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Abstract: In binary classification, imbalance refers to situations in which
one class is heavily under-represented. This issue is due to either a data
collection process or because one class is indeed rare in a population. Im-
balanced classification frequently arises in applications such as biology,
medicine, engineering, and social sciences. In this paper, for the first time,
we theoretically study the impact of imbalance class sizes on the linear
discriminant analysis (LDA) in high dimensions. We show that due to
data scarcity in one class, referred to as the minority class, and high-
dimensionality of the feature space, the LDA ignores the minority class
yielding a maximum misclassification rate. We then propose a new con-
struction of hard-thresholding rules based on a data splitting technique
that reduces the large difference between the misclassification rates. We
show that the proposed method is asymptotically optimal. We further study
two well-known sparse versions of the LDA in imbalanced cases. We eval-
uate the finite-sample performance of different methods using simulations
and by analyzing two real data sets. The results show that our method
either outperforms its competitors or has comparable performance based
on a much smaller subset of selected features, while being computationally
more efficient.

MSC2020 subject classifications: 62H30.

Keywords and phrases: Classification, high-dimensionality, imbalanced,
linear discriminant analysis, thresholding.

Received November 2020.

*Abbas Khalili was supported by the Natural Sciences and Engineering Research Council
of Canada through Discovery Grants (NSERC RGPIN-2015-03805 and NSERC RGPIN-2020-
05011).

fCorresponding Author.

814


https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1939
mailto:arezu.mojiri@math.iut.ac.ir
mailto:abbas.khalili@mcgill.ca
mailto:hamadani@cc.iut.ac.ir
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

Msplit-HR for high-dimensional imbalanced classification 815

Contents
1 Imtroduction. . . . . . . . . . .. L 815
2 The LDA . . . . . . e 818
2.1 Overview . . . . ... e e 818
2.2 Impact of the dimension and imbalanced class sizes . . . . . . . 819
3 Proposed Method: Msplit hard-thresholding rule (Msplit-HR) . . . . 821
3.1 Msplit-HR under a diagonal 3 . . . . .. ... ... ... ... 821
3.2 Msplit-HR under a general 3 . . . . . ... .. ... .. ... 824
4 Two existing high-dimensional variants of LDA . . . . . . ... ... 827
4.1 Sparse LDA (SLDA) . . . . . . ... 827
4.2 Regularized optimal affine discriminant (ROAD) . . . . . . . .. 829
5 Simulation study . . . . . ... oo 830
5.1 Diagonal 3 . . . . . .. 830
5.1.1 Discussion of theresults . . . . . ... ... ... .... 832
52 General X . . ... Lo L 835
5.2.1 Discussion of the results . . . . . . ... ... ... ... 836
6 Real-data analysis . . .. ... ... ... ... . 836
7 Conclusion . . . . . . . . . 840
A Technical lemmas . . . . . . ... .. ... ... ... ... 841
B Proofs of the main results . . . . .. ... ... ... ... ... ... 844
C Remaining proofs . . . . . . . ... Lo 856
Acknowledgments . . . .. ... oL 858
References . . . . . . . . . . L 858

1. Introduction

The rise of high-dimensional data has affected many areas of research in statis-
tics and machine learning, including classification. Linear Discriminant Analysis
(LDA) has been extensively studied in high-dimensional classification. [4], [12],
and [38] showed that when the number of features is larger than the sample
size, the LDA can perform as badly as a random guess. To deal with the curse
of dimensionality, several developments have been made over the last decade or
so. For example, among others, new developments include the nearest shrunken
centroids [40], shrunken centroids regularized discriminant analysis [18], features
annealed independence rule (FAIR) [12], sparse and penalized LDA [38, 42], reg-
ularized optimal affine discriminant (ROAD) [13], multi-group sparse discrimi-
nant analysis [16], pairwise sure independent screening [29], and the ultra high-
dimensional multiclass LDA [23]. The general idea of these methods is to in-
corporate a feature selection strategy in a classifier in order to obtain certain
optimality properties in the sense of misclassification rates.

To the best of our knowledge, most of the existing developments in high di-
mensions focus on problems with comparable class sizes in the training data.
However, in applications such as clinical diagnosis [2], fraud detection [9], drug



816 A. Mojiri et al.

discovery [44], or equipment malfunction detection [31], classification often suf-
fers from imbalanced class sizes where, for example, in a binary problem one
class (referred to as the minority class) is heavily under-represented. This is due
to either a data collection process or because one class is indeed rare in a pop-
ulation. In such situations, the minority class is of primary interest as it carries
substantial information, and often has higher misclassification costs compared
to the larger class, referred to as the majority class. For example, in a study of
a certain rare disease, the cost of misclassifying a positive case is often higher
than the cost of misclassifying a negative one [36]. In banking or telecommuni-
cation studies, few customers are voluntarily willing to terminate their contracts
and leave their provider. In these applications, misclassification of a potential
churner is more expensive than that of a non-churner for a provider [41]. Due to
data scarcity in the minority class, conventional discriminant methods are of-
ten biased toward the majority class resulting in much higher misclassification
rate for the minority class. This error dramatically increases in high-dimensional
cases, as empirically shown by [7]. In this paper, we study imbalanced binary
classification with the class sizes no < ny, when the number of features, p,,
grows to infinity as the total sample size n = (ny + ng) grows to infinity. We
refer to Class 1 with size n; as the majority class, and Class 2 with size ny as
the minority class. A specific limiting relationship between n, and ns is given
in Section 2.2.

Imbalanced classification under various settings have attracted attention in
recent years. A common approach to deal with the imbalanced issue is to make
virtual class sizes comparable by using resampling methods, for example, the
synthetic minority over-sampling technique (SMOTE) of [10]. The recent work of
[15] provides a review of the common re-sampling techniques for fixed dimen-
sional imbalanced problems. In other methods, such as the weighted extreme
learning machine [45] and the cost-sensitive support vector machine (svM) [21],
the idea is to strengthen the relative impact of the minority class by either as-
signing different weights to sample units or different costs to misclassification
instances in each class. [3] studied distributional properties of the correct classifi-
cation probabilities of the minority and majority classes of a hard-thresholding
independence rule. Using a non-asymptotic approach, they adjusted the bias
of correct classification probabilities which is rooted on the imbalanced class
sizes. [20] and [30] proposed bias-corrected discriminant functions. [28] studied
limiting form of the logistic regression under a so-called infinitely imbalanced
case in which the size of one class is fixed and the other grows to infinity. [32]
proposed new evaluation criteria and weighted learning procedures that increase
the impact of a minority class. [33] developed a distance weighted discrimination
method (DWD), originally proposed to overcome the well-known data-piling issue
[1] in high-dimensions, by an adaptive weighting scheme to reduce sensitivity to
unequal class sizes. [34] proposed a linear classifier that is a hybrid of DwD and
SvM, thus haivng advantages of both techniques. [35] introduced a new family
of classifiers including svM and DWD that provides a trade-off between imbal-
anced and high-dimensionality. [19, 27] theoretically showed that under certain
conditions, SVM suffers from data-piling in high-dimensions, meaning that all
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data points become the support vectors which may result in ignorance of one of
the classes. [27] proposed a biased-corrected svM that improves its performance
even when the class sizes are imbalanced. [26] proposed a robust svM which is
less sensitive to class sizes and choice of a regularization parameter. [43] used a
repeated case-control sampling technique coupled with a fused feature screening
procedure to deal with imbalanced and high-dimensionality.

The behaviour of LDA in high-dimensional imbalanced classification has of-
ten been studied empirically. In this paper, we first theoretically show that in
such cases this classifier ignores the minority class, yielding a maximum misclas-
sification rate for this class. On the other hand, a common approach to deal with
high-dimensionality is to use a hard-thresholding operator for feature selection.
However, our simulations show large differences between the misclassification
rates of the hard-thresholding rule (HR) in imbalanced settings. Thus, we face
both high-dimensionality and an inflated bias in the difference between the two
misclassification rates. To address the issues, we propose a new construction of
the HR based a multiple data splitting (Msplit) technique as described below,
and thus called Msplit-HR. We randomly split the training data in each class into
two parts of sizes |nx /2], k = 1,2, and use one part only for feature selection and
the other part is then used to construct a bias-corrected classifier based on the
selected features. As shown in Section 3, the splitting facilitates the correction
of the inflated bias in the difference between the two misclassification rates. To
reduce the effect of randomness in single-split, we repeat the process several (£)
times which maximizes the usage of training data in finite-sample situations.
In general, as pointed out by [25], multiple splitting also helps reproducibility
of finite sample results. As shown numerically in Figures 1 and 2, respectively
discussed in Sections 3.1 and 3.2, the classification results of Msplit-HR corre-
sponding to £ & 30 are unsurprisingly more powerful than a single-split (£ = 1).
We show that our method is asymptotically optimal. We also study asymptotic
properties of two well-known linear classifiers, namely the sparse LDA [38], and
the regularized optimal affine discriminant analysis [13], under the imbalanced
setting. Our simulations show that Msplit-HR either outperforms its competi-
tors or has comparable performance based on a much smaller subset of selected
features, while being computationally more efficient as discussed in Section 5.

The rest of the paper is organized as follows. Section 2 gives the problem
setup and investigates the behaviour of the LDA in high-dimensional imbal-
anced binary classification. Section 3 introduces our proposed method, Msplit-
HR. Large-sample properties of the method are also discussed in this section.
Two well-known high-dimensional variants of the LDA, under the imbalanced
setting, are studied in Section 4. The finite-sample performance of several binary
classifiers is examined using simulations in Section 5. Analysis of two real data
sets are given in Section 6. A summary and discussion are given in Section 7.
Technical Lemmas and proofs of our main results are given in Appendices A-C.

Notation: All vectors and matrices are shown in bold letters. For any vector
a € R allo = #{j : a; # 0}, llalh = X7 lagl, llallz = (3Z5_, a3)"?,
llalloec = maxj—i, . pl|a;|. For any symmetric matrix A € RP*? | |JA|; =
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maxi—1,.._p 25—y |aij|, Al = maxj—1__, [A;(A)], where \;(A) are the eigen-
values of the matrix A, and ||A | = max; j=1,. p|a;;|. A diagonal matrix is
denoted by D. For any two sequences a,, and b,,, we write a,, < by, or a,, = O(b,,),
if for sufficiently large n there exists a constant C' such that a,, < C b,,. We write
ap, ~ by, if a, /by, — 1, a8 n — 0o0. And a,, < by, if a, = O(b,) and b, = O(ay,).
Also, a, = o(b,), when a,/b, — 0 as n — oo. The notations o, and O, are
respectively used to indicate convergence and boundedness in probability. An
indicator function is denoted by 1{-}.

2. The LDA

In this section, we first describe the setting of the binary classification problem
under our consideration. We then study the effect of dimension and imbalanced
class sizes on the LDA, which motives the topics of the remaining sections.

2.1. Overview

We consider the class labels Y € {1, 2}, class prior probabilities 7, = Pr(Y = k),
and a p-dimensional feature vector X = (X1, X2,...,X,)" such that X|Y =
k ~ Np(py, %),k =1,2. The LDA is a well-known classification technique for
this setting. More specifically, given the parameter vector 8 = (uq, pty, 3) and
assuming 7, = w9, the optimal rule classifies a subject with an observed feature

vector x* = (a3,...,2;)" to Class 1 if and only if
5P (x16) = ] S — ) < 0, (21)

where prg = po — py # 0, py = (12 + p11)/2.

The misclassification rate (MCR) of a classifier is typically used to quantity
its performance. The classifier in (2.1) which is the Bayes’ rule, is referred to
as the optimal rule since it has the smallest average MCR, II°P* in (2.2) below,
among all classifiers. For §°P! the class-specific MCRs are equal and given by

I, = Pr <(-1)’“50pt(x*;9) < O‘Y = k) =0 (—A,/2) =TI, k=12, (2.2)

where ® is the cumulative distribution function of the standard normal, and
Ag = udefl p, is referred to as the discriminative power or signal value. It
is seen that as A, — oo, high discriminative power, then II°P* — 0; and as
A, — 0, low discriminative power, then II°P* — % implying that the classifier
performs as a random guess. From now on, we assess the performance of other
classifiers under consideration by comparing them with the optimal rule.

In practice, the parameter vector @ is unknown and needs to be estimated
using a training data D,, = {x, @ = 1,...,nk, k = 1,2}, where x;;, is the i-th
observed value of X in Class k, and the nj are the class sample sizes with the
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total sample size n = n; + no. For a new feature vector x*, a so-called plug-in
discriminant function based on the parameter estimates is given by

N3 00) = ) B (X7~ fig), (23)
where 9n = ({15 By 2, f)n) and
1 &
B =y, = - ink, k=12, (2.4)
i=1
=R 1 2 ng
S n_2ZZ(Xik_ﬂk)(Xik_ﬂk)T- (2.5)
k=1 1i=1

~—1 ~
The matrix 3, in (2.3) is a generalized inverse when X, is not invertible.
Given D,,, the conditional MCR of the plug-in linear discriminant rule based on
(2.3) corresponding to Class k € {1,2}, is given by

. . PLDA (én)
" (D,) = Pr ((—1) (X" 0,) < O’ Y =k, Dn> = @(%)7
TLDA(gn)

(2.6)

0 kTt s LDA () T el s
where WP (0,) = (—1)%fag By, (o — pg), and T0,) = f1g B, T, fuy.
As is common in the literature, we study large-sample properties of a classifier

through its conditional MCR.

2.2. Impact of the dimension and imbalanced class sizes

The effect of the dimension p on the LDA’s performance is well studied in the
literature. [38] showed that when p is fixed or diverges to infinity at a slower rate
than /n, the classifier is asymptotically optimal [38, Definition 1]. When p — oo
such that p/n — oo, [4], [12], and [38] showed that this classifier performs no
better than a random guess. Hence, feature selection is essential when p is large
compared to the sample size n.

