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Abstract: In this paper we present new theoretical results on optimal
estimation of certain random quantities based on high frequency observa-
tions of a Lévy process. More specifically, we investigate the asymptotic
theory for the conditional mean and conditional median estimators of the
supremum/infimum of a linear Brownian motion and a strictly stable Lévy
process. Another contribution of our article is the conditional mean esti-
mation of the local time and the occupation time of a linear Brownian
motion. We demonstrate that the new estimators are considerably more ef-
ficient compared to the classical estimators studied in e.g. [6, 14, 29, 30, 38].
Furthermore, we discuss pre-estimation of the parameters of the underly-
ing models, which is required for practical implementation of the proposed
statistics.

MSC2020 subject classifications: Primary 62M05, 62G20, 60F05; sec-
ondary 62G15, 60G18, 60G51.
Keywords and phrases: Conditioning to stay positive, local time, Lévy
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1. Introduction

During the past decades the increasing availability of high frequency data in eco-
nomics and finance has led to an immense progress in high frequency statistics.
In particular, high frequency functionals of Itô semimartingales have received a
great deal of attention in the statistical and probabilistic literature, where the
focus has been on estimation of quadratic variation, realised jumps and related
(random) quantities. A detailed discussion of numerous high frequency methods
and their applications to finance can be found in the monographs [1, 31].

Despite large amount of literature on high frequency statistics, the question
of optimality has rarely been addressed. To fix ideas we consider a stochas-
tic process (Xt)t∈[0,1] with a known law and an associated random quantity
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Q = F ((Xt)t∈[0,1]), where F is a measurable functional. The major problem of
interest is outlined by the following question:

Given observations (Xi/n)i∈[0:n], what is the optimal estimator of the random
variable Q and its asymptotic properties as n → ∞?

Let us stress that we are interested in estimating Q for the underlying (Xt)t∈[0,1]

and not just its law.
Of course, the formulated problem is hard to address in full generality. But

even for particular model classes the assessment of optimality is far from trivial,
which is mainly due to the randomness of Q. Indeed, the classical methods such
as minimax theory, Le Cam theory or Cramér-Rao bounds, do not apply in this
setting. There are only a few results in the literature that discuss optimality in
high frequency statistics. In [21] the authors apply the infinite dimensional ver-
sion of local asymptotic mixed normality to obtain lower efficiency bounds for
estimation of integrated functionals of volatility in the setting of diffusion models
with a particular structure. In particular, their result shows that the standard
estimator of the quadratic variation, the realised volatility, is indeed asymptot-
ically efficient for the considered class of models. In a later paper [22] similar
lower bounds have been obtained in the framework of certain jump diffusions.
The paper [38] discusses estimation of occupation times for continuous diffusion
models and the authors prove that n3/4 is the optimal rate of convergence in the
case of Brownian motion (however, they do not discuss efficiency bounds). The

articles [3, 4, 5] investigate estimation of integral functionals Q =
∫ 1

0
f(Xs)ds

for various Markovian and non-Markovian models. The main focus here is on
deriving error bounds and weak limit theorems for Riemann sum type estima-
tors, which heavily depend on the smoothness of f . In several settings they also
prove rate optimality in the case of Brownian motion.

The aim of our paper is to study optimal estimation of extrema, local time and
occupation time of certain Lévy processes. Accurate estimation of these random
functionals is important for numerous applications. For instance, supremum is
a key quantity in insurance, queueing, financial mathematics, optimal stopping
and various applied domains such as environmental science where maximal level
of pollution is often of interest. It is noted that our theory can also be used in
Monte Carlo simulation of extrema via discretization, but this is not our main
focus since much better algorithms exist [17]; see also [27] for exact simulation
of the supremum of a stable process. These algorithms, however, can not handle,
e.g., the diameter of the range of X, whereas our estimators still apply. Accurate
estimation of local times is required in a number of statistical methods including
estimation of the volatility coefficient in a diffusion model [24], estimation of the
skewed Brownian motion [34] and estimation of the reflected fractional Brownian
motion [28], just to name a few.

The estimation of the aforementioned random quantities has been studied in
several papers. The standard estimator of the supremum of a stochastic process
is given by the maximum of its high frequency observations. In the setting of a
linear Brownian motion the corresponding non-central limit theorem has been
proven in [6]; their result has been later extended in [29] to the class of Lévy
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processes satisfying certain regularity assumption. Statistical inference for local
times has been investigated in [14, 30], who showed asymptotic mixed normality
for kernel type estimators in the framework of continuous SDEs. Finally, [5, 38]
discussed the estimation of the occupation time measure via Riemann sums.

In this paper we show that the standard estimators proposed in the liter-
ature are indeed rate optimal, but they are not asymptotically efficient. In-
stead, we consider the conditional mean and conditional median estimators,
which turn out to be manageable in some important cases. It is well known
that the conditional mean E[Q|(Xi/n)i∈[0:n]] is the optimal L2-predictor when
E[Q2] < ∞. In many cases considered below, however, the random variable Q
will not have a finite second moment. Then we use the conditional median esti-
mator med[Q|(Xi/n)i∈[0:n]], which is optimal in L1 sense given that E[|Q|] < ∞.
Additionally, we still do consider the conditional mean which is a very natural
estimator even when the second moment is infinite. Importantly, it is optimal
with respect to the Bregman distance: D(x, y) = φ(x)−φ(y)−φ′(y)(x−y) with
φ being a strictly convex differentiable function [8]. It is only required here that
E[|Q|] and E[|φ(Q)|] are finite. We often have Q ≥ 0 and E[Qp] < ∞ for some
p > 1, and hence we may take φ(x) = xp to produce an optimality statement
for the conditional mean estimator. Finally, the conditional median is optimal
with respect to D(x, y) = (1{x≥y}−1/2)(g(x)−g(y)) for an increasing function
g which in our case can be taken as g(x) = xp for p > 0, see [26] and references
therein.

In the case of supremum, the conditional mean and median estimators have
a rather explicit and simple form, but their performance assessment is not a
trivial task. Importantly, self-similarity of X (up to measure change) is the key
property when evaluating such estimators and establishing the corresponding
weak limit theory. Thus we consider the following two classes of processes: (i)
linear Brownian motions and (ii) non-monotone self-similar Lévy processes. In
the case of local/occupation time we only work with the class (i) of linear Brow-
nian motions and focus on the conditional mean estimators exclusively, which is
dictated by the structure of the problem and the tools currently available. Im-
portantly, our conditional mean estimator of the local time fits the framework
of [30] and yields an asymptotically optimal statistic in some large class in the
case of continuous SDEs, see Remark 2. We find that our new optimal estimators
are considerably more efficient than the standard ones and that they do have
narrower confidence intervals. In the case of supremum, this is illustrated by a
numerical study. Furthermore, we discuss several modifications of our statistics
including pre-estimation of unknown parameters of the underlying model.

This paper is structured as follows. §2 is devoted to the supremum and its
conditional mean and median estimators with the corresponding weak limit
theory in the case of a self-similar Lévy process with a known law. Here we also
treat the case of a linear Brownian motion, and comment on the conditional
mean estimator of the range diameter. In §3 we present the conditional mean
estimators of the local time and occupation time together with the asymptotic
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theory in the case of a linear Brownian motion. Then in §4 we study modified
statistics based on pre-estimation of the unknown parameters of the model.
In particular, we show that reasonable pre-estimation of the model parameters
does not affect the asymptotic theory. Furthermore, the effect of truncation of
the potentially infinite product involved in the construction of the supremum
estimators is discussed, and some comments concerning a general Lévy process
are given. Numerical illustrations for the case of supremum are presented in
§5, where both a linear Brownian motion and a one-sided stable processes are
considered. The proofs are collected in Appendix A and Appendix B for the
supremum and local/occupation time, respectively. The former also requires
some additional theory for Lévy processes conditioned to stay positive which is
given in Appendix C.

2. Optimal estimation of supremum for a self-similar Lévy process

In this section we assume that (Xt)t≥0 is a non-monotone 1/α-self-similar Lévy
process, i.e.

(Xut)t≥0
d
= u1/α(Xt)t≥0 for all u > 0,

where necessarily α ∈ (0, 2]. Assuming that the law of X (or its parameters)
is known, we focus on optimal estimation of the supremum and infimum of
X on the interval [0, 1] from high-frequency observations. The case α ∈ (0, 2)
corresponds to a strictly α-stable process, whereas for α = 2 we have a scaled
Brownian motion, and the respective simplified expressions for the statistics
and their limits can be found in §2.4. In fact, §2.4 considers a more general
setting of a linear Brownian motion, which is not self-similar but becomes such
under Girsanov change of measure. Some further results concerning estimation
of infimum and the range diameter are given in §2.5.

