd = μ�

d Σ
−1ΣΣ�Σ−1μd ≤ λmax(ΣΣ�)β�β ≤ c0 × |S| ×max

j∈S
β2
j . (B.6)

Let S∗ = {j : |μdj | > d0,n/r}, for some constant r > 1. Thus, μ�
d μd ≥

|S∗|d20,n/r2. This together with (B.6), result in |S∗| ≤ C3|S|maxj∈S β2
j /d

2
0,n

.
=

mmax, for constant C3 > 0. The result in part (b) follows by proving that,

|S(1)
n,�| < |S∗|, with probability tending to one, for any 
 = 1, ...,L. If there exists

an index j in S(1)
n,� for which j 	∈ S∗, thus |μ̂(1)

dj,�| > τn and |μdj | < d0,n/r and

consequently, |μ̂(1)
dj,� − μdj | > τn − d0,n/r. Therefore, by condition τn � d0,n and

for constants C4, C5 > 0

Pr

(
|S(1)

n,�| ≥ |S∗|
)

≤ Pr

(
S(1)
n,� 	⊂ S∗

)
≤

p∑
j=1

Pr

(
|μ̂(1)

dj,� − μdj | > τn − d0,n/r

)

≤ C4
p

τn − d0,n

√
n′
1 + n′

2

n′
1n

′
2

exp

{
− C5

(τn − d0,n)
2n′

1n
′
2

n′
1 + n′

2

}
.

The last term tends to zero, as log p = o(n2d
2
0,n) and

√
n2d0,n → ∞. �

Proof of Theroem 3.2. (a) The misclassification rates of Msplit-hr in (3.8),
are given as

ΠMsplit-hr
k (Dn) = Φ

(
ΨMsplit-hr

k (θ̂θθn)√
ΥMsplit-hr(θ̂θθn)

)
, k = 1, 2

where

ΨMsplit-hr
k (θ̂θθn) =

(−1)k

L

L∑
�=1

{μ̃μμ�
d,�Σ̃ΣΣ

−1

n,�(μ̃μμa,� − μk,�)−
r̄n,�
2

},

r̄n,� =

(
1

n′
1

− 1

n′
2

)
n′ − 2

n′ − 3− |S(1)
n,�|

× |S(1)
n,�|,

ΥMsplit-hr(θ̂θθn) =
1

L2

L∑
�=1

{μ̃μμ�
d,�Σ̃ΣΣ

−1

n,�Σ�Σ̃ΣΣ
−1

n,�μ̃μμd,�}.

By Lemma A.5, we obtain

μ̃μμ�
d,�Σ̃ΣΣ

−1

n,�Σ�Σ̃ΣΣ
−1

n,�μ̃μμd,� = μ̃μμ�
d,�Σ

−1
� μ̃μμd,�

(
1 +Op(mmax

√
log p/n1)

)
. (B.7)
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We consider the following decomposition

μ̃μμ�
d,�Σ

−1
� μ̃μμd,� = (μ̃μμd,� − μd,�)

�Σ−1
� (μ̃μμd,� − μd,�) + 2(μ̃μμd,� − μd,�)

�Σ−1
� μd,�

+ μ�
d,�Σ

−1
� μd,� = A1 + 2A2 +A3

Now by Lemma 3.2 and Markov’s inequality, also using the Condition (C2) in
the Appendix A, we have for a constant C1 > 0,

Pr

(
(μ̃μμd,� − μd,�)

�Σ−1
� (μ̃μμd,� − μd,�) > η

)
≤ C1

η

n

n1n2
mmax.