In the aforementioned works, the impact of dimensionality is studied under
particular limiting settings on the class sizes ny and ns. [4] and [38] respectively
considered equal class sizes (n1 = ny) and unequal sizes where nq, ny — oo such
that 22 — 7, 0 < m < 1. [12] developed their results by considering compatible
class sizes, such that ¢; < Z—; < ¢9, with 0 < ¢1 < ¢a < 00. [3] investigated

the case where ny, ny — oo, such that % = p > 0is fixed. All in all, it is
seen that the sizes of the two classes grow similarly and proportional to the total
sample size n, that is ngy, = O(n), k = 1, 2. We refer to these settings as a balanced
classification problem. [28] analyzed the binary logistic regression models with
fixed dimension p in a so-called infinitely imbalanced case in which n; — oo
but the class size nso is fixed. In this paper, we study imbalanced classification
in which n; and ns grow to infinity such that ny = o(n1), implying a different
growth rate of the class sizes.
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In the balanced classification, typically average (over the two classes) MCR
[38, 13] or the MCR of one arbitrary class [4, 12] is used as a performance
measure of a classifier. However, in imbalanced situations due to data scarcity
in the minority class, classification results have a tendency to favour the majority
class. Thus, the average MCR is not an appropriate performance measure for a
classifier 7. This motivated us to adapt the optimality definition of a classifier
from [38] to our setting as follows.

Definition 1. Suppose T is a classifier in a binary classification problem.
The misclassification rates of T, given the training data D, are denoted by
0] (Dn),k =1,2. Then,

(i) T is asymptotically-strong optimal if T (D,,)/T1P* 251, k = 1,2,
(ii) T is asymptotically-strong sub-optimal if I} (D,,) — T1P* 250, k = 1,2,
(iii) T is asymptotically-strong worst if 1] (D,) —2= 3. k=12,
(iv) T is asymptotically ignorant if ming—y » I1] (D,,) +50 and
maxg=1,2 HZ—('DH) i} 1.

Note that any classifier T satisfying either of the properties in parts (i)-(iii) of
the above definition also satisfies the properties discussed in the corresponding
parts of Definition 1 of [38] for a balanced case, but not vice versa. Part (iv)
of the above definition occurs when a classifier completely ignores one of the
classes, and more specifically the minority class. We now state our first result.

~—1
Theorem 2.1. Suppose that the estimator X, in 6" in (2.3) is replaced by
! and X is known. When ny = o(ny), such that p/ny — oo and %Ai =

o(1), as ny,n2 — 00, then the LDA is asymptotically ignorant, that is,
I (D,) X 0 , II°N(D,) X 1.

This result implies that in the high-dimensional imbalanced cases, the MCR
of the majority class tends to 0 which will be even better than the optimal value
I1°Pt, but the MCR of the minority class approaches 1 which is worse than a
random guess. Note that the above result also holds in the case of p/ny — ¢,
for some finite constant ¢ > 0. [19, 27] showed that, under certain conditions,
the sVM ignores the minority class in high-dimensional imbalanced problems.

Remark 2.1. When p is fized and ne = o(ny), then the LDA is asymptotically-
strong optimal.

Remark 2.1 illustrates that in the fixed-dimensional case, the impact of im-
balanced class sizes asymptotically vanishes and II"*(D,,), k = 1,2, converge
to the optimal value II°P*. Hence, by Theorem 2.1, Shao’s results, and Remark
2.1, the effects of both dimension and imbalanced class sizes are responsible for
ignorance of the minority class.
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3. Proposed Method: Msplit hard-thresholding rule (Msplit-HR)

A common approach to deal with high-dimensionality in the LDA is to incorpo-
rate feature selection using a hard-thresholding rule (HR) based on a two-sample
t-statistic as in [12]. More specifically, by ignoring the correlation among fea-
tures, X is estimated by the diagonal matrix D, = diag{6?, ...7&12,}7 and the
discriminant function is given by

5HR(X*;én) = er(x*;én) hj(én), (3.1)

where én = (ﬂ17ﬂ27ﬁn)> Tj(X*§én) = (ﬂdj/&]g)(x; _ﬂaj)7 and h](én) = 1{|tj| >
Tn } is the thresholding operator based on the t-statistic

t. = M (3.2)
’ (3']‘\/71/77/1712

Here fi;,’s and 67’s are the entries of fi;, and 3, in (2.4) and (2.5), respectively.
The discriminant function of FAIR proposed by [12] for balanced problems be-
longs to the class of functions in (3.1). The authors select an optimal number of
statistically most significant features, or equivalently the threshold value 7, of
t-statistic, by minimizing a common upper bound on its corresponding MCRs.
However, for the case of general ¥, such choice of 7,, does not necessarily result
in an asymptotically optimal classifier [38]. Thus, for generality, in the rest of
the paper, for any given sequence of 7, we refer to a classifier based on (3.1)
as an HR unless otherwise is specified.

If indeed ¥ = D, [3] showed that the HR in (3.1) based on a fixed threshold
Tn = T, is asymptotically ignorant when p = (n1 — ns)/(n1 + ng) > 0 is fixed,
as ni,ng — o0o. As stated after Theorem 3.1 below, it is interesting to note
that under the imbalanced setting no = o(n1) and by an appropriate choice of
Tn, the HR is indeed asymptotically-strong optimal. However, our simulations
in Section 5 show an unsatisfactory finite-sample performance of the HR in the
sense of both the MCR in the minority class and large difference between the
two MCRs. We propose a new construction of the HR which outperforms (3.1)
in finite-samples, while maintaining the same desirable large-sample properties,
to be discussed below. To fix ideas, we first consider the imbalanced problem
with a diagonal 3 = D. The general case of a non-diagonal ¥ is discussed
in Subsection 3.2, which is based on a feature screening technique. Note that
under this case, the HR based on (3.1) is not optimal, as it ignores the correlation
among the features.

3.1. Msplit-HR under a diagonal ¥

As discussed in Section 2, the class specific MCRs of the optimal rule are equal,
and are given in (2.2). Our numerical experiments show that, due to the im-
balanced class sizes, HR performs well in majority class but underperforms in
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minority class, though it has large-sample optimal property as discussed after
Theorem 3.1 below. Thus, the idea in our work is to reduce the difference be-
tween two conditional MCRs of HR toward that of the optimal rule which is
zero. More specifically, our main goal is to propose a new discriminant function
aiming to reduce the difference between the MCRs of the HR,

I (Dr) = " (D) = [@(¢1,n) — (2,n)];
where ¢y, = U%(8,,)/\/T"™(8,) and

q’zn(en):( 1)k+1 = 1rj(p’k70 )hj(én> ) THR(én): le(ﬂdj/&?)Qo—?hJ(én)

for k = 1,2. To understand the above difference, [3] studied distributional prop-
erties of the quantities 9,k = 1,2. They focused on reducing the so-called
bias

BI* = E{Wi%@,,) — ¥5*0,)} (3.3)
to zero, which results in decreasing the blas between 91, and 2, and conse-
quently of that between MCRs. However, it turns out that due to the depen-
dency between the random variables r; and hj, computing BE® is not an easy
task. [3] studied the origin of the bias and proposed methods for its correction.
We instead propose a new construction of the HR that facilities the computation
of such bias by adapting a sample-splitting strategy as follows.

The training sample of each class is randomly partitioned into two sub-
samples of sizes nj = |ng/2]. The two sub-samples are used for computing
two quantities similar to the r; and h; in (3.1), for each j = 1,...,p, and then
the results are merged. To reduce the effect of randomness due to the data split-
ting, this process is repeated, say, £ times. Our new discrimination function is
then constructed by averaging over the HR-type discriminant functions based
on each splitting. Thus, we chose the name Msplit-HR for our method. More
specifically, at the ¢-th data splitting, for each ¢ = 1, ..., £, the entire training
data D,, is partitioned into two parts D(l) and D(2) The parameter estimates
based on each sub-sample are distingulshed by the superscrlpts (M) and @, that

(1 A (2
is, 0;; and 0;;. A new observation with a feature vector x* is then classified
using the discriminant function

L p
I (758, ZZ x1000) i 6,1, (3.9
g: j=1

N A(1) A(2
where 0,, = {(0;’2,9;;) : for ¢ =1,...,L}. Due to the statistical independence

of the two random functions h; and r; in (3.4), for all j =1,...,p, calculation
of the bias B,, for 5%)\4 SPHEHR 5o straight forward, which is shown below. Recall
nj, = |ng/2], and let n’ =nj +nh and f,p =n'/2 - 1.

6é\/fsplit—ﬂu

Proposition 3.1. The bias B, in (3.3) corresponding to is given by

B[])\{;plit—HR _ E{\Ijé\j[fplit—lm(én) . \I/(J)\j[;plit—lm(én)} = fn Z Z E{hj (9;172)}7
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where 7, = fn/(n—l,1 - %)Fg"fi’i;), and T'(+) is the gamma function.

Finally, using the above result, we propose the bias-corrected discriminant
function

_ . 1 &2 ~(2), T 4D
SMSPLt-HR (3. 1y — - ZZ {rj(x*;en’g) - ?n}hj (0n.0) (3:5)

=1 j=1

which has its bias BMsPitIR — (. The term 7, is a function of (n} — n}) which

is negative since no < ni. Hence, for any new feature vector x*, the resulting
discriminant function (3.5) tends to be more positive compared to the rule in
(3.4). This increases the chance (or probability) of classifying a new observation
to the minority class, and hence improving the classification results for this
class. In our simulations and the real-data analysis, we evaluate the performance
of Msplit-HR based on the bias corrected function §MsPlit-H% We now describe
Algorithm 1 that summarizes the steps for computing (3.5).

Algorithm 1 : Computing the discriminant function §MsPlit-ig,

Require: Input n}| = [n1/2],nf = [n2/2],x*, L, 7 and 7.
1: for/=1,...,L do

. : : 1) (2
2: Split D,, into Dn ) and Dn )

3 for j=1,...,pdo

4: Stepl: Using ’DSZ compute h; (9511)4)

5 Step2: Using ’Df% compute r; (x*,éf,)g) - %7
6 end for

7: end for

8 return SMSPUCHR(xr 9 ) — 15°L 5P {rj (x*:050)) — —}h @)

In practice, a value of £ is required to compute (3.5). Figure 1 shows the
class-specific MCRs of (3.5) as a function of £, corresponding to scenario (i)
in our simulations in Section 5.1. It can be seen that a value of £ between 20
to 30 provides a satisfactory performance of Msplit-HR. We used £ = 30 in our
numerical experiments.

The following results show the asymptotic behaviour of JMSPEtHE  First we
state Lemma 3.1 that provides conditions under which the t-statistic (3.2) used
in the thresholding operator h; in §MSPItHR gelects all the important features.
Since L is fixed, the result of the lemma holds for all £ =1,..., L.

Lemma 3.1. Assume that the mean difference vector pg = po — pq is sparse.
Let & = {j : pgj # 0} be the the corresponding active set with the cardinality
s = |S], and define dy,, = minjes |pq;|. Under Conditions (C1) and (C2) in
Appendiz A, if 7, = O(y/nzdon), logs = o(n2dg ), log(p — s) = o(73), na =
o(n1), and \/nady,, — 00, as ni,ng — oo, then

@pr (sl <m}) » 15 @ e (Yl n}) 1

J€S jES
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Fic 1. Effect of the number of sample-splits L on Msplit-HR performance for the Simulation
setting (i) and p = 1000.

In the above Lemma, if dy, = do, for some constant dy > 0, then 7, =
O(y/nz) and logp = o(nz). On the other hand, if do,, ~ ny "oy, for 0 <y <1
and some a,, — oo, such that dy, declines to zero and /nadp, — oo, then
we have 7, = O(ns/> "o, ) and logp = o(ny *"a2 ). Therefore, in both cases
the divergence rate of the dimension p is smaller than that of the minority class
size ng, as opposed to the balanced case where logp = o(n), that is, a larger

dimension p allowance.

Theorem 3.1. Suppose that the conditions of Lemma 3.1 are satisfied. Let
K = max{A;l\/s/ng , /logp/ni}. For any fized L,

(a) the MCRs of Msplit-HR are given by

H]]ysplit—HR(Dn) _ (I)( _ %Ap(]- + Op(/in)))? k= 1, 2

(b) if SA?D = o(ng) and Afﬂ/logp/nl = 0(1), the Msplit-HR is asymptotically-
strong optimal.

Note that the result of Theorem 3.1 also holds for the HR. Part (b) of the
theorem implies that the growth rates of both the sparsity size s and the dis-
criminative power A, are controlled by the minority class size ns.

3.2. Msplit-HR under a general X

When the dimension p is large compared to the sample size n, the sample
covariance matrix in (2.5) is ill-conditioned. To deal with the singularity issue,
many existing methods in the literature involve a feature selection strategy. In
what follows, we use a variable screening method [14, 29] to select a subset of
features x;’s that have the highest discriminative power.
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At the ¢-th data splitting stage of Msplit-HR, we consider the mean difference

estimators p,((ig = [L(l) [Lglg, which are computed based on the training sub-

samples Dn y,for £ =1,..., L. For a given threshold parameter 7,,, we select those

features x; whose indices belong to the set S( ) ={1<j<p: |udj e‘ > Tty

where /‘EJ )1, is the j-th entry of ,u(l)

For any p-dimensional feature vector x*, we define the discriminant function

c
split- *. N 1 ~ <L * ~
s P (x*:9,,) = 7 ZHdT,eEn,e (X7 — Bay) (3.6)

where 8,, is the vector of corresponding parameter estimates, and x; = (x;" :

Jj € Sr(:z)—r are sub-vectors of the full feature vector x*. Furthermore, for all
! = 1 e ,E, we have [Ld’e = [I’Z,Z _[1’174’ [l’al = ([1’1,@—’_[1’2,@)/27 such that [l’k),ﬁ =
(,ug ) 1] € S&z)—r for k=1,2, and X, , = [&;??76 15,7 € ST(LlZ] are respectively
the Sub—vectors and sub-matrices of the sample means and covariance matrix

given in (2.4) and (2.5). Note that for the existence of En pforalld =1,2,... L,

we include at most (n’ — 2) features in each 3(1
As discussed in Subsection 3.1, the data sphttmg technique facilitates com-
putation of the bias B,, (3.3) correspondmg to (3.6).

