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Abstract: We focus on the problem of manifold estimation: given a set of
observations sampled close to some unknown submanifold M , one wants to
recover information about the geometry of M . Minimax estimators which
have been proposed so far all depend crucially on the a priori knowledge of
parameters quantifying the underlying distribution generating the sample
(such as bounds on its density), whereas those quantities will be unknown
in practice. Our contribution to the matter is twofold. First, we introduce a
one-parameter family of manifold estimators (M̂t)t≥0 based on a localized
version of convex hulls, and show that for some choice of t, the correspond-
ing estimator is minimax on the class of models of C2 manifolds introduced
in [21]. Second, we propose a completely data-driven selection procedure
for the parameter t, leading to a minimax adaptive manifold estimator on
this class of models. This selection procedure actually allows us to recover
the Hausdorff distance between the set of observations and M , and can
therefore be used as a scale parameter in other settings, such as tangent
space estimation.
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1. Introduction

Manifold inference deals with the estimation of geometric quantities in a random
setting. Given Xn = {X1, . . . , Xn} a set of i.i.d. observations from some law μ
on R

D supported on (or concentrated around) a d-dimensional manifold M , one

wants to produce an estimator θ̂ that estimates accurately some quantity θ(M)
related to the geometry of M such as its dimension d [23, 29, 24], its homology
groups [31, 11], its tangent spaces [3, 16], or M itself [21, 22, 30, 2, 3, 32].
Consider for instance the problem of estimating the manifold M with respect to
the Hausdorff distance dH . The quality of an estimator M̂ with respect to some
law μ, called its μ-risk, is given by the average Hausdorff distance dH between
the estimator and M :

Rn(M̂, μ) := E[dH(M̂,M)], (1)
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Fig 1. If the reach of the curve M is large, then the curve cannot be too pinched (left) and
cannot present a tight bottleneck structure (right).

where M̂ = M̂(Xn) and Xn is a n-sample of law μ. In reality, the law μ generating
the dataset is unknown, and it is more interesting to control the μ-risk uniformly
over a set Q of laws μ, that we call a statistical model. The uniform risk of the
estimator M̂ on the class Q is given by,

Rn(M̂,Q) := sup{Rn(M̂, μ) : μ ∈ Q}. (2)

while we say that an estimator is minimax if it attains (up to a multiplicative
constant as n goes to ∞) the minimax risk

Rn(Q) := inf{Rn(M̂,Q) : M̂ is an estimator}. (3)

In geometric inference, several statistical models were introduced, which take
into account different noise models and regularities of the manifold M . Let us
mention the family of models Qd

τmin,fmin,fmax
introduced by Genovese et al. in

[21], consisting of the laws μ supported on a d-dimensional manifoldM satisfying
some additional properties. First, we assume that μ has a density f on M , lower
bounded by some constant fmin > 0 and upper bounded by another constant
fmax. This ensures that all the parts of the manifoldM are approximately evenly
sampled: we then say that the law is “almost-uniform” on M . The parameter
τmin gives a lower bound on the reach τ(M) of the manifold. The reach is a
central notion in geometric inference, defined as the largest radius r such that,
if some point x is at distance less than r to M , then there exists a unique
projection πM (x) of x on M . As such, it controls both a local regularity of M
(a bound on its curvature radius) and a global regularity (namely the presence
of a “bottleneck structure”), see also Figure 1.

On the statistical model Qd
τmin,fmin,fmax

, the minimax rate of convergence
satisfies

c0

(
lnn

n

)2/d

≤ Rn(Qd
τmin,fmin,fmax

) ≤ c1

(
lnn

n

)2/d

, (4)

for two positive constants c0, c1 depending on τmin, fmin, fmax and d. The lower
bound in this inequality was shown by Kim and Zhou [25], while the upper bound
is obtained by exhibiting an estimator having a uniform risk of order (lnn/n)2/d.
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Such an estimator (although not computable in practice) was first proposed by
Genovese et al. in [21], while another estimator attaining this same minimax
rate (computable in practice), and based on the Tangential Delaunay Complex
[15], was proposed by Aamari and Levrard [2]. Although being minimax and
computable, the Tangential Delaunay Complex depends on the tuning of several
parameters (for instance a radius quantifying the size of neighborhoods which
are used to compute local PCAs), while those parameters have to be calibrated
in a precise manner with respect to the quantities τmin, fmin and fmax defining
the model for the Tangential Delauny Complex to be minimax. However, those
quantities are a priori unknown. A first possibility is to estimate those quantities
in turn: if procedures are known to estimate the reach (although themselves
depending on the tuning of parameters [4, 14]), estimating fmin and fmax appears
to be delicate. The problem of the practical choice of the parameters defining
the estimator is then raised. This question of the tuning of parameters defining
an estimator is not restricted to the framework of manifold estimation, but is a
classical problem in statistics.

Let us cite for instance the question of the choice of the bandwidth for kernel
density estimation. LetX1, . . . , Xn be a n-sample of some law μ having a density
f on R, and suppose that we want to recover the value f(x0) of the density at
some fixed point x0 ∈ R. A standard method to achieve this goal is to consider
the convolution of the empirical measure μn = 1

n

∑n
i=1 δXi by some kernel Kh,

where Kh = h−1K(·/h) and K satisfies
∫
K = 1. We then obtain a function

f̂ = Kh ∗ μn. Assume that the density f is of regularity s, that is f ∈ Cs(R),
the set of �s�-times differentiable functions, whose �s�th derivative is (s− �s�)-
Hölder continuous. Then, for a good choice of kernel K, it is optimal to choose
the bandwidth hopt of order c · n−1/(2s+1), where c depends on the Cs-norm of
f [35, Chapter 1]. The associated risk is then of order n−s/(2s+1), which is the
minimax rate of estimation on the class of densities of regularity s. In practice,
it is impossible to know exactly the value of s, so that we must find another
strategy to choose the bandwidth h. Adaptive methods consist in choosing a
bandwidth ĥ in a data-dependent way, such that the estimator f̂ĥ has a μ-risk

almost as good as the optimal estimator f̂hopt under weak hypotheses on μ. One
of such methods, the PCO method (for Penalized Comparison to Overfitting)
introduced by Lacour, Massart and Rivoirard [27] consists in comparing each

estimator f̂h to some degenerate estimator f̂hmin for some very small bandwidth

hmin. The selected bandwidth ĥ is chosen among a family H of bandwidths (all

larger than hmin), by minimizing a criterion depending on the distance ‖f̂h −
f̂hmin‖L2(R), while penalizing small values of h. Lacour, Massart and Rivoirard
then show an oracle inequality for their estimator, that is an inequality of the
form

E‖f̂ĥ − f‖2L2(R)
≤ Cmin{E‖f̂h − f‖2L2(R)

: h ∈ H}+ C(n, |H|) (5)

where C(n, |H|) is a remainder term negligible in front of the optimal risk. Thus,

we obtain that f̂ĥ has a risk almost as good as the best estimator f̂hopt , while
we never had to estimate the parameters defining the statistical model (that is
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Fig 2. The t-convex hull Conv(t, A) (in green) of a curve A (in black).

the regularity s of the density and the Cs-norm of f).
Our main goal is to adapt the PCO method to the manifold inference setting.

A first step consists in creating a family of estimators (M̂t)t≥0 similar to kernel
density estimators, but in the context of manifold estimation. This is made
possible with t-convex hulls. For t ≥ 0, the t-convex hull Conv(t, A) of a set
A is an interpolation between the set A (t = 0) and its convex hull Conv(A)
(t = ∞). It is defined as

Conv(t, A) :=
⋃
σ⊆A

r(σ)≤t

Conv(σ), (6)

where r(σ) is the radius of the set σ, that is the radius of the smallest enclosing
ball of σ. See Figure 2 for an example. We prove in Section 3 that for A ⊆ M ,
the Hausdorff distance between Conv(t, A) and M can be efficiently controlled
for values of t a little larger than the approximation rate ε(A) := sup{d(x,A) :
x ∈ M} of A. More precisely, for such values of t, Lemma 3.3 states that
dH(Conv(t, A),M) ≤ t2/τ(M). Using this control on the t-convex hull enables
us to show that the t-convex hull of the sample Xn is a minimax estimator on
the model Qd

τmin,fmin,fmax
for a certain choice of t.

Theorem 1.1. Let αd be the volume of the d-dimensional unit ball. For the
choice of scale tn = 7

4 (3 lnn/(αdfminn))
1/d, we have (for n large enough)

Rn(Conv(tn,Xn),Qd
τmin,fmin,fmax

) ≤ c0
τmin(αdfmin)2/d

(
lnn

n

)2/d

(7)

for some absolute constant c0. In other words, Conv(tn,Xn) is a minimax esti-
mator of M on Qd

τmin,fmin,fmax
.

To create an adaptive estimator, the next step is to build a selection pro-
cedure for the parameter t. An analog of the degenerate estimator f̂hmin is
given by the choice t = 0, with Conv(0,Xn) = Xn. The PCO method there-
fore suggests comparing the estimators Conv(t,Xn) with Xn, that is to study
the function t �→ h(t,Xn) := dH(Conv(t,Xn),Xn). The function h(·,Xn) was
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actually already introduced under the name of “convexity defect function of the
set Xn” in a paper by Attali, Lieutier and Salinas [10], where it was used to
study the homotopy types of Rips complexes. The convexity defect function is
nonnegative, nondecreasing, and satisfies 0 ≤ h(t, A) ≤ t for any set A. For
A = Xn, this function is piecewise constant, while it may only change values at
t ∈ Rad(Xn) := {r(σ) : σ ⊆ Xn}. We show that the convexity defect function
h(t,Xn) of Xn at scale t exhibits different behaviors in two different regimes: for
t ≤ ε(Xn) it has a globally linear behavior (that is it stays close to its maximal
value t), whereas roughly after ε(Xn), it is almost constant. The convexity defect
function can be computed using only the dataset, so that we may in practice
observe those two regimes. In practice, we fix a value 0 < λ < 1, and let

tλ(Xn) := inf{t ∈ Rad(Xn) : h(t,Xn) ≤ λt}. (8)

Our main result states that tλ(Xn) is a little larger than ε(Xn) with high
probability, so that we may control the risk of M̂ = Conv(tλ(Xn),Xn), with-
out having to know d, fmin, fmax or the reach τ(M), leading to an adaptive
estimator in a sense made precise in Theorem 6.2. The estimator M̂ is to our
knowledge the first minimax adaptive manifold estimator. Our procedure allows
us to actually estimate (up to a multiplicative constant arbitrarily close to 1) the
approximation rate ε(Xn), while scale parameters in computational geometry
typically have to be properly tuned with respect to this quantity. The parameter
tλ(Xn) can therefore be used as a hyperparameter in different settings. To illus-
trate this general idea, we show how to create a data-driven minimax estimator
of the tangent spaces of a manifold (see Corollary 6.5).

Related work

“Localized” versions of convex hulls such as the t-convex hulls have already been
introduced in the support estimation literature. For instance, slightly modified
versions of the t-convex hull have been used as estimators in [5] under the as-
sumption that the support has a smooth boundary and in [33] under reach con-
straints on the support, with different rates obtained in those models. Selection
procedures were not designed in those two papers, and whether our selection
procedure leads to an adaptive estimator in those frameworks is an interest-
ing question. The statistical models we study in this article were introduced in
[21] and [2], in which manifold estimators were also proposed. If the estima-
tor in [21] is of purely theoretical interest, the estimator proposed by Aamari
and Levrard in [2], based on the Tangential Delaunay complex, is computable

with O(nD2O(d2)) operations. Furthermore, it is a simplicial complex which is
known to be ambient isotopic to the underlying manifold M with high proba-
bility. It however requires the tuning of several hyperparameters in order to be
minimax, which may make its use delicate in practice. In contrast, the t-convex
hull estimator with parameter tλ(Xn) is completely data-driven, computable in
polynomial time (see Section 7), while keeping the minimax property. However,
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unlike in the case of the Tangential Delaunay complex, we have no guarantees
on the homotopy type of the corresponding estimator.

2. Background on submanifold with positive reach

Let us first introduce some notation. The Euclidean norm in R
D is denoted

by | · | and 〈·, ·〉 stands for the dot product. If A ⊆ R
D and x ∈ R

D, then
d(x,A) := inf{|x − y| : y ∈ A} is the distance to a set A while diam(A) :=
sup{|x − y| : x, y ∈ A} is its diameter. Given r ≥ 0, B(x, r) is the open ball
of radius r centered at x and we write BA(x, r) for B(x, r) ∩ A. We let Md

be the set of C2 compact connected d-dimensional submanifolds of RD without
boundary. If M ∈ Md and x ∈ M , then TxM is the tangent space of M
at x. It is identified with a d-dimensional subspace of R

D, and we write πx

for the orthogonal projection on TxM , while π⊥
x = id −πx is the projection

on the normal space TxM
⊥. The asymmetric Hausdorff distance between sets

A,B ⊆ R
D is defined as dH(A|B) := sup{d(x,B) : x ∈ A}, while the Hausdorff

distance is defined as dH(A,B) = max {dH(A|B), dH(B|A)}. For A ⊆ M , we
denote by ε(A) := dH(A,M) the approximation rate of A.

The regularity of a submanifold M ∈ Md is measured by its reach τ(M).
This is the largest number r such that if d(x,M) < r for x ∈ R

D, then there
exists a unique point of M , denoted by πM (x), which is at distance d(x,M) from
x. Thus, the projection πM on the manifold M is well-defined on the r-tubular
neigborhood Mr := {x ∈ M : d(x,M) ≤ r} for r < τ(M). The notion of reach
was introduced for general sets by Federer in [19], where it is also proven that C2

compact submanifolds without boundary have positive reach (see [19, p.432]).
Different geometric quantities of interest can be bounded in term of the reach.
For instance, the volume Vol(M) of M satisfies

Vol(M) ≥ ωdτ(M)d (9)

where ωd is the volume of a d-dimensional sphere (with equality obtained only
for a sphere of radius τ(M)), see [6]. The reach also controls how points on M
deviate from their projections on some tangent space.