If η = M mmax

n2
, then for large M > 0, A1 = Op(mmax/n2). By Cauchy-

Schwartz inequality, A2
2 ≤ (μ̃μμd,� − μd,�)

�Σ−1
� (μ̃μμd,� − μd,�)A3. Hence A2 =

Op(
√

mmax/n2)A1/2
3 . Therefore, by combining these results we have

μ̃μμ�
d,�Σ

−1
� μ̃μμd,� = Op(mmax/n2) +Op(

√
mmax/n2)

√
A3 +A3 (B.8)

Now for ΨMsplit-hr
1 (θ̂θθn), we have

μ̃μμ�
d,�Σ̃ΣΣ

−1

n,�(μ1,� − μ̃μμa,�) = μ̃μμ�
d,�Σ

−1
� (μ1,� − μ̃μμa,�)

(
1 +Op(mmax

√
log p/n1)

)
(B.9)

We decompose it as

2μ̃μμ�
d,�Σ

−1
� (μ1,� − μ̃μμa,�) = (μ̃μμ1,� − μ1,�)

�Σ−1
� (μ̃μμ1,� − μ1,�)

− (μ̃μμ2,� − μ2,�)
�Σ−1

� (μ̃μμ2,� − μ2,�)

= 2(μ̃μμ2,� − μ2,�)
�Σ−1

� μd,� − μ�
d,�Σ

−1
� μd,�

= B1 − B2 − 2B3 −A3

Similar to the proof of A1, we have B1 = Op(mmax/n1), and B2 = Op(mmax/n2).

Also similar to A2, we have B3 = Op(
√

mmax/n2)
√
A3. Hence,

μ̃μμ�
d,�Σ

−1
� (μ1,� − μ̃μμa,�) = Op(

mmax

n1
) +Op(

mmax

n2
) +Op(

√
mmax/n2)A1/2

3 − 1

2
A3

(B.10)

We recall that Δ2
p = μ�

d Σ
−1μd = β�μd and S(1)

n,� = {j : |μ̂μμ(1)
dj,�| > τn}. For each


 = 1, ..,L, and any η > 0

Pr

(
|μ�

d,�Σ
−1
� μd,� −Δ2

p| > η

)
= Pr

(
|
∑

j∈S(1)
n,�

βjμdj −
∑
j′∈S

βj′μdj′ | > η

)

= Pr

(∣∣∣∣ ∑
j∈S(1)

n,�,j �∈S

βjμdj +
∑

j∈S(1)
n,�,j∈S

βjμdj −
∑

j′∈S,j′∈S(1)
n,�

βj′μdj′ −
∑

j′∈S,j′ �∈S(1)
n,�

βj′μdj′

∣∣∣∣ > η

)

= Pr

(
|

∑
j∈S,j �∈S(1)

n,�

βjμdj | > η

)
≤

p∑
j=1

Pr

(
j ∈ S and j 	∈ S(1)

n,�

)
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By part (i) of Lemma 3.2, the last term tends to zero, as n1, n2 → ∞. Therefore,
A3 = Δ2

p+op(1). By combining this result together with (B.7)-(B.10), also with
r̄n,t = Op(mmax/n2), we result

ΠMsplit-hr
1 (Dn) = Φ

(
−Δp

2

{
1 +Op

(
Δ−1

p

√
mmax

n2

)
+Op

(
mmax

√
log p

n1

)})
= Φ

(
−Δp

2
(1 +Op(κ

′
n))

)
,

We can show the same result for ΠMsplit-hr
2 (Dn).

(b) When Δp → ∞, the result follows from Lemma A.2 by condition Δ2
pκ

′
n =

o(1). �

Proof of Lemma 4.1. (a) Recall the sequence an = M2(log p/n)
α, with 0 <

α < 1/2 and M2 > 0. Let c1, c2 be some positive constants. Inspired by the
proof of Lemma 2 of [38], we have

Pr

( ⋂
{j:|μdj |>ran}

{|μ̂dj | > an}
)

≥ 1−
p∑

j=1

Pr

(
|μ̂dj − μdj | > an(r − 1)

)

≥ 1− 2

p∑
j=1

Φ

(
−an(r − 1)

σj

√
n/n1n2

)

≥ 1− pc1 exp

{
−
(
log p

n

)2α

.
n1n2

n
c2

}
. (B.11)

Since (log p/n2)(n1/ log p)
2α = o(1) and n2 = o(n1), as n1, n2 → ∞, (B.11)

tends to 1, and the result of part (a) holds.
(b) Similar to part (a), for some positive constants c1, c2, we have

Pr

( ⋂
{j:|μdj |≤an/r}

{|μ̂dj | ≤ an}
)

≥ 1− pc1 exp

{
−
(
log p

n

)2α
n1n2

n
c2

}
.