Proposition 3.2. If |S(1)| <n' =3, forallt=1,..,L, then
1 L
B(])\/[;plit-HR E{\IIMSPM HR(é ) \IIMsplzt HR n _ = ZE{fn,Z}y
) E —

where

) 11 n' —2 .
S R e

ny Ny n’737|87(l,¢\

Finally, our bias-corrected discriminant function is

6M§pht HR

- T,
6.) =7 Z{l"d 2, e — by ) — Té} (3.8)

which has its bias BMSPitR — (. The term 7, as a function of (n} —n/) makes
the corrected discriminant function (3.8) more positive compared to the rule
n (3.6). This increases the probability of classifying a new observation to the
minority class, and hence improving the results for this class. Algorithm 2 below
summarize the steps for computing in (3.8).

Figure 2 shows the class-specific MCRs of (3.8) as a function of £, corre-
sponding to scenario (iv) in our simulations in Section 5.2. Based on these
results, we used £ = 30 in our numerical experiments.

The following lemma shows that the variable screening method used to obtain

. (1) . .
the selection sets S, ; have a so-called strong screening consistency property, as
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Algorithm 2 Computing the discriminant function in (3.8)

Require: Input n) = [n1/2],n) = |n2/2],x*, L, and 7.
1: for/=1,...,L do
2: Split Dy, into DS)Z and 'Df%

3:  Using DS}, obtain 87(11‘2 ={1<j5<p: |,&fi;,)e| > 7} and compute 7y ¢ in (3.7)
4: if |57(11,2| <nj +njH—3 then
5: Using SS} and fo}, compute [L:irzfl,_llé (%7 — fig0)
6: else
7: Step 1: Select the first (n) + nf — 4) features in 57(11; with highest value of |[L[(i;)é
~ o—1 ~
8: Step 2: Using ij; and the selected features in Step 1, compute y,dT’ZEnﬂg(xz - [J,a!g)
9: end if
10: end for ) . . I .
11: return 6VMSPUCTR (x%50,) = 2 500 {ibg ¢ B e (X7 — Bhae) — 75}
2 =N i = R
3 4
L] L]
8 \'\.,.,o\.i./o 8 \'\.,Or./o\. °
?g /.r.‘./o—o‘. g ° °
= 2 S o/. = S ./o/ co-0e—o—°
S -
o o
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
L £
(a) n4=50, ny=10 (a) n4=100, n,=10

Fic 2. Effect of the number of sample-splits L on Msplit-HR performance for the Simulation
setting (iv) and p = 500.

discussed in [29]. We then establish the asymptotic optimality of §MsPlt-HR jp
Theorem 3.2.

Lemma 3.2. Let B = 2_1ud, and define the active set S ={1 < j <p:p; #
0} with its cardinality denoted by |S|. Furthermore, let do,, = minjes |puq;| and
Mmax = C1(MaXjcs ﬂ?)|8|/d%7n, for some constant ¢; > 0 such that mpyax >
|S|. Under Condition (C2) in Appendiz A, if 7, < don, logp = o(nadg,,),
ng = o(ny), and \/nady, — 00, as ni,ng — 0o, for any ¢ = 1,...,L, we have
that

(a) Pr (sg{g > s) —~1; (b) Pr (|5,<j;| < mmax) — 1L

Part (a) implies that that for large sample sizes n, with probability tending

to one, all the active features will be included in the selection sets Sr(:z,

¢=1,2,...,L. Part (b) shows that the size of each set 87(11% is of order myax.
These properties are obtained under the conditions that the divergence rate of

for each
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the dimension p is lower than that of the minority class size ns.

Theorem 3.2. Suppose that the conditions of Lemma 3.2 are satisfied. Let

ky, = max{A '\ /Mumax /N2, Mmax\/10gp/n1}. If Mmaxy/log p/ny = o(1), then

for any fixed L,
(a) the MCRs of Msplit-HR are given by

H}]chplit—IlR(Dn) _ (b< _ %Ap(]- + Op(”;z))>7 k= ]_7 2

(b) if Aimmax = o(ng) and A%mmaxw/logp/nl = o(1), then the Msplit-HR is
asymptotically-strong optimal.

Condition A%mmax = 0(ng) in the above theorem implies that the maximum
size of the selection sets S, ¢, that is mmax, is affected by the minority class
size ny. Note that the results of the theorem also holds for the pairwise sure
independence screening of [29] in the imbalanced binary cases, as well as in the
balanced cases which was not studied before.

4. Two existing high-dimensional variants of LDA

In this section, we investigate conditions under which two well-known sparse
variants of the LDA obtain certain optimality properties under the imbalanced
setting.

4.1. Sparse LDA (SLDA)

This method, proposed by [38], uses thresholding-type estimators for both the
mean-difference vector p; = p, — p; and 3. In SLDA, a new feature vector x*
is allocated to Class 1 if and only if

A ~—1
FPNx"50,) = 14 2, (XF — ) <0,

where fi, = (fi; + f15)/2, and (£, ft;) are thresholded estimates of 3 and p,,

respectively, with the entries,

ladj = lad] 1{|/:[’d]| > a’n}y j: 17' -y Dy

where &;; is (4,j)-th element of 3, in (2.5), and ftgj is the j-th entry of fi,
in (2.4). Further, ¢, = Mj\/logp/n with M; > 0, and a,, = Ms(logp/n)%,
0<a<1/2,M;>0.

[38] derived conditions under which the SLDA is optimal according to their
Definition 1, when p/n — oo and ni/n — 7 with 0 < 7 < 1, as n — oo. It
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turns out that their conditions do not yield an optimal SLDA in the imbalanced
case. In Theorem 4.1 below, we investigate conditions under which the SLDA is
asymptotically-strong optimal under the imbalanced case. We then discuss and
compare these conditions with those of [38] under the balanced case.

First, for ease of comparison, we recall some notations introduced in [38].
Let g, be the number of features for which the value |fi4;| is greater than a,,.
Further, let g,o and g, be the number of features for which the value of |ug;]
is greater than ra,, and a,/r, respectively, for some fixed constant r > 1. Also
let Dy, =>0_) ;4257 0<g <1, and Chp =maxicicp >y_y oi|", 0 < h < 1,
be the sparsity measures corresponding to p, and X, respectively. Here, 0° is
defined to be 0. Furthermore, let d,,, = Cj, ,(n " logp)~"/2 and

b, = A;l max {Apdnl, A/ ai(lig)Dg,p, Van/n2, 4/ Ch,pqn/nl} )
bn, = A;l max {Apdnl, v/ ai(lfg)Dg,p, \/Ch,pqn/ng} ,

where AIQJ = u;—E_lud. Note that under the imbalanced setting na = o(nq), we

have d,,, ~ d,,, where d,, = Cj, ,(n~ logp)(1=")/2.

The following Lemma shows that the set {1 < j < p: |4 > a,} has indeed
a sure screening property, which is essential in Theorem 4.1 for the assessment
of SLDA.

Lemma 4.1. Suppose that,

(logp) (n1/log p)** = o(n2), (4.1)

and ng = o(nq), then as ni,ny — 00,

(CL) Pr (mjiﬂdj>ran {|ﬂd]‘ > a”}> =1,
(b) Pr (ﬂjzudjs%/r{mdﬂ = “n}) =L

Condition (4.1) replaces the condition logp/n = o(1) in [38]. One implication
of (4.1) is logp/n2 = o(1), which shows the impact of the minority class size ngy
on the dimension allowance p.

Theorem 4.1. Suppose that the conditions of Lemma 4.1, and Conditions (C2)
and (C3) in Appendiz A are satisfied. Then, as ni,ns — 00,

(a) the MCRs of SLDA are given by
. 1
[[504 (D, ) — q>< S IA L Op(bnk)}), k=1,2.
(b) the SLDA is asymptotically-strong optimal if

i. A2 is bounded, and by, = o(1), or
ii. A2 — o0, such that AZby, = o(1) holds.
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The difference between the above theorem and Theorem 3 of [38] appears
in b,,. To simplify the comparison in this case as in [38], suppose that X is a
diagonal matrix (Cpp, = 1), and let s be the number of nonzero (active) entries
of the mean difference vector p,. If there are two constant ci,ce > 0, such
that ¢ < |pugj| < co, for the active j’s, then we have g, = s. This implies
that, by the Conditions (C2) and (C3), A2 and Dy, are of order s. Now, in
this case, if s — oo, according to Theorem 4.1-(b)-ii above, under condition
(4.1), A2b,, = o(1) is equivalent to s = o((n1/logp)®). This implies that under
the imbalanced setting, the growth rate of the sparsity factor s is smaller than
\/n2 and consequently is smaller than the growth rate of s in the balanced
setting. Therefore, due to the data scarcity in the minority class (ng) in the
imbalanced setting, in order for the SLDA to be asymptotically-strong optimal
more restrictive conditions are required on both the dimension p and the sparsity
size s compared to the balanced case.

Next, we compare the optimality conditions of Msplit-HR and SLDA. The
relation between these conditions for a general 3 is not straightforward, and
thus to get some insight we consider a diagonal case. Suppose that 3 is diagonal
(Cop = 1), and g = 0 such that Dy, = s = [S], where S = {1 < j <
p : pgj # 0}. By condition (4.1), we have logp = o(n2) which implies the
necessary conditions of Lemma 3.1 on (s, p), if do,, = minjes |pq;| = do > 0 and
Tn = M/n3, for some constant M > 0. On the other hand, if dy,, decays, the
same conclusion holds when a, = O(do,) and 7, = M,/nady, . Furthermore,
by (4.1) the conditions of Theorem 4.1-(b) are equivalent to sAZ(log p/n1)** =
o(1) implying sAf) = o(n2) which is required for the optimality of Msplit-HR.
Therefore, the conditions of Theorem 4.1 for SLDA on the dimension p and the
sparsity size s are more restrictive than those in Theorem 3.1 for Msplit-HR.
In terms of feature selection, Lemma 3.2-(b) provides an upper bound myax =
0(n2A;?) on the size of the set of selected features by Msplit-HR, whereas the
SLDA allows the number of nonzero estimators of pg;’s or o7 ;s to be much larger
than the class sizes to ensure optimality of the classifier, see [38]. Therefore, the
number of selected features by SLDA could be potentially larger than the class
sizes which we have also observed in our numerical study in Section 5.

4.2. Regularized optimal affine discriminant (ROAD)

This method, proposed by [13], is constructed based on a sparse estimate of w =
> pg, unlike the SLDA which uses sparse estimates of pu,; and X, separately.
The ROAD assigns x* to Class 1 if and only if

x*10,,¢) =W, (x* —fi,) <0, (4.2)

5ROAD (

where 0, = (fo1, fbg; ), fog = (fy + fi)/2, and
W, € arg min w'E,w (4.3)
wlli<e, wTi,=1

~

with fi; = fi, — i1, and (ft, X,,) are the estimates in (2.4)-(2.5). Note that in
(4.3) the smaller the ¢, the sparser the solution w., and as ¢ — oo the solution
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is equivalent to the regular weight w, oc 3™ ;. [13] studied the asymptotic
difference between the average MCR of the ROAD and its oracle version for
which the true values of (g, pty, X) are used in (4.3). However, as discussed in
Section 2.2, under the imbalanced setting the average MCR is not an appropriate
performance measure for a classifier. Therefore, in the following theorem, we
study the class-wise MCRs of the ROAD.

Theorem 4.2. Let s, = ||welo, s = ||'w£

wgl), and W, are respectively the solutions of (4.3) when (pg, ), (g, X) and
(fog, Bn) are used. Furthermore, let II°*"(Dy; c) be the MCR of Class k = 1,2,
associated with ROAD, and II77(c) denotes its oracle value. Under Condition

(C2) in Appendiz A, if ng = o(ny) and logp = o(ns2), then as ny,ny — oo,
IO (Dys ) — I (c) = Oplen), k=1,2, (4.4)

where e, = max {02(logp)/n1 , v/ (logp)/ns x \/max{sc, s, §C}}

By Theorem 4.2, a necessary condition for convergency of the MCRs of ROAD
to their oracle values is that the sparsity size s. of the vector w,. and the
dimension p are controlled by the minority class size no (similar to the SLDA),
which in turn shows the effect of imbalanced class sizes on the performance of
ROAD.

In general, the conditions of Theorem 4.2 do not guarantee the optimality of
ROAD according to Definition 1. [13] showed that when the penalty parameter
¢ is chosen as ¢ > A2 | S p, |1, then w, o< 37, and the oracle MCRs
I197¢(c) reduce to those of the optimal rule in (2.2). Hence, by Definition 1, for
such c¢’s, Theorem 4.2 shows that ROAD is asymptotically-strong sub-optimal
as long as e, — 0. Furthermore, ROAD becomes asymptotically-strong optimal
if A, is bounded. The condition e, — 0 is the same as logp = o(n1/c?) and

1)||0 and §. = ||we|lo, where w,

logp = 0(n2/Smax), where Spmax = max{se, sgl), 3.}. Note that, the larger
the ¢, the larger the quantities s, §. and sgl), and hence more restrictions on
(n1,ng,p) compared to those in Theorem 4.2, and the conditions of Msplit-HR.
In our numerical study, we observe that the performance of ROAD in terms of
MCR; improves for lower dimensions.

5. Simulation study

In this section, we assess the finite-sample performance of Msplit-HR and several
binary classification methods using simulations. We consider two settings of di-
agonal and general covariance matrix 3 under the model X|Y = k ~ N, (p;,, ),
k=1,2.