Lemma 2.1 (Theorem 4.18 in [19]). For x, y ∈ M ,
∣∣π⊥

x (y − x)
∣∣ ≤ |y−x|2

2τ(M) .

The following lemma asserts that the projection from a manifold to its tan-
gent space is well-behaved.

Lemma 2.2. Let x ∈ M .

1. Let y ∈ R
D with d(y,M) < τ(M). Then, πM (y) = x if and only if y−x ∈

TxM
⊥.

2. Let y1, y2 ∈ R
D be two points at distance less than γ < τ(M) from M .

Then, |πM (y1)− πM (y2)| ≤ τ(M)
τ(M)−γ |y1 − y2|.

3. For r < τ(M)/3, the map π̃x : y �→ πx(y − x) is a diffeomorphism from
BM (x, r) to its image, and, if r ≤ τ(M)/2, we have BTxM (0, 7r/8) ⊆
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π̃x (BM (x, r)). In particular, if y ∈ BM (x, 7τ(M)/24), then

7

8
|y − x| ≤ |πx(y − x)| ≤ |y − x|. (10)

Proof. • For 1 and 2, see [19, Theorem 4.8].
• We first show that π̃x is injective on BM (x, τ(M)/3). Assume that π̃x(y) =

π̃x (y
′) for some y �= y′ ∈ M . Consider without loss of generality that |x− y| ≥

|x− y′|. The goal is to show that |x − y| ≥ τ(M)/3. If |x − y| > τ(M)/2,
the conclusion obviously holds, so we may assume that |x − y| ≤ τ(M)/2.
Define the angle between TxM and TyM as ‖πx − πy‖op (where ‖ · ‖op denotes

the operator norm). Lemma 3.4 in [12] states that if |x − y| ≤ τ(M)/2, then

∠ (TxM,TyM) ≤ 2 |x−y|
τ(M) . Also, by definition,

∠ (TxM,TyM) ≥ |(πx − πy) (y − y′)|
|y − y′|

=
|πy (y − y′)|
|y − y′| ≥

|y − y′| −
∣∣π⊥

y (y − y′)
∣∣

|y − y′|

≥ 1− |y − y′|
2τ(M)

by Lemma 2.1

≥ 1− |x− y|
τ(M)

by the triangle inequality.

Therefore, we have 3|x − y|/τ(M) ≥ 1, i.e. |x − y| ≥ τ(M)/3 and π̃x is
injective on BM (x, τ(M)/3). To conclude that π̃x is a diffeomorphism, it suffices
to show that its differential is always invertible. As π̃x is an affine application,
the differential dπ̃x(y) is equal to πx. Therefore, the Jacobian of the function
π̃x : M → TxM at y is given by the determinant of the projection πx restricted
to TyM . In particular, it is larger than the smallest singular value of πx ◦ πy to
the power d, which is larger than

(1− ∠ (TxM,TyM))
d ≥

(
1− 2

|x− y|
τ(M)

)d

≥
(
1

3

)d

thanks to [12, Lemma 3.4] and using that |x− y| ≤ τ(M)/3. In particular, the
Jacobian is positive, and π̃x is a diffeormorphism from BM (x, τ(M)/3) to its
image. The second statement is stated in [3, Lemma A.2].

The second inequality of the last statement follows from the projection being
1-Lipschitz continuous. For the first one, let y ∈ BM (x, 7τ(M)/24), and let u =
πx(y − x). The point u is in BTxM (0, h) for h > |u|. We have BTxM (0, h) ⊆
π̃x (BM (x, 8h/7)) ⊆ π̃x (BM (x, τ(M)/3)). As π̃x is injective on BM (x, τ(M)/3),
this means that we necessarily have y ∈ BM (x, 8h/7). Therefore, |x−y| < 8h/7,
and the conclusion holds by letting h goes to |u|.

It will also be necessary to have precise bounds on the volume of balls on
M . As expected, the volume of a small ball is asymptotically equivalent to the
volume of an Euclidean ball. Let αd be the volume of the d-dimensional unit
ball.
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Lemma 2.3. Let r ≤ τ(M)/4 and x ∈ M . Then,

(
47

48

)d

≤
(
1− r2

3τ(M)2

)d

≤ Vol (BM (x, r))

αdrd
≤

(
1 +

4r2

3τ(M)2

)d

≤
(
13

12

)d

.

(11)

Proof. The proof of Proposition 8.7 in [2] implies that, if B̃M (x, r) is the geodesic
ball centered at x of radius r, then

(
1− r2

3τ(M)2

)d

≤
Vol

(
B̃M (x, r)

)
αdrd

≤
(
1 +

r2

τ(M)2

)d

.

As B̃M (x, r) ⊆ BM (x, r), we have in particular Vol(BM (x,r))
αdrd

≥
(
1− r2

3τ(M)2

)d

.

Furthermore, by [8, Lemma 3.12] and [31, Proposition 6.3], if |x− y| ≤ τ(M)/4,
then the geodesic distance between x and y is smaller than

|x− y|
(
1 +

π2

50τ(M)2
|x− y|2

)
≤ 1.05|x− y|.

This implies that BM (x, r) ⊆ B̃M

(
x, r

(
1 + π2r2

50τ(M)2

))
. Therefore,

Vol (BM (x, r))

αdrd
≤

((
1 +

π2r2

50τ(M)2

)(
1 +

(1.05r)2

τ(M)2

))d

≤
(
1 +

(
π2

50
+ (1.05)2 +

π2(1.05)2r2

50τ(M)2

)
r2

τ(M)2

)
≤

(
1 +

4r2

3τ(M)2

)d

,

where we used at the last line that r ≤ τ(M)/4.

3. Approximation of manifolds with t-convex hulls

Let A ⊆ M be a finite set. We investigate in this section how the t-convex hull of
A approximates M for different values of t, first in a deterministic setting, then
in a random setting. The quantity of interest dH(Conv(t, A),M) is by definition
the maximum of the two quantities dH(Conv(t, A)|M) and dH(M |Conv(t, A)).
The first quantity dH(Conv(t, A)|M) is given by the maximum of the distances
dH(Conv(σ)|M) over the simplexes σ ⊆ A satisfying r(σ) ≤ t. A naive attempt
to bound this quantity leads to a control of order t.

Lemma 3.1. Let σ ⊆ R
D be a closed set. Then, dH(Conv(σ)|σ) ≤ r(σ).

Proof. Let y ∈ Conv(σ) and let z be the center of the smallest enclosing ball
of σ. The half-space

{
x ∈ R

D : |x− z|2 − r(σ)2 ≤ |x− y|2 − d(y, σ)2
}
contains

σ. It thus contains Conv(σ), and in particular y. Therefore, d(y, σ)2 ≤ r(σ)2 −
|y − z|2 ≤ r(σ)2, concluding the proof.
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As σ ⊆ M , we have in particular that dH(Conv(t, A)|M) ≤ t. We can actually
obtain a much better bound by exploiting that σ lies on M , which looks locally
like a flat space. Consider for instance the case where σ = {x0, x1} is made of two
points. Then, the line (x0, x1) should be approximately parallel to the tangent

space Tx0M , with the distance from x1 to Tx0M being of order |x0 − x1|2. As
a consequence, the distance from any point of the segment [x0, x1] to M is also

of order |x0 − x1|2. More generally, we have the following result.

Lemma 3.2. Let σ ⊆ M with r(σ) < τ(M) and let y ∈ Conv(σ). Then,

d(y,M) ≤ τ(M)

(
1−

√
1− r(σ)2

τ(M)2

)
≤ r(σ)2

2τ(M)

(
1 +

r(σ)2

τ(M)2

)
. (12)

In particular, for any t ≥ 0 and A ⊆ M ,

dH(Conv(t, A)|M) ≤ t2

2τ(M)

[(
1 +

t2

τ(M)2

)
∧ 2

]
≤ t2

τ(M)
. (13)

Proof. Lemma 12 in [10] states that if σ ⊆ M satisfies r(σ) < τ(M) and y ∈
Conv(σ), then,

d(y,M) ≤ τ(M)

(
1−

√
1− r(σ)2

τ(M)2

)
.

As
√
1− u ≥ 1− u/2− u2/2 for u ∈ [0, 1], one obtains the conclusion.

The other asymmetric distance dH(M |Conv(t, A)) is apparently more deli-
cate to handle. It can actually be controlled efficiently if the parameter t is large
enough. Indeed, assume that t is large enough so that every point x of M is the
projection of some point y of Conv(t, A). Then we have

d(x,Conv(t, A)) ≤ |x− y| = |πM (y)− y| = d(y,M)

≤ dH(Conv(t, A)|M) ≤ t2

τ(M)
.

(14)

This suggests defining the parameter

t∗(A) := inf {t < τ(M) : πM (Conv(t, A)) = M} . (15)

Lemma 3.2 and (14) imply directly the following lemma.

Lemma 3.3. Let A ⊆ M and t > t∗(A). Then,

dH(Conv(t, A),M) ≤ t2

τ(M)
. (16)
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Fig 3. The t-convex hull of the finite set A (red crosses) is displayed (in green) for two values
of t. The black curve represents the (one dimensional) manifold M . On the first display, the
value of t is smaller than t∗(A), as there are regions of the manifold (circled in blue) which
are not attained by the projection πM restricted to the t-convex hull. The value of t is larger
than t∗(A) on the second display.

A crucial result in the analysis of the t-convex hull estimator is given by the
next proposition, that indicates that the quantity t∗(A) is almost equal to the
approximation rate ε(A).

Proposition 3.4. Let A ⊆ M be a finite set. Then, ε(A) ≤ t∗(A)
(
1 + t∗(A)

τ(M)

)
.

Furthermore, if ε(A) < τ(M)/8, then, t∗(A) ≤ ε(A)
(
1 + 6 ε(A)

τ(M)

)
The proof of Proposition 3.4 relies on considering Delaunay triangulations.

Given d+1 points σ in R
d that do not lie on a hyperplane, there exists a unique

ball that contains the points on its boundary. It is called the circumball of σ,
and its radius is called the circumradius circ(σ) of σ. Given a finite set A ⊆ R

d

that does not lie on a hyperplane, there exists a triangulation of A, called the
Delaunay triangulation, such that for each simplex σ in the triangulation, the
circumball of σ contains no point of A in its interior. Note that there may exist
several Delaunay triangulations of a set A, should the set A not be in general po-
sition. With a slight abuse, we will still refer to “the” Delaunay triangulation of
A, by simply choosing a Delaunay triangulation among the possible ones should
several exist. If the set A lies on a lower dimensional subspace, we consider the
Delaunay triangulation of A in the affine vector space spanned by A. Therefore,
for every set A, the Delaunay triangulation is well defined (for instance, the
Delaunay triangulation of three points aligned in the plane is the 1-dimensional
triangulation obtained by joining the middle point with the two others).

Proof. Let x ∈ M be such that d(x,A) = ε(A). By definition, there exists a
simplex σ ⊆ A of radius smaller than t∗(A) with x = πM (y) for some point
y ∈ Conv(σ). We have, using Lemma 3.1 and Lemma 3.2,

ε(A) = d(x,A) ≤ |x− y|+ d(y,A) ≤ t∗(A)2

τ(M)
+ t∗(A)

proving the first inequality.
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To prove the other inequality, without loss of generality, we assume that
0 ∈ M and we show that 0 ∈ πM (Conv(t, A)) for t = ε(A)(1 + 6ε(A)/τ(M)).
Let Ã = π0(A∩B(0, R)) for R = ε(A) (2 + c0ε(A)/τ(M)) and c0 = 32/49. Note
that the condition ε(A) ≤ τ(M)/8 implies that R < 7τ(M)/24. We first state
two lemmas.

Lemma 3.5. Assume that ε(A) ≤ 7τ(M)/24. Let x̃ ∈ T0M with |x̃| ≤ ε(A).
Then d(x̃, Ã) ≤ ε(A).

Proof. By continuity, it suffices to prove the claim for |x̃| < ε(A). In this
case, according to Lemma 2.2, if ε(A) ≤ 7τ(M)/24, then there exists x ∈
BM (0, 8ε(A)/7) with π0(x) = x̃. Furthermore, by Lemma 2.1,

|x| ≤ |x̃|+ |x− x̃| ≤ ε(A) +
|x|2

2τ(M)
≤ ε(A)

(
1 +

32ε(A)

49τ(M)

)
.

We have d(x,A) = |x − a| for some point a ∈ A, and |a| ≤ |x − a| + |x| ≤
ε(A) (2 + c0ε(A)/τ(M)). As π0(a) ∈ Ã, we have d(x̃, Ã) ≤ |x̃− π0(a)| ≤ |x −
a| = d(x,A) ≤ ε(A).

Lemma 3.6. Let V ⊆ R
d be a finite set and t > 0. If dH(B(0, t)|V ) ≤ t, then

0 ∈ Conv(V ).

Proof. We prove the contrapositive. If 0 /∈ Conv(V ), then there exists an open
half-space which contains V . Let x be the unit vector orthogonal to this half-
space. Then, d(tx, V ) > t.

Apply Lemma 3.6 to V = Ã and t = ε(A). For x̃ ∈ BT0M (0, ε(A)), we have
d(x̃, Ã) ≤ ε(A) according to Lemma 3.5. Therefore, we have 0 ∈ Conv(Ã).
Consider the Delaunay triangulation of Ã. The point 0 belongs to the convex
hull of some simplex σ̃ of the triangulation, with circumradius circ(σ̃) and center
of the circumball q̃. The simplex σ̃ corresponds to some simplex σ in A, and
the point 0 is equal to π0(y) for some point y ∈ Conv(σ). By Lemma 2.2,
we actually have πM (y) = 0, and to conclude, it suffices to show that r(σ) ≤
ε(A)

(
1 + 6 ε(A)

τ(M)

)
. To do so, we use the next lemma (recall that σ ⊆ BM (0, R)

with R < 7τ(M)/24).