This together with (log p/n2)(n1/ log p)
2α = o(1) and n2 = o(n1), prove that

the right hand side of the above inequality tends to 1, as n1, n2 → ∞.
(c) The result follows from parts (a) and (b). �

Proof of Theorem 4.1. (a) The misclassification rates of slda in Class k =
1, 2, are given as

Πslda

k (Dn) = Φ

⎛⎝ (−1)kμ̃μμ�
d Σ̃

−1

n (μ̂μμk −μμμk)− μ̃μμ�
d Σ̃

−1

n μ̂μμd/2√
μ̃μμ�
d Σ̃

−1

n ΣΣ̃
−1

n μ̃μμd

⎞⎠ .

Recall dn1 = Ch,p(n
−1
1 log p)(1−h)/2, where Ch,p = max1≤i≤p

∑p
j=1 |σij |h for

some 0 ≤ h < 1. It follows from Lemma A.3 in the Appendix A that

μ̃μμ�
d Σ̃

−1

n ΣΣ̃
−1

n μ̃μμd = μ̃μμ�
d Σ̃

−1

n μ̃μμd{1 +Op(dn1)}.



Msplit-HR for high-dimensional imbalanced classification 853

Let Δ2
p = μ�

d Σ
−1μd, J1 = (μ̃μμd−μd)

�Σ−1(μ̃μμd−μd) and J2 = 2μ�
d Σ

−1(μ̃μμd−μd).
Now,

μ̃μμ�
d Σ

−1μ̃μμd = J1 + J2 +Δ2
p

Following by the proof of Theorem 1 of [38], we have

J1 ≤ c0
{
‖ μ̃μμd1 −μμμd1 ‖2 + ‖ μμμd0 ‖2

}
,

where μ̃μμ�
d = (μ̃μμ�

d1,0
�), μμμ�

d = (μμμ�
d1,μμμ

�
d0), and μ̃μμd1 and μμμd1 are two vectors

of dimension q̂, whose elements correspond to those features xjs for which
|μ̂dj | > an. By condition (4.1), we have ‖ μ̃μμd1 − μd1 ‖2= Op(qn/n2), ‖ μd0 ‖2=
Op

(
Dg,p.a

2(1−g)
n

)
, and J1 = Op(kn2), where kn2 = max{ qn

n2
, Dg,pa

2(1−g)
n }.

Consequently, by condition (4.1),

J2 = (μ̃μμd −μμμd)
�Σ−1μμμd ≤ Δp

√
‖ μ̃μμd1 −μμμd1 ‖2 + ‖ μμμd0 ‖2 = Δp Op(

√
kn2).

Therefore in the denominator of Πslda

k (Dn), we have

μ̃μμ�
d Σ̃

−1

n ΣΣ̃
−1

n μ̃μμd =

{
Op(kn2) + ΔpOp(

√
kn2) + Δ2

p

}
Op(dn1)

=

{
Op

(√
kn2/Δ

2
p

)
+ 1

}
Δ2

p Op(dn1). (B.12)

Now, the numerator of Πslda

k (Dn) can be decomposed as

(−1)kμ̃μμ�
d Σ̃

−1

n (μ̂μμk −μμμk)−
1

2
μ̂μμ�
d Σ̃

−1

n μ̃μμd

= (−1)kμ̃μμ�
d Σ̃

−1

n (μ̂μμk −μμμk)−
1

2
(μ̂μμd −μμμd)

�Σ̃
−1

n μ̃μμd −
1

2
(μμμd − μ̃μμd)

�Σ̃
−1

n μ̃μμd

− 1

2
μ̃μμ�
d Σ̃

−1

n μ̃μμd

= J3 + J4 + J5 −
1

2
μ̃μμ�
d Σ̃

−1

n μ̃μμd

=

√
μ̃μμ�
d Σ̃

−1

n μ̃μμ
d

{
Op

(√
qn/nk

)
+Op

(√
qnCh,p/nk

)}√
1 +Op(dn1)