5.1. Diagonal ¥

We compare the following methods: the bias adjusted independence (BAI) and
leave-one-out independence rules (LouI) [3], diagonal ROAD method (DROAD)
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[13], the bias corrected LDA (BLDA) [20], the HR and its under-sampling version
(Us-HR), and our proposed method Msplit-HR. Note that the aforementioned
methods use the knowledge of a diagonal X. In our comparison, we also include a
bias-corrected support vector machines proposed by [27] coupled with an under-
sampling method (US-BasvM). In regards to over-sampling techniques such as
the SOMTE, [3] and [8] showed that such techniques deduce larger differences
between the MCRs in high-dimensional imbalanced problems. For example, we
examined the performance of HR and BCSVM coupled with SMOTE (under both
diagonal and general 3) and since their performances were not satisfactory, we
did not report the results here.

We implemented the methods using R software. The DROAD results are based
on the authors’ MATLAB codes available on their website '. Our computations
are carried out on a computer with an AMD Opteron(tm) Processor 6174 CPU
2.2GHz.

The above methods involve certain tuning (threshold) parameters that need
to be chosen using data-driven methods. We chose best threshold parameters
in BLDA, BAI and LOUI by a grid search using the techniques outlined by the
authors. As in [20], an F-statistic is used to select the important features in
BLDA method. In both HR and Msplit-HR, we choose the tuning parameter 7 by
minimizing MCR of the minority class based on a leave-one-out cross validation.

We consider the binary classification problem X|(Y = k) ~ N,(p, D), k =
1,2, and D = diag{o?, ..., 012)}. We generated training data with different class
sizes ny and no, and test data sets of size 50 in both classes. We considered
two dimensions p = 1000, 3000, and class-wise sample sizes (n1,n2) = (25,5),
(50, 10), (100, 10) for the training data. The simulation results are based on 100
randomly generated data sets, and the two parameter settings:

(1) pr = (1,1,0,-2)7, py = (2,2.2,0,2)7, 0 = 152, 02 = 0.75%, and
0]2» =1, for j=3,...,p.

(i) gy = (10,0p-0)", py = (2% 14,25 % 15,3 % 1,0,9) T, 07 = 10, for
j=1,..,4, 07 =2.25% for j =5,6,7, 07 = 1.5%, j = 8,9, and 07 = 1, for

j=10,...,p.

The number (s) of active features z;’s that distinguish the two classes, and
also the value of A, in the two settings are respectively s = 2,A% = 3 and
s = 9,A127 = 8.7. Since the signal strength is measured by A, setting (i) has
a weaker signal than (ii). Under these settings, the value of the optimal MCR,
II°P* in (2.2), are respectively 19.32% and 7%. Also, the active features have
different marginal signal values |ugq;]/0;, in each of the settings.

The performance measures used to compare different methods are: per-class
misclassification rates (MCR;, MCR3), and the geometric mean (GM) of the
MCRs. The results reported in the tables are average and standard deviations
(in parentheses) of the measures over 100 generated samples. We also reported
median number of true selected features, denoted by A, and falsely selected
features denoted by N, respectively. For the new method Msplit-HR, similar to

I<https://github.com/statcodes/ROAD>
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the stability selection technique of [24], the selected features for each simulated
sample are those with a relative frequency more than 50%, that is the set S,, =
{j: ffJ > 0.5}, where f; is selection frequency of j-th feature among L splits.

5.1.1. Discussion of the results

The results for the cases (n1,nq,p) = (25,5,1000), (50,10, 1000) and (100, 10,
1000) are given in Table 1. The results corresponding to dimension p = 3000
are given in Table 2.

From Table 1, under both settings (i) and (ii), we can see that DROAD, HR,
and BLDA have smaller error rates in the majority class (MCR4) compared to
the other methods, but the differences between their MCR; and MCRs are
larger. The class-wise error rates corresponding to US-HR and US-BCSVM have
smaller differences than those of DROAD, HR, and BLDA. Furthermore, the Us-
HR outperforms US-BCSVM, DROAD, HR, and BLDA in terms of MCRs,. Under
setting (i), Msplit-HR outperforms all the other methods in terms of MCRa; for
example, its MCR; is better than the next best method LOUI up to about 8%,
depending on class sizes (n1,n2) and dimension p, while having balanced results
for both classes. In setting (ii), Msplit-HR behaves similarly to LOUI and BAI,
with its MCR4 better than LOUI and BAI respectively up to about 3% and 7%.
Note that in (i), we have a weaker signal strength (A%) and fewer number of
active features (s) than (ii), which matches the conditions of Theorem 3.1 for
Msplit-HR on controlling the size of SAZQ). In other words, we can see that the
weaker the signal, the better the performance of Msplit-HR in terms of MCRs
in both classes. On the other hand, from the columns A and N of Table 1,
Msplit-HR tends to select fewer number of inactive (noise) features compared to
the two its competitors BAT and LOUI In BCSVM, the bias caused by dimension
is corrected by using all features in the model and therefore this method does
not perform any feature selection.

Table 2 consists of the results for dimension p = 3000. As expected, the
class-specific MCRs of all the methods increase compared to p = 1000. Msplit-
HR outperforms all the other techniques in terms of MCR; while having balanced
misclassification rates. For example, the MCRy of Msplit-HR is smaller than the
next best method LOUI up to about 7%. In addition, we observe that Msplit-HR
has better performance than BAI and LOUI even in setting (ii) in which they
have comparable performance for p = 1000.

We now assess the computational efficiency of the different methods. For a
fixed threshold, the computational complexity of BAI and LouI is O(n?p) and
that of all the other methods is O(np). In our simulations, the threshold (or
tuning) parameter in each method was chosen using a cross validation criterion.
Table 3 provides the average computational time (in seconds) taken by each
method to complete per-sample results. Note that since US-BCSVM does not
involve any feature selection step, as expected, this method is among the faster
methods discussed here. It can be seen that the HR and BLDA, followed by US-HR
and US-BCSVM, are the fastest among all the methods we considered, but they
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TABLE 1

833

Classification results for the simulation settings (i)-(it) with a diagonal ¥ and p = 1000.

(n1,n2) | Setting | Methods MCR1% MCR2% GM% A N
US-BCSVM 48.96(13_99) 4746(1438) 4633(599) 2 998
DROAD 2.62(7.45) 931401501y 5451137 2 364
HR 15.96(13.02) 67.3(26.43) 26.25(15.45) 1 2
(25,5) () US-HR 44.34(16.45) 45.14(16.49)  42.73(5.01) 1 1435
BLDA 14.7211.05)  70.16(22.47)  28.04(11.75) 1 5
BAI 38.86(15.16) 48.2(17.93)  41.15(10.06) 1 755
LOUI 41.46(1514)  439(10.43) 39.05175 1 205
MSplit—HR 42.66(1&97) 40'04(1665) 39.12(11‘01) 1 2
US-BCSVM 46.42(14.04) 41.22(15 o7) 41.995.75) 9 991
DROAD 546(5.63 58483027 98401024y 6 17
HR 12.38(10.52)  55.78(27.55) 20.80(12.40) 1 2
(25,5) Gi) | US-HR 39.34(1475) 35.48(15.43) 3513411y 4 124
BLDA 11.06(8.74) 57-48(26.60) 20.85(11.30) 2 3
BAI 30.72(13.94)  35.06(16.32) 30.53(10.12) 3 33
LOUI 20.86(14540) 312401637 27.951083) 3  36.5
Msplit-HR  32.21557)  28.22(15.42) 2761901y 1 3.5
US-BCSVM 47.88(10.19) 44.56(10.78) 45.25(5.71) 2 998
DROAD 6.30(0.10)  75.28(30.25 11.23(11.61) 2 68
HR 19.36(7.47) 40.82 (2099  26.15(768) 1 1
(50,10) (i) US-HR 34221405y  32.66(14.34) 32.12(10.72) 1 0
BLDA 1826(882) 48.68(21‘24) 2527(881) 1 3
BAI 31.94(1439)  36.92(15.10) 32.T1(10.52) 1 11
LOUI 29.28(12.01)  34.12(17.04)  29.99(10.39) 1 8.5
Msplit-HR  30.22(15.66)  26.68(13.42) 2699975 1 0
US-BCSVM 4172(903) 38.02(10‘21) 3893(523) 9 991
DROAD 5.60(6.01) 30.72(19.67) 939692 7 175
HR 11.02(7.04y 254201569y  14.596.84) 2 0
(50,10) Gy | USHR 22.84(10.14) 19.04(3 49)  19.74(7.23) 1 0
BLDA 1172670y 24.36(15.71)  14.80(6.13) 2 0
BAI 1768760 198011700 1718807y 3 3
LOUI 16.72(.55)  19.16(10.09)  16.55(739) 3 3.5
Msplit-HR 19-22(9.58) 17.82(9'07) 17-08(6.84) 2 0
US-BCSVM 47.96(10.08) 44.1(10.50) 45.09(5.42) 2 998
DROAD 2.60(5.05  85.74(22.67) 628967y 2 494
HR 19.96(8 53  34.8219.40) 24.31(g09) 1 0
(100,10) (i) US-HR 34.08(13.17)  30.52(13.07)  3l.14(909) 1 0
BLDA 16.84(7.60y 45.48(20.81)  25.08(g01y) 1 2
BAI 28.86(12.15)  33.64(16.62) 29.T200.85) 1 7
LOUI 26.26(11.03) 3248(16.76)  27-8l(gag) 1 6
MSpht—HR 27.94(12_09) 2484(1311) 2495(893) 1 0
US-BCSVM 41.66(9.67) 37.38(10.88) 38.51(6.02) 9 991
DROAD 3.22(403)  37.96(20.38) 6.57@.ory 8  3L5
HR 10.02(6.00)  22.14(12.49) 1311577 3 0
(100,10) | i) | USHR 20.64(10.65) 18.98(10.47)  18.30(7.7¢) 1 0
BLDA 1044(626) 22.28(14‘29) 1296(583) 3 0
BAI 1644970y  17.0810.19) 15490759y 3.5 2
LOUI 15.02(8.37) 15940932 1413640 3 2
MSplit—HR 16.56(&98) 14'38(7.88) 14'04(5.36) 3 0
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TABLE 2

Classification results for Simulation settings (i)- (i) with a diagonal 3 and p = 3000.

(n1,n2) | Setting | Methods MCR1% MCR2% GM% A N
US-BCSVM 50'84(13.78) 4732(1375) 4732(503) 2 2998
DROAD 3'14(7.66) 94.40(12_91) 671(1344) 1 529
HR 14'92(12.68) 73'64(24.84) 26'10(16485) 0 15
(25.5) G) | USHR 46.38(16.01) 46.86(16.10) 4425705 1 255
BLDA 13.6(11.63) 76.44(33.64) 26.03(1453) 1 5
BAI 38.04(15.86) 50.92(17.61) A4L.7T(9u4sy 1 1075
LOUI 41.02(18.00) 47.04(18.60) 41.16(1020) 1 42
Msplit-HR  43.06(19.61)  44.08(10.95)  40.09(9 15 1 3
US-BCSVM 47.12(13 gg) 45.32(13.29) 44.37(5.11) 9 2991
DROAD 5.54(s.50) 60.5828.94) 10.24(1150) 6 16
HR 14.04012.40)  62.44(27.65) 2341l(1478) 1 1
(25,5) Gi) | US-HR 43.78(15.90) 41.52(1533 40.35g20) 3 2515
BLDA 11.0410.41)  65.64(27.00) 20.50(13.70) 1 3
BAI 33.0415.35) 41.68(17.60) 348401061y 3 795
LOUI 31.6416.08) 41.84(18.01) 33.6310.00) 3 78
Msplit-HR  37.78(17.62)  36.32(17.68) 34.18(10.36) 1 3
US-BCSVM 48.46(11.56) 47.98(11.55) 47.045.29) 2 998
DROAD 57(0.27) 81.02 9478y 11011554 2 77
HR 18.68(3.09) 40.88 (3430) 24.61(961) 1 0
(50710) (i) US-HR 35.62(13'25) 36.66(14'57) 34.87(10‘01) 1 0
BLDA 17.16(5.35)  48.18(24.08) 25.74(g52) 1 2
BAI 32.0811.85) 374217.08) 33.32(11.03 1 12.5
LOUI 31.1(12.33) 34.82017.41) 314801118 1 9.5
Msplit-HR  32.3(1081)  30.98(16.05) 30-35(11.34) 1 0
US-BCSVM 44.08(10'75) 44.16(10'42) 4304(485) 9 991
DROAD 5120501y  32.40(17.42) 9.24(605) 1  25.50
HR 12.98(5.14)  28.7 (1805 17.1481g) 2 0
(50710) (li) US-HR 26.8(12'13) 24.72(12_17) 2448(881) 1 0
BLDA 1276880 2911032y  16.70(7.00) 2 1
BAI 202401071y  2244(1368) 19550960y 3 4
LOUI 19.02010.20) 22741348y 1945935 3 9
MSplit—HR 21.4(11'07) 19.2(10'14) 18.93(7'47) 2 0
US-BCSVM 48.3(10.85) 48.58(11.83) 47.32(5.50) 2 998
DROAD 1.80(4.03)  88.66(20.70) 44953 2 86150
HR 18420504  42.38(2465  25.08(002) 1 0.50
(100,10) G) | USHR 36.9401420)  37.l(1z0s) 35911047 1 0
BLDA 15.64(5 56) 50.18(36.11)  24.00(947) 1 2
BAI 209201065y 39-64(16.46) 33.37(0.74) 1 14.5
LOUI 27.0410.72)  36.04017.31y  29.95(10.71) 1 7
MSpllt—HR 31'46(11.87) 29.1(15_09) 2914(1113) 1 0
US-BCSVM 44.52(10.96) 44.74(10.01) 43.52(5.09) 9 991
DROAD 328447y  38.90(30.50) 6.74(6.35) 1 31.5
HR 10.186.08)  27.96(18.17)  14.07617) 2 0
(100710) (ii) US-HR 24.28(11'97) 24.48(12'20) 2297(876) 1 0
BLDA 10.06(6.06)  28.26(15.13) 1425617 2 1
BAI 17.32(9.01)  20.94(1402) 17.3937) 3 3
LOUI 16.08;s 07y  21.3213.00)  17.06(33) 3 3
Msplit-HR ~ 18.64(941)  18.04(11.00) 16.84(g08) 2 0
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are outperformed by the other methods in terms of the error rate in the minority
class. In addition, while BAI and LOUI’s performances in terms of the error rates
in the minority class are comparable to our proposed method Msplit-HR; the
former are slower in terms of computational time.