Lemma 3.7. Let σ ⊆ BM (0, 7τ(M)/24) and σ̃ = π̃0(σ). Assume that 0 ∈
Conv(σ̃). Then,

r(σ̃) ≤ r(σ) ≤ r(σ̃)

(
1 + 6

r(σ̃)

τ(M)

)
. (17)

Proof. As the projection is 1-Lipschitz, it is clear that r(σ̃) ≤ r(σ). Let us prove
the other inequality. Let σ = {y0, . . . , yk} , σ̃ = {ỹ0, . . . , ỹk} and fix 0 ≤ i ≤ k.
As yi ∈ BM (0, 7τ(M)/24), we have by (10)

|yi| ≤
8

7
|ỹi| ≤

16

7
r(σ̃). (18)
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Fig 4. If |q̃| > ε(A), then the ball BT0M (q̃, |q̃|) contains a ball of radius ε(A) centered at a
point (here denoted by w̃) at distance less than ε(A) from 0.

where we used that |ỹi| ≤ 2r(σ̃) as 0 ∈ Conv(σ̃). Let z̃ be the center of the

minimum enclosing ball of σ̃. Write z̃ =
∑k

j=0 λj ỹj as a convex combination of

the ỹjs and let z =
∑k

j=0 λjyj ∈ Conv(σ). Then, we have

|z − yi| ≤ |z − z̃|+ |z̃ − ỹi|+ |ỹi − yi|

≤
k∑

j=0

λj |yj − ỹj |+ r(σ̃) +
|yi|2

2τ(M)
using Lemma 2.1

≤
k∑

j=0

λj
|yj |2

2τ(M)
+ r(σ̃) +

128

49

r(σ̃)2

τ(M)
using Lemma 2.1 and (18)

≤ r(σ̃) +
256

49

r(σ̃)2

τ(M)
≤ r(σ̃) + 6

r(σ̃)2

τ(M)
using (18).

We obtain the conclusion as σ is included in the ball of radius maxi |z − yi|
and center z.

Using the previous lemma, we are left with showing that r(σ̃) ≤ ε(A). We will
actually show the stronger inequality circ(σ̃) ≤ ε(A) (the radius of a set is always
smaller than its circumradius). As 0 is in the circumball (that is centered at q̃),
the ball centered at q̃ of radius |q̃| does not intersect Ã. This enforces |q̃| ≤ ε(A):
otherwise, there would exist a ball not intersecting Ã, of radius ε(A), and whose
center is at distance less than ε(A) from 0, a contradiction with Lemma 3.5 (see
Figure 4). As |q̃| ≤ ε(A), we obtain, once again according to Lemma 3.5, that
circ(σ̃) = d(q̃, Ã) ≤ ε(A) concluding the proof.

Remark 3.8. In the case where the dimension d is known, one can con-
sider a variant of the t-convex hull, Convd(t, A), where one restricts the union
to be over simplices of dimension less than d. The set Convd(t, A) is sim-
pler to compute as it contains less simplices (see Section 7). Furthermore, if
t∗d(A) := inf {t : πM (Convd(t, A)) = M}, then both Lemma 3.3 and Proposition
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3.4 hold with t∗d(A) and Convd(t, A) instead of t∗(A) and Conv(t, A). Indeed,
only simplices of dimension less than d (corresponding to simplices of a Delau-
nay triangulation on a tangent space) were considered in the previous proof.

We have now shown that the quality of the t-convex hull on A can be con-
trolled for t ≥ ε(A)(1 + 6ε(A)/τ(M)) (that is slightly larger than the approx-
imation rate ε(A)). In a random setting, the approximation rate is known to
be of order (lnn/n)1/d: this is enough to show that the t-convex hull is a mini-
max estimator. Recall the definition of the statistical model Qd

τmin,fmin,fmax
from

the introduction: it consists of laws μ supported on some manifold M ∈ Md

with τ(M) ≥ τmin, having a density f lower bounded by fmin and upper
bounded by fmax. The minimax result will actually hold on the larger model
Qd

τmin,fmin
:=

⋃
fmax

Qd
τmin,fmin,fmax

(that is without imposing any upper bound
on f).

Let μ ∈ Qd
τmin,fmin

and let Xn be a n-sample from law μ. We consider the
estimator Conv(t,Xn). Note first that Conv(t,Xn) is indeed an estimator, that
is the application

(x1, . . . , xn) ∈
(
R

D
)n �→ Conv(t, {x1, . . . , xn})

is measurable (with respect to the Borel σ-field associated with the metric dH
on the set K

(
R

D
)
of all nonempty compact subsets of R

D). Indeed, for E

a measurable subset of K
(
R

D
)
and A,B ∈ K

(
R

D
)
, introduce the notation

GE(A,B) = A if A ∈ E and B otherwise. This function is measurable, and
Conv(t, {x1, . . . , xn}) can be written as⋃

I⊆{1,...,n}
GE

(
Conv({xi}i∈I

)
, {xi}i∈I)

where E is the subset of K
(
R

D
)
given by

{
K ∈ K

(
R

D
)
: r(K) ≤ t

}
, which

is closed [10, Lemma 16]. As the functions ∪ and Conv are measurable, the
measurability follows [1, Proposition III.7].

For a fixed t > 0, we obtain the following control of E [dH(Conv(t,Xn),M)].

E [dH(Conv(t,Xn),M)] = E [dH(Conv(t,Xn),M)1 {t ≥ t∗(Xn)}]
+ E [dH(Conv(t,Xn),M)1 {t < t∗(Xn)}]

≤ t2

τ(M)
+ diam(M)P (t∗(Xn) > t)

By Proposition 3.4, if ε(Xn) < τ(M)/8, then

t∗(Xn) ≤ ε(Xn)

(
1 + 6

ε(Xn)

τ(M)

)
≤ 7

4
ε(Xn).

Therefore, if t is small enough,

P (t∗(Xn) > t) ≤ P (ε(Xn) > τ(M)/8) + P (ε(Xn) > 4t/7) ≤ 2P (ε(Xn) > 4t/7) .
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We obtain

E [dH(Conv(t,Xn),M)] ≤ t2

τ(M)
+ 2 diam(M)P (ε(Xn) > 4t/7) (19)

Hence, to control the risk, it suffices to bound the tail of ε(Xn).

Proposition 3.9. Let μ ∈ Qd
τmin,fmin

and let Xn = {X1, . . . , Xn} be a n-sample
of law μ. If r ≤ τmin/4, then, for any η ∈ (0, 1)

P (ε(Xn) > r) ≤ cd,η
fminrd

exp

(
−nαdfmin

(
1− r2

3τ2min

)d

ηrd

)
, (20)

where cd,η depends on d and η. Furthermore, for any a > 0, for n large enough
(with respect to d, fmin, τmin and a), with probability 1− c(lnn)d−1n1−a (where
c depends also on those parameters), we have

ε(Xn) ≤
(

a lnn

αdfminn

)1/d

. (21)

Proof. A measure ν is said to be (a, b)-standard at scale r0 if ν(B(x, r)) ≥ arb

for all r ≤ r0 and x in the support of ν. Let μ ∈ Qd
τmin,fmin

with support M .
Lemma 2.3 indicates that the measure μ is (a, b)-standard at scale r0 for any

r0 ≤ τ(M)/4, with a = fminαd

(
1− r20

3τ(M)2

)d

and b = d. It is stated in the

proof [1, Proposition III.14] that for such a measure, and for any δ ≤ 2r0 with
0 < r − δ ≤ r0, we have

P (ε(Xn) > r) ≤ 2b

aδb
exp

(
−na(r − δ)b

)
.

Letting r = r0 and δ =
(
1− η1/d

)
r for some η ∈ (0, 1), we obtain that

P (ε(Xn) > r)

≤
(
2/

(
1− η1/d

))d
fminαd

(
1− r2

3τ(M)2

)d

rd
exp

(
−nfminαd

(
1− r2

3τ(M)2

)d

ηrd

)

≤ cd0
fminαdrd

exp

(
−nfminαd

(
1− r2

3τ(M)2

)d

ηrd

)
(22)

for c0 = 96/
(
47

(
1− η1/d

))
, where we used at the last line that r ≤ τ(M)/4.

To prove the second statement, let r =
(

a lnn
αdfminn

)1/d

. Then, nαdfminr
d =

a lnn. Letting η = 1− 1/ lnn, we obtain that
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nfminαd

(
1− r2

3τ(M)2

)d

ηrd = (a lnn)

(
1− 1

lnn

)(
1− c

(
lnn

n

)2/d
)

≥ (a lnn)− Ca.

In particular, the upper bound in (22) is of order (lnn)d−1n1−a.

Choose t such that 4t/7 =
(

3 lnn
αdfminnn

)1/d

. Then, according to Proposition

3.9, we have P (ε(Xn) > 32t/7) ≤ c(lnn)d−1n−2. As diam(M) is also bounded
by a constant depending on τmin, fmin and d (see [1, Lemma III.24]), we obtain
Theorem 1.1 from (19) (without even the need of assuming that the density f
is upper bounded).

4. Selection procedure for the t-convex hulls

Assuming that we have observed a n-sample Xn having a distribution μ ∈
Pd
τmin,fmin

, we were able in the previous section to build a minimax estimator
of the underlying manifold M . The tuning of this estimator requires the knowl-
edge of d and fmin: if the dimension d can be efficiently estimated, this is not
the case for fmin, which will likely not be accessible in practice. An idea to
overcome this issue is to design a selection procedure for the family of esti-
mators (Conv(t,Xn))t≥0. As the loss of the estimator Conv(t,Xn) is controlled
efficiently for t ≥ t∗(Xn) a good idea is to select a scale t larger than t∗(Xn). We
however do not have access to this quantity based on the observations Xn, as
the manifold M is unknown. To select a scale close to t∗(Xn), we monitor how
the estimators Conv(t,Xn) deviate from Xn as t increases. Namely, we use the
convexity defect function introduced in [10].

Definition 4.1. Let A ⊆ R
D and t > 0. The convexity defect function at scale

t of A is defined as

h(t, A) := dH(Conv(t, A), A). (23)

As its name indicates, the convexity defect function measures the (lack of)
convexity of a set A at a given scale t. The next proposition states preliminary
results on the convexity defect function.

Proposition 4.2. Let A ⊆ R
D be a closed set and t ≥ 0.

1. We have 0 ≤ h(t, A) ≤ t.
2. The set A is convex if and only if h(·, A) ≡ 0.

3. If M ∈ Md, then h(t,M) ≤ t2

2τ(M)

(
1 + t2

τ(M)2

)
.

Proof. Point 1 follows from Lemma 3.1. Point 2 is clear and Point 3 is a conse-
quence of Lemma 3.2.
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Fig 5. Two subsets of the torus having the same approximation rate, but whose convexity
defect functions exhibit different behaviors on [0, t∗(A)].

As expected, the convexity defect of a convex set is null, whereas for small
values of t, the convexity defect of a manifold h(t,M) is very small (compared to
the maximum value possible, which is t): when looked at locally, M is “almost
flat” (and thus “almost locally convex”). As already noted in the introduction,
if A is a finite set, then the convexity defect function is a piecewise constant
function, whose value may only change at t if t ∈ Rad(A) := {r(σ) : σ ⊆ A}.

For a set A ⊆ M , we recover the subquadratic behavior of the convexity
defect function for values of t above the threshold value t∗(A). Namely, we have
the following proposition.

Proposition 4.3. Let A ⊆ M . For t∗(A) < t < τ(M),

h(t, A) ≤ t2

2τ(M)

(
1 +

t2

τ(M)2

)
+ t∗(A)

(
1 +

t∗(A)

τ(M)

)
. (24)

Proof. By using that h(t, A) ≤ t and Lemma 3.3, for any t∗(A) < s < t,

h(t, A) = dH(Conv(t, A), A)

≤ dH(Conv(t, A),M) + dH(M,Conv(s,A)) + dH(Conv(s,A), A)

≤ t2

2τ(M)

(
1 +

t2

τ(M)2

)
+

s2

2τ(M)

(
1 +

s2

τ(M)2

)
+ s
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The conclusion is obtained by letting s go to t∗(A).

For 0 < t < t∗(A), the convexity defect function may exhibit very different
behaviors, as shown in Figure 5. However, when the set A = Xn is a random
n-sample, it appears that the graph of the convexity defect function stays close
to the diagonal {x = y} for small values of t. This is explained by the fact that
for two points X1, X2 in the sample at very small distance 2t from one another,
it is very unlikely that there is a third point at distance of order t from X1 and
X2, so that dH(Conv({X1, X2})|Xn) = dH(Conv({X1, X2})| {X1, X2}) = t.

This suggests the following strategy to select a value of t larger than t∗(Xn)
using the convexity defect function:

Definition 4.4. Let A ⊆ M be a finite set and 0 < λ ≤ 1. We define

tλ(A) := inf{t ∈ Rad(A) : h(t, A) ≤ λt}. (25)

Restricting to values t ∈ Rad(A) is necessary, for otherwise we would always
have tλ(A) = 0 (as h(t, A) = 0 for t small enough). Proposition 4.3 implies that
tλ(A) cannot be too large. More precisely, we have the following lemma.

Lemma 4.5. Let A ⊆ M with t∗(A) ≤ λ2τ(M)/4. Let r0 = t∗(A)
λ

(
1 + 8

λ2

t∗(A)
τ(M)

)
and r1 = λτ(M)/2. If t ∈ Rad(A) ∩ [r0, r1], then tλ(A) ≤ t.