+

√
μ̃μμ�
d Σ̃

−1

n μ̃μμdOp(
√

qn/n2)
√

1 +Op(dn1)

+
{
Op(kn2) + ΔpOp(

√
kn2)

}
Op(dn1) + μ̃μμ�

d Σ̃
−1

n μ̃μμd. (B.13)

Again, by condition (4.1) we have

J3 = μ̃μμ�
d Σ̃

−1

n (μ̂μμk − μk)

=

√
μ̃μμ�
d Σ̃

−1

n μ̃μμ
d

{
Op

(√
qn/nk

)
+Op

(√
qnCh,p/nk

)}√
1 +Op(dn1),

and

J4 = (μ̂μμd − μd)
�Σ̃

−1

n μ̃μμd =

√
μ̃μμ�
d Σ̃

−1

n μ̃μμdOp(
√
qn/n2).
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Also, similar to the expression of J1, we have

J5 = (μμμd − μ̃μμd)
�Σ̃

−1

n μ̃μμd =

√
μ̃μμ�
d Σ̃

−1

n μ̃μμdOp(
√

kn2)
√

1 +Op(dn1).

finally, by combining (B.12) and (B.13) we arrive at

Πslda

k (Dn) = Φ

(
(−1)kμ̃μμ�

d Σ̃
−1

n (μ̂μμk −μμμk)√
μ̃μμ�
d Σ̃

−1

n ΣΣ̃
−1

n μ̃μμd

− 1

2

μ̂μμ�
d Σ̃

−1

n μ̃μμd√
μ̃μμ�
d Σ̃

−1

n ΣΣ̃
−1

n μ̃μμd

)

= Φ

(
− 1

2
Δp

{
Op

(
Δ−1

p

√
qnCh,p/nk

)
+Op

(√
kn2/Δ

2
p

)
+ 1 +Op(dn1)

})
= Φ

(
− 1

2
Δp {1 +Op(bnk

)}
)

, k = 1, 2

as claimed, where

bnk
= max

{
dn1 ,

√
kn2

Δp
,

1

Δp

√
qn
nk

Ch,p

}
.

(b)-i. If Δp is bounded, then Δ2
pbnk

→ 0 is equivalent to bn2 → 0, which imply

Πslda

k (Dn)/Π
opt p−→ 1, for k = 1, 2.

(b)-ii. If Δp → ∞, by Lemma A.2 in the Appendix A, when Δ2
pbn2 → 0, and

consequently Δ2
pbn1 → 0, we have Πslda

k (Dn)/Π
opt p−→ 1, for k = 1, 2. �

Proof of Theorem 4.2. The class-specific MCRs of the road in (4.2) are given
by

Πroad

k (Dn; c) = Φ

(
(−1)kŵ�

c (μ̂a − μk)

(ŵ�
c Σŵc)1/2

)
, k = 1, 2.

The oracle versions of the MCRs, evaluated at the true parameter values of Σ
and μk, are given by

Πorc
k (c) = Φ

(
−w�

c μd

2(w�
c Σwc)1/2

)
, k = 1, 2.

By the tail probability inequality

1− Φ(τ) ≤ 1

τ
√
2π

exp{−τ2/2}, τ > 0,

we have that, for η1 > 0,

Pr

(
‖ μ̂μμk − μk ‖∞> η1

)
≤

p∑
j=1

Pr

(
|μ̂jk − μjk| > η1

)
≤ C1p exp{−C2nkη

2
1}.
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Thus, by choosing η1 = M1ank
, for some M1 > 0, we arrive at ‖ μ̂μμk − μk ‖∞=

Op(
√

log p/nk). Also, by Lemma A.1 in the Appendix A, for η2 > 0,

Pr

(
max
j,l

|σ̂j,l − σj,l| > η2

)
≤

≤
∑
j,l

2∑
k=1

Pr

(
|

nk∑
i=1

(XijkXilk − σjl)| > (n− 2)η2/4

)

+
∑
j,l

2∑
k=1

Pr

(
|nkμ̂jkμ̂lk − σjl)| > (n− 2)η2/4

)
≤ p2C1 exp{−C2(n− 2)2η22/nk}+ p2C3 exp{−C4(n− 2)2η22}.