We introduce the notation

Xt := sup
s≤t

Xs and Xt := inf
s≤t

Xs

to denote the running supremum and infimum process, respectively. Further-
more, the time of supremum will often be needed, and thus we define

τt := inf{s ∈ (0, t] : Xs− ∨Xs = Xt}.

The standard distribution free estimator of X1 is given by the empirical maxi-
mum of the observed data:

Mn := max
i∈[0:n]

Xi/n.

We remark, however, that Mn is always downward biased. Finally, estimation
of the infimum amounts to estimation of the supremum of −X, and thus no
additional theory is needed. The joint estimation of supremum and infimum is
discussed in §2.5.
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In the following we will often use the notion of stable convergence. We recall
that a sequence of random variables (Yn)n∈N defined on (Ω,F ,P) is said to

converge stably with limit Y (Yn
dst−→ Y ) defined on an extension (Ω,F ,P) of

the original probability space (Ω,F ,P), iff for any bounded, continuous function
g and any bounded F-measurable random variable Z it holds that

E[g(Yn)Z] → E[g(Y )Z], as n → ∞.

The notion of stable convergence is due to Rényi [39]. We also refer to [2] for
properties of this mode of convergence.

2.1. Preliminaries

We will now review the asymptotic theory for the estimator Mn, which will be
useful for studying conditional mean and median estimators. In order to state
the limit theorem for Mn, we need to introduce an auxiliary process (ξt)t∈R. It
is defined as the following functional weak limit:

(XT −XτT+t)t∈R

d→ (ξt)t∈R as T → ∞, (1)

where T > 0 is a deterministic time horizon, see [9]. Here and in the following
it is tacitly assumed that the left hand side is ∞ when τT + t /∈ [0, T ]. The
functional convergence is always with respect to the Skorokhod J1 topology,
unless specified otherwise. It may be useful to think of ξ as the process X seen
from its supremum as the time horizon tends to infinity.

It is well known that (ξt)t≥0 and (ξ(−t)−)t≥0 are independent finite Feller
processes starting at 0. Various representations of these processes exist and a
number of important properties have been established, see e.g. [19] and refer-
ences therein. The latter process when started at a positive level is often referred
to as X conditioned to stay positive (the negative of the former is X conditioned
to stay negative); here conditioning is understood in a certain limiting sense.
The law of the limiting process ξ is not explicit except when X is a Brownian
motion and then both parts of ξ are Bessel processes of order 3 scaled by σ,
the standard deviation of X1. In all cases ξ inherits self-similarity from X, and
hence both parts (when started from positive values) are positive self-similar
Markov processes admitting Lamperti representation studied in detail in [16].

Due to self-similarity of the process X it holds that

ξ
(n)
t := n1/α

(
X1 −Xτ1+

t
n

)
t∈R

d→ (ξt)t∈R
as n → ∞, (2)

where again ξ
(n)
t = ∞ when τ1 +

t
n /∈ [0, 1]. In other words, the process ξ arises

from zooming-in on X at its supremum point. We refer the reader to [6, 29] for
the case of a linear Brownian motion and a general Lévy process, respectively.

The following result is an instructive application of the convergence in (2).
It is a particular case of [29, Thm. 5] extending the result of [6] for Brownian
motion.
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Theorem 1. For a non-monotone 1/α-self-similar Lévy process X we obtain
the stable convergence as n → ∞:

V (n) := n1/α(X1 −Mn)
dst−→ V := min

j∈Z

ξj+U (3)

where ξ and the standard uniform random variable U are mutually independent,
and independent of F .

Let us mention the underlying intuition, which will be important to under-
stand our main result in Theorem 2 given below. Note the identity

n1/α(X1 −Mn) = min
j∈Z

ξ
(n)
j+{nτ1}

where {x} stands for the fractional part of x. The random time τ1 has a den-
sity [18] and thus according to [31, 33]

{nτ1} dst−→ U,

which together with (2) hint at (3). It is noted that the convergence in (2) is,
in fact, stable with ξ being independent of F . Intuitively, zooming-in at the
supremum makes the values of X at some fixed times irrelevant. We stress that
this only provides intuition and the proof is far from being complete, see [29]
and also [13] providing the necessary corrections.

2.2. Optimal estimators

Let us proceed to construct our optimal estimators given by the conditional
mean and median. For this purpose we introduce the conditional distribution of
X1 given the terminal value X1 via

F (x, y) := P(X1 ≤ x|X1 = y).

We choose a version continuous in y which is, in fact, jointly continuous in (x, y)
as will be shown in Lemma 3 below. By self-similarity we also have

F1/n(x, y) := P(X1/n ≤ x|X1/n = y) = F (n1/αx, n1/αy).

Next, consider the conditional distribution of X1 −Mn given the observations:

Hn(x) := P
(
X1 −Mn ≤ x|Xj/n, j ∈ [1 : n]

)
=

n−1∏
j=0

F1/n

(
x+Mn −Xj/n, X j+1

n
−X j

n

)

=

n−1∏
j=0

F
(
n1/α(x+Δn

j ), n
1/α(Δn

j −Δn
j+1)

)
for all x ≥ 0,
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where Δn
j := Mn − Xj/n and the second line follows from the stationarity

and independence of increments. We note that Hn(x) is continuous and strictly
increasing in x ≥ 0. Finally, we introduce the conditional mean and conditional
median estimators of X1:

T
mean

n := E[X1|Xj/n, j ∈ [1 : n]] = Mn +

∫ ∞

0

(1−Hn(x))dx, (4)

T
med

n := med[X1|Xj/n, j ∈ [1 : n]] = Mn +H−1
n (1/2), (5)

where in the first line we use the integrated tail formula. Interestingly, T
mean

n <
∞ even when EX1 = ∞, see Remark 4. When evaluating our statistics defined
in (4) and (5) we need access to the function F (x, y). This function, however, is
explicit only in the Brownian case analyzed in §2.4 and is semi-explicit in the case
of one-sided jumps, see Proposition 4. Thus, in the case of general strictly stable
process one needs to assess F numerically, which may necessitate truncation of
the product in the definition of Hn. Such modifications are discussed in §4.2.

2.3. Limit theory

We start by noting that Hn is a random probability measure and Hn
d→ δX1

P-

almost surely, whereasHn(xn
−1/α) has a non-trivial limit. Observe that ξ

(n)
j+{nτ1}

is the rescaled distance of the jth observation following τ1 from the supremum.
Thus

Hn(xn
−1/α) =

∏
j∈Z

F
(
x+ ξ

(n)
j+{nτ1} − V (n), ξ

(n)
j+{nτ1} − ξ

(n)
j+1+{nτ1}

)
,

where we tacitly assume that the factors with ξ
(n)
· = ∞ evaluate to 1. In view

of Theorem 1 it is intuitive that the limit is

H(x) :=
∏
j∈Z

F (x+ ξj+U − V, ξj+U − ξj+1+U ) , (6)

where the random quantities U, ξ and V are defined in Theorem 1. By substi-
tution we obtain the identities

T
mean

n = Mn + n−1/α

∫ ∞

0

(1−Hn(n
−1/αx))dx, (7)

T
med

n = Mn + n−1/α Hn(n
−1/α·)−1(1/2), (8)

which suggest the asymptotic behaviour of our estimators defined in (4) and (5).
We formalise this in one of our main results:

Theorem 2. Assume that X is a non-monotone 1/α-self-similar Lévy process.
Then the random function H is continuous and strictly increasing with H(0) = 0
and H(∞) = 1 P-a.s. and(

n1/α(X1 −Mn), (Hn(xn
−1/α))x≥0

)
dst−→ (V, (H(x))x≥0) (9)
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with respect to the uniform topology, where V and H(x) are defined in (3) and
(6), respectively. Furthermore, our estimators satisfy

n1/α(X1 − T
mean

n )
dst−→ V −

∫ ∞

0

(1−H(x))dx, when α ∈ (1, 2], (10)

n1/α(X1 − T
med

n )
dst−→ V −H−1(1/2), (11)

where the limit random variables are finite.