Proof. By Proposition 4.3, we have, for t∗(A) < t ≤ λτ(M)/2,

h(t, A) ≤ t2

2τ(M)

(
1 +

t2

τ(M)2

)
+ t∗(A)

(
1 +

t∗(A)

τ(M)

)
≤ t2

2τ(M)

(
1 + λ2/4

)
+ t∗(A)

(
1 +

t∗(A)

τ(M)

)
− λt+ λt =: P (t) + λt.

Let u = 2t∗(A)
(
1 + t∗(A)

τ(M)

) (
1 + λ2/4

)
/
(
λ2τ(M)

)
. The condition t∗(A) ≤

λ2τ(M)/4 ensures that u ≤ 1. The quantity P (t) is nonpositive if t is between
t0 and t1, where

t0 =
τ(M)λ

1 + λ2/4
(1−

√
1− u) and t1 =

τ(M)λ

1 + λ2/4
(1 +

√
1− u).

We have t1 ≥ r1 and, using the inequality
√
1− u ≥ 1− u

2 −
u2

2 for 0 ≤ u ≤ 1,
we obtain that t0 ≤ r0. Therefore, any t ∈ [r0, r1] satisfies h(t, A) ≤ λt (note
that r0 > t∗(A)). In particular, if t is also in Rad(A), we have tλ(A) ≤ t.

Our main theorem states that, with high probability, the parameter tλ(Xn)
is larger than t∗(Xn)

Theorem 4.6. 1. Let μ ∈ Qd
τmin,fmin,fmax

. Let 0 < b ≤ 2 and let Xn be a
n-sample of law μ. Let a = (d− 1) ∨ 2 if b = 2, and a = d− 1 otherwise.
For n large enough, and with probability larger than 1 − c(lnn)an−b, we
have for 0 < λ < (1 + b)−1/d,
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t∗(Xn) ≤ tλ(Xn) ≤
t∗(Xn)

λ

(
1 + C

(
(lnn)2

n

)1/d
)

(26)

where the constant c depends on b, and μ, and C depends on fmin, fmax,
d, τmin and λ.

2. Furthermore, if μ is the uniform distribution on the circle of radius τmin,
then, for λ > (1 + b)−1, we have

P (t∗(Xn) > tλ(Xn)) ≥ cn−b (27)

for some constant c depending on τmin and b.

Inequality (27) implies that the probability 1− c(lnn)an−b appearing in the
theorem is close to being tight.

Proof of the upper bound in (26)

Let μ ∈ Qd
τmin,fmin,fmax

be a probability distribution with support M and density
f . We assume without loss of generality that fmin is the essential infimum of f .

Recall the notation r1 = λτ(M)/2 and r0 = t∗(Xn)
λ

(
1 + 8

λ2

t∗(Xn)
τ(M)

)
from Lemma

4.5. The proof of the upper bound is based on the following lemma.

Lemma 4.7. There exists a positive constant β > 0 (depending on fmin, fmax, d
and τmin) such that the following holds. Let α > 0 and let I = [a, b] be an interval

of length at least � = α
(
lnn
n

)2/d
with b ≤ βα

(
lnn
n

)1/d
and a ≥ �/2. Then, the

probability that Rad(Xn) does not intersect I is smaller than n−1/2.

Before proving the lemma, let us use it to obtain the upper bound in (26). By

Proposition 3.9 and Proposition 3.4, we have t∗(Xn) ≤
(

4 lnn
αdfminn

)1/d

everywhere

but on a set of probability smaller than n−2. We will assume that this condition
is satisfied. In particular, the condition t∗(Xn) ≤ λ2τ(M)/4 of Lemma 4.5 is

satisfied. Let u = δ
(

(lnn)2

n

)1/d

(for some constant δ to fix) and let

R0 := r0(1 + u) ≤ t∗(Xn)

λ

(
1 + 2δ

(
(lnn)2

n

)1/d
)

≤ 2

λ

(
4 lnn

αdfminn

)1/d

≤ r1.

Lemma 4.8. Let A ⊆ M be a finite set of cardinality n. Then,

ε(A) ≥ cdτ(M)n−1/d.

Proof. If ε(A) ≥ τ(M)/4, the conclusion holds. Otherwise, as M is included in⋃
x∈A BM (x, ε(A)), one has Vol(M) ≤ ncdε(A)

d (using Lemma 2.3). We con-
clude with inequality (9).
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According to Lemma 4.8 and Proposition 3.4, the interval [r0, R0] is of length

r0u ≥ C1δ
(
lnn
n

)2/d
=: � for some constant C1. Choose δ large enough so that

2
λ

(
4

αdfmin

)1/d

≤ βC1δ. Then, as r0 ≥ �/2 (once again by Lemma 4.8), one

can apply Lemma 4.7: the interval [r0, R0] intersects Rad(Xn) with probability
1− n−2. Lemma 4.5 then yields the conclusion.

Proof of Lemma 4.7. Let Ik = [k�/2, (k + 1)�/2] for k an integer. Assume that
we show that Rad(Xn) intersects every interval Ik for k = 1, . . . ,K, where K is

chosen so that b ≤ βα
(
lnn
n

)1/d ≤ (K +1)�/2, say K +1 =
⌈
2βα

(
lnn
n

)1/d
/�
⌉
=⌈

2β(n/ lnn)1/d
⌉
. As the interval I is of length at least �, and as �/2 ≤ a, the

interval I contains one of the interval Ik for some 1 ≤ k ≤ K. In particular, the
interval I also intersects Xn. Therefore, it suffices to bound the probability that
Rad(Xn) does not intersect Ik. If we show that this probability is of order at most
n−3, we may then conclude by a union bound: the probability that Rad(Xn)
intersects all the Ik is larger than 1−2Kn−3 ≥ 1−4βn1/d−3/(lnn)1/d ≥ 1−n−2.

To bound the probability that Rad(Xn) does not intersect Ik, we split the
set Xn into two groups: the set X 0

n = {X1, . . . , XL} (for some integer L to fix),
and the set X 1

n = {XL+1, . . . , Xn}. If some distance |Xi −Xj | is between k�
and (k+1)�, then Rad(Xn) intersects Ik. We will show that it is very likely that
|Xi −Xj | ∈ [k�, (k + 1)�] for some i ≤ L and j > L. To do so, we consider the
ball Bi centered at the point Xi, of radius (k + 1)�. Let Y be a point sampled
according to μ, conditioned on being in Bi. Then, according to Lemma 2.3, we
have

P (|Y −Xi| ∈ [k�, (k + 1)�]|Xi) =
μ (B (Xi, (k + 1)�) \B (Xi, k�))

μ (B (Xi, (k + 1)�))

≥ cdfmin

fmax(k + 1)d

(
(k + 1)d

(
1− (k + 1)2�2

3τ(M)2

)d

− kd
(
1 +

4k2�2

3τ(M)2

)d
)

≥ cdfmin

fmax(k + 1)d

(
dkd−1

(
1− (k + 1)2�2

3τ(M)2

)d

−

kd

((
1 +

4k2�2

3τ(M)2

)d

−
(
1− (k + 1)2�2

3τ(M)2

)d
))

≥ cdfmin

fmax(k + 1)d

(
dkd−1/2− C4k

d k2�2

τ(M)2

)
≥ C5

k

where we used the inequality C4
k2
2

τ(M)2 ≤ dk−1/4 at the last line: this inequality

holds as �2 is of order (lnn/n)4/d and k−3 is at least of order (lnn/n)3/d.

If Y1, . . . , YN are i.i.d. random variables of law μ, conditioned on being in Bi,
we therefore have

P (∀j ∈ {1, . . . , N}, |Yj −Xi| /∈ [k�, (k + 1)�]|Xi) ≤ exp (−C5N/k)
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For each ball Bi, we let Ji ⊆ {L + 1, . . . , n} be the set of indexes j > L
such that Xj ∈ Bi. Assume that there exists a set of A balls Bi1 , . . . , BiA

that are pairwise disjoint. Then, the corresponding sets Ji are also pairwise
disjoint. Conditionally on X 0

n and on Na := |Jia |, the sets {Xj : j ∈ Jia} are
independent for a = 1, . . . , A, and each consists of a sample of Nia independent
points sampled according to μ conditioned on being in Bia . Therefore, if E is
the event that Rad(Xn) does not intersect Ik, we have

P(E|X 0
n , (Ni)i≤L) ≤ exp

(
−

A∑
a=1

NiaC5/k

)
.

The random variable
∑A

a=1 Nia is the number of points of X 1
n in

⋃A
a=1 Bia .

It follows a binomial disribution of parameters n − L and p =
∑A

a=1 μ (Bia) ≥
C6A(k�)

d, so that we have

P
(
E|X 0

n

)
≤ E

[
exp

(
−

A∑
a=1

NiaC5/k

)∣∣∣∣∣X 0
n

]
≤ exp

(
−C6(n− L)A(k�)d

(
1− e−C5/k

))
≤ exp

(
−C7(n− L)A(k�)d/k

)
.

The quantity A can be chosen equal to the maximal number of balls Bi that
are pairwise disjoint. A procedure to create a set of pairwise disjoint balls is
the following. Start with Xi1 = X1, and throw away all the points of X 0

n at
distance less than 2(k + 1)� from X1. Take any point Xi2 that has not been
thrown away, and throw away all the remaining points that are distance less
than 2(k + 1)� from Xi2 . Repeating this procedure for Ã steps until no points
are left, we obtain a set of indexes for which the corresponding balls are pairwise
disjoint. In particular, Ã ≤ A. The number of points that are thrown away at
the step a follows a binomial distribution of parameters m and q, where m ≤ L
is the number of points in Ma := M\

⋃
a′<a B

(
Xia′ , 2(k + 1)�

)
, and, as long as

fmaxcda(k�)
d ≤ 1/2

q =
μ (Bia)

μ (Ma)
≤ cdfmax(k�)

d

1− acdfmax(k�)d
≤ C8(k�)

d.

In particular, the number of points that have been thrown away after a
steps is stochastically dominated by the sum of a independent binomial random
variables of parameter L and C8(k�)

d, that is a binomial random variable Za of
parameters aL and C8(k�)

d. This implies that

P(A ≤ a) ≤ P(Ã ≤ a) ≤ P (Za ≥ L) .

Let a =
⌊
1/

(
C9(k�)

d
)⌋
, where C9 is choosen so that fmaxcda(k�)

d ≤ 1/2
and EZa = aLC8(k�)

d ≤ L/2. Then, P (Za ≥ L) ≤ P (Za − EZa ≥ L/2) ≤
exp (−C10L) using Bernstein’s inequality. Therefore, letting L = (3/C10) (lnn),
we obtain that
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P(E) ≤ E
[
exp

(
−C7(n− L)A(k�)d/k

)]
≤ E

[
exp

(
−C7(n− L)A(k�)d/k

)
1{A ≥ a}

]
+ P(A ≤ a)

≤ exp
(
−C11n

⌊
1/

(
C9(k�)

d
)⌋

(k�)d/k
)
+ n−3

≤ exp
(
−C12n

1−1/d(lnn)1/d/(2β)
)
+ n−3

If d ≥ 2, the first term in the above sum is smaller than n−3. If d = 1, it is
equal to n−C12/(2β) and we choose β = C12/6 to conclude.

Proof of the lower bound in (26)

A first naive attempt to lower bound tλ(Xn) is the following. Remark that if two
points X1, X2, at distance 2t, are such that the ball centered at their middle, of
radius t, does not contain any point of Xn, then dH(Conv({X1, X2})|Xn) = t.
Fix t > 0, and assume that there is some t′ ∈ Rad(Xn) smaller than t such
that h(t′,Xn) < t′. There must then exist a simplex of size at least 3 of radius
smaller than t in Xn. In particular, there are three points X1, X2 and X3 of Xn

so that X2, X3 ∈ B (X1, 2t). Therefore, according to Lemma 2.3, if t ≤ τ(M)/8,

P (tλ(Xn) < t) ≤ P (∃X1, X2, X3 with X2, X3 ∈ B (X1, 2t))

≤ E [P (∃X2, X3 ∈ B (X1, 2t) |X1)]

≤ E
[
(nμ(B

(
X1, 2t))

2
]
≤ (αdfmaxn(13t/6)

d)2 ≤ C0(nt
d)2.

(28)
We know from the previous section that t∗(Xn) is of order t � (lnn/n)1/d,

while
(
ntd

)2 � (lnn)2 for such a value of t. Hence, the previous inequality is far
from sufficient to obtain Theorem 4.6. We therefore consider a more elaborate
construction.

Lemma 4.9. Let δ > 0. For t small enough (depending on μ and δ), there exist
K pairwise disjoint measurable subsets U1, . . . , UK , so that K ≥ cu,δt

−d and
each set Uk contains a ball Vk of radius t and satisfies

μ (Uk) = m(t) := αd(1 + δ)fmint
d. (29)

Before proving the lemma, note that we also have Km(t) ≤ 1 by a union
bound.

Proof. Consider the collection F of balls V of radius t centered at a point of M
satisfying μ(V ) ≤ αd(1 + δ)fmint

d, and let At be the set of the centers of such
balls. By Besicovitch’s covering theorem [20, Theorem 2.8.14], there exist NM

collections G1, . . . ,GNM
of disjoint balls in F such that

At ⊆
NM⋃
l=1

⋃
V ∈Gl

V.
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Letting Kt be the maximal number of pairwise disjoint balls in F , we have
μ (At) ≤ NMKtαd(1 + δ)fmint

d. By the Lebesgue differentiation theorem, for
almost all points x ∈ M with f(x) < (1 + δ)fmin, we have

lim
t→0

μ(B(x, t))
αdtd

< fmin(1 + δ).

For such a x, we then have x ∈ lim inft→0 At. Therefore,

cμ = μ ({x ∈ M : f(x) < (1 + δ)fmin}) ≤ μ
(
lim inf
t→0

At

)
≤ lim inf

t→0
μ (At)

≤ NMαd(1 + δ) lim inf
t→0

Ktt
d.