Thus, by choosing η2 = M2

√
log p/n1, for some M2 > 0, we arrive at ‖Σ̂n −

Σ‖∞ = Op(
√

log p/n1). Using the Lipschitz property of the cumulative distri-
bution function of standard normal, Φ(.), we have∣∣∣∣Πroad

2 (Dn; c)−Πorc
2 (c)

∣∣∣∣ ≤ ∣∣∣∣−ŵ�
c (μ2 − μ̂μμa)

(ŵ�
c Σŵc)1/2

− −w�
c μd

2(w�
c Σwc)1/2

∣∣∣∣
=

∣∣∣∣−ŵ�
c (μ2 − μ̂2 + μ̂μμ2 − μ̂μμa)

(ŵ�
c Σŵc)1/2

− −w�
c μμμd

2(w�
c Σwc)1/2

∣∣∣∣
≤

∣∣∣∣ŵ�
c (μ2 − μ̂μμ2)

(ŵ�
c Σŵc)1/2

∣∣∣∣+ ∣∣∣∣ ŵ�
c μ̂μμd

2(ŵ�
c Σŵc)1/2

− w�
c μd

2(w�
c Σwc)1/2

∣∣∣∣
= E1 + E2.

Now,

E1 =

∣∣∣∣ŵ�
c (μ2 − μ̂μμ2)

(ŵ�
c Σŵc)1/2

∣∣∣∣ ≤ ‖ ŵc ‖1
‖ ŵc ‖2 .c0

‖ μ̂μμ2 − μ2 ‖∞

≤
√

‖ ŵc ‖0Op(
√

log p/n2) = Op(
√
ŝc log p/n2)

and

E2 =

∣∣∣∣ ŵ�
c μ̂μμd

2(ŵ�
c Σŵc)1/2

− w�
c μd

2(w�
c Σwc)1/2

∣∣∣∣
=

∣∣∣∣ŵ�
c μ̂μμd − ŵ�

c μd + ŵ�
c μd

2(ŵ�
c Σŵc)1/2

− w�
c μd

2(w�
c Σwc)1/2

∣∣∣∣
≤

∣∣∣∣ ŵ�
c (μ̂μμd − μd)

2(ŵ�
c Σŵc)1/2

∣∣∣∣+ ∣∣∣∣ ŵ�
c μd

2(ŵ�
c Σŵc)1/2

− w�
c μd

2(w�
c Σwc)1/2

∣∣∣∣
≤ ‖ ŵc ‖1

‖ ŵc ‖2
‖ μ̂μμd − μd ‖∞

minj λj
+ E3

≤
√
‖ ŵc ‖0

‖ μ̂μμd − μd ‖∞
c0

+ E3 = Op(
√
ŝc log p/n2) + E3.
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According to the same notations in [13], let f0(w) = w�μd/(w
�Σw)1/2,

f1(w) = w�μ̂μμd/(w
�Σw)1/2, and f2(w) = w�μ̂μμd/(w

�Σ̂w)1/2. By the proof of
Theorem 1 of [13], we have

E3 =

∣∣∣∣ ŵ�
c μd

2(ŵ�
c Σŵc)1/2

− w�
c μd

2(w�
c Σwc)1/2

∣∣∣∣ = 1

2
|f0(ŵc)− f0(wc)|

≤ |f0(ŵc)− f1(ŵc)|+ |f1(ŵc)− f2(ŵc)|+ |f2(ŵc)− f0(wc)|

= Op(
√

ŝc log p/n2) +Op(c
2
√
log p/n1) +Op

(√
max{sc, s

(1)
c } log p/n2

)
.