It is noted that the proof of this result is far from trivial, since it requires
precise understanding of the tail function 1 − F (x, y) for large x and the rate

of growth of ξ
(n)
t as t → ∞ (uniformly in n) among other things. The identities

(7) and (8) show that the statistics T
mean

n and T
med

n are first order equivalent
to the standard estimator Mn, and the knowledge of the distribution of X only
enters through the n−1/α-order term. This fact will prove to be important in
Section 4, where the parameters of the law of X will need to be estimated.

Recall that EX
p

1 < ∞ for p ∈ (0, α). Moreover, all moments of X1 are finite
when X is a Brownian motion or a strictly α-stable process with no positive
jumps. In the latter cases the conditional mean estimator is optimal in L2 sense.
In the case α ∈ (1, 2] the conditional median is optimal in L1 sense and the con-
ditional mean is optimal with respect to the above mentioned Bregman distance
D(x, y) = xp−yp−pyp−1(x−y), where p ∈ (1, α). Finally, the conditional median
is optimal with respect to the loss function D(x, y) = (1{x≥y} − 1/2)(xp − yp)
for p ∈ (0, α) and any α.

Interestingly, all the expressions in Theorem 2 stay the same if the process X
is replaced by its negative −X, see Proposition 3. In particular, in the spectrally-
positive case the difference X1 − T

mean

n has moments of all orders even though
each term has infinite second moment, see also Remark 4 below.

2.4. Linear Brownian motion

Consider a linear Brownian motion X with drift parameter μ ∈ R and scale
parameter σ > 0, which is self-similar (and hence Theorem 2 applies) only
when μ = 0. Nevertheless, X can be obtained from a scaled Brownian motion
by Girsanov change of measure and, in particular, the conditional distribution
P(X1/n ≤ x|X1/n = y) does not depend on μ, see §A.4.1. Hence our estimators
have exactly the same form as in the case of μ = 0, see §2.2. Furthermore, the
conditional distribution function F is explicit in this case and is given by

F (x, y) = 1− exp
(
−2x(x− y)/σ2

)
for x > y+ = y ∨ 0,

which follows from [42] or earlier sources, see also [15, 1.1.8]. Thus

Hn(x) =
n−1∏
i=0

(
1− exp(−2(x+Δn

i )(x+Δn
i+1)n/σ

2)
)
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and the estimators are then defined by (4) and (5).

Interestingly, also the limit theorem has exactly the same form. The main
reason for this is that the limit in (2) does not depend on μ either, see [6]. In
the following result we prefer to choose the scaling

√
n/σ rather than

√
n so

that the respective quantities correspond to the standard Brownian motion.

Corollary 1. For a linear Brownian motion X with drift parameter μ and scale
σ > 0 we have

√
n

σ
(X1 − T

mean

n )
dst−→ V −

∫ ∞

0

(1−H(x))dx, (12)

√
n

σ
(X1 − T

med

n )
dst−→ V −H−1(1/2), (13)

where V = minj∈Z ξj+U and

H(x) =
∏
j∈Z

(1− exp (−2(x+ ξj+U − V )(x+ ξj+1+U − V )))

with ξ being the two-sided Bessel process of order 3 and U a standard uniform,
which are mutually independent and independent of F .

Additionally, we now show that (12) extends to convergence of moments.

Lemma 1. For a linear Brownian motion X and any p > 0 we have

E

[(√
n

σ

∣∣∣X1 − T
mean

n

∣∣∣)p]
→ E

[∣∣∣∣V −
∫ ∞

0

(1−H(x))dx

∣∣∣∣p] < ∞.

As a consequence of Lemma 1 we obtain an asymptotic expansion of the
mean squared error:

E[(X1 − T
mean

n )2] ∼ σ2

n
E

[(
V −

∫ ∞

0

(1−H(x))dx

)2
]
.

2.5. Joint estimation of supremum and infimum

Consider the process −Xt and the associated conditional mean estimator Tmean
n

of its supremum supt∈[0,1](−Xt) = −X1, which is the negative of the infimum
of X. According to Proposition 3 there is the symmetry:

(−X1)− Tmean
n

d
= X1 − T

mean

n

for all n, and so also the asymptotic theory is the same. Furthermore, we have
the following joint convergence (linear Brownian motion included with α = 2
and then the limit corresponds to the case μ = 0):
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Corollary 2. For α ∈ (1, 2] it holds that

n1/α(X1 − T
mean

n ,−X1 − Tmean
n )

dst−→ (L,L′),

where L′ and L are identically distributed, mutually independent, and indepen-
dent of F . Their common distribution is the limiting law in (10).

This, for example, readily yields the limit result for the conditional mean
estimator of the range diameter X1 −X1.

3. Optimal estimation of local time and occupation time for a linear
Brownian motion

In this section X denotes a linear Brownian motion with drift parameter μ ∈ R

and scale σ > 0, and (Lt(x))t≥0 denotes the corresponding local time process
at the level x ∈ R, which is a continuous increasing process given as the almost
sure limit:

Lt(x) := lim
ε↓0

1

2ε

∫ t

0

1(x−ε,x+ε)(Xs)ds.

Furthermore, (Ot(x))t≥0 stands for the occupation time in the interval (x,∞):

Ot(x) :=

∫ t

0

1(x,∞)(Xs)ds =

∫ ∞

x

Lt(y)dy a.s. (14)

Our aim here is to establish limit theorems for the conditional mean estimators
of Lt(x) and Ot(x).

3.1. Basic formulae

An important role will be played by the functions

g(x, z) := E
0[L1(x)|X1 = z],

G(x, z) := E
0[O1(x)|X1 = z] =

∫ ∞

x

g(y, z)dy,

where E
0 corresponds to the law of the standard Brownian motion. Both func-

tions g and G have explicit formulae in terms of the density ϕ and survival
function Φ of the standard normal distribution. Some basic observations and
these formulae are collected in the following result.

Lemma 2. There are the identities

E [Lt(x)|Xt = z] =

√
t

σ
g

(
x

σ
√
t
,

z

σ
√
t

)
,

E [Ot(x)|Xt = z] = tG

(
x

σ
√
t
,

z

σ
√
t

)
.
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Moreover, the functions g and G are bounded on R
2 and satisfy g(x, z) =

g(−x,−z), G(x, z) = 1−G(−x,−z). For x ≥ 0 we have the formulae

z < x : g(x, z) = Φ(2x− z)/ϕ(z),

G(x, z) =
1

2
exp(−2x(x− z))− (2x− z)

Φ(2x− z)

2ϕ(z)
,

z ≥ x : g(x, z) = Φ(z)/ϕ(z),

G(x, z) =
1

2
+ (z − 2x)

Φ(z)

2ϕ(z)
.

3.2. Estimators and the limit theory

The conditional mean estimators of Lt and Ot are easily derived using station-
arity and independence of increments of X together with Lemma 2:

L̂t(x) = E[Lt(x)|(Xi/n)i≥1] (15)

=
1

σ
√
n

�nt	∑
i=1

g

(√
n

σ
(x−X i−1

n
),

√
n

σ
Δn

i X

)
+OP(n

−1/2),

Ôt(x) = E[Ot(x)|(Xi/n)i≥1]

=
1

n

�nt	∑
i=1

G

(√
n

σ
(x−X i−1

n
),

√
n

σ
Δn

i X

)
+OP(n

−1),

where Δn
i X = X i

n
−X i−1

n
. It is noted that the lower order terms can be written

down explicitly (they are 0 when tn is an integer), but we keep them implicit,
because they do not have an influence on the limit theorem presented below.

Theorem 3. Assume that X is a linear Brownian motion with drift parameter
μ ∈ R and scale σ > 0. Then for any x ∈ R we have the functional stable
convergence:

n
1
4

(
L̂t(x)− Lt(x)

)
dst−→ vl√

σ
WLt(x), (16)

n
3
4

(
Ôt(x)−Ot(x)

)
dst−→ vo

√
σWLt(x), (17)

where W is a Brownian motion independent of F and

v2l =

∫
R

E
0 [g(y,X1)− L1(y)]

2
dy = 2

3 log(1 +
√
2)−

√
2

3
√
π

≈ 0.4626,

v2o =

∫
R

E
0[G(y,X1)−O1(y)]

2dy =
13

√
2− 15 log(1 +

√
2)

45
√
π

≈ 0.065.

Importantly, our conditional mean estimator (15) is a particular example of
a more general class of statistics investigated in [30] in the context of continuous
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diffusion processes. The expression for vl in [30] is rather lengthy and hard to
evaluate, because of the generality assumed therein. In our case, g(x,X1) =
E[L1(x)|X1] is the conditional expectation and, in fact, a rather short direct
proof can be given yielding the constant v2l at the same time, see Appendix B.