TABLE 3
Average computational time (in seconds) taken by a method to complete per-sample results:
Simulation setting (3).

(n1,n2,p) _ UsBosvm  DROAD  HR  US-OR BLDA  BAI LOUI Msplit-HR

(25,5,1000) 2.8 21.73 0.9 4.66 1.05 6 6.39 9.27
(50,10,1000) 5.12 30.77 1.47 19.98 3.53 58 260 92
(100,10,1000) 4.76 35.00 5.43 42.22 11.20 421 365 185
(25,5,3000) 7.5 97.58 1.13 9.05 1.75  14.72 13.83 19.63
(50,10,3000) 12.38 146.17 4.40 62.54 12.24 225 219 282
(100,10,3000) 10.67 141.82  19.90 169.97 29.34 1517 2294 1200

5.2. General X

We considered the same binary classification problem as in Section 5.1, i.e.
X|(Y = k) ~ Np(py, %),k = 1,2, but with a general non-diagonal 3. We
generated training data with different class sizes n; and no, and test data sets
of sizes 50 in both classes. The simulation results are based on 100 randomly
generated data sets. The parameter settings are:

(iii) py = 0p, pg = (1,05 % 1,01 %1],0)_,), (8);; = 0.8, for i # j,
() =4, fori=1,...,pand AIQ) =0.71.
21 0

(iv) py = 0p, py = (1,01,0.1,0;—_6), Y= > , where (31);; = 0.3,

0 .
and (Eg)ij = 08, for i ;é j, (21)“ = (22)” = 17 for i = 1,...,5 and
Ag = 1.27.

In what follows, using the same performance measures described in Section 5.1,
we compare these methods: FAIR, SLDA, ROAD, Msplit-HR, a binary version of
the pairwise sure independent screening (Psis) method by [29], bias adjusted
ROAD (BA-ROAD) and leave-one-out ROAD (LOU-ROAD) by [3], and US-BCSVM
mentioned in Section 5.1. For the FAIR, ROAD, BA-ROAD, LOU-ROAD, we used
the techniques based on cross-validation described in the related papers for
selecting tuning parameters. We applied the bi-section method of [22] for tuning
parameter selection in SLDA by minimizing the MCR of the minority class (called
SLDAycr,, 10t the tables).

All the aforementioned methods provide sparse estimates, say B, of the vec-
tor B=(8;:1<j<pT' =3X"'p, by either plugging in particular sparse
estimates of p,; and X, or by directly finding sparse estimate of 3. Thus, in our
simulation results for each method, we also report the number of j’s for which
Bj = 0, denoted by S in the tables. For Msplit-HR, we report the cardinality

of theset S, = {1 <j<p: % > 0.5}, where f; is the selection frequency
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corresponding to index j over the splits £ = 1,..., L. Table 4 contains the sim-
ulation results for (n1,n9,p) = (25,5,200), (50,10,200) and (100, 10,200), and
the results for the dimension p = 500 are given in the Table 5.

5.2.1. Discussion of the results

From Tables 4 and 5, under both settings (iii) and (iv), we can see that FAIR,
SLDA, PsIS and ROAD tend to classify more observations to the majority class,
and resulting in large differences between the two MCRs. Overall, the techniques
US-BCSVM, BA-ROAD, LOU-ROAD and Msplit-HR perform better than FAIR, SLDA,
psIS and ROAD in terms of MCRy and the geometric mean. For the setting (iii),
in the case (n1,n2) = (25,5), Msplit-HR outperforms others, and in the cases,
(n1,n2) = (50,10) and (100, 10), the Us-BCSVM and LOU-ROAD have better
performance than others; for example, when (nj,ns) = (100,10), LOU-ROAD
outperforms Msplit-HR about 4%. For the setting (iv), Msplit-HR outperforms
all the other techniques in terms of MCRy; for example outperforms BC-svM and
LOU-ROAD respectively up to about 10% and 12% depending on the values of
(n1,n2,p). Moreover, this performance of Msplit-HR is based on a much smaller
set of selected features compared to its competitors. In summary, Msplit-HR has
better performance in the setting (iv) which includes more features with weak
signals than (iii).

Next, we assess the computational efficiency of different methods by studying
the average computational time (in seconds) taken by each method to complete
per-sample results, which are given in Table 6. We can see that PSIS is the
fastest method followed by FAIR and US-BCSVM. However, as seen above, these
methods do not perform well in terms of the MCRs. As mentioned before, Us-
BCSVM is computationally fast, since it does not involve any feature selection
step. The SLDA is slower than the Msplit-HR when the dimension p is increased
from p = 200 to 500. On the other hand, Msplit-HR is computationally more
efficient than its two competitors BA-ROAD and LOU-ROAD. Note that, for a
fixed value of tuning parameter, the computational complexity of BA-ROAD and
LOU-ROAD is O(n?p?), and that of Msplit-HR is O(np?). Therefore, even without
a tuning selection procedure, our technique has lower computational cost.

In summary, given the difficulty of the imbalanced problem, our current simu-
lation study shows that (considering all the three factors: misclassification rates,
feature selection, and computational efficiency) Msplit-HR has a good perfor-
mance compared to the methods discussed here, and is yet another reliable
technique for high-dimensional imbalanced problems.

6. Real-data analysis

We now demonstrate the performance of different methods on two real data
sets. 2

2Both data sets are publicly available from the R package datamicroarray [37], and are
available at <https://github.com/>.


<https://github.com/>
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Classification results for the simulation settings (iii)-(iv) with a general ¥ and p = 200.

(n1,n2) | Setting | Methods MCR1% MCR2% GM% S
US-BCSVM 46.26(15_97) 51.22(15.50) 4620(630) 200
FAIR 232209 64y 78.56(10.06)  40.53(s.04) 6.87
SLD A ycn, 42.04(1438) 57-38(14.87)  47.02(655  147.07
(25,5) Gi) | PSIS 31.56(9.44) 66.98(1051)  45.02(6.1) 1
ROAD 1547503y  82.6T(s87y 34160680  26.17
BA-ROAD 4820 (1551) 48911536 46.83(455  56.45
LOU-ROAD  48.07(1007) 49.03(12.409)  46.97(055  54.09
MSplit—HR 53‘58(1506) 45‘76(16.23) 47'12(665) 4
US-BCSVM 49.96(15.76) 46(15.44) 45.39(5.62) 200
FAIR 20.96(5.00) 76.38(10.82)  38.83(6.85) 8.07
SLDA ycr, 37.18(1430) 60.T4(1484)  45.31(7.84) 124.39
(25,5) Giv) | PSIS 30.029.15 62.52016.16)  42.17(s.64 1
ROAD 1577704y T8.93011.66)  33.94(6.00)  24.38
BA-ROAD 46.52(15.06) 46.63(16.65)  43.92(7.17)  48.53
LOU-ROAD  46.34(1579) 46.22(17.97)  43.17(763  47.26
MSpht—HR 5232(1866) 4302(1851) 4377(792) 4.5
US-BCSVM 46.34(11.67)  48.88(12.77) 46.275.25) 200
FAIR 28.98 .96 69.1(s.05)  43.96(6.76) 6
SLDAMCRz 44'5(11.65) 55.84(12.40) 4857(537) 195
ROAD 19.985 79y  T7.54(0.02)  38.07(7.11) 44
BA-ROAD 48.36(14.40) 48.50(14.15)  45.99(9.99)  53.50
LOU-ROAD  47.38(11.00) 49.14(1210)  46.99(6 34) 53
Msplit-HR, 50.76(1385) 47‘64(12'15) 47~65(6A11) 3
US-BCSVM 47.88(11_98) 48.42(12.55) 4676(553) 200
FAIR 2398565 6451253  38.33(7.57 6
SLDA ycn, 37501303 545801677)  43.6l(953  189.5
(50710) (iV) PSIS 32.16(&79) 5104(17.23) 39'64(9.48) 1
ROAD 21.68(9.05) 64.44(1571)  35.45(7.40)  19.50
BA-ROAD 37.82013.06) 44.74(15.80) 39.00(10.23) 26
LOU-ROAD  39.74(1051) 4246(1350)  39.80(s 27 27
Msplit-HR 44.62013.06) 4011405  40.77(545) 1
US-BCSVM 46.54(11.31)  48.46(12.50) 46.19(5.04) 200
FAIR 26.08(7.63)  70.62(7.04)  42.27(6.7) 6.68
SLD A cns 47241575y 5418(12.48)  49.09(6.45) 169.26
(100,10) | (i) | PSIS 36.06(g.41) 63(3.05  46.52(6 62 1.01
ROAD 1116667y  86.04(5.45)  29.49(764)  71.70
BA-ROAD 445001357 50.9401367) 4540571y  85.41
LOU-ROAD  44.62(10.18) 42441937y 427912  66.22
MSplit—HR 50.42(15_15) 46.46(14.43) 46'22(6.99) 11.45
US-BCSVM 47.76(12.15)  47.26(12.50) 46.03(5.56) 200
FAIR 220797y 67.541180)  37.63(7.61) 8.03
SLDAMQRz 34.2(11_71) 50.54(17.12) 4003(867) 96.77
ROAD 11.16(6.67)  86.04(5.46)  29.49(7.64)  71.70
BA-ROAD 4450013 57) 50.96(1367)  45.39(571)  85.41
LOU-ROAD  44.12(1597) 50.54(11.72)  45.84(5 82 97
Msplit-HR 45.86(1708)  37:6(14.02)  39.19(5 68 9.25




838

A. Mojiri et al.

TABLE 5

Classification results for the simulation settings (ii3)-(iv) with a general ¥ and p = 500.

(n1,n2) | Setting | Methods MCR1% MCR2% GM% S
US-BCSVM 49'18(17481) 50'46(17.69) 4639(847) 500
FAIR 20.48 g.72) T9s.01)  38.798 29 8.91
SLDA ycn, 44841558 54.5616.11)  46.97(557)  350.18
(25.,5) Gi) | PSIS 232209 64y 75.68(10.06)  40.53(s.05) 6
ROAD 12.01(g 97y  87.16(570)  30.2L(g0g)  30.79
BA-ROAD  44.63(1374) 53.7l1a30) 45.0l(974)  57.49
LOU-ROAD  45.82(15.19) 52.32(12.41)  4740(28s  69.18
Msplit-HR  55.96(16.00) 44.58(17.43)  46.77(7.11) 3
US-BCSVM 48.9(15.18)  47.66(13.96) 46.17(5.45) 500
FAIR 15.1(5091) 84.08(s87) 33.151007  13.38
SLDA ycny 41.04(1556)  58-3(15.45)  46.52(700) 315.96
(25.5) Gv) | PSIS 30.26950)  65.9(13.01)  43.60(7.70) 1
ROAD 12.50(5.10)  85.07(10.66)  30.67(751)  27.82
BA-ROAD  48.07(13.10) 48.40(1493)  46.20(671)  60.06
LOU-ROAD  4847(1337) 474801404 45.97(5.10)  59.19
Msplit-HR  53.06(17.66) 43.16(17.54)  44.50(s g3) 2
US-BCSVM 48.46(12.44)  48.64(14.25) 46.945.82) 500
FAIR 26165y 7212835  42.48(6.57) 9
SLDA ycny 43.76(12.08) 55.18(11.08)  47.78(551)  493.5
(50710) (iii) PSIS 35'44(8402) 63.02(9'33) 46.67(5‘37) 1
ROAD 14.10(9 43) 83.70(11.63)  31.80(9.44)  59.50
BA—ROAD 4832(1403) 4966(1268) 4715(768) 6450
LOU-ROAD  48.18(1351) 48.26(15.33)  46.71(g.01) 68
MSplit—HR 50‘06(1567) 48.26(14_52) 46‘91(5478) 1
US-BCSVM 49'04(10487) 49'28(11.96) 4801(556) 500
FAIR 1738(691) 7614(1084) 3541(735) 135
SLDA cr, 38.58(13.10) 51.14(1479)  42.98(9.05) 473
(50,10) Gv) | PSIS 32.02(58) 54.56(17.60)  40.97(.60) 1
ROAD 15.46(9 32) 73.56(10.75)  30.97(764)  38.50
BA-ROAD  42.20(1308) 44.26(15.04)  41.40(g.97) 38
LOU-ROAD  42.60(13.97) 43.16(14.41)  41.25(5 55 47
Msplit-HR 464014650  40.7(15.10)  41.55(5.81) 1
US-BCSVM 47.96(11.92)  49.98(13.98) 47.47(5.67) 500
FAIR 23.91(5 31) T4.6(748)  41.28(755 8.22
SLDA ycns 44.28(19.54) 543401945 4761507, 403.99
(100,10) | (i) | PSIS 33.32(7.73) 6548553  46.24(5 g7 1.01
ROAD 4.60(3.47) 94600409  19.02(g49)  96.49
BA-ROAD  45.40(1330) 51.16(1404)  45.90(301) 105.05
LOU-ROAD  46.24(350) 43.12(10.44)  43.99(6.11) 103.05
MSpht—HR 5176(1445) 46(1462) 4661(655) 5.67
US-BCSVM 48.72(11.81)  48.94(12.06) 47.65(5.53) 500
FAIR 151741y  79420989)  33.09562)  17.18
SLDAycr, 36.98(19.42) 53.58(14.04)  43.120901) 226.33
(100710) (iV) PSIS 30.28(7‘57) 54'96(18.29) 39.94(9‘12) 1.01
BA-ROAD  45.40(1339) 51.16(1404) 459052, 105.05
LOU-ROAD  45.64(1315 49.18(12.87)  45.79(5.8) 107.80
MSplit—HR 43.52(12‘21) 44.02(14_34) 42‘38(8426) 5.74




Msplit-HR for high-dimensional imbalanced classification 839

TABLE 6
Average computational time (in seconds) taken by a method to complete per-sample results:
Simulation setting (iv).