Therefore, we have

E1 + E2 + E3 = Op(c
2
√
log p/n1) +Op

(√
max{sc, s

(1), ŝc
c } log p/n2

)
,

and finally∣∣∣∣Πroad

2 (Dn; c)−Πorc
2 (c)

∣∣∣∣ = Op(c
2
√
log p/n1)+Op

(√
max{sc, s

(1), ŝc
c } log p/n2

)
Similarly, the same result holds for |Πroad

1 (Dn; c)−Πorc
1 (c)|, and this completes

the proof. �

Appendix C: Remaining proofs

In this Appendix, we provide the proofs of our claim in Remark 2.1, and also
the proofs of Propositions 3.1 and 3.2.

Proof of the Claim in Remark 2.1. Recall Ii, i = 1, ..., 6, defined in Theorem
2.1. When p is fixed with respect to the sample size, and n2 = o(n1), then as
n1, n2 → ∞, we have,

V ar(I1) =
2p

n2
1

→ 0 , V ar(I2) =
2p

n2
2

→ 0 , V ar(I3) =
Δ2

p

n2
→ 0 ,

V ar(I4) =
Δ2

p

n1
→ 0 , V ar(I5) =

n2p

n2
1n

2
2

→ 0 , V ar(I6) =
Δ2

p

n2
→ 0.

On the other hand, E(I1) = p
n1

, E(I2) = p
n2

, E(I3) = E(I4) = 0, E(I5) = np
n1n2

,
and E(I6) = 0. Thus, by following the proof of Theorem 2.1, we have

Ψlda

1 (θ̂θθn)√
Υlda(θ̂θθn)

=

p
n1

− p
n2

+ op(1)−Δ2
p

2
{

np
n1n2

+ op(1) + Δ2
p

}1/2
= −1

2
Δp + op(1),

Ψlda

2 (θ̂θθn)√
Υlda(θ̂θθn)

=
− p

n1
+ p

n2
+ op(1)−Δ2

p

2
{

np
n1n2

+ op(1) + Δ2
p

}1/2
= −1

2
Δp + op(1).
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Therefore, Πlda

k (Dn)/Π
opt p−→ 1, for k = 1, 2. �

Proof of Proposition 3.1. The MCRs of δMsplit-hr
0 are given by

ΠMsplit-hr
0,k (Dn) = Φ

(
ΨMsplit-hr

0,k (θ̂θθn)√
ΥMsplit-hr

0 (θ̂θθn)

)
, k = 1, 2,

where

ΨMsplit-hr
0,k (θ̂θθn) = (−1)(k+1) 1

L

L∑
�=1

p∑
j=1

rj(μk; θ̂θθ
(2)

n,�)hj(θ̂θθ
(1)

n,�).

and

ΥMsplit-hr
0 (θ̂θθn) =

1

L2

L∑
�=1

p∑
j=1

σ2
j

(
μ̂
(2)
dj,�/σ̂

(2),2
j,�

)2

hj(θ̂θθ
(1)

n,�).

Now, due to the independence property of D(1)
n,� and D(2)

n,�, for each replication t,
we have,

BMsplit-hr
0,n = E{ΨMsplit-hr

0,1 (θ̂θθn)−ΨMsplit-hr
0,2 (θ̂θθn)}

=
1

L

L∑
�=1

p∑
j=1

E

{
rj(μ1; θ̂θθ

(2)

n,�) + rj(μ2; θ̂θθ
(2)

n,�)

}
E

{
hj(θ̂θθ

(1)

n,�)

}
,

where rj(μk; θ̂θθ
(2)

n,�) = μ̂
(2)
dj,�(μjk,� − μ̂

(2)
aj,�)/σ̂

(2),2
j,� . Hence

r̄n = E

{
rj(μ1; θ̂θθ

(2)

n,�) + rj(μ2; θ̂θθ
(2)

n,�)

}
= (

1

n′
1

− 1

n′
2

)
Γ(fn′ − 1)

Γ(fn′)
fn′ ,

where fn′ = n′/2− 1. �

Proof of Proposition 3.2. The MCRs of δMsplit-hr in (3.8) are given by

ΠMsplit-hr
0,k (Dn) = Φ

(
ΨMsplit-hr

0,k (θ̂θθn)√
ΥMsplit-hr

0 (θ̂θθn)

)
, k = 1, 2,

where

ΨMsplit-hr
0,k (θ̂θθn) =

(−1)k

L

L∑
�=1

μ̃�
d,�Σ̃

−1

� (μ̃a,� − μk),

and

ΥMsplit-hr
0 (θ̂θθn) =

1

L2

L∑
�=1

μ̃�
d,�Σ̃

−1

� Σ�Σ̃
−1

� μ̃d,�.