By the definition of fmin, cμ > 0. Therefore, for t small enough, we have
Kt ≥ cμ

2NMαd(1+δ) t
−d. Let V1, . . . , VK(t) be a set of pairwise disjoint balls in F .

By construction, each ball Vk satisfies μ (Vk) ≤ m(t). Also, we have μ (Vk) ≥
αdfmint

d/2 for t small enough by Lemma 2.3. This implies by a union bound
that 1 ≥ K(t)αdfmint

d/2. Therefore, K(t)m(t) ≤ 2(1 + δ). We define K =
�K(t)/(2(1 + δ))�, a number that satisfies K ≥ cμ,δt

−d and Km(t) ≤ 1.
Eventually, we build the sets Uk by induction by choosing any measurable

set Wk in M\(
⋃

k′<k Uk′ ∪ Vk) with μ (Wk) = m(t) − μ (Vk) ≥ 0 and letting
Uk = Vk ∪Wk. This is possible as

μ

(
M\(

⋃
k′<k

Uk′ ∪ Vk)

)
≥ 1− (k − 1)m(t)− μ (Vk) ≥ m(t)− μ (Vk) .

By construction, μ (Uk) = m(t) for every k. Note that we used the fact that
for any A ⊆ M and 0 ≤ p ≤ μ(A), there exists a subset V ⊆ A with μ(V ) = p:
this holds as μ is absolutely continuous with respect to the volume measure on
M .

We fix such a partition in the following, with balls Vk of radius (2− λ)t. We
write m for m((2−λ)t). Let Bk be the ball sharing its center with Vk, of radius
t. For W ⊆ M , let N(W ) be the number of points of Xn in W . We also write Nk

for N (Uk). Let xk be the center of Bk and e be a unit vector in TxM , and denote
by A+

k (resp. A−
k

)
the ball of radius (1−λ)t/2 centered at x+ = xk+e(1+λ)t/2

(resp. x− = xk − e(1 + λ)t/2), see Figure 6.

Lemma 4.10. Fix k = 1, . . . ,K. If h(t,Xn) < λt and Nk = 2, then we cannot
have both N(A+

k ) = 1 and N(A−
k ) = 1

Proof. Let σ = Xn ∩ Uk. Assume by contradiction that h(t,Xn) < λt, Nk = 2,
andN(A+

k ) = N(A−
k ) = 1. Then, σ is made of two points, x1 and x2, respectively

in A+
k and A−

k . As both points belong to Bk, we have r(σ) ≤ t. Therefore,
dH(Conv(σ)|Xn) ≤ h(t,Xn) < λt. In particular, the middle point x0 of x1 and
x2 is at distance less than λt from Xn. Let us show that BM (x0, |x1 − x0|) ⊆ Vk.
If this is the case, then d(x0,Xn) = |x1 − x2| /2 ≥ λt, a contradiction with
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Fig 6. Any ball with diameter whose one extremity is in A−
k and the other in A+

k is included
in Uk.

having dH(Conv(σ)|Xn) < λt. Let z ∈ BM (x0, |x1 − x0|) and denote by πe the
projection on e. Then,

|z − xk| ≤ |z − x0|+ |x0 − xk| ≤
|x1 − x2|

2
+ |πe (x0 − xk)|+

∣∣π⊥
e (x0 − xk)

∣∣
≤ t+

(1− λ)t

2
+

(1− λ)t

2
≤ (2− λ)t

concluding the proof.

Denote by Fk the complementary event of the event N(A+
k ) = N(A−

k ) = 1.
We obtain the bound

P (h(t,Xn) < λt) ≤ P (∀k = 1, . . . ,K,Nk �= 2 or (Nk = 2 and Fk))

= E

[
P

(
∀k = 1, . . . ,K,Nk �= 2 or (Nk = 2 and Fk) | (Nk)k=1,...,K

)]
≤ E

[
K∏

k=1

(1 {Nk �= 2}+ P (Fk|Nk = 2)1 {Nk = 2})
]

≤ E

[
K∏

k=1

(1− (1− P (Fk|Nk = 2))1 {Nk = 2})
]
.

Lemma 4.11. There exists a positive constant C1 such that

P (Fk|Nk = 2) ≤ e−C1 for k = 1, . . . ,K. (30)
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Proof. If |x+ − xk| ≤ t ≤ 7τ(M)/24, then there exists y+ ∈ M that satifies
πxk

(y+ − xk) = x+−xk by Lemma 2.2. Furthermore, we have |y+ − xk| ≤ 8t/7
and, by Lemma 2.1, we have |y+ − x+| ≤ (8t/7)2/(2τ(M)) = 32t2/(49τ(M)).
In particular,

B (x+, (1− λ)t/2) ⊇ B
(
y+, (1− λ)t/2− 32t2/(49τ(M))

)
⊇ B (y+, (1− λ)t/4)

if t ≤ 49(1 − λ)τ(M)/128. According to Lemma 2.3, we therefore have, also
assuming that t ≤ τ(M)/4

μ (B (x+, (1− λ)t/2)) ≥ fminαd

(
(1− λ)t

4

47

48

)d

and the same inequality holds for x−.
Let Y1, Y2 be two independent random variables sampled according to μ,

conditioned on being in Uk. Then, as μ (Uk) = m = αd(1 + δ)fmin(2− λ)dtd,

P (Fk|Nk = 2) = 1− 2P
(
Y1 ∈ A+

k

)
P
(
Y2 ∈ A−

k

)
= 1− 2

μ (B (x+, (1− λ)t/2))μ (B (x−, (1− λ)t/2))

μ (Uk)
2

≤ 1− 2

( (
47
48

1−λ
4

)d
(1 + δ)(2− λ)d

)2

≤ e−C1

where C1 = 2

(
( 47

48
1−λ
4 )

d

(1+δ)(2−λ)d

)2

.

We finally obtain

P (h(t,Xn) < λt) ≤ E

[
exp

(
−C1

K∑
k=1

1 {Nk = 2}
)]

. (31)

Lemma 4.12. Assume that nm ≤ max
(
m−1, (lnn)2

)
. Let φ : x ∈ [0,+∞) �→

min(1, x)e−x. Then,

E

[
exp

(
−C1

K∑
k=1

1 {Nk = 2}
)]

≤ C2 exp (−C3nφ(nm)) (32)

for some positive constants C2, C3.

Lemma 4.12 relies on concentration inequalities and is proved in Section A.
As m is of order td, the condition nm ≤ max

(
m−1, (lnn)2

)
is satisfied as long

as td � (lnn)2/n. Remark also that the function φ is increasing on [0, 1] and
decreasing on [1,+∞).

Assume that t1 ≤ t ≤ t2, where
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t1 =
1

2− λ

(
1

αdfmin(1 + δ)n

)1/d

and t2 =
1

2− λ

(
β lnn

αdfmin(1 + δ)n

)1/d

for some 0 < β < 1. Then, 1 ≤ nm ≤ β lnn, so that φ(nm) ≥ φ(β lnn) = n−β

and

∀t ∈ [t1, t2] , P (h(t,Xn) < λt) ≤ C2 exp
(
−C3n

1−β
)
≤ n−2 (33)

for n large enough. Assume now that t ∈ [t0, t1], where

t0 =
1

2− λ

(
κ lnn

αdfmin(1 + δ)n2

)1/d

for some κ > 0. Then, κ(lnn/n) ≤ nm ≤ 1, so that φ(nm) ≥ φ(κ(lnn/n)) ≥
κ lnn/(2n) for n large enough. Choosing κ ≥ 4/C3, we obtain that

∀t ∈ [t0, t1] , P (h(t,Xn) < λt) ≤ C2n
−C3κ/2 ≤ C2n

−2. (34)

The picture is now as follows. We know from (28) that tλ(Xn) ≥ t0 with
probability at least 1− c3(lnn/n)

2. For each t between t0 and t2, we also have
h(t,Xn) ≥ λt with probability at least n−2 (at least for n large enough with
respect to λ and μ). Consider a sequence t(i) with t(0) = t0 and t(i+1) = t(i)/λ
for i = 0, . . . , I, with I chosen so that

t2/λ ≤ t(I) ≤ t2

Assume that tλ(Xn) ≥ t0 and that h(t(i),Xn) ≥ λt(i) for every i. If t belongs
to the interval

[
t(i), t(i+1)

]
, then h(t,Xn) ≥ h(t(i),Xn) ≥ λt(i) ≥ λ2t. Therefore,

tλ2(Xn) ≥ t2 Let λ′ = λ2. As I is of order lnn, by a union bound, we obtain
that, for any 0 < β, δ < 1, λ′ ∈ (0, 1) and n large enough

P

(
tλ′(Xn) ≤

1

2−
√
λ′

(
β lnn

αdfmin(1 + δ)n

)1/d
)

≤ P (tλ(Xn) < t0) +

I∑
i=0

P

(
h(t(i),Xn) < λt(i)

)
≤ c3(lnn/n)

2 + c4(lnn)n
−2

≤ c5(lnn/n)
2.

(35)

Lemma 4.13. Let A ⊆ M . Let 0 < λ ≤ λ′ < 1. Then, tλ(A) ≥ λ′

λ tλ′(A).

Proof. The function h(·, A) is nondecreasing, and is therefore larger than
λ′tλ′(A) for t ≥ tλ′(A). Therefore, for t ∈ [tλ′(A), (λ′/λ) tλ′(A)], we have
h(t, A) ≥ λ′tλ′(A) ≥ λt, yielding the conclusion.
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Let 0 < λ < (1+b)−1/d. From Proposition 3.9, we know that with probability

1− c(lnn)d−1n−b, we have ε(Xn) ≤ (1+b)1/d (lnn/ (nαdfmin))
1/d

. For any r > 1,
if n is large enough, by Proposition 3.4, this entails that t∗(Xn) ≤ rε(Xn).
Choose λ′, β and r close enough to 1, and δ small enough, so that

λ′

λ
(
2−

√
λ′
) β1/d

(1 + δ)1/d
≥ r(1 + b)1/d.

Such a choice is possible as 1
λ > (1 + b)1/d. Then, assuming that the comple-

mentary of the event described in (35) also holds, we have

tλ(Xn) ≥
λ′

λ
tλ′(Xn) ≥

λ′

λ

1

2−
√
λ′

(
β lnn

αdfmin(1 + δ)n

)1/d

≥ rε(Xn) ≥ t∗(Xn)

As the probability appearing in (35) is smaller than a quantity of order
(lnn)2n−2 ≤ (lnn)an−b for any 0 < b ≤ 2, we obtain inequality (26), con-
cluding the proof of the first statement of Theorem 4.6.

Proof of (26)

Consider a n-sample {X1, . . . , Xn} on the circle M of radius 1. Without loss
of generality, we assume that X1 = (0, 1). Each point Xi is equal to exp (iθi)
where θi ∈ [0, 2π). Consider the ordering

0 = θ(1) ≤ · · · ≤ θ(n)

and the associated points X(1), . . . , X(n). Define the spacings Vi = θ(i+1) − θ(i)
for i = 1, . . . , n (with by convention θ(n+1) = 2π

)
. The corresponding edge lenth∣∣X(i+1) −X(i)

∣∣ =: 2ti satisfies Vi = arccos
(
1− 2t2i

)
.

We write V(1) ≤ · · · ≤ V(n) for the ordered spacings (and t(1) ≤ · · · ≤ t(n)
for the associated lengths). Note that we have t∗(Xn) = t(n). The next lemma
asserts that the convexity defect function cannot increase too much between
two consecutive t(i)s.

Lemma 4.14. For t ∈
[
t(i), t(i+1)

)
, we have h(t,Xn) ≤ t(i) + t2(i+1).

Proof. Let
[
X(k), X(l)

]
be an edge of length smaller than 2t with k < l. We

assume without loss of generality that X0 does not lie on the arc between X(k)

and X(l). Let x be a point on this edge, of the form reiθ for some angle θ(k) ≤
θ ≤ θ(l). The angle θ belongs to the segment

[
θ(j), θ(j+1)

]
for some index j. As

t < t(i+1) we have tj < t(i+1), that is tj ≤ t(i). The ray of angle θ hits the line[
X(j), X(j+1)

]
at some point y, and

d(x,Xn) ≤ |x− y|+ d(y,Xn) ≤ d(x,M) + tj ≤ t2 + t(i)

by Lemma 3.2. As t ≤ t(i+1), we obtain the conclusion.
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Fig 7. Construction used in the proof of Lemma 4.14. The distance between X(j) = eiθ(j) and

X(j+1) = eiθ(j+1) is equal to 2tj , while the distance between X(k) = eiθ(k) and X(l) = eiθ(l)

is smaller than 2t.

Let λ > (1 + b)−1 and fix an arbitrary λ′ satisfying (1 + b)−1 < λ′ < λ.
Assume that t(n−1) ≤ λ′t(n). Then, for t ∈

[
t(n−1), t(n)

)
, we have according to

the previous lemma that

h(t,Xn) ≤ λ′t(n) + t2(n).