Remark 1. The above v2l can be compared to 8
3
√
π
(
√
2− 1) ≈ 0.6232 obtained

when instead of the optimal g(x, z) one uses the kernel ĝ(x) =
∫
R
(|x + u| −

|x|)ϕ(u)du depending on x only, see [30, (1.27)]. The corresponding estimator

(for σ = 1) is 1√
n

∑�nt	
i=1 ĝ(

√
n(x − X i−1

n
)), which does not take the increment

following X i−1
n

into account.

Remark 2. Consider the class of continuous SDEs defined via the equation

dXt = μ(Xt)dt+ σ(Xt)dBt,

where B is a standard Brownian motion and σ ∈ C1(R), μ ∈ C(R) are such
that the above SDE has a unique strong solution. In [30] the author considers
statistics of the form

L(h;x)nt =
1√
n

�nt	∑
i=1

h
(√

n(x−X i−1
n
),
√
nΔn

i X
)
.

When σ > 0 and |h(y, z)| ≤ h̃(y) exp(a|z|) with h̃ bounded and satisfying∫
R
|y|rh̃(y)dy < ∞ for some r > 3, the stable convergence

n1/4 (L(h;x)nt − ch(x)Lt(x))
dst−→ vh(x)WLt(x)

holds, see [30, Theorem 1.2]. Furthermore, the positive constant vh(x) (and
the proof of stable convergence) stems from the simpler model Xt = σ(x)Bt.

Hence, we can conclude that our estimator L̂t(x) is asymptotically optimal
within the class of statistics L(h;x)nt in the general setting of continuous SDEs.

We believe that the restriction to the class L(h;x)nt is not required and L̂t(x) is
asymptotically efficient for continuous SDEs. Furthermore, when the function
σ is unknown the coefficient σ(x) can be estimated with a n1/3-accuracy [24]
and we can build a feasible statistic without affecting the asymptotic theory (cf.
Proposition 2 below).

4. Some modifications of the proposed statistics

The main goal of this section is to show that the above developed theory also
applies in the setting when the law of X is not known, but a consistent estima-
tor of the parameters is available. Furthermore, we construct certain simplified
estimators of the supremum in order to cope with potential numerical issues.
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4.1. Unknown parameters

The main results of Theorem 2 and Theorem 3 above assume that the law of
the process X is known, which is hard to accept in practice. At most, we are
willing to assume that the process X belongs to some parametric class, and we
distinguish between the following two:

(i) Linear Brownian motion with drift parameter μ ∈ R and scale σ > 0,
where for convenience we set α = 2. As we remarked earlier neither the
statistics nor the limits in Corollary 1 and Theorem 3 depend on μ, which,
in fact, can not be estimated consistently on finite interval of time. Hence,
the only parameter of interest is θ = σ.

(ii) Non-monotone self-similar Lévy process which is naturally parameter-
ized [43, §I.5] by a triplet θ = (α, ρ, λ), where ρ = P(X1 > 0) is the
positivity parameter and λ = E[log(|X1|)] is related to the scale. It is
noted that ρ ∈ [1 − 1/α, 1/α] for α ∈ (1, 2], and ρ ∈ (0, 1) for α ∈ (0, 1]
which excludes monotone processes. This parametrization, unlike the one
with skewness parameter, is continuous in the sense that convergence of
parameters holds iff the processes converge.

Suppose now that we have a consistent estimator θn of the true parame-
ter θ. Feasible estimators for supremum, local time and occupation time are
now obtained via the plug-in approach. In particular, we have

T̃mean
n = Mn +

∫ ∞

0

(
1−Hθn

n (x)
)
dx, T̃med

n = Mn + (Hθn
n )−1(1/2),

where Hθn
n (x) =

∏n−1
j=0 Fθn(n

1/αn(x+Δn
j ), n

1/αn(Δn
j −Δn

j+1)), and

L̃t(x) =
1

σn
√
n

�nt	∑
i=1

g

(√
n

σn
(x−X i−1

n
),

√
n

σn
Δn

i X

)
+OP(n

−1/2),

Õt(x) =
1

n

�nt	∑
i=1

G

(√
n

σn
(x−X i−1

n
),

√
n

σn
Δn

i X

)
+OP(n

−1).

The construction of estimators θn of the unknown parameter θ for models (i)
and (ii) is a well understood problem in the statistical literature. In particular,
in class (i) the maximum likelihood estimator of σ is given by

σ2
n =

n∑
i=1

(Δn
i X)2

and it holds that
√
n(σ2

n − σ2)
d→N (0, 2σ4). Numerous theoretical results on

parametric estimation of model (ii) can be found in e.g. [35]. Since the maximum
likelihood estimator of θ is not explicit, we rather propose to use the following
statistics:

αn =
q log(2)

log
(∑n

i=2 |Xi/n −X(i−2)/n|q
)
− log

(∑n
i=1 |Xi/n −X(i−1)/n|q

) ,



Estimation of the supremum and occupation times 905

ρn =
1

n

n∑
i=1

1{Δn
i X>0}, λn =

1

n

n∑
i=1

log(n1/αn |Δn
i X|),

where q ∈ (−1/2, 0). Additionally, we need to ensure that our parameters are
legal, and in particular αn, when larger than 1, is truncated at (ρn∨(1−ρn))

−1.
Due to self-similarity of X and the law of large numbers we have that∑n

i=2 |Xi/n −X(i−2)/n|q∑n
i=1 |Xi/n −X(i−1)/n|q

P→ 2q/α,

which gives the idea behind the construction of αn. Indeed, all estimators are
weakly consistent and since E[|X1|2q] < ∞ for q ∈ (−1/2, 0) we easily conclude
that

αn − α = OP(n
−1/2), ρn − ρ = OP(n

−1/2), λn − λ = OP(n
−1/2 log(n)).

The proposed estimators are not efficient, but they suffice for our purposes, see
Proposition 1 below.

It turns out that the limit theory presented in Theorem 2 and Theorem 3
continues to hold under a rather weak assumption on a consistent estimator θn
of θ; in particular, this assumption is satisfied by estimators we proposed above.
In other words, the difference between the modified and original estimators is
negligible in the right sense.

Proposition 1. Consider parametric class (i) with θ = σ and σn
P→ σ or (ii)

with θ = (α, ρ, λ) and θn
P→ θ, (αn − α) log n

P→ 0. Then

n1/α(T
mean

n − T̃mean
n )

P→ 0, for α ∈ (1, 2],

n1/α(T
med

n − T̃med
n )

P→ 0.

Moreover, the limit distributions in (10) and (11) are continuous in θ.

This shows that the estimators T̃mean
n and T̃med

n are asymptotically efficient
in the sense that they are asymptotically equivalent to the respective optimal
estimators relying on the knowledge of true parameters. In class (ii) the true α

is not known, but in view of Proposition 1 the assumption (αn − α) logn
P→ 0

guarantees that

n1/αn(X1 − T̃mean
n )

dst−→ V −
∫ ∞

0

(1−H(x))dx, when α ∈ (1, 2],

n1/αn(X1 − T̃med
n )

dst−→ V −H−1(1/2).

Furthermore, the limit distributions are well approximated by their analogues
corresponding to parameter θn, and so we may construct asymptotic confidence
intervals for the estimators T̃mean

n and T̃med
n .

With respect to local/occupation time we have the following result.
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Proposition 2. Consider class (i) and assume that

n1/4(σ − σn)
P→ 0. (18)

Then for any x ∈ R, T > 0 it holds that

n1/4 sup
t≤T

∣∣∣L̂t(x)− L̃t(x)
∣∣∣ P→ 0, n3/4 sup

t≤T

∣∣∣Ôt(x)− Õt(x)
∣∣∣ P→ 0.

This again shows that the estimators L̃t(x) and Õt(x) are asymptotically effi-
cient, and provides the respective asymptotic confidence bounds. Condition (18)
is quite expected in the case of local times since n1/4 is the corresponding rate
of convergence in (16), but it is surprising that this condition is also sufficient

to conclude the asymptotic efficiency of Õt(x). Roughly speaking, the reason
for condition (18) to be sufficient in the latter case is that partial derivatives of
G correspond to the local time asymptotics thus changing the convergence rate
from n3/4 to n1/4. We refer to §B.3 for more details.