Hence,

E{ΨMsplit-hr
0,1 (θ̂θθn)−ΨMsplit-hr

0,2 (θ̂θθn)}
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=
1

L

L∑
�=1

E

{
E

{
μ̃μμ�
d,�Σ̃

−1

� (μ1,� − μ̃μμa,�)− μ̃μμ�
d,�Σ̃

−1

� (μ̃μμa,� − μ2,�)

∣∣∣∣D(1)
n,�

}}

=
1

L

L∑
�=1

E

{
E

{
μ̃μμ�
d,�Σ̃

−1

� (μ1,� + μ2,� − 2μ̃μμa,�)

}}

=
1

L

L∑
�=1

E{r̄n,�}.

The second equation follows from the independence property of D(1)
n,� and D(2)

n,�,
for each 
. Under normal assumption for the distribution of features, the matrix

Σ̃
−1

� has the Inverse Wishart distribution with parameters Σ−1
� and n′ − 2,

where Σ� is the covariance matrix corresponding to the features included in

S(1)
n,�, Thus, if n

′ − 3 > |S(1)
n,�|, then E{Σ̃

−1

� } = n′−2

n′−2−|S(1)
n,�|−1

Σ−1
� , and

r̄n,� = E{μ̃μμ�
d,�Σ̃

−1

� (μ1,� + μ2,� − 2μ̃μμa,�)}

= tr

{
Σ−1

�

n′ − 2

n′ − 3− |S(1)
n,�|

Σ�(
1

n′
1

− 1

n′
2

)

}
=

n′ − 2

n′ − 3− |S(1)
n,�|

|S(1)
n,�|(

1

n′
1

− 1

n′
2

).

and the result follows. �
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[24] Meinshausen, N. and P. Bühlmann (2010). Stability selection. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 72, 417–
473. MR2758523

[25] Meinshausen, N., L. Meier, and P. Bühlmann (2009). P-values for high-
dimensional regression. Journal of the American Statistical Association 104,
1671–1681. MR2750584

[26] Nakayama, Y. (2020). Support vector machine and optimal parame-
ter selection for high-dimensional imbalanced data. Communications in
Statistics-Simulation and Computation, 1–16. MR4253829

[27] Nakayama, Y., K. Yata, and M. Aoshima (2017). Support vector machine
and its bias correction in high-dimension, low-sample-size settings. Journal
of Statistical Planning and Inference 191, 88–100. MR3679111

[28] Owen, A. B. (2007). Infinitely imbalanced logistic regression. Journal of
Machine Learning Research 8, 761–773. MR2320678

[29] Pan, R., H. Wang, and R. Li (2016). Ultrahigh-dimensional multiclass linear
discriminant analysis by pairwise sure independence screening. Journal of
the American Statistical Association 111, 169–179. MR3494651

[30] Pang, H., T. Tong, and M. Ng (2013). Block-diagonal discriminant anal-
ysis and its bias-corrected rules. Statistical applications in genetics and
molecular biology 12, 347–359. MR3101034

[31] Park, B.-J., S.-K. Oh, and W. Pedrycz (2013). The design of polynomial
function-based neural network predictors for detection of software defects.
Information Sciences 229, 40–57. MR3018718

[32] Qiao, X. and Y. Liu (2009). Adaptive weighted learning for unbalanced
multicategory classification. Biometrics 65, 159–168. MR2665857

[33] Qiao, X., H. H. Zhang, Y. Liu, M. J. Todd, and J. S. Marron (2010).
Weighted distance weighted discrimination and its asymptotic properties.
Journal of the American Statistical Association 105, 401–414. MR2656058

[34] Qiao, X. and L. Zhang (2013). Distance-weighted support vector machine.
arXiv preprint arXiv:1310.3003. MR3341331

[35] Qiao, X. and L. Zhang (2015). Flexible high-dimensional classification ma-
chines and their asymptotic properties. The Journal of Machine Learning
Research 16, 1547–1572. MR3417790

[36] Ramaswamy, S., K. N. Ross, E. S. Lander, and T. R. Golub (2002). A molec-
ular signature of metastasis in primary solid tumors. Nature genetics 33,
49.