Choosing t ∈ I :=
[
t(n)

(
λ′ + t(n)

)
/λ, t(n)

)
, we have h(t,Xn) < λt. The

interval I satisfies the conditions of Lemma 4.7, and therefore intersects Rad(Xn)
with probability 1−n−2. In particular, tλ(Xn) is smaller than the upper endpoint
of I, that is t(n) = t∗(Xn). Note that such a choice of t is possible as long as
λ− λ′ > t(n). To put it another way, we have

P (tλ(Xn) < t∗(Xn)) ≤ P
(
t(n−1) ≤ λ′t(n)

)
+ P

(
λ− λ′ < t(n)

)
+ n−2. (36)

The second probability in the above equation is exponentially small by Propo-
sition 3.9. It remains to study the probability that t(n−1) ≤ λ′t(n). Let A1,
. . . , An be a n-sample following an exponential distribution. According to [18,
Section 6.4], we have

(V1, . . . , Vn) ∼ 2π

(
A1∑n
i=1 Ai

, . . . ,
An∑n
i=1 Ai

)

In particular, the law of V(n)/V(n−1) is equal to the law of A(n)/A(n−1), the
largest of the Ais divided by the second largest. Furthermore, according to [37,
Theorem 2.1], we have, for any s > 1,
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P
(
A(n)/A(n−1) ≥ s

)
= n(n− 1)

n−2∑
k=0

(
n− 2

k

)
(−1)n−2−k

n− 1− k + s

= n(n− 1)

n−2∑
k=0

(
n− 2

k

)
(−1)n−2−k

∫ 1

0

xn−2−k+s dx

= n(n− 1)

∫ 1

0

xs(1− x)n−2 dx

= n(n− 1)B(s+ 1, n− 1)

∼ n2Γ(s+ 1)n−(s+1) ∼ Γ(s+ 1)n1−s,
(37)

where B is the Beta function. Also, by writing a Taylor expansion of arccos at
1, we obtain that for t(n) small enough,

V(n)

V(n−1)
=

arccos
(
1− 2t2(n)

)
arccos

(
1− 2t2(n−1)

) ≤
t(n)

t(n−1)

(
1 +

5t2(n)

24

)

If t(n−1) ≤ λ′t(n), then we have
V(n)

V(n−1)
≥ (λ′)−1

(
1 +

5t2(n)

24

)
≥ 1 + b if t(n) is

smaller than some constant c0 (recall that λ′ > (1 + b)−1
)
. Therefore,

P
(
t(n−1) ≤ λ′t(n)

)
≥ P

(
t(n) > c0

)
+ P

(
V(n)

V(n−1)
≥ 1 + b

)
for some small constant c0 (depending on the distance between (1 + b)−1 and
λ′). The first probability is exponentially small, and the second one is of order
n−b by (37). Inequality (36) then yields the conclusion.

5. Sampling with noise

So far, we have always considered that the point cloud Xn lies exactly on the
manifold M . However, all the constructions presented are stable with respect to
tubular noise.

Let 0 < γ < τmin. Let X = Y +Z, with the law ν of Y being in Qd
τmin,fmin,fmax

and Z ∈ TY M
⊥ satisfying |Z| ≤ γ. We let Qd,γ

τmin,fmin,fmax
be the set of laws of

such random variablesX. Observe that, as we do not assume that the conditional
noise Z|Y is centered, the model is not identifiable, that is M is not determined

by the law μ of X. To simplify matters, for each law μ ∈ Qd,γ
τmin,fmin,fmax

, we will
make an arbitrary choice among the admissible couples (Y, Z) with Y +Z ∼ μ.
The “underlying manifold M of the law μ” will be the support of the law of Y ,
while the results of this section will hold for any choice of couple (Y, Z).
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Remark 5.1 (On the orthogonality assumption). The assumption that the
noise is orthogonal (that is Z ∈ TY M

⊥) is not restrictive. Let γ < τmin, ν ∈
Qd

τmin,fmin,fmax
with density f and Y ∼ ν. Let Z be any random variable sup-

ported on B(0, γ), and X = Y + Z (without necessarily Z ∈ TY M
⊥). We may

write X = πM (X) + (X − πM (X)) = Y ′ + Z ′. By Lemma 2.2, we have Z ′ ∈
TY ,M

⊥. Furthermore, the density of Y ′ can be explicitely computed in terms of
the density of f and of the Jacobian of the function Gz : y ∈ M �→ πM (y + z).
More precisely, one can show that Gz is bijective, of class C1, and, by a change
of variable, that the density f ′ of Y ′ at y is given by E

[
f(G−1

Z (y))J(G−1
Z )(y)

]
.

The derivative of GZ is expressed in terms of the second fundamental form of
M (whose operator norm is bounded by the reach τ(M) [31]). In particular, the
Jacobian is upper and lower bounded, so that f ′ is lower and upper bounded on
M . In other words, the law of X belongs to Qd,γ

τmin,afmin,fmax/a
for some 0 < a < 1

depending on d, τmin and τmin − γ.

We first show that the t-convex hull with parameter t of order (lnn/n)1/d

has a risk of the same order if tubular noise is added.

Proposition 5.2. Let A,B ⊆ R
D and let dH(A,B) ≤ γ. Then,

dH(Conv(t, A)|Conv(t+ γ,B)) ≤ γ (38)

Proof. Let σ ⊆ A. By definition, there exists σ′ ⊆ B such that dH(σ|σ′) ≤ γ. We
have r (σ′) ≤ r(σ)+γ ≤ t+γ (see [10, Lemma 16]) and dH(Conv(σ)|Conv(σ′)) ≤
γ.

Let Xn = {X1, . . . , Xn} be a n-sample of law μ, with Yn = {Y1, . . . , Yn} the
corresponding sample on M (that is Yi = πM (Xi). If t ≥ t∗(Yn) + γ, then

dH(M |Conv(t,Xn))

≤ dH(M |Conv(t− γ,Yn)) + dH(Conv(t− γ,Yn)|Conv(t,Xn))

≤ (t− γ)2

τ(M)
+ γ

and dH(Conv(t,Xn)|M)

≤ dH(Conv(t,Xn)|Conv(t+ γ,Yn)) + dH(Conv(t+ γ,Yn)|M)

≤ γ +
(t+ γ)2

τ(M)
.

Therefore, we obtain that, for t ≥ t∗ (Yn) + γ,

dH(Conv(t,Xn),M) ≤ (t+ γ)2

τ(M)
+ γ. (39)

Assume that γ ≤ η(lnn/n)2/d for some η > 0 and let t̃n = 2tn, where tn is
the radius appearing in Theorem 1.1. The probability that t̃n ≤ t∗ (Yn) + γ is
smaller than the probability that tn ≤ t∗ (Yn), a probability that we control by
Proposition 3.9. As t̃n + γ ≤ 3tn for n large enough, we obtain that
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E
[
dH(Conv(t̃n,Xn),M)

]
≤

(
c1

τmin (αdfmin)
2/d

+ η

)(
lnn

n

)2/d

for some absolute constant c1.
Let us now analyze how the selection procedure is impacted by the presence

of noise. We mimick the proof of Theorem 4.6. Let 0 < b ≤ 2 and let 0 <
λ < (1 + b)−1/d. If tλ(Xn) < t, then in particular there exist three points
X1, X2 and X3 such that X2, X3 ∈ B (X1, 2t). We then have by Lemma 2.2 that

Y2, Y3 ∈ B
(
Y1,

2τ(M)
τ(M)−γ t

)
. We obtain as in (28) that

P (tλ(Xn) < t) ≤ C1

(
ntd

)2
(τmin − γ)

2 . (40)

Fix t ∈ [t0, t2] (where t0 and t2 are defined in the proof of Theorem 4.6) and
let 0 < γ < t. We have, by Proposition 5.2,

h(t,Xn) = dH(Conv(t,Xn)|Xn)

≥ dH(Conv(t− γ,Yn)|Yn)− dH(Xn|Yn)− dH(Conv(t− γ,Yn)|Conv(t,Xn))

≥ h(t− γ,Yn)− 2γ.

Therefore, if λt+2γ
t−γ ≤ λ′ < 1 and h(t− γ,Yn) ≥ λ′(t− γ), then h(t,Xn) ≥ λt.

Assume that γ ≤ η(lnn/n)2/d for some η > 0 and fix λ′ = (1 + λ)/2. Then, for
t ≥ t̃0 := 6γ/(1−λ), the condition λt+γ

t−γ ≤ λ′ is satisfied. Furthermore, according

to the proof of Theorem 4.6, for such a t, the condition h(t− γ,Yn) ≥ λ′(t− γ)
is satisfied with probability at least 1− cn−2. Using the same argument than in
the proof of Theorem 4.6, we then obtain that

P

(
tλ(Xn) ≤

1

2−
√
λ

(
β lnn

αdfmin(1 + δ)n

)1/d
)

≤ c1(lnn)n
−2 + c2

(
nt̃d0

)2
≤ 2c2

(lnn)4

n2
.

(41)

We may conclude as in the previous proof that we have tλ(Xn) ≥ t∗ (Yn)+ γ
with probability equal to 1 − c(lnn)ãn−b, where ã = 4 ∨ (d − 1) if b = 2 and
d− 1 otherwise.

Let us now provide an upper bound on tλ(Xn). Consider the interval I = [(1−
λ/8)tλ/2 (Yn) , (1− λ/16)tλ/2 (Yn)

)
. By Theorem 4.6, Proposition 3.4, Lemma

4.8 and Proposition 3.9, tλ/2 (Yn) is at least of order n−1/d and at most of

order (lnn/n)1/d with probability 1 − n−2. By Lemma 4.7, this implies that
Rad (Yn) intersects I with the same probability. Let t′ ∈ Rad (Yn)∩I. This scale
corresponds to some simplex σ′ = {y1, . . . , yK}, and we let σ = {x1, . . . , xK} ⊆
Xn where yi = πM (xi). We have t := r(σ) ≤ γ + t′ according to [10, Lemma
16]. Furthermore, if z is the center of the smallest enclosing ball of σ, we have



5918 V. Divol

using Lemma 2.2, |yi − πM (z)| ≤ τ(M)
τ(M)−γ |xi − z| ≤ tτ(M)

τ(M)−γ , indicating that

t′ ≤ tτ(M)
τ(M)−γ . Recalling that γ is of order (lnn/n)2/d � n−1/d � tλ/2 (Yn), this

means we have found a scale t ∈ Rad(Xn) satisfying

(1− λ/4)tλ/2(Yn) ≤
(
1− γ

τ(M)

)
t′ ≤ t ≤ t′ + γ ≤ (1− λ/8)tλ/2(Yn). (42)

Using Proposition 4.3 and (42), we obtain

h(t,Xn)

≤ dH(Conv(t,Xn)|Conv(tλ/2(Yn),Yn)) + h(tλ/2(Yn),Yn) + dH(Xn,Yn)

≤ (tλ/2(Yn)− t) +
λ

2
tλ/2(Yn) + γ

≤ λ

4
tλ/2(Yn) +

λ

2
tλ/2(Yn) + γ ≤ 3λ

4
tλ/2(Yn) + γ ≤ λ(1− λ/4)tλ/2(Yn)

≤ λt

where at the second to last line we used that γ ≤ λ (1−λ)
4 tλ/2(Yn) (as tλ/2(Yn)

is of order at least n−1/d
)
. This implies that tλ(Xn) ≤ t ≤ tλ/2(Yn). Using the

upper bound on tλ/2(Yn) given in Theorem 4.6, we have that, with probability

1− c(lnn)ãn−b,

t∗(Yn) + γ ≤ tλ(Xn) ≤
2t∗(Yn)

λ

(
1 + C

(
(lnn)2

n

)1/d
)

(43)

that is an analog of Theorem 4.6 also holds in a setting where tubular noise of
size (lnn/n)2/d is present.

6. Adaptive estimation with the selected scale

In this section, we show that the estimator M̂ = Conv(tλ(Xn),Xn) is minimax
adaptive on the scale of models Qd

τmin,fmin,fmax
. For the sake of exposition, we

focus on the noiseless case γ = 0. We first have to be careful when defining the
scale of models. Indeed, by (9), we have for μ ∈ Qd

τmin,fmin,fmax
supported on M

1 = μ(M) ≥ fminωdτ
d
min,

so that the model Qd
τmin,fmin,fmax

is empty if fminωdτ
d
min > 1. Also, if we have

fminωdτ
d
min = 1, then μ is the uniform distribution on a sphere. In this case

d + 1 observations characterize M , and the minimax rate on Qd
τmin,fmin,fmax

is
zero for n ≥ d + 1. To discard such degenerate cases, we will assume that
there exists a constant κ < 1 so that ωdfminτ

d
min < κ. We have already men-

tioned in the introduction that Kim and Zhou [25] showed that the minimax risk
Rn(Qd

τmin,fmin,fmax
) is of order (lnn/n)2/d. They were however not concerned
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with precise constants. We indicate in Section B how to modify their proof to
obtain a more precise result.

Proposition 6.1. There exists a constant C depending only on κ such that

lim
n

inf
Rn(Qd

τmin,fmin,fmax
)

(lnn/n)2/d
≥ C

(αdfmin)
2/d

τmin

.

Our adaptivity result then reads as follows.

Theorem 6.2. Let d ≥ 2. Let μ ∈ Qd
τmin,fmin,fmax

and let 0 < λ < (1+2/d)−1/d.
Then, for n large enough, we have

E [dH(Conv(tλ(Xn),Xn),M)] ≤ c0

λ2 (αdfmin)
2/d

τmin

(
lnn

n

)2/d

≤ c1
λ2

Rn(Qd
τmin

, fmin, fmax),

(44)

where c0 is a numerical constant and c1 only depends on κ.

Proof. Choose b ∈ (0, 2] such that λ < (1 + b)−1/d < (1 + 2/d)−1/d. Assume
that the event described in (26) is satisfied (that is with probability larger than
1− c(lnn)d−1n−b

)
. Then, we have by Lemma 3.3

dH(Conv(tλ(Xn),Xn),M) ≤ tλ(Xn)
2

τmin
≤ t∗(Xn)

2

λ2τmin

(
1 + C

(
(lnn)2

n

)1/d
)2

We also assume that ε(Xn) ≤
(

4 lnn
αdfminnn

)1/d

, an event that happens with

probability 1 − (lnn)d−1n−3 by Proposition 3.9. Then, for n large enough, we
have t∗(Xn) ≤ 2ε(Xn) by Proposition 3.4. In particular, we obtain that, for n
large enough

dH(Conv(tλ(Xn),Xn),M) ≤ c0

λ2 (αdfmin)
2/d

τmin

(
lnn

n

)2/d

for some absolute constant c0. The probability that this inequality is not satisfied
is of order (lnn)d−1n−b � (lnn/n)2/d, and if this is the case we bound the risk
by diam(M) (that is bounded by a constant depending on τmin, fmin and d [1,
Lemma III.24]). We therefore obtain the first inequality of (44), while the second
one follows directly from Proposition 6.1.