4.2. Truncation of products in supremum estimators

Here we return to the assumption that the law of X is known. Consider supre-
mum estimators defined in §2.2 in terms of the conditional distribution function
Hn(x). When the number n of observations is large, it may be desirable to
reduce the number of terms in the product defining Hn(x), in order to avoid
numerical issues and to speed-up the calculations. This is especially true when
X is not a linear Brownian motion and so the function F is not explicit.

Intuitively, we may want to keep the terms which are formed from the ob-
servations closest to the maximum. Thus, we let Hn(x; k) for k ∈ N+ be the
analogue of Hn(x), but such that the product has at most 2k terms and, in par-
ticular, the indices j are chosen such that 0∨(In−k) ≤ j ≤ (In+k−1)∧(n−1)

with In being the index of the maximal observation. Define T
mean

n,k and T
med

n,k as
before but using Hn(x; k) instead of Hn.

Letting I ∈ Z be the unique number satisfying ξI+U = V (it achieves the
minimum V in (3)), we define

H(x; k) :=
∏

I−k≤j≤I+k−1

F (x+ ξj+U − V, ξj+U − ξj+1+U ) , x ≥ 0.

We now have the limit result analogous to Theorem 2:

Corollary 3. For any α ∈ (0, 2] it holds that

n1/α(X1 − T
mean

n,k )
dst−→ V −

∫ ∞

0

(1−H(x; k))dx,

n1/α(X1 − T
med

n,k )
dst−→ V −H−1(1/2; k).
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It turns out that we do not need to exclude α ∈ (0, 1] in the case of modified
conditional mean estimator, because the number of terms is kept finite. In the
Brownian case and k = 1 we arrive at the following simple formulas

Hn(x; 1) =
(
1− 1{In≥1} exp

[
−2x(x+Δn

In−1)n/σ
2
] )

×
(
1− 1{In<n} exp

[
−2x(x+Δn

In+1)n/σ
2
] )

,

H(x; 1) =
(
1− exp

[
−2x(x+ ξI−1+U − V )/σ2

] )
×

(
1− exp

[
−2x(x+ ξI+1+U − V )/σ2

] )
.

Remark 3. It is likely that Theorem 2 can be generalized to an arbitrary Lévy
process satisfying the following weak regularity condition:

(auXt/u)t≥0
d→ (X̂t)t≥0 as u → ∞,

for some positive function au and necessarily self-similar Lévy process X̂. Im-
portantly, the general versions of (2) and (3) are proven in [29]; here the limiting

objects correspond to X̂.
There are, however, two very serious difficulties. Firstly, joint convergence

does not necessarily imply convergence of the conditional distributions. Thus,
one needs to use the underlying structure to show that

F1/n(x/an, y/an) = P(anX1/n ≤ x|anX1/n = y) → F̂ (x, y).

Secondly, the proof of uniform negligibility of truncation in §A.3.2 crucially
depends on X being self-similar. This part may be notoriously hard for a general
Lévy process X.

5. Numerical illustration of the limit laws

In this section we perform some numerical experiments in order to illustrate
the limit laws in Theorem 2 and Theorem 3. For simplicity we take X to be
a standard Brownian motion and, additionally, a one-sided stable process in
supremum estimation which is motivated by the semi-explicit formula for the
function F in Proposition 4. All the densities are obtained from 10, 000 indepen-
dent samples using standard kernel estimates. The number of samples is reduced
to 1, 000 in the case of the one-sided stable process.

5.1. Supremum estimation for Brownian motion

Consider a standard Brownian motion X and the limiting random variable V
in (3), as well as Vmean := V −

∫ ∞
0

(1 − H(x))dx and Vmed := V − H−1(1/2)
in (10) and (11), respectively. Recall that all of these quantities are explicit, see
also Corollary 1, but they all depend on infinitely many observations ξj+U , j ∈ Z

of the two-sided Bessel process ξ of order 3. We approximate these quantities
by setting ξj+U = ∞ for j < −50 or j ≥ 50, which effectively amounts to
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Fig 1. Simulated densities of V (solid black), Vmean (dashed red) and Vmed (dotted blue) in
the Brownian case

Table 1

Some statistics in the Brownian case

V Vmean Vmed Vshift V 1
mean

L2-norm 0.66 0.26 0.27 0.30 0.29
L1-norm 0.59 0.21 0.21 0.24 0.22

95% conf. int. length 1.14 1.03 1.03 1.14 1.06

considering 100 epochs centered around 0; choosing twice as many epochs had
negligible effect on the results below. The resulting densities are depicted in
Figure 1. In Table 1 we report the L2-norm, the L1-norm, and the narrowest
95%-confidence interval length for each of the limiting distributions. It is noted
that, indeed, Vmean has the smallest L2-norm and Vmed has the smallest L1-
norm, and the respective distributions are very similar.

Observe that the main problem of the standard estimator Mn is that it is
downward biased and so V is not centered. This, however, can be easily remedied
since according to [6]

EV = −ζ

(
1

2

)
1√
2π

≈ 0.5826,

where ζ is the Riemann zeta function. In other words, we may consider an
asymptotically centered estimator Mn+

1√
n
EV , which leads to Vshift := V −EV .

Finally, we also consider the truncated conditional mean estimator T
mean

n,1 based
on H(x; 1), which is a product of two terms and thus only moderately more
complicated to evaluate as compared to Mn, see §4.2. The respective limit is
denoted by V 1

mean. Relative comparison of the latter two together with Vmean is
provided in Figure 2, see also Table 1.

In conclusion, the conditional mean and conditional median estimators are
very similar to each other and considerably better than the standard estima-
tor Mn in terms of L2-norm and L1-norm. Nevertheless, the other simple esti-
mators discussed above are only slightly worse than the optimal ones.
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Fig 2. Simulated densities of Vshift (solid black), Vmean (dashed red) and V 1
mean (dot-dashed

pink) in the Brownian case

Table 2

Some statistics in the stable case

V Vmean Vmed Vshift

L2-norm 0.87 0.41 0.42 0.43
L1-norm 0.75 0.32 0.32 0.34

95% conf. int. length 1.45 1.42 1.42 1.45

5.2. Supremum for one-sided stable process

Here we consider a strictly stable Lévy process with α = 1.8, standard scale
and only negative jumps present, i.e., the skewness parameter is β = −1. Note
that the results in the opposite case β = 1 must be similar according to Propo-
sition 3. The conditional distribution function F is numerically evaluated using
the expressions in Proposition 4, see Figure 3a.

In this case we perform a number of approximations. Firstly, simulation of ξ
is not obvious (unlike the Brownian case) and so we approximate the limiting
object (V,H(x)) by (n1/α(X1−Mn), Hn(xn

−1/α)) with n = 300, see (9). Instead
of scaling X1,Mn,Δi with n1/α we perform the simulation of the process X
on the interval [0, n], which is allowed by self-similarity of X. Furthermore,
X is simulated on the grid with step-size 1/m for m = 300, which yields an
approximation of Xn further corrected by the easily computable asymptotic
mean error m−1/α

EV , see [7]. Next, we take (at most) 30 terms in the product
definingHn based on the observations closest to the maximum, that is we replace
it by Hn(·; 15) defined in §4.2. Finally,

∫ ∞
0

(1−H(x))dx is approximated using
the trapezoidal rule with step size 0.1 and truncation at x = 3, see Figure 3b;
the same approximation is used in calculation of the inverse.

The results are presented in Figure 4 and Table 2. They are quite similar to
the results in the Brownian case.
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Fig 3. The stable case

5.3. Local time and occupation time for Brownian motion

Let again X be a standard Brownian motion and choose x = 0, t = 1. We use
L̂1(0) with n = 10, 000 as a substitute for the true L1(0), which then allows
to sample (approximately) from the limit distribution in (16). Next, we use the

same sample path to construct L̂1(0) with n = 100, which allows to sample
from the pre-limit expression in (16). Finally, we also take a standard estimator
1

2
√
n
#{i ∈ [0 : n − 1] : |Xi/n| < 1√

n
} for n = 100. The respective densities are

depicted in Figure 5. The ratio of variances for n = 100 is 1 : 1.64, which can be
compared to 1 : 1.35 for the more advanced estimator mentioned in Remark 1
(here we use the exact expressions of the limits).

We perform a similar procedure for the occupation time in (0,∞). Here the
standard estimator is 1

n#{i ∈ [0 : n − 1] : Xi/n ≥ 0}. The respective densities
are given in Figure 6, and we see a very substantial improvement. The ratio of
variances for n = 100 is 1 : 2.64.