[37] Ramey, J. (2016). Datamicroarray: collection of data sets for classification.
[38] Shao, J., Y. Wang, X. Deng, S. Wang, et al. (2011). Sparse linear dis-

criminant analysis by thresholding for high dimensional data. Annals of

https://www.ams.org/mathscinet-getitem?mr=2758497
https://www.ams.org/mathscinet-getitem?mr=3379082
https://www.ams.org/mathscinet-getitem?mr=4041813
https://www.ams.org/mathscinet-getitem?mr=2758523
https://www.ams.org/mathscinet-getitem?mr=2750584
https://www.ams.org/mathscinet-getitem?mr=4253829
https://www.ams.org/mathscinet-getitem?mr=3679111
https://www.ams.org/mathscinet-getitem?mr=2320678
https://www.ams.org/mathscinet-getitem?mr=3494651
https://www.ams.org/mathscinet-getitem?mr=3101034
https://www.ams.org/mathscinet-getitem?mr=3018718
https://www.ams.org/mathscinet-getitem?mr=2665857
https://www.ams.org/mathscinet-getitem?mr=2656058
https://arxiv.org/abs/1310.3003
https://www.ams.org/mathscinet-getitem?mr=3341331
https://www.ams.org/mathscinet-getitem?mr=3417790


Msplit-HR for high-dimensional imbalanced classification 861

statistics 39, 1241–1265. MR2816353
[39] Tian, E., F. Zhan, R. Walker, E. Rasmussen, Y. Ma, B. Barlogie, and J. D.

Shaughnessy Jr (2003). The role of the Wnt-signaling antagonist DKK1 in
the development of osteolytic lesions in multiple myeloma. New England
Journal of Medicine 349, 2483–2494.

[40] Tibshirani, R., T. Hastie, B. Narasimhan, and G. Chu (2002). Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences 99, 6567–6572.

[41] Verbeke, W., K. Dejaeger, D. Martens, J. Hur, and B. Baesens (2012).
New insights into churn prediction in the telecommunication sector: A
profit driven data mining approach. European Journal of Operational
Research 218, 211–229.

[42] Witten, D. M. and R. Tibshirani (2011). Penalized classification using
Fisher’s linear discriminant. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 73, 753–772. MR2867457

[43] Xie, J., M. Hao, W. Liu, and Y. Lin (2020). Fused variable screening for
massive imbalanced data. Computational Statistics & Data Analysis 141,
94–108. MR3980510

[44] Zhu, M., W. Su, and H. A. Chipman (2006). Lago: A computationally
efficient approach for statistical detection. Technometrics 48, 193–205.
MR2277674

[45] Zong, W., G.-B. Huang, and Y. Chen (2013). Weighted extreme learning
machine for imbalance learning. Neurocomputing 101, 229–242.

https://www.ams.org/mathscinet-getitem?mr=2816353
https://www.ams.org/mathscinet-getitem?mr=2867457
https://www.ams.org/mathscinet-getitem?mr=3980510
https://www.ams.org/mathscinet-getitem?mr=2277674

	Introduction
	The LDA
	Overview 
	Impact of the dimension and imbalanced class sizes

	Proposed Method: Msplit hard-thresholding rule (Msplit-hr)
	Msplit-HR under a diagonal  
	Msplit-HR under a general 

	Two existing high-dimensional variants of LDA
	Sparse LDA (slda)
	Regularized optimal affine discriminant (road)

	Simulation study
	Diagonal 
	Discussion of the results

	General 
	Discussion of the results


	Real-data analysis
	Conclusion
	Technical lemmas
	Proofs of the main results
	Remaining proofs
	Acknowledgments
	References