(n1,n2,p) us-BcsVM  FAIR  SLDAycr, PSIS ROAD BA-ROAD LOU-ROAD  Msplit-HR

(25,5,200) 1.91 1.75 8.75 0.28 50.23 110.34 59.93 11.42
(50,10,200) 1.48 4.73 25.71 4.11 66.00 192.10 189.86 39.31
(100,10,200) 1.86 5.56 66.46 3.06 120.93 468.02 443.23 114.44
(25,5,500) 3.00 29.3 80.05 0.41 204.52 254.64 184.99 16.4
(50,10,500) 3.01  27.09 234.35 3.00 272.15 483.82 477.45 62.23
(100,10,500) 3.58  29.66 451.75 3.61 219.95 974.34 1084.75 176.65
TABLE 7
Classification results for Breast Cancer data set. S denotes the median number of selected
features.
> Methods MCR1% MCR2% GM% S

DROAD 19.62(109.20) 46.31(13.38) 28.72(7.77)  201.50

HR 16.82(6.70y  46.72(10.24)  27.08(5.98) 26

US-HR 20.67(7.58) 39.799.78)  27.93(6.10) 32

Diagonal BLDA 16.86.14y 45.59(10.86)  26.78(5.63) 35

BAI 22.24(7.09) 3710.08)  27.83(5.40) 99

LOUI 22.65(7.05) 37.03(10.82) 28.06(5.20) 83.5

Msplit-HR 20.96(7.00)  39-56(10.74)  27.83(5.19) 6

US-BCSVM 19.78(5.74y  34.79(10.01)  25.50(4.24) 1500

FAIR 16.24(5.54) 45.41(9.31)  26.43(4.95) 22

SLDA icrs 22.91(12.30) 47.76(12.19) 31.58(9.17) 1500

General SIS 274701462y 46.17(15.30) 33.77(9.85) 1

BA-ROAD 22.16(5.95) 38.83(9.72)  28.62(4.04) 51.50

LOU-ROAD 22.16(5.90) 38.10(9.84)  28.37(4.32) 56.50

Msplit-HR 24.11(g.g5)  40.55(10.76)  30.35(6.50) 5

The first data set, on breast cancer [17], consists of the expression profiles of
2905 genes for 168 patients of whom 111 patients with no event after diagnosis
were labelled as “good” and the remaining 57 patients with early metastasis were
labelled as “poor”. In our analysis, we randomly split the data into training data
of sizes 56 and 28 of respectively good cases (the majority Class 1) and poor cases
(the minority Class 2). The rest of the data is used for testing. The classification
results, under the assumptions of (a) uncorrelated and (b) correlated features,
are given in Table 7. Under (a), the results suggest that BAI, LOUI, Msplit-HR,
and US-HR have comparable performance, with BAT and LOUI performing slightly
better than the other two in terms of the MCR of the minority class (MCRy).
Under (b), BA-ROAD, LOU-ROAD, and Msplit-HR perform similar in terms of the
MCRs. Us-BCSVM has smaller MCRs compared to the others but by using the
set of all features as it is not able to perform any feature selection. Note that
in both cases, Msplit-HR selects a much smaller number of features toward the
classification task.

The second data set, on multiple-myeloma cancer [39], consists of the expres-
sion profiles of 12,2625 genes for 173 patients with newly diagnosed multiple-
myeloma, of whom 137 were with bone lytic lesions and the remaining 36 pa-
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TABLE 8
Classification results for Myeloma Cancer data set. S denotes the median number of
selected features.

> Methods MCR1% MCR2% GM% S
DROAD 26.03(11.29)  49.33(10.30) 34.93(5.58) 5
Diagonal = BLDA 25.58(9.10) 53.28(11.23)  35.89(5.36) 11
BAI 34.31(10.44) 44.17(13.20) 37.50(5.98) 30
LOUI 35.14(10.54)  44.39(11.35) 38.26(5.95) 27.5
Msplit-HR 38.18(13.68)  41.94(14.37) 37.89(7.51) 7
US-BCSVM 53.78(27.56)  39.44(28.32)  46.06(13 47) 1500
FAIR 27.92(7.64)  49.56(11.16) 36.50(6.15) 14
SLDAcr,y 28.83(9.79)  47-22(10.34) 36.18(7.59) 13
General  PSIS 31421594y 50.11(10.33)  38.43(10.72) 1
ROAD 26.01(109.27)  53.22(10.63) 36.47(5.13) 7.50
BA-ROAD 34.01(13.75)  43.17(13.02) 35.52(9.38) 20
LOU-ROAD 33.749.63) 42.78(10.67) 38.05(6.43)  23.50
MSpllt-HR 34'74(11.84) 42'61(11466) 3727(716) 6

tients were without bone lytic lesions. We randomly choose a training set con-
taining 18 observations from patients labelled by MRI-no-lytic-lesion (the mi-
nority Class 2), and 72 observations from patients labelled by MRI-lytic-lesion
(the majority Class 1). The rest of the data were used for testing. Table 8 con-
tains the classification results under the aforementioned assumptions (a) and
(b). Under (a), the results show that Msplit-HR and US-HR outperform the other
methods in terms of the error rate in the minority class, MCR5. In addition,
Msplit-HR outperforms US-HR in terms of the error rate in the majority class,
MCR;. Under (b), the three methods BA-ROAD, LOU-ROAD, and Msplit-HR per-
form similar in terms of the MCRs. For this data set, the overall performances of
the aforementioned three methods are better than Us-BcsvM. Note that in both
cases, Msplit-HR selects a smaller number of features toward the classification
task.

To reduce the computational cost of each method, and by using a t-statistic,
we screened the initial number of features in each of the above data sets by
selecting a subset of p = 1500 genes.

7. Conclusion

In this paper, we have studied linear discriminant analysis (LDA) in high-
dimensional imbalanced binary classification. To the best of our knowledge, this
is the first work that rigorously investigates such problems which frequently
arise in a wide range of applications.

First, we showed that in the aforementioned settings the standard LDA
asymptotically ignores the so-called minority class. Second, using a multiple
data splitting technique, we proposed a new method, called Msplit-HR, that
obtains desirable large-sample properties. Third, we derived conditions under
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which two well-known sparse versions of the LDA in our setting obtain certain
desirable large-sample properties. We then examined the finite-sample perfor-
mance of different methods via simulations and by analyzing two real data sets.
In our simulations, the Msplit-HR either outperforms competing methods or has
comparable performance in terms of misclassification rate in the minority class,
while it has a lower computational cost.

The methodology (Msplit-HR) and theory developed in this paper are based
on normal distribution for the feature vector X. The normality is used for bias
calculations in Propositions 3.1-3.2, and to establish feature selection consis-
tency in Lemmas 3.1-3.2. On the other hand, [11] showed that feature selection
methods based on mean-differences are sensitive to heavy-tailed distributions
for X, and they suggested transformation approaches in feature space which are
more resistant to extreme observations from heavy-tailed distributions. Proper-
ties of such transformations with respect to our theoretical guidelines, and in
general, extension of our results to non-normal models require further investi-
gation and is a topic of future research.

If the covariance matrix differs between the two classes, i.e. X|(Y = k) ~
N(py,Xr),k = 1,2, the optimal (Bayes) rule is the quadratic discriminant
analysis (QDA). Our limited numerical experiment shows that the QDA in im-
balanced high-dimensional problems behaves similarly to the LDA ignoring the
minority class. A potential approach to alleviate the impact of imbalanced class
sizes is to reduce the difference between MCRs of an empirical QDA toward
that of the optimal rule. However, the main challenge is that none of the afore-
mentioned MCRs have workable closed forms. [22] studied such differences for
sparse QDA and their results might be useful toward imbalanced problems in
the context of QDA. This, however, requires a careful investigation and is a
subject of future work.

Another possible future research direction is to investigate the possibility of
extending the methodology and theory developed in this paper to imbalanced
multi-class classification problems.

Appendix A: Technical lemmas

In this Appendix, we first state the technical conditions (C1)-(C3) required in
our theoretical developments. Next, we state several lemmas that are used in
the proofs of our main results. Lemmas A.1 and A.2 are from [6] and [38].
Lemmas A.3-A.5 are the results from other papers adapted to the imbalanced
setting under our consideration. Lemma A.6 states an upper bound for the tail
of Student’s t-distribution.

Technical Conditions:

(C1) logp = o(ny), where n; is the majority class size.

C2) 0< et < Amin(E) < Amax (B) < co < 00, for a constant ¢y > 0.
0

(C3) 0<ct< max;—i,_.p MZJ' < ¢g < 00, where py; = g — .
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Lemma A.1. [6, Lemma A.3] Let Z; be independent and identically random
variables from N, (0,%) and Apax () < ey < 00. Then,

< Z Zi; Zik, — 0jk) |> nu) < Crexp(=Cynv®)  for all |v| <6
i=1

where o1, ’s are entries of 3, and Cy, C, and 6 depend on ey only.

Lemma A.2. /38, Lemma 1] Let &, and v, be two sequence of positive numbers
such that &, — oo and v, — 0 as n — oo. If lim, 00 Epvn = 7y, where v may
be 0, positive or oo, then

o 2EVEO )
n— o0 (I)(—\/g_n) '

Lemma A.3. Denote the sets

p
U-,—(h,Co(p),M) = {E 0 < M,Z |Uij|h < C()(p), Vi, 0 < h< 1},
=1
U-,—(h, CO(p)7M; 60) = {Z SRS UT(h’7 CO(p);M)7>\min(z) > €9 > O}

Let f]n be a thresholded version of the pooled sample covariance matrix f]n m
(2.5), such that 6;; = (1 —2/n)6:;1{(1 — 2/n)|64;] > tn}, with t, = Myy/ 2
and some positive constant M. Then uniformly on U, (h,co(p), M), and for

sufficiently large My, under the Condition (C3) and ny = o(n1), as ni,ne — 00,
then

1%, -2 1= 0, (o) tomp/m) " ),

and uniformly on U, (h,co(p), M, eo),

12,1 =57 1= 0, (ca) hogp/mn) 2 ).

Proof. The proof is a straight forward extension of Theorem 1 of [5] to imbal-
anced case, and thus omitted here.

Lemma A.4. Let Xip = (Xitky ooy Xipk) ', for i = 1,..,nk, and k = 1,2,
be random samples from p-variate normal distribution with mean vector 0 and
diagonal covariance matriz D = diag{o?,...,02}. If the Conditions (C1) and
(C2) are satisfied and ny = o(ny), then as ny,ny — oo, we have

£2 2
max |67 = 0% |= O,(v/(logp)/ma).
where 6]27j =1,...,p, are the diagonal elements of the pooled sample variance

S, in (2.5).
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Proof. Let X, = % S Xigk, for k=1,2, j =1,...,p. We have,

P
2 2 52 2
Pr(max 192 =3 1>) £ 3Pe (153 o 1)

1 & 1 7
Pr|— > (X2 —0}) > —+ -2
r (\/ﬁ | 71:1( ’ij? U]) ‘ \/m 4(“1 + n2 ))

—2
Pr <| e X — J2 |> Z(nl + ng —2))

IN
w EMN
1= 11

B

N
=
<.

I
-

2 2 2
< pC’leXp{Czn(n_Q)}+pC’3exp{C4n(n2)2}
P 16 ng 16
for |n| < 4, where Cy,Cs,C3,C4, and § are constants depending only on c¢p.
The last inequality follows from Lemma A.1. By taking n = M+/logp/n;, for
sufficiently large M > 0, under the imbalanced setting and the Condition (C1),
the result holds. B

Lemma A.5. Under conditions of Lemma 3.2 and the imbalanced setting ny =
o(n1), assume that Mmmaxy/logp/ny = o(1). Then for £ =1,...,L, as long as

n1,Ng — 00,
|| in,ﬁ - EZ ||: Op <mmax 1ng/nl) .
where 3, 4 = [&J(?,)’@ NS 57(112] and 3y = [0 j,j € Sfllz]
Proof. Note that if A = [a;;/] be a symmetric p X p matrix then || A [|<
max; Z§:1 |a;jr|. Thus, the result is implied by

~(2 ~(2 n
Pr( max > 165 o] > 77) < > P (|"§j2,e_%”| = )

JES, o . . Mmax
mtjrest) 4.3’ €S

(A1)
where Mumax = ¢1|S|(max;es 87)/d5 .- The inequality follows from part (ii) of
Lemma 3.2. Let lj’k,f = [Mjk : ] S Sf:z], Zijk,é = Xijkl — Hjk,es and Z]‘k7e =
Sk Xijkoo /T, where X0 € DS’%, fori=1,..n,,5=1,..,p, k=1,2, and
¢=1,...,L, where Xk ¢ ~ Np(py, s, X¢). For the first probability term in (A.1),
we have

’

~(2) n
Pr <0jjf,z — ol > — <
Tk
> ZijkaZigne — i Zip e Zykw — (0, — Doy

PI'<
1=1
'_2
S )n)

£
mmax
k=1

>

mmax

’

Ny

!
" ZijkaZijiki — 1y
=1

Eol
[V [N
—
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S5 5 n' —2
+ Pr <|7’L;€ij7[Zj/k’g - CTjj/‘ > M) }
mmax
Finally, using Lemma A.1,

~(2) n
Z Pr (|Ujj’,l — oy > - )

max

j.'es?)
2
n— 2)%n? n— 2)%n?
< 201172 exp { - Czﬁ} +C1p* exp { - Cé%}v
k=1 max max

where Cy, C1, Cy, C) are some positive constants. If muyaxv/logp/n1 = o(1) and
by taking n = M X mmaxy/logp/ny, for sufficiently large M > 0, the desired
result is obtained. W

Lemma A.6. Suppose thatT has the Student’s t-distribution with n > 1 degrees
of freedom. Then, for any large constant T > 0, we have

n—1
- 1 -
Pr(T >71) < fn T <1 + —72) ,
Tn—1 n

_ ey . ,
where ¢, = F(%)—Q\/ﬁ, and T'(.) is the gamma function.