Appendix A: Proofs for supremum estimation

In the following all positive constants will be denoted by c although the may
change from line to line.

A.1. Duality

In this section we establish a duality result for a general Lévy process X. Even
though it is not needed for the proofs, we present this duality, because it explains
certain structure in the main results. To this end, consider the processX ′

t = −Xt

and the associated quantities X ′
1,M

′
n, H

′
n(x), F

′
t (x, y), see §2.2.
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Fig 4. Simulated densities of V (solid black), Vmean (dashed red) and Vmed (dotted blue) in
the stable case

Fig 5. Local time: the densities of the limit (solid black) and pre-limit (dashed red) in (16)
for n = 100, as well as pre-limit for the standard estimator (dotted blue)

Fig 6. Occupation time: the densities of the limit (solid black) and pre-limit (dashed red)
in (17) for n = 100, as well as pre-limit for the standard estimator (dotted blue)
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Proposition 3. Let X be an arbitrary Lévy process. Then(
X ′

1 −M ′
n, (H

′
n(x))x≥0

) d
=

(
X1 −Mn, (Hn(x))x≥0

)
.

Furthermore, F ′
t (x, y) = Ft(x− y,−y).

Proof. Take (X ′′
t )t∈[0,1] := (X(1−t)− −X1)t∈[0,1] having the law of (−Xt)t∈[0,1]

(standard time-reversal). Then X ′′
1−M ′′

n = X1−X1− (Mn−X1) = X1−Mn,
because X does not jump at j/n almost surely. Letting xj be the observation
of Xj/n we find that

Hn(x) = P(X ′′
1 −M ′′

n ≤ x|Xk/n −X1 = xk − xn ∀k ∈ [1 : n− 1], X1 = xn)

= P(X ′′
1 −M ′′

n ≤ x|X ′′
(n−k)/n = x′′

n−k ∀k ∈ [1 : n− 1], X ′′
1 = x′′

n) = H ′
n(x).

Finally,

F ′(x, y) = P(X ′′
1 ≤ x|X ′′

1 = y) = P(X1 −X1 ≤ x|X1 = −y)

= P(X1 ≤ x− y|X1 = −y) = F (x− y,−y)

and the same reasoning works for F ′
t (x, y) when time-reverting at t.

In view of Proposition 3, the errors X1−T
mean

n and X1−T
med

n have the same
distribution as the respective errors for the process −X. Thus, the corresponding
limit results must stay the same when the skewness parameter β is flipped to
the opposite. In the proofs we may safely assume that β ≥ 0, say.

A.2. On the function F in the stable case

Before starting the proof of the main result we establish some basic properties
of the conditional probability F (x, y) in the case of a strictly α-stable process
when it is not explicit. Throughout this subsection we assume thatX is a strictly
α-stable process with skewness parameter β ∈ [−1, 1]. Note that the boundary
values β = −1 and β = 1 correspond to spectrally negative and spectrally
positive processes, respectively; in both cases we must have α ∈ (1, 2), because
we have excluded monotone processes.

It is well known [41, p. 88] that Xt has a continuous strictly positive bounded
density, call it ft(x). Moreover, by self-similarity

ft(x) = t−1/αf(t−1/αx) with f = f1. (19)

Furthermore, f(x) ∼ cx−α−1 as x → ∞ when β �= −1, and otherwise it decays
faster than an exponential function [41, Eq. (14.37)].

Let us define the first passage times τ±x = inf{t ≥ 0 : ±Xt > ±x} above and
below a given level x.
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Lemma 3. The function F (x, y) is jointly continuous. Moreover, F (x, y) = 0
for x ≤ y+, and otherwise

F (x, y)f(y) : = (1− F (x, y))f(y)

= E

[
(1− τ+x )−1/αf((1− τ+x )−1/α(y −Xτ+

x
)); τ+x < 1

]
(20)

= E

[
(1− τ−y−x)

−1/αf((1− τ−y−x)
−1/α(y −Xτ−

y−x
)); τ−y−x < 1

]
,

(21)

where E[Y ;A] = E[Y 1A].

Proof. Assume for the moment that x > y+. By time reversal (or from Propo-
sition 3) we get

P(X1 > x,X1 ∈ dy) = P(X1 < y − x,X1 ∈ dy). (22)

Using the strong Markov property we find that∫∫
t∈(0,1),z≥x

P(τ+x ∈ dt,Xτ+
x
∈ dz)f1−t(y − z)

is a version of the density of the measure on the left of (22). This expression
coincides with (20) according to (19). Similarly, (21) is a version of the density
of the measure on the right of (22), and hence both expressions coincide for
almost all y.

Next, we show that the expressions in (20) and (21) are jointly continuous
on x > y+, and thus must coincide on this domain. We do this for the first
expression only, since the other can be treated in the same way. By the basic
properties of Lévy processes [10] we see that τ+x �= 1 and (τ+x , Xτ+

x
) is continuous

on an event of probability 1. Hence we only need to show that the dominated
convergence theorem applies. Choose an arbitrary sequence (x′, y′) converging
to (x, y) with x > y+. Now Xτ+

x′
− y′ > x′− y′ > ε for some ε > 0 (further down

in the sequence). Note that f(−x) ≤ cx−α−1 for some c > 0 and all x > 0; in
the spectrally positive case the decay is even faster. Hence the term under the
expectation is bounded by c(1− τ+x′)ε−α−1 and we are done.

It is left to show that either one of (20) and (21) converges to f(y′) as
x → x′, y → y′ with x < y+ and x′ = y′+ (the boundary of the domain); this
would imply F (x, y) → 0. In the case y′ < 0 use (20) and the above reasoning,
while for x′ > 0 use (21). It is left to analyze the case of x′ = y′ = 0. Note
that (20) is lower bounded by the same expression with the indicator replaced
by the indicator of τ+x < 1/2. But now the dominated convergence theorem
applies and yields the limit f(0). The upper bound is f(y) by construction, and
the limit is again f(0). The proof is thus complete.

We are now ready to provide some bounds on F (x, y). In the one-sided cases
the bounds can be considerably improved, but this is not needed in this work
and so we prefer a simpler statement.
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Lemma 4. There exists a constant c > 0 such that for all x ≥ y+:

F (x, y) ≤ cx−α(x− y)−α−1(|y| ∨ 1)α+1, β ∈ (−1, 1),

F (x, y) ≤ c exp(−(x− y+)), β = ±1.

Proof. Suppose that β ∈ (−1, 1). We know that f(x) < c|x|−α−1. According
to (20) we then have

F (x, y)f(y) ≤ cE[(Xτ+
x
− y)−α−1(1− τ+x ); τ+x < 1] ≤ c(x− y)−α−1

P(X1 > x).

It is left to recall that P(X1 > x) ∼ cx−α as x → ∞ when β �= −1 [12, 23].
Assume that β = −1. In this case f(x) ∼ axb exp(−uxv) with a, u > 0 and

v > 1 as x → ∞, see [41, Eq. (14.37)]. Furthermore, the asymptotics of P(X1 >
x) has a similar form [12, Prop. 3b]. Observe that f(Ax + B) < cA−1f(x) for
all A ≥ 1, B ≥ 0, x ≥ 1. Hence, from (21) we get the bound

F (x, y) ≤ cf(x)/f(y),

which for y > 0 leads to the claimed bound c exp(−(x− y)). For y ≤ 0 we find
from (20) that

F (x, y) ≤ c(x− y)−α−1 exp(−x)/f(y),

which readily implies the bound c exp(−x). Similar analysis yields the bound in
the case β = 1.

It is noted that we may also derive a bound

F (x, y) ≤ cx−α−1(x− y)−α(|y| ∨ 1)α+1

for β ∈ (−1, 1) by using (21) instead of (20). This bound is better when y > 0
and worse when y < 0. For our purpose any of these bounds is sufficient.

Finally, we derive a semi-explicit expression of F (x, y) in the one-sided case.
This expression is in terms of the density f .

Proposition 4. In the spectrally one-sided cases we have for all x > y+:

β = −1 :

F (x, y) =
x

f(y)

∫ 1

0

(1− t)−1/αt−1/α−1f(xt−1/α)f((y − x)(1− t)−1/α)dt,

β = 1 :

F (x, y) =
x− y

f(y)

∫ 1

0

(1− t)−1/αt−1/α−1f(x(1− t)−1/α)f((y − x)t−1/α)dt.