Remark 6.3. In the one-dimensional case d = 1, the minimax risk is of

order (lnn/n)2/
(
(αdfmin)

2
τmin

)
, whereas, with b = 2, the probability with

which (43) holds is of order (lnn/n)2. As such, one can show that the risk
of Conv(tλ(Xn),Xn) is of order (lnn/n)2 for d = 1, but with a leading constant
that will depend on the constants appearing in Theorem (4.6). This leading con-

stant is therefore not anymore of order 1/
(
(αdfmin)

2
τmin

)
, and we do not have
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a clean inequality of the form (44). Still, Conv(tλ(Xn),Xn) is a data-driven
minimax estimator even in this case.

With a choice of λ smaller than 1/
√
2 (say λ = 1/2), the condition λ <

(1 + 2/d)−1/d is satisfied for every d ≥ 2. With such a choice, we obtain a
completely data-driven estimator that attains asymptotically the minimax rate
Rn(Qd

τmin,fmin,fmax
) up to an absolute constant, for every admissible choice of

τmin, fmin, fmax and d ≥ 2. The slope λ in our selection procedure is akin to
a regularization parameter that appears in most selection methods (such as in
the LASSO [34], or the PCO and Goldenshluger-Lepski methods already men-
tioned). If every choice of parameter λ < 1/

√
2 is admissible from a theoretical

point of view, the practical choice of the parameter λ is more delicate. We de-
velop in Section 7 a heuristic, similar to the slope heuristics [9], to choose the
parameter λ.

Remark 6.4. We insist that our result is of an asymptotic nature, as the “large
enough” in the above theorem depends on the probability measure μ. A similar
behavior occurs with the PCO method mentioned in the introduction [27] (or with
the Goldenshluger-Lepski method [26, Proposition 1]). Indeed, the remainder
term C(n, |H|) appearing in (5) depends on μ through the ∞-norm of its density
function, whereas the minimax risk does not depend on this ∞-norm (see [35,
Theorem 2.8]). As such, the remainder term C(n, |H|) becomes negligible in
front of the minimax risk only for n large enough with respect to μ (and not
only with respect to the parameters defining the statistical model), as this is the
case in Theorem 6.2.

The parameter tλ(Xn) actually gives us the approximation rate ε(Xn) up
to a multiplicative constant (roughly equal to λ−1). As such, it can be also
used to design other data-driven estimators. As an example, we consider the
estimation of the tangent spaces of a manifold. Let x ∈ M and A ⊆ M be a finite
set. We denote by Tx(A, t) the d-dimensional vector space U that minimizes
dH(A∩B(x, t)|x+U). This estimator was originally studied in [12]. Recall that
the angle between subspaces is denoted by ∠.
Corollary 6.5. Let μ ∈ Qd

τmin,fmin,fmax
with support M and let 0 < λ < (1 +

1/d)−1/d. Then, for n large enough (with respect to μ), we have

E∠ (TxM,Tp (Xn, 11tλ(Xn))) ≤ c

(
lnn

n

)1/d

for some constant c depending on λ, d, τmin and fmin

This rate is the minimax rate (up to logarithmic factors) according to [3,
Theorem 3].

Proof. Theorem 3.2 in [12] states that for A ⊆ M , if t < τ(M)/2 and t ≥ 10ε(A),
then

∠ (Tx(A, t), TxM) ≤ 6
t

τ(M)
.
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As in the previous proof, we may choose b ∈ (0, 2] such that λ < (1 +
b)−1/d < (1 + 1/d)−1/d, and assume that the event described in Theorem 4.6

is satisfied. We also assume that ε(Xn) ≤
(

4 lnn
αdfminn

)1/d

. Then, the quantity

t = 11tλ(Xn) is larger than 10ε(Xn) for n large enough, and furthermore satisfies

t ≤ c0

(
lnn

αdfminnn

)1/d

for some absolute constant c0 if n is large enough. We then

have

∠ (Tx (Xn, t) , TxM) ≤ c1

(αdfmin)
1/d

τmin

(
lnn

n

)1/d

for some absolute constant c1 large enough. If one of the two conditions does
not hold (this happens with a probability smaller than (lnn)an−b = o

(
n−1/d

))
,

we bound the angle by 2, concluding the proof.

Remark 6.6. Authors in [14] also propose to use the convexity defect function
of a set A ⊆ M to estimate the reach of M , while their method requires only
the knowledge of ε(A). As such, we may use their technique by using the scale
tλ(Xn) instead of ε(Xn). This leads to a reach estimator that attains a risk of
order (lnn/n)1/(3d). As the minimax risk is of order n−1/d up to logarithmic
factors for this problem (at least on a statistical model made of C3 manifolds),
this is far from being minimax. Still, this yields a consistent fully data-driven
reach estimator. We refer to [14] for details on the construction.

7. Numerical considerations1

There are two distinct procedures to investigate: first, the computation of the
t-convex hull Conv(t,Xn), and second, the computation of the scale tλ(Xn). To
compute the t-convex hull Conv(t,Xn), it suffices to compute the Čech complex
Cech(t,Xn) := {σ ⊆ Xn : r(σ) ≤ t}. For x ∈ R

D, let N(x) be the number of
points of Xn at distance less than 2t of x. Assume that one has access to the set
Et(Xn) of edges of Xn of length smaller than 2t. Then, authors in [28] propose

an algorithm of complexity CD

∑n
i=1 N (Xi)

D
to compute Cech(t,Xn). When t

is of order (lnn/n)1/d, N(Xi) is on average of order lnn and we obtain an aver-
age complexity of order CDn(lnn)D. In high dimension, the complexity can be
reduced if one has access to the dimension d by computing Convd(t,Xn) instead
(see Remark 3.8). Indeed, according to [28], the set of simplices of Cech(t,Xn)
of dimension smaller than d can be computed with average time complexity
of order CdDn(lnn)d. We also have to consider the computation of the edges
Et(Xn). A naive algorithm to compute this set leads to a complexity of order
Dn2, but in practice this can be considerably sped up by using e.g. a RP tree
[17].

We now adress the selection procedure described in Section 4. To choose the
scale tλ(Xn), we have to compute the convexity defect function of Xn. To do
so, we need for each simplex σ ⊆ Xn to (i) compute its radius r(σ) and (ii)

1Code is made available at github.com/vincentdivol/local-convex-hull.

https://github.com/vincentdivol/local-convex-hull
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compute dH(Conv(σ)|Xn). We will simplify this problem by considering only
simplexes σ of dimension 1 (i.e. edges). Let Graph(t,Xn) be the union of the
edges of Xn of length 2t. We may define a graph convexity defect function
h̃(t,Xn) = dH(Graph(t,Xn),Xn), as well as a graph scale parameter

t̃λ(Xn) := inf
{
t ∈ R̃ad(Xn) : h̃(t,Xn) ≤ λt

}
,

where R̃ad(Xn) := {|Xi −Xj | /2 : 1 ≤ i, j ≤ n}. A careful read of the proof of
Theorem 4.6 shows that only edges are considered to obtain the different inequal-
ities of the theorem. In particular, this theorem also holds with t̃λ(Xn) instead
of tλ(Xn). When e is an edge of Xn, the distance dH(Conv(e)|Xn) can be com-
puted in O(n(D+ lnn)) operations [7]. By looping over the O

(
n2

)
edges of the

dataset, we may compute h̃(·,Xn) with a time complexity of O
(
n3(D + lnn)

)
.

The choice of the slope value λ has an impact on the selection procedure.
Ideally, we would like to choose λ so that it is just below

λmax(Xn) := max {λ : tλ(Xn) > t∗(Xn)} .

Let tmax(Xn) = tλmax(Xn)(Xn). According to Proposition 4.3, the function
h(·,Xn) is almost constant after t∗(Xn), and therefore also almost constant after
tmax(Xn). This implies that tλ(Xn) should increase proportionally with 1/λ for
λ < λmax(Xn) (at least approximately). On the opposite, for λ > λmax(Xn),
we expect tλ(Xn) to go to 0 quickly. By plotting the graph of the function
gXn : λ �→ 1/tλ(Xn), those two behaviors should be observed (first linear and
then diverging), so that a “jump” should occur around the value λmax(Xn).
We indeed observe such a phenomenon, see Figure 8. In practice, we use a
grid 0 = λ1 ≤ · · · ≤ λL = 1 and the jump is defined by the smallest l such
that the condition gXn (λl+1)− gXn (λl) > 0.5gXn(0) is satisfied. We then select
λchoice(Xn) = 0.8λjump (Xn) and let tsel(Xn) := tλchoice(Xn)(Xn) (other constants
than 0.5 and 0.8 would work as well).

Remark 7.1. This method to select the slope λ is similar to the slope heuris-
tics in model selection. Consider for instance the fixed-design regression setting
where Y = F + ε ∈ R

n is observed with a Gaussian noise ε ∼ N
(
0, σ2Id

)
.

The goal is to reconstruct the signal F for the �2-loss, by selecting an estimator
among the estimators F̂m = πSm(Y ), where {Sm : m} is a collection of linear
subspaces, each Sm being of dimension Dm. A classical method to select the
estimator Fm is to choose

m̂(C) ∈ argmin
m

{∣∣∣F̂m − Y
∣∣∣2 + CDm

}
where C is a constant to fix. In theory, any value of C smaller than σ2 will lead to
overfitting, whereas values of C larger than σ2 are admissible. We then say that
C = σ2 is the minimal penalty. The exact value of the minimal penalty C = σ2

is of an asymptotic nature. However, we still see a minimal penalty phenomenon
occurring in practice: for C too small, the selected dimension Dm̂(C) will be very
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Fig 8. Top left. Sample Xn. Top right. The value of λchoice(Xn) is equal to 0.8λjump(Xn).
Bottom left. The set Conv(tsel(Xn),Xn). Bottom right. The graph convexity defect function
h(·,Xn).

large, whereas at some value Ĉjump it will suddendly decrease and gets smaller.
This jump is detected and is used to select the value of C. We refer to [9] for
details. A similar phenomenon occurs in our setting: the slope λ plays the role of
the parameter C (or rather 1/C), and we have a maximal penalty phenomenon:
every value of λ smaller than 1 is theoretically admissible. The quantity 1/t is the
analog of the dimension Dm, as it is a measure of the complexity of the estimator
Conv(t,Xn): choosing t = +∞ amounts to assuming that M is a convex set,
whereas choosing very small values of t amounts to assuming that M has a small
reach. In practice, we observe a jump in the function gXn : λ �→ 1/tλ(Xn), and
we use this phenomenon to choose the parameter λ.

In Figure 8, we display the graph convexity defect function h̃(·,Xn) for a
set Xn made of n = 100 uniformly sampled point on the unit circle M , with
a tubular uniform noise of size γ = 0.1. Both the “jump” phenomenon in the
function gXn and the expected behavior of the function h(·,Xn) occur. We eval-
uate ε(Xn) = 0.16, while λchoice(Xn) = 0.60 and tsel(Xn) = 0.26. According to
[31, Proposition 3.1], the Cech complex Cech(Xn, 2t) on A of radius 2t has the
same homology as M as long as t ≥ ε(Xn). As a safety check, we compute the
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Fig 9. For a set Xn made of 104 points sampled on the torus (resp. on the swiss roll),
we compute gXn and h(·,Xn) up to the value t = �Kmax (Xn). The selected values of λ are
respectively 0.796 and 0.792, while the selected values of tsel(Xn) are 0.309 and 1.126. In
both cases, we also estimate the approximation rate ε(Xn), respectively equal to 0.254 and
0.891. Both times, we indeed have tsel(Xn) ≥ ε(Xn), and furthermore, the Čech complex of
parameter 2tsel(Xn) has the same homology as the torus (resp. the swiss roll).

homology of Cech (Xn, 2tsel(Xn)), which is indeed equal to the homology of the
circle.

Actually, it is not necessary to compute the whole convexity defect function
to compute t̃λ(Xn), as one can stop at the first value for which h̃(t,Xn) < λt.
This can be used to speed up the computation tsel(Xn). Given an integer K,
we let �K(Xn) be half the maximum distance between a point of Xn and its K
th nearest neighbor in Xn. We compute for each point Xi in Xn its K nearest
neighbors X i

K (using for instance a RP tree [17]). Then, for each point Xj in
X i

K , if e = (Xi, Xj), we have dH(Conv(e)|Xn) = dH(Conv(e)|X i
K). The latter

distance can be computed in O(K(D+lnK)) operations. There are at most nK
such edges, so that we compute h̃(·,Xn) up to t = �K(Xn) with O(nK2(D +
lnK)) operations. We then apply the slope selection procedure on the convexity
defect function up to �K(Xn). If we select the maximal value possible, that is
if tsel(Xn) = �K(Xn), then we did not go far enough in the computation of the
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Fig 10. Left. Distribution of log2 Kmax over the different point clouds (circle, torus and swiss
roll of different sizes on 10 tries each). Right. For each class and each number of points n,
we display the mean value of log2 Kmax over the 10 tries: in each class, it stays bounded as
n grows. Large values of Kmax for the swiss roll dataset correspond to numbers of samples n
for which ε(Xn) is too large (n ≤ 1000): the subquadratic behavior then does not occur and
therefore the whole convexity defect function is computed.

convexity defect function. In that case, we repeat the procedure with K̄ = 2K.
If tsel(Xn) < �K(Xn), we stop. In practice, the maximal value Kmax of K is
much smaller than n and this approach leads to a considerable speed-up.