Proof. For any 7 > 0,

Pr(T > )

b c *x c
/ ﬁd$</ s de
 (1+ )2 r T(A+%Z)

n—1

1 -

= & <1+—T2> .
Tn—1 n

The result follows from the facts that 7 >0 and 7 < x < 0co. R

Appendix B: Proofs of the main results
In this Appendix, we provide the proofs of Theorems 2.1-4.2.

Proof of Theorem 2.1. Let €;, = X, — py, for i = 1,...,ng, and k = 1,2,

where X, = (X;|Y; = k) ~ N,(py, 2), and the vectors € = (€1k, €y - Epk) |
with entires €;5, = % "k €ijk. Also, recall Ag = p,dTE*lud and pg = fo — .

The quantities U}°*(8,,), U5°4(,,), and T*"*(f,,) in (2.6) can be decomposed as

TP0,) = (m _lla)TE_l(ﬂQ — )
1, _ _ 1, _
= S(-e-a- pa) 7€ — &+ py)
1

= 5 (e e -2 e -2 'uy — pg Ty}
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1
= L - 2L - p S pa}

\IIEDA(én) = (g — fry) 7 1y — fy)
B _%(—52 —& ) ETHE &+ pg)
- 7% {-&x e +e/ e 26/ g+ g T g}
= % {12*11+214*MJ271H(1}7
and
TLDA(An) = (fy — ﬂ1)TE_122_1(ﬂ2 = fiy)

(€& —& +py) Z7 (€ — &+ py)
= (@-a) S @—a)+2E—e) = u+pi Sy
= Ts+ 2T +py X tpy

We first show that

I =€ 7 '& = p/n1 + op(/p/m1).

Note that € ~ N,(0,n;'X). By Chebyshev’s inequality, for any 7 > 0,

1
Pr( RPN AN T) < Lvarizvmfp).
p ny T

This together with the fact that Var{Z;./n1/p} — 0, when ny,ny — oo such
that ng = o(nq), implies that Z; = p/n1 + 0,(1/p/n1). Similarly, we have

Iy =p/na+o,(\/p/n2) , Ts=€% 'py= 0p<\/A§/nz>,
Li=¢ 3 'uy =0, (\/ Af,/m),

np
——0, ,
ning ning

i=(6&—&) 2 e—6)=

and

_ _ _ n
IGZ(EQ_Cl)TE 1/'Ld:0p< A%)

By combining the above results, we have

\Illl‘DA (én) _ IT1— 1y — 215 — AZ

TLDA(én) 2 {I5 + 27 + A%}lﬂ
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2 op(v/pfm) = 4 0,(v/pfna) + Oyl /A3 /no) — A}

2 [\ [E0p(1) + 2 4+ O, [ mm) + 23}
(1= 22) + 0, (v/ma/m) + O,(\/A3/p) — | /223

2 {1+ 0y (/o) + Oyl a3 ) + oz}

and
Ur0,)  T—Ti+ 20— A
TLDA(én) 2 {I5 + 276 + A%}UQ

2 0y (Vp/na) 0, (Vpfm) + O,/ /my) — A2
2 [\ [Z0p(1) + 22+ Oy fu mma) + 23}
B0 22) + o(/mafm) + Op(y a3 fpma) —  [503

2 {1+ o0, (/o) + Oyl mad3/m) + a3/}

Since %Ag = o(1), as long as ni,ny — oo, thus we obtain

‘I’le (0r) P \I’;DA\(én) p
A Py o o) Py e
YLDA (an) ’ A/ Y LbA (0”)

Hence, I°(D,,) - 0 and II5°*(D,,) —% 1, which completes the proof. B

Proof of Lemma 3.1. (a) Note that

Pr ( m{|t]| < Tn}) =1-Pr (rjn;gdtﬂ > Tn).

JES
n—1
By Lemma A.6 of the Appendix A, with ¢, = ﬁj&_—m# we have
Pr (r;léi;(tj > Tn> < ZPr <|tj| > Tn)
JES
2 1 —
n—2c, 9
< — —(1
= S)TL—3Tn< +n—27”>

= U(nl,’IZQ,p—S,Tn),

where n = ny + ns. The last inequality follows from the upper bound described
in Lemma A.6, for the tail of a Student’s t-distributed random variable, with
n — 2 degrees of freedom. Since ng = o(n1) as ny,ng — 00, we then obtain

p—5 1 L, ™
u(ny,no, p— 8,Tn) ~ 14+ —7;
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and hence, as n; — oo,

— S

2
—Th

U(nl,ng,p_S,Tn)N €

Tn

Since log(p—s) = o(72), therefore Pr(max;gs|t;| > 7,) — 0, and this completes
the proof.
(b) Note that

Pr ( m{‘tﬂ > Tn}) =Pr (Ijrélél|t]| > Tn) =1-—Pr (Ijrélél|tj| < Tn)-

j€S
o=t — —Hdi
Let t; =t; Py We have
Pr (min|tj| < Tn) = Pr (maxfj > min % - Tn>
jes jes J€S Gi4/n/f(ning)

IN

ZPr (fj > min Hidﬂ) —Tn).

i JES Gv/n/(ning
Also by Lemma A.4 and under the Condition (C2),

min |12dj]

mip ——t e = do(1 +0,(1)).

Hence,

. g dOn )
Pr mlt;| <7, < Pr(l|t;] > ———1+0,(1)) — 7,
(j€S| J| = n> = Z <| ]| \/W( p( ))

JjES
=2 Cn <1+ 1 [do,n(l—l—op(l)) ]2>
o
- n—3 don(l+o,(1)) Th n—2 /n/n1n2

v/ n/ninsg

= u(nla n2, s, dO,na Tn)a

where the last inequality follows from Lemma A.6, when 7, = O(\/n2do ).
Since /nadp,, — 00, logs = o(ngd%m), and ny = o(ny), then as ny,ns — oo,

n 1 n-2 _ E) 1
we have s ~ st no3 1and ¢, = TSN oy - T3 Therefore,

u(ni,ne, $,do.n, ™) — 0

and it completes the proof. B

Proof of Theroem 3.1. (a) The class-specific misclassification rates of Msplit-
HR in (3.5) are given by

) \Istplit—HR an
HiASDht_HR(D’ﬂ) — @(k—())’ k= ]., 27

Y Msplit-HR (on)
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where

e 1)k+1 £ NONEE S (1)
\IIIIZ/IpltHR(on) _ ( - ZZ{Tj(uk;onﬁg)_7}hj(0n,€)’

=1 j=1
L p
splitoHR /4 1 2),2 (1)
TG = Za(m g ) hy(@,.).
=1j=1

By Lemma 3.1, if \/nado,, — 0, 7, = O(y/n2do.n), log(p — s) = o(72), and
log s = o(nado.n), as ny,ng — oo, then

¢9) A(1)
) - 1\ 0, maxh;@,

P

max ) —0.

jES

h;(0,

Using these results, for any € > 0, we have, for k = 1,2,

~(1)
> vl 0 ATRC

Jg€Ss

>e| <Pr <m§zaxh (053) > e> 250,
j

and consequently,
Msplit-HR /g k+1
LT () ZZ{TJ ;0 ne 2}(1+0p( ), k=12
(=1j €S8
Similarly, we have

L
1
Y Msplit- HR — E_ZZUj ('u‘d_] 2/0(2) 2) (1+Op(1))
€S

/=1

Let E;k)e = Mﬁ)z Wik, Lo = Zjes(é;?,z/aj)z’ for k = 1,2, and Z3, =
Ejes(€§‘2,eﬂdj/‘7j)v for each ¢ = 1,..,L. By the result of Lemma A.4 in the
Appendix A, we have

~(2) ~(1) 1
S (g1, 000 (0) = {Il,e Ty 0Ty, - A,%} (1 T opwlogp/m)),

JES
(B.1)
(2) (1) 1 9
> riio,0,0) hi(0,.,) = 1T = T2e = 2L A, 0| 1+ Op(v/logp/n) |,
JES
(B.2)

where A2 = 37 _s(ug;/07). Now, for > 0, and k = 1,2

Pr (i > ) < 25 (B.3)

ngmn
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by taking n = M.s/ny, for sufficiently large M > 0, then Zy , = O,(s/ny), for
k = 1,2.. By Cauchy-Schwartz inequality, we have Tz, = O,(Ap4/s/n2) and

Zie = Op(Apy/s/n1). In addition, we have 3°7_, fnhj(éfii) = op(s/n2). By
combining these results in (B.1)-(B.2), we arrive at
split- 0 1
\1,2/1 plit "0,,) = Op(s/n2) + O (A \/s/n2> — EAIQ’ +0, (Af,\/logp/m),
(B.4)

for k=1,2. Let Zs e = 3 5(E2.0 — €1,0)° /07, To.o = 2 s cs (€20 — €10 11 /05
for each ¢ =1, .., £. Similar to (B.3), we result Zs y = Op(s/n2) and also Zg ¢ =

O,(Apy/s/n2). Therefore

TMsplit—Hli(é [2 Z {1'5 ¢+ 2T + A? }
/=1

= Op(s/n2) + 0, (Ap\/s/m) + Az + 0, (Af,\/logp/m). (B.5)
By combining (B.4) and (B.5), we have, for k = 1,2,
Hi/[split—HR (Dn)

= ¢

{0p<s/n2> + Op(Apy/5/nz) + A + O, (A% ) }1/2
- <1>( - %Ap{l + Op(ffn)}>,

where r, = max{A; 1/s/na, \/logp/ni}.
(b) When A, — oo, by Lemma A.2, if A2k, = o(1), then Msplit-HR is
asymptotlcally—strong optlmal and the result follows The condition A2 phn =

o(1) is equivalent to A2y/logp/ny = o(1), and AZs = o(ny). B

Proof of Lemma 3.2. We follow a similar line of proof as in [29, Theorem 1],
to show the results of both parts (a) and (b), under the imbalanced setting.
(a) It is enough to show that for any £ =1, ..., L, as ny,ny — 00,

Pr (5 ¢ Sfj}) -0

Suppose that there exist an index j in S for which j & 8( f Thus, |ug| > don

and |udj,é| < Tp, where do , = minjes |pq;|. It results in |udj’[ — paj| > don — T
By conditions 7, < do,, and Apax(E) < ¢, and for some constants Cy,Cy > 0,
we have

p
Pr (5 e sfj@) <> pr <Iﬂ5§,)e — g > don — Tn)

=1
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/ / !l _ 2
< C’1< P ) ! ,+ ,nQ exp{ —Cy nan((,iO’" - ™) }
do,n — Tn ning ny +ng

The last term tends to zero, since logp = o(nadj,,) and ny = o(ny), and thus
the result follows.
(b) By condition Apmax(X) < cg, we have

Bt =i ZT IR g < Anax(EBT)B7B < o x || x max 7. (B.6)
J

Let 8* = {j : |paj| > don/r}, for some constant r > 1. Thus, p)p, >

|§*|d§ ,,/r*. This together with (B.6), result in [S*| < C3|S| max;es 53 /d5 , =
Mmax, for constant C3 > 0. The result in part (b) follows by proving that,
|S7(11;\ < |8*|, with probability tending to one, for any £ = 1, ..., L. If there exists
an index j in Ssg for which j ¢ S§*, thus |/:‘£1;)£‘ > 7, and |pgi| < don/r and

consequently, | ﬂ%)@ — paj| > T — do,n /7. Therefore, by condition 7, =< do , and
for constants C4,C5 > 0

P
P (|SS,2 > S*|) < P (S,sz ¢ S*) <3 Pr (mi&?e gl > - do,n/r)

Jj=1

I ! 2.7 !
o P ny +ng o (Tn, — do.n)?nynb
4 T XPy — U5 7 7 :
Tn — don ninj ny + ng

The last term tends to zero, as logp = o(nadj ,,) and \/nado,, — co. B

IN

Proof of Theroem 3.2. (a) The misclassification rates of Msplit-HR in (3.8),
are given as

. qusplit—HR én
Ha/lspht-HR(Dn) _ ‘I)( k ( ) )7 k= 1,2
’I‘Msplit-lm(on)

where
Msplit-HR /g (—1)k £ T a1, . ,,tn’z
b 0n) = I Z{l‘d,zzn,e(ﬂa,e — Kpp) — 7}7
(=1
= 1 1 n' —2
Tt = (_/ - _/> — o * S8,
"o M2/l =318,
. A~ 1 £ 1 -1
TMspllt-HR(en) = E Z{ﬂdfzn,ézezn,éﬂ’d,f}
(=1

By Lemma A.5, we obtain

~ =1 =S~ 1o ~ 1~
ll'(—ir,égn,ézfzn,éll'd,é = ”‘(—li—,ézé 1”‘d,€ <1 + Op(mmax V Ing/nl)) . (B7)
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We consider the following decomposition
ST -1 ~ Ts—1/x ~ Ty -1
BaoXg Bae = (Bae— Hae) Zp (Bar— HRae) T 2(Bae — Bae) Zp Hayg
+ g Sy gy = AL+ 240 + As

Now by Lemma 3.2 and Markov’s inequality, also using the Condition (C2) in
the Appendix A, we have for a constant C; > 0,

&n

7 ning

Pr <(ﬂd,z - Hd,e)TEz_l(ﬂd,e —Hgyp) > 77> <

Mmax-

If n = M™"wzex then for large M > 0, A1 = Op(Mmmax/n2). By Cauchy-
Schwartz inequality, A3 < (g, — ud’e)TEZ_l(ﬂ,dﬁf — Mg)As. Hence Ay =
Op(v/Mmax/ ng)Aé/ 2, Therefore, by combining these results we have

ﬂlézzlﬂd,e = Op(Mmax/n2) + Op(\/Mmax/n2)\V/ Az + A3z (B.8)

Now for WPHI% (g ) " we have

T a1 - - _ -
MdT,ezn,e(M,z —f, ) = l";eze I(Hu ) (1 + Op(MmaxV/ logp/n1)> (B.9)
We decompose it as

AT w—— -
2p4 0%, 1(#1,@ )

(ﬂm - Hl,é)ngl(ﬂl,é - /iu)
(ﬂz,z - H2,5)T221(ﬂ2,e - Hz,e)
_ ~ Ts—1 T s—1
= 2(#2,z - Hz,e) 3, Hae — ”d,[zf Hae
= By —By—2B3 — A;
Similar to the proof of A;, we have By = Op(Mmax/n1), and By = Op(Mmax/N2).
Also similar to Az, we have Bs = Op(y/Mmax/n2)V/As. Hence,

~ — ~ Mmax Mmax 1/2 1

B % (b0 = ) = Op(=2) £ Op(=2) + Op (Ve 12) Ay = 5.5
(B.10)

We recall that A2 = pi Sty =B py and 87(:; ={j: \ﬂ%?ﬂ > 7, }. For each

{=1,..,L and any 1 > 0

Pr <|MdT7£21_1Nd,e - A§| > 77) =Pr ( Z Bikdj — Z Bjrkajr| > 77)

iestly Jes
= Pr > Bitag + Y Bipa — Y Binay — > Bjtiay >77)
j€8, 085 j€S,jes  jeSjes)),  j'esigs))

p
= Pr <| Z Bjtaj| > 77> < ZPT (J €S and j %'&%)

jes.jgsty i=1

n,l
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By part (i) of Lemma 3.2, the last term tends to zero, as ny,n2 — oo. Therefore,
As = A2 +0,(1). By comblmng this result together with (B.7)-(B.10), also with
Tnt = Op(Mmax/n2), we result

—-A, _1 [Mmax logp
cI)( {1 + O, (Ap - ) +Op <mmax Ty
— 2 T3P+ o,00).