Proof. It is known that P(X1 ∈ dx) = αf(x) for x > 0, when X is spectrally
negative, see [36]. Moreover,

P(τ+x < t) = P(Xt > x) = P(X1 > xt−1/α)

yielding that P(τ+x ∈ dt) = xt−1/α−1f(xt−1/α)dt. Plugging this into Lemma 3

yields the result. Finally, (21) follows from F
′
(x, y) = F (x− y,−y), see Propo-

sition 3.
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Remark 4. Note that E(X1|X1 = y) < ∞ for all y ∈ R, even in the cases
α ∈ (0, 1] where EX1 = ∞. This follows from Lemma 4 showing that for fixed
y we have a bound F (x, y) ≤ cx−2α−1. Thus conditional moments of order up
to 1 + 2α exist. In the spectrally-positive case we even have E(exp(λX1)|X1 <
b) < ∞ for any b < ∞, λ > 0 (Lemma 4 gives only λ < 1 though).

A.3. Proof of Theorem 2

In the following we frequently use the inequality

|
∏
j∈Z

aj −
∏
j∈Z

bj | ≤
∑
j∈Z

|aj − bj | when aj , bj ∈ (0, 1). (23)

Let I(n) = �τn� be the index of the first observation to the right of the
supremum time, and put

u
(n)
i =

{
n1/α(X1 −X(i+I(n))/n), i+ I(n) ∈ [0, n]

∞, otherwise.

In other words, u
(n)
i are the rescaled distances from the supremum to the obser-

vations indexed with respect to the time of supremum. Now we can represent
the quantities appearing in (9) as follows:

V (n) := n1/α(X1 −Mn) = min
i∈Z

u
(n)
i ,

H(n)(x) := Hn(xn
−1/α) =

∏
i∈Z

F (x+ u
(n)
i − V (n), u

(n)
i − u

(n)
i+1),

where by convention F = 1 if either of u
(n)
i , u

(n)
i+1 is infinite. According to [29]

(or [6] in the case of Brownian motion) we have the following weak convergence
for every k > 0:(

(u
(n)
i )|i|≤k, V

(n)
)

dst−→
(
(ξi+U )|i|≤k,min

i∈Z

ξi+U

)
. (24)

Intuitively, this limit can be understood as arising from (2) together with the
fact that {nτ} converges to an independent uniform on (0, 1). This explains (of
course, only intuitively) the form of the result in Theorem 2.

A.3.1. Convergence of the truncated versions

Let H
(n)
k be the same as H(n), but with the product running over |i| ≤ k:

H
(n)
k (x) =

∏
|i|≤k

F (x+ u
(n)
i − V (n), u

(n)
i − u

(n)
i+1),
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where again F = 1 when the index is out of range. We also define the analogous
object formed from the limiting quantities:

H
(∞)
k (x) =

∏
|i|≤k

F (x+ ξj+U − V, ξj+U − ξj+1+U ) .

Note that H
(n)
k (x), H

(∞)
k (x) are continuous and strictly increasing in x ≥ 0

which is inherited from F (x, y). Furthermore, H
(n)
k (∞) = H

(∞)
k (∞) = 1 and

their value at 0 is not necessarily 0. In the following the inverse of an increasing
function f is defined as usual: f−1(q) = inf{s : f(s) ≥ q}.
Lemma 5. For any k ∈ N as n → ∞ we have the functional stable convergence

(V (n), H
(n)
k (x)x≥0)

dst−→ (V,H
(∞)
k (x)x≥0)

with respect to the uniform topology. Moreover,(
V (n),

∫ ∞

0

(1−H
(n)
k (x))dx

)
dst−→

(
V,

∫ ∞

0

(1−H
(∞)
k (x))dx

)
,

where the limit variables are finite almost surely.

Proof. In view of (24) we only need to establish the continuity of the respective
maps. Consider (2k + 1)-dimensional vectors a(n) and b(n) converging to some
vectors a and b, respectively, where the entries of a(n) and a are non-negative
and the entries of a, b are finite. Observe using (23) that

sup
x≥0

∣∣∣∣∣∣
∏
|i|≤k

F
(
x+ a

(n)
i , b

(n)
i

)
−

∏
|i|≤k

F (x+ ai, bi)

∣∣∣∣∣∣
≤

∑
|i|≤k

sup
x≥0

∣∣∣F (
x+ a

(n)
i , b

(n)
i

)
− F (x+ ai, bi)

∣∣∣ → 0,

where convergence of F is uniform in x ≥ 0 since the limit function is continuous
and non-decreasing in x ≥ 0, and is upper bounded (Polya’s theorem). Thus,
the first statement is now proven.

Concerning the second statement, we find that∣∣∣∣∣∣
∫ ∞

0

(1−
∏
|i|≤k

F (x+ a
(n)
i , b

(n)
i ))dx−

∫ ∞

0

(1−
∏
|i|≤k

F (x+ ai, bi))dx

∣∣∣∣∣∣
≤

∑
|i|≤k

∫ ∞

0

∣∣∣F (x+ a
(n)
i , b

(n)
i )− F (x+ ai, bi)

∣∣∣ dx
and it is left to show that each summand converges to 0, i.e. that the dominated

convergence theorem applies. According to Lemma 4 both F (x+ a
(n)
i , b

(n)
i ) and

F (x + ai, bi) are bounded by c(1 ∧ x−2α−1), because of monotonicity of F in
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the first argument and the fact that b
(n)
i → bi < ∞; the decay is even faster in

the case of β = ±1 or when X is a Brownian motion. The proof of the second
statement is now complete, since finiteness of the limit is shown in the same
way.

A.3.2. Uniform negligibility of truncation

Showing that truncation at a finite k is uniformly negligible (in the sense
of [11, Thm. 3.2]) is the crux of the proof. Firstly, we will need the follow-

ing representation-in-law of the sequences u
(n)
i , which builds on [9] and self-

similarity of X.

Lemma 6. There exists a process ξ̃ having the law of ξ and a sequence of random
variables τn such that (τn)n>0 and (n− τn)n>0 are non-negative non-decreasing
sequences and the following is true: Let

ũ
(n)
i := ξ̃i+1−{τn}

for all i ∈ [−�τn�, n−�τn�], and otherwise ũ
(n)
i := ∞. Then (u

(n)
i )i∈Z

d
=(ũ

(n)
i )i∈Z

for all n ∈ N+.

Proof. By self-similarity (n1/αXt/n)t∈[0,n] has the same law as (Xt)t∈[0,n]. Ac-
cording to [9], the law of the latter process when seen from the supremum,
see (1), coincides with a certain process ξ̃ killed outside of the interval [−τn, n−
τn], where τn =

∫ n

0
1{Xt>0}dt. It is noted that ξ̃ is constructed using juxtapo-

sition of the excursions of X in half-lines according to their signs, and it does
not depend on n. Clearly, τn and n − τn =

∫ n

0
1{Xt≤0}dt are non-decreasing

sequences going to +∞, and the laws of ξ̃ and ξ defined by (1) coincide. It is

now left to recall the definition of u
(n)
i .

We will also need asymptotic bounds on the process ξ, which can be read
of [25, Cor. 3.3] or [20], see also [37] for the Brownian case.

Lemma 7. For any p−, p+ > 0 such that p− < 1/α < p+ it holds that

lim
t→∞

ξt/t
p− = ∞, lim

t→∞
ξt/t

p+ = 0 almost surely.

In particular, the probability of the event

ET,p± := {∀t ≥ T : ξt ∈ [tp− , tp+ ]}

tends to 1 as T → ∞.

The following result establishes convergence of certain series, which is only
needed for the case of a stable process with two-sided jumps.

Lemma 8. Assume that β ∈ (−1, 1) and consider

Dt = sup
h∈[0,1]

|ξt+1+h − ξt+h|.
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Then there exist p± > 0 such that p− < 1/α < p+ and the following series are
convergent for any T > 0:

α ∈ (1, 2) :
∑
i≥1

i−2αp−E[Dα+1
i ;ET,p± ] < ∞, (25)

α ∈ (0, 1] :
∑
i≥1

i−2αp−−p−E[Dα+1
i ;ET,p± ] < ∞.

Proof. Assume that α ∈ (1, 2). Let us show that there exists a natural number
k and

0 = δ0 < δ1 < · · · < δk−1 < 1 < δk

such that δj(α + 1)/α − δj−1 < 1 for all j = 1, . . . , k. The jth inequality reads
as δj < ψ(δj−1) with ψ(u) = (1+ u)α/(1+α) being a continuous function such
that ψ(u) > u iff u < α. Note that it is sufficient to pick the smallest k such
that ψ(k)(0) > 1, where the latter denotes kth iterate. To see that such k exists,
simply observe that ψ(k)(0) converges to α > 1 as k → ∞.