We test this faster algorithm on three classes of datasets. The first class is
made of n points uniformly sampled on a circle that lies on a random plane in
R

100, that are corrupted with uniform noise (in R
100) of size (lnn/n)2/d. The

second class consists of points sampled on the torus of inner radius 1 and outer
radius 4. The third class is made of points sampled on the swiss roll dataset from
the SciPy Python library [36]. For each class, we conduct 10 experiments for
each value of n, n ranging from 102 to 104. The valueKmax was never larger than
210 = 1024, and did not increase with n, see Figure 10. Increasing the ambient
dimension in the first class did not significantly increase the computation time.
We display in Figure 9 the functions h̃(·,Xn) and gXn for two point clouds from
this dataset: we observe once again the “jump” phenomenon occurring.

8. Discussion and further works

In this article, we introduced a particularly simple manifold estimator, based
on a unique rule: add the convex hull of any subset of the set of observations
which is of radius smaller than t. After proving that this leads to a minimax
estimator for some choice of t, we explained how to select the parameter t by
computing the convexity defect function of the set of observations. The selection
procedure actually allows us to find a parameter tλ(Xn) such that ε(Xn)/tλ(Xn)
is arbitrarily close to 1 (by choosing λ close enough to 1). The selected param-
eter can therefore be used as a scale parameter in a wide range of procedures
in geometric inference. We illustrated this general idea by showing how a data-
driven minimax tangent space estimator can be created thanks to tλ(Xn). The
main limitation to our procedure is its non-robustness to outliers. Indeed, even
in the presence of one outlier in Xn, the loss function t �→ dH(Conv(t,Xn),M)
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would be constant, equal to the distance between the outlier and the manifold
M : with respect to the Hausdorff distance, all the estimators Conv(t,Xn) are
then equally bad. Of course, even in that case, we would like to assert that some
values of t are “better” than others in some sense. A solution to overcome this
issue would be to change the loss function, for instance by using Wasserstein dis-
tances on judicious probability measures built on the t-convex hulls Conv(t,Xn)
in place of the Hausdorff distance

Appendix A: Proof of Lemma 4.12

Let S =
∑K

k=1 1 {Nk = 2}. Let ñ be the number of points of Xn in
⋃

k Uk, so
that ñ follows a binomial distribution of parameters n and Km. Recall that by
construction, Km ≥ c0 for some constant c0 (see Lemma 4.9). Conditionally
on ñ, the random variable S can be realized as the number of urns containing
exactly two balls, in a model where ñ balls are thrown uniformly in K urns.

Let pi =
(
ñ
i

)
K−i

(
1−K−1

)ñ−i
be the probability that an urn contains exactly

i balls. We have E[S|ñ] = Kp2, and

E [exp (−C1S) |ñ] ≤ E [exp (−C1Kp2/2)1 {S ≥ Kp2/2} |ñ] + P (S < Kp2/2|ñ)
≤ exp (−C1Kp2/2) + P (|S −Kp2| > Kp2/2|ñ) .

(45)
Let v = 2Kmax (2p2, 3p3). According to [13, Proposition 3.5], if for some s > 0,

Kp2/2 ≥
√
4vs+ 2s/3, (46)

then P (|S −Kp2| > Kp2/2|ñ) ≤ 4e−s. Recall that nm2 ≤ 1 by assumption,
and that K ≥ cμ,δt

−d ≥ c1/m. We therefore have n/K2 ≤ c−2
1 . Assuming that

ñ ≥ 3 and using the inequality ln
(
1−K−1

)
≥ −K−1 − K−2 for K ≥ 2, we

obtain the inequalities

p2 ≥ (ñ/K)2

4ec
−2
1

e−ñ/K and p3 ≤ e3

6
(ñ/K)3e−ñ/K ≤ c2p2(n/K) (47)

for some positive constant c2. We consider two different regimes.

• Assume first that n/K ≤ 2/ (3c2). Then 3p3 ≤ 2p2 and one can check that
s = Kp2/100 satisfies (46). Inequality (45) then yields that

E [exp (−C1S) |ñ] ≤ 5 exp (−C ′
1Kp2)

for C ′
1 = min (C1/2, 1/100). To conclude, we remark that for any α ∈

(0, 1), by the Hoeffding inequality, the event |ñ − nKm| ≤ nKmα holds
with probability at least 1 − exp

(
−2nα2

)
. Letting α = 1/2, we obtain

that, on this event,

1

2
nm ≤ ñ

K
≤ 3

2
nm ≤ 3

2

n

K
mK ≤ 1

c2
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where we used that mK ≤ 1. Therefore, p2 ≥ c3(nm)2 ≥ c4(nm)2e−nm

for some constants c3 and c4. The probability of order exp
(
−2nα2

)
being

negligible, we obtain a final bound of order exp
(
−C ′

1c4K(nm)2e−nm
)
≤

exp (−C2nφ(nm)), concluding the proof in the regime n/K ≤ 2/ (3c2).
• Otherwise, we have n/K > 2/ (3c2) and we also assume that |ñ−nKm| ≤

αnKm for some α ∈ (0, 1) to fix (this happens with probability 1 −
exp

(
−2nα2

)
by Hoeffding’s inequality). One can then check using (47)

that s = c5ñe
−ñ/K satisfies (46) if c5 is chosen small enough. Further-

more, s ≤ c6Kp2 for some constant c6 (using (47)). The leading term
in (45) is therefore of the form exp

(
−c7ñe

−n/K
)
. Let α = 1/(lnn)3. We

have, as nm ≥ c0n/K ≥ c8 and as nm ≤ (lnn)2 (by assumption),

c9 ≤ nm(1− α) ≤ ñ

K
≤ nm(1 + α) ≤ nm+

1

lnn
.

Therefore, ñe−ñ/K ≥ (c9/2)Ke−nm. The probability of order exp(−2nα2)
is still negligible, and we obtain a final bound on E [exp (−C1S)] of order
exp (− (c9/2)Ke−nm) ≤ exp (−c10nφ(nm)).

Appendix B: Precise lower bound on the minimax risk

We adapt the construction made in [25] so that the lower bound on the min-
imax risk holds with an explicit constant. Let 0 < d < D and τmin, fmin, fmax

with ωdfminτ
d
min < κ. We let M(μ) be the underlying manifold of the law

μ ∈ Qd
τmin,fmin,fmax

The lowerbound is based on Le Cam’s lemma:

Lemma B.1. Let P(1),P(2) be two subfamilies of Qd
τmin,fmin,fmax

which are

\varepsilon-separated, in the sense that dH(M(μ(1)),M(μ(2))) ≥ 2ε for all μ(1) ∈
P(1), μ(2) ∈ P(2). Then

Rn(M,Qd
τmin,fmin,fmax

) ≥ ε

∣∣∣∣∣∣
⎛⎝ 1

#P(1)

∑
μ(1)∈P(1)

μ(1)

⎞⎠ ∧

⎛⎝ 1

#P(2)

∑
μ(2)∈P(2)

μ(2)

⎞⎠∣∣∣∣∣∣ ,
(48)

where |μ ∧ ν| is the testing affinity between two distributions μ and ν.

To obtain a lowerbound on the minimax risk, authors in [25] exhibit two fam-
ilies of manifolds which are ε-separated, and consider the uniform distributions
on them. Those manifolds are built by considering a base manifold M0 which
is locally flat, and by adding small bumps on the locally flat part. Such a con-
struction leads to distributions having a density equal roughly to 1/Vol (M0), a
constant which might be smaller than fmin . If this is the case, then the corre-
sponding submodels are not in Qd

τmin,fmin,fmax
and we cannot apply Le Cam’s

Lemma. Hence, we consider another base manifold, which is a sphere M0 of
radius R slightly larger than τmin, so that its volume is smaller than 1/fmin

(this is possible as fminωdτ
d
min ≤ κ < 1

)
. The two families are then once again

constructed by adding small bumps on M0. We now detail this construction.
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Let R, δ > 0 be two parameters to be fixed later. Let M0 ⊆ R
d+1 ⊆ R

D be
the d-sphere of radius R, and let A be a maximal subset of M0 of even size,
which is 4δ-separated. Note that, standard packing arguments (and the formula
for the volume of a spherical cap) show that if δ/R is small enough, then the

cardinality 2m of A satisfies 2m ≥
(
c0R
δ

)d
for some absolute constant c0.

Let φ : R → R be a smooth function such that 0 ≤ φ ≤ 1, φ ≡ 1 on [−1, 1]
and φ ≡ 0 on R\[−2, 2]. For s ∈ {±1}A, we build a diffeomorphism Φε

s by letting
for x ∈ R

D

Φε
s(x) = x

⎛⎝1 +
ε

R

∑
y∈A

s(y)φ

(
‖x− y‖

δ

)⎞⎠ . (49)

Recall that ‖N‖op denotes the operator norm of a linear application N .

Lemma B.2. There exists two absolute constants c0, c1, c2 > 0 such that the
following holds. Assume that δ ≤ R and that c0ε/δ < 1. Then, the function
Φε

s : B(0, 3R) → R
d+1 is a diffeomorphism on its image, with

sup
x∈B(0,3R)

‖Id−dxΦ
ε
s‖op ≤ c1ε/δ and sup

x∈B(0,3R)

∥∥d2xΦε
s

∥∥
op

≤ c2ε/δ
2. (50)

Proof. As A is 4δ-separated, at most one term in the sum in (B.2) is non-zero.
A computation gives that the derivative of ΦB is given by, for x ∈ B(0, 3R),

dxΦ
ε
s(h) =

h+ h
ε

R

∑
y∈A

s(y)φ

(
|x− y|

δ

)
+ x

ε

R

∑
y∈A

1

δ
s(y)φ′

(
|x− y|

δ

)
〈x− y, h〉
|x− y| .

(51)

Hence,

‖Id− dxΦ
ε
s‖op ≤ ε

R

(
‖φ‖∞ + |x| ‖φ

′‖∞
δ

)
≤ ε

R

(
‖φ‖∞ + 3R

‖φ′‖∞
δ

)
≤ c1

ε

δ

where c1 = c0‖φ‖∞ + 3 ‖φ′‖∞. A similar computation gives that
∥∥d2xΦε

s

∥∥
op

≤
c2ε/δ

2 for c2 = 4 ‖φ′‖∞+3 ‖φ′′‖∞. We eventually show the injectivity: if Φε
s(x) =

Φε
s (x

′), then x and x′ are colinear. Also, if c0 = ‖φ‖∞ +3 ‖φ′‖∞, one can check
using (51) that the derivative of the function r ∈ [0, 3R] �→ 〈Φε

s(ru), u〉 for u an
unit vector is increasing, proving the injectivity.

Therefore, from [19, Theorem 14.19], we infer thatMε
s := Φε

s(M) is a manifold
with reach larger than

τ (Mε
s ) ≥ Rmin

(
1− c1ε/δ,

(1− c1ε/δ)
2

1 + c1ε/δ +Rc2ε/δ2

)
(52)
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Fig 11. An element μ(1) ∈ P(1) has its first marginal supported on the blue manifold Mε
s

(lower bump), whereas an element μ(2) ∈ P(2) is supported on the red manifold Mε
s′ (upper

bump).

Denote by JΦε
s the Jacobian of Φs

ε. Then, the volume of Mε
s is controlled by

ωdR
d ≤ Vol (Mε

s ) =

∫
M0

JΦε
s(x)dx = ωdR

d +
∑
y∈A

∫
BM0

(y,2δ)

(JΦε
s(x)− 1) dx

≤ ωdR
d + 2mCdc1

ε

δ
Vol (BM0(y, 2δ)) ≤ ωdR

d
(
1 + Cdc1

ε

δ

)
(53)

where we used that det(N) − 1 ≤ Cd‖N − Id‖op for some constant Cd if
N is a matrix of size d with operator norm smaller than 1, the fact that
2mVol (BM0(y, 2δ)) ≤ Vol (M0), and Lemma B.2.

Let R = τmin + 1
2

(
1

(ωdfmin)
1/d − τmin

)
and δ =

√
Rεν where ν2 = 2c2τmin

R−τmin
.

With this choice of parameters, one can check that, for ε/δ small enough,
τ (Mε

s ) ≥ τmin (by (52)) and Vol (Mε
s ) ≤ 1/fmin (by (53) and using that

ωdfminτ
d
min ≤ κ < 1).

We define the family M(1) of manifolds Mε
s where s contains exactly m signs

+1 (and m signs −1). The family M(2) is defined likewise by considering Mε
s

where s contains exactly m + 1 or m − 1 signs +1. We then let P(1) be the
set of distributions Qε

s where Qε
s is the uniform distribution on a manifold of

Mε
s ∈ M(1), so that P(1) is a subset of Qd

τmin,fmin
fhe set P(2) is defined likewise.

By construction, the two families P(1),P(2) are 2ε-separated (see Figure 11).
Hence, we can apply Le Cam’s lemma. The exact same computations than in
[25, Section 3] show that the testing affinity between P(1) and P(2) converge to
1 as long as 4m = n/ lnn. Thus, Le Cam’s Lemma (48) yields

lim inf
n

Rn(M,Qd
τmin,fmin,fmax

)

(lnn/n)2/d
≥ lim inf

n
(m/4)2/dε. (54)

As 2m ≥ (c0R/δ)
d
, we therefore have

lim
n

inf
Rn(M,Qd

τmin,fmin,fmax
)

(lnn/n)2/d
≥ c20

82/d
R2

δ2
ε =

c20
82/d

R

ν2

=
c20
82/d

R (R− τmin)

2c2τmin
≥ c3

(ωdfmin)
1/d

τmin

(
1

(ωdfmin)
1/d

− τmin

)
,
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for some absolute constant c3, where we used that by definition,

R− τmin =
1

2

(
1

(ωdfmin)
1/d

− τmin

)
,

and that R ≥ 1
2 (ωdfmin)

−1/d
. As τmin ≤ κ/ (ωdfmin)

1/d
, and as ω

1/d
d ≤ cα

1/d
d

for some absolute constant c, we obtain the conclusion with constant C =
c3(1 − κ)/c. Note that the lower bound actually holds on the smaller model
Qd

τmin,fmin,fmin
, as we only considered uniform distributions in the proof.
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