We can show the same result for ITy """ (D, ).
(b) When A, — o0, the result follows from Lemma A.2 by condition A2x], =
o(1).®

Hll\/lsplit—HR (Dn)

Proof of Lemma 4.1. (a) Recall the sequence a,, = Ms(logp/n)®, with 0 <
a < 1/2 and My > 0. Let ¢1,co be some positive constants. Inspired by the
proof of Lemma 2 of [38], we have

v (N {ﬂdj|>an})>1—iPr(|ﬂdJ——udJ—|>an<r—1>)

{g:lpaj1>ran} j=1

> 1-22@( ‘i}%)

1 2a
> 1-—pca exp{— <ﬂ> .nlnzcg}. (B.11)
n n

Since (logp/n2)(ni/logp)?® = o(1) and ny = o(ny), as ny,ng — oo, (B.11)
tends to 1, and the result of part (a) holds.
(b) Similar to part (a), for some positive constants ¢, ca, we have

~ Ing 2ann
(1 o) 1ol (2)7550)

{d:|pajl<an/r}

This together with (logp/n2)(n1/logp)?® = o(1) and ny = o(ny), prove that
the right hand side of the above inequality tends to 1, as ny,ne — oco.
(c) The result follows from parts (a) and (b). W

Proof of Theorem 4.1. (a) The misclassification rates of SLDA in Class k =
1,2, are given as

T, . T
(D g 2, (g, — m) — Bg y fa/2

ll'dTE Ei_lﬂd

I'°4(D,,) = ®

Recall d,,, = Cyp(ni ' logp)1="/2 where O}, = maxi<;<, Z§:1 o] for
some 0 < h < 1. It follows from Lemma A.3 in the Appendix A that

i, 22 /"d_:u'dz ll'd{1+0( D)
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Let A2 = g =7 g, T = (Bg—1q) "2 (Bg—pa) and Jo = 20 ] 57 (g — pg).-
Now,

By S =T+ D+ AL
Following by the proof of Theorem 1 of [38], we have

T < cod{ll gy — par 12 4 || o Hz}’

where fij = (f241,0"), py = (i1, i), and figy and par are two vectors
of dimension ¢, whose elements correspond to those features z;s for which

igg] > an. By condition (4.1), we have || fi, — tigr [P= Oplan/ma), | #ta0 2=
0, (Dg,p.a%(lfg)), and Ji1 = Op(kn,), where k,, = max{i*, D, b7
Consequently, by condition (4.1),

T2 = (g — pa) "7 pa < A/ fray — par |2 + | ao 2 = Ay Op(v/kny)-

Therefore in the denominator of II;***(D,,), we have

A= es i, = {op<kn2>+Apop<\/kn2>+Az}op<dm>

{op<\/m> v 1} A2 O, (dy,)- (B.12)

Now, the numerator of II;"*(D,,) can be decomposed as

~—1 1l +=-1_
(— )k TE (1, .u'k)_§.u'<—1r2n Hq

" 1. oL 1 =1
= (-Dragx, (l"k_.u'k)_§<p'd_“d>TEn Bt = 5 (Ha — tg) " 3, fig
1. _+~-1_
- E“z—irzn I‘I’d

= J3+j4+J5— Bls iy

Vais!'n o, (W) +0,(yfmCun/na ) |1+ 0y(d)

Vi, 1840p(Vau /121 + Oy(dn,)
+ {Opllna) + 8y0p(VFnz) } Opldny) + 1 =,

Again, by condition (4.1) we have

+

1
Ly (B.13)

el
Tz = g%, (i, — my)

_ Vars s, {o(m/—nk) i opquch,,,/nk)} J1+0,(dn),

X o1 [Ta1-
Js = (g _H’d)TEn Hg = ﬂ;En 1240p(V/ @n/n2).

and
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Also, similar to the expression of J;, we have

- =—1_ i et
T = (Ba — fig) "2, Bg =\ Bq 2y BaOp(v/kny) /1 + Op(dn,).

finally, by combining (B.12) and (B.13) we arrive at

~ (

I (Dn) = ( -1 -1 B -1 1
~T - it~ ~T - it
Hq En Ezn Kq Hq En Ezn Hq

= <1>(— %Ap {0,, (A;ly/qnch’p/nk> + 0, (,/knz/A;ﬁ) +1 +Op(dm)})
. @(%AP{HOP(%)}) k=12

as claimed, where

Vkn 1 qn
bnk :max{dnl, A—pz, A_p ’n,_kCh’p}.
(b)-i. If A, is bounded, then A2b,, — 0 is equivalent to b,, — 0, which imply
1A (D,, ) /TIPt 25 1, for k = 1,2.

(b)-ii. If A, — oo, by Lemma A.2 in the Appendix A, when Agbm — 0, and
consequently A2b,, — 0, we have IT;""*(D,,) /II°P* 21, fork=1,2. 1

Proof of Theorem 4.2. The class-specific MCRs of the ROAD in (4.2) are given
by

HROAD(D . C) —P (_1)sz—(p’a - p’k) k=1.2
k ny (VAVIEWC)l/Q ) g 4

The oracle versions of the MCRs, evaluated at the true parameter values of %
and p,,, are given by

T
orc _ —W. Mg _
19 (c) = @<—2(w32wc)1/2)’ k=1,2.

By the tail probability inequality

1-9(r) < exp{—71%/2}, T >0,

1
TV 2T

we have that, for n; > 0,

p
Pr ( i — st llo> m) <Y pr (mjk gl > m) < Crpexp{-Camin?}.
j=1
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Thus, by choosing n; = Mjay,,, for some My > 0, we arrive at || i, — py, |Joo=
Op(y/logp/ni). Also, by Lemma A.1 in the Appendix A, for 2 > 0,

Pr (m.%}X G0 — oj0] > 772) <
75

2 Nk
< Y (I X~ 03 > (0= 2/ )
Gl k=1 i=1
2
+ > > br <nkﬂjkﬂlk —op)| > (n— 2)772/4)
il k=1

< p’Cy exp{—Cs(n — 2)2n§/nk} + p2C4 exp{—Cy(n — 2)277§ .

Thus, by choosing 72 = Ma+/logp/n1, for some Ms > 0, we arrive at Hfln —
Y|l = Op(y/logp/n1). Using the Lipschitz property of the cumulative distri-
bution function of standard normal, ®(.), we have

AT A~ T
—We (B — Ba) —W, Hg
HROAD an7 _ Horc < C a _ (4
‘ 2 ( C) 2 (C) > ’ (VAVCTEVAVC)UQ 2(WCTEWC)1/2
_ —W, (thy — iy + fo — fby) _ W, ld
(W] Bw,)1/2 2(w] Zw,)1/2
oWl —po)| | Wlkg  wlng
= (w]Bw,)12 2w, Bw,.) /2 2(w]Bw.)l/2
= E,+ Es.
Now,
~T ~ ~
W (po — f13) [ Wellh o
B, = B _
1 ’(wjzwal/? AP
< \/H W, ||00p(\/103p/n2) = Op(\/ 8¢ logp/ng)
and
B, = WZﬂd WCTNd
P T R@lEw)2 2(wlzw,)l/?
_ Wby~ W gt W g W pg
2(W, Bw,)l/2 2(w] Zw,)1/2
< Wj(ﬂd — Pa) W:Nd . W:Hd
T 2w/ mw ) 2] 2w Bw, )2 2(w]Bw,)l/?
< | We 1 1l fa— I oo LB
| Well2  ming A
~ [1 —[.L [e'e] ~
< Ve ol Bl gy 0,(/5Togp/m) + o
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According to the same notations in [13], let fo(w) = w ' py/(w' Zw)'/2,

fAw) =w i,/ (wIEw)/2 and fo(w) = wTﬂd/(WTiw)l/Q. By the proof of
Theorem 1 of [13], we have

AT T
We Ha We Hg 1 -
By = - = | fo(Wo) — fo(we
’ TS )2 AwT Sw R | g olWe)  folwe)

[fo(We) = fr(We)[ + [f1(We) = fa(We)| + [f2(We) = fo(we)l
O,(v/3:logp/na) + O,(c*\/logp/n1) + O, (\/max{sc, 521)} logp/ng).

Therefore, we have

IN

Ey + By + B3 = Opy(c*\/logp/n1) + Op<\/max{sc, s §c}1ogp/n2>,

and finally

T (D, ¢) — IS ()| = Op(c2\/logp/n1)+0p (\/max{sc7 s S'c}logp/ng)

Similarly, the same result holds for [II§°P(D,,; ¢) — I13*°(¢)|, and this completes
the proof.

Appendix C: Remaining proofs

In this Appendix, we provide the proofs of our claim in Remark 2.1, and also
the proofs of Propositions 3.1 and 3.2.

Proof of the Claim in Remark 2.1. Recall Z;, i = 1, ..., 6, defined in Theorem
2.1. When p is fixed with respect to the sample size, and ns = o(n1), then as
ni,No — 00, we have,

2 2 A2
Var(Ty) = 2 -0, Var(ly) = = -0, Var(Zs) = -2 0,

ny ny ng

A2 n2p A2
Var(Z,) = —2 =0, Var(Z;) = 55 =0, Var(Zg) = —2 — 0.

ni niny o

On the other hand, E(Z1) = %, E(Zz) = £, E(Z3) = E(Z4) = 0, E(Z5) = "2,
and E(Zg) = 0. Thus, by following the proof of Theorem 2.1, we have

\I/ll,r)/\(én) B 7% — 7% + Op(l) - A?, B 1A 1
- = 1727 "9 p +op(1),
Tor@n) 2 {3 40, (1) + A7)
UL (B,,) — B to,(1) - A 1
2 = L = *iAp +0p(1)

~ 1/2
Ti0A(g,) 2{ np +o,,<1)+Ag}

ninz
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Therefore, TIPA(D,,) /TIPt 25 1, for k= 1,2. W
Proof of Proposition 3.1. The MCRs of 6) """ are given by

) \I/Msplit—HR é
Hg/}zpllt—ﬂli(pn) — (I)( 0,k ( fb) >, k -1 2

h
. Mapl 1 &L @, 1)
split- ) A A
WG, = () LS S 0,01,

and

L
T(l;/[split—HR(én) — L Z

p

G ) n @),

(=1 j=1
Now, due to the independence property of D(lz and Dn ;» for each replication ¢,
we have,
B(I;/ﬁrslplit—HR _ E{\I/g/fi‘plit—HR(én) _ \III(\)/};plit—HR (971)}
1 ~(2) () (1)
D I BIPRUMERRON] S G
(=1 j=1

~(2) . . N
where 74 8%) = 4y — AE)/012%. Hence

5 11 T(fy —
_E{TJ(M’BE’;)+7’J(“27‘9;2;)} (n_'l_ng) (f(fn))

Jnrs
where fpr =n'/2—-1. R
Proof of Proposition 3.2. The MCRs of §MsPlt-iR in (3.8) are given by

Msplit-HR
\IIo,kp —t HR(on) ) k=1.2

Msplit-
Iy FHR(D,) = cp( o,
T, P,

where
Msplit-HR () (—1)k £ P
Yok 0,) = - > 3B (B — ),
(=1
and
Msplit-HR /5 1 £ O e | ~—1_
T, 6,) = EZN(MEZ DD g -
=1
Hence,

E{\I/MSpht -HR (én) o \Ijg/’lsplit-HR (én)}
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o}

c
T L - T o1 .
ZE{E{MdT,zEz (NM - l‘a,z) - M;zzz (Ma,z - Mz,e)

The second equation follows from the independence property of DS} and DS},

for each ¢. Under normal assumption for the distribution of features, the matrix
~—1

3, has the Inverse Wishart distribution with parameters £, ' and n’ — 2,
where 3, is the covariance matrix corresponding to the features included in

(€] ; €] SRR n'— -1
S,.0» Thus, if n’ =3 > [S, 7], then E{¥, } = stﬂl—lze , and

oot _
E{#;eze (K1 ¢+ oo — 20, 0)}

Fn,@ =
) 1 1
n=3—[S,, ] ™ T
n —2 1 1 1
= [SEIC )

T T
ny  Ng

n —3— |S7(112

and the result follows. B
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