Choose p± close enough to 1/α so that δk−1 < αp− < 1 < αp+ < δk and

δj(α+ 1)/α− δj−1 < 2αp− − 1, for all j = 1, . . . , k. (26)

According to Proposition 5 in §C, for any i > T we have

P

(
{Di ≥ iδj−1/α} ∩ ET,p±

)
≤ ci−δj−1 ,

because ξi > ip− > iδj−1/α on the respective event. Now for any j = 1, . . . , k we
have ∑

i

i−2αp−E

[
Dα+1

i ; {Di ∈ [iδj−1/α, iδj/α)} ∩ ET,p±

]
≤

∑
i

i−2αp−iδj(α+1)/α
P

(
{Di ≥ iδj−1/α} ∩ ET,p±

)
≤ c

∑
i

i−2αp−+δj(α+1)/α−δj−1 < ∞

according to (26). Summing up over j = 1, . . . , k completes the proof of (25), be-
cause on the event ET,p± we have Di < (i+2)p+ < iδk/α for i > T large enough.

Moreover, the first interval [1, iδ1/α) can be replaced by [0, iδ1/α) without any
change required.

Next, assume that α ∈ (0, 1] and choose δ1 < αp− < 1 < αp+ < δ2. Similarly,
to the above calculation we find that it is sufficient to additionally guarantee
that

−2αp− − p− + δj(α+ 1)/α− δj−1 < −1, j = 1, 2.

This is always possible when δ2 < 1 + δ1α/(α+ 1).

We are now ready to establish that truncation is indeed uniformly negligible:
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Lemma 9. For any ε > 0 we have

lim
k→∞

sup
n

P(‖H(n) −H
(n)
k ‖∞ > ε) = 0, (27)

lim
k→∞

sup
n

P

(∣∣∣∣∫ ∞

0

(H(n)(x)−H
(n)
k (x))dx

∣∣∣∣ > ε

)
= 0, for α ∈ (1, 2]. (28)

Moreover, almost surely it holds that

sup
x≥0

∣∣∣∣∣∣1−
∏
|j|>k

F (x+ ξj+U − V, ξj+U − ξj+1+U )

∣∣∣∣∣∣ → 0, (29)

∫ ∞

0

(1−H
(∞)
k (x))dx →

∫ ∞

0

(1−H(x))dx < ∞, for α ∈ (1, 2].

as k → ∞.

Proof. We start by showing (27). Using (23) we find that

‖H(n) −H
(n)
k ‖∞ ≤ sup

x≥0

∑
|i|>k

F (x+ u
(n)
i − V (n), u

(n)
i − u

(n)
i+1),

where the summand is 0 when either of u
(n)
i , u

(n)
i+1 is infinite. By monotonicity of

F in the first argument, and the fact that P(V (n) > v) can be made arbitrarily

small by choosing large enough v (recall that V (n) d→V ), it is sufficient to show
that

sup
n

P

(∑
i>k

F (ũ
(n)
i − v, ũ

(n)
i − ũ

(n)
i+1) > ε

)
→ 0, (30)

where we have replaced u
(n)
i by ũ

(n)
i having the same law as defined in Lemma 6.

Note also that the sum here runs over i > k since the other part (i < −k) can
be handled in the same way.

Choose p± with p− < 1/α < p+ such that the conclusion of Lemma 8 is
satisfied when α ∈ (0, 2), β ∈ (0, 1). Note that we may restrict to the event
ẼT,p± for a large enough T > 0, see Lemma 7; that is, we have tp− ≤ ξ̃t ≤ tp+

for all t > T .
First, assume that α ∈ (0, 1) and β ∈ (−1, 1). According to Lemma 4 we have

the bound (this bound is 0 when ũ
(n)
i or ũ

(n)
i+1 is infinite)

F (ũ
(n)
i − v, ũ

(n)
i − ũ

(n)
i+1)

≤ c(ũ
(n)
i − v)−α(ũ

(n)
i+1 − v)−α−1(1 ∨ D̃i)

α+1

≤ ci−p−(2α+1)(1 + D̃α+1
i ),

where D̃i ≤ supn |ũ
(n)
i − ũ

(n)
i+1|, see the definition of ũ

(n)
i in Lemma 6. Now (30)

follows by Markov’s inequality from∑
i>k

i−p−(2α+1)
E[D̃α+1

i ; ẼT,p± ] < ∞,
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see Lemma 8. In the case β = ±1 and α = 2 the above becomes∑
i>k

exp(−cip−) < ∞,
∑
i>k

exp(−ci2p−) < ∞,

respectively, which is obviously true.
Next we show (28). With respect to the second statement we only need to

show that

sup
n

P

(∑
i>k

∫ ∞

0

F (x+ ũ
(n)
i − v, ũ

(n)
i − ũ

(n)
i+1)dx > ε

)
→ 0,

In the case α ∈ (1, 2), β ∈ (−1, 1) the upper of Lemma 3 reads

F (x+ ũ
(n)
i − v, ũ

(n)
i − ũ

(n)
i+1) < c(x+ ip−)−2α−1(1 +Dα+1

i ),

for i > T . Integrating over x ≥ 0 we get the bound ci−2αp−(1 +Dα+1
i ) and the

proof is again completed by the Markov’s inequality and Lemma 8. In the case
β = ±1 the bound is∑

i>k

∫ ∞

0

exp(−(x+ ip− − v))dx < ∞,

and a similar bound holds for α = 2.
Finally, similar (but simpler) arguments show that there is convergence in

probability in (29). But the product is monotone for each x ≥ 0. Thus we have
uniform convergence almost surely. For α ∈ (1, 2] we find using above arguments
that the integral

∫ ∞
0

(1 − H(x))dx is finite almost surely. Now the dominated
convergence theorem applies.

Proof of Theorem 2. Let us show the stated properties of H. It is clear that
H(x), x ≥ 0 is non-decreasing and takes values in [0, 1]. Moreover, H(0) = 0
since one of the terms in the product is 0. Observe that (29) implies conver-

gence of H
(∞)
k to H uniformly in x ≥ 0 on the set of probability 1. Thus H is

continuous and H(∞) = 1, because the same is true about H
(∞)
k . Finally, H is

strictly monotone, since H(x) > 0 for every x > 0 which follows from positivity

of H
(∞)
k and (29).

Stable convergence statements in (9) and (10) follow from Lemma 5 and
Lemma 9 by means of [11, Thm. 3.2] extended to the setting of stable con-
vergence. Concerning (11) we apply Skorokhod’s representation theorem to the
sequence H(n) (the underlying space of continuous functions with a limit at
∞ is indeed separable, as it can be time-changed into the space of continuous
functions on [0, 1]). The inverse H−1 is continuous and finite on (0, 1) and hence
we have convergence of respective inverses [40, Prop. 0.1].

A.4. Related results

Here we provide the proofs (or just the main ingredients) of the results related
to Theorem 2.
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A.4.1. Linear Brownian motion

Proof of Corollary 1. Firstly, note that the scaling σ can be indeed taken out
as in (12) and (13). This is true in general, because we may always rescale the
process and the corresponding observations before the analysis. Thus we may
assume that σ = 1 in the following.

Now suppose that μ �= 0 and so X is not self-similar. Recall that the esti-
mators are the same as in the case μ = 0. Furthermore, according to [6] the
convergence in (24) is still true, where the limit variables are defined in terms of
the Bessel process of order 3. The main difficulty is that Lemma 6 is no longer
true and the proof of uniform negligibility of truncation fails.

By Girsanov’s theorem, we may introduce arbitrary drift using exponential
change of measure dP′/dP = exp(aX1 + b) with appropriately chosen constants
a, b ∈ R. But then

P
′(‖H(n) −H

(n)
k ‖∞ > ε) = E[exp(aX1 + b); ‖H(n) −H

(n)
k ‖∞ > ε]

≤ exp(|a|c+ b)P(‖H(n) −H
(n)
k ‖∞ > ε) + P

′(|X1| > c),

where c > 0 is arbitrary. But as k → ∞ the lim supn of this expression converges
to P

′(|X1| > c), which can be made arbitrarily small. Thus (27) holds for an
arbitrary linear Brownian motion, and the same argument works for (28).

Proof of Lemma 1. It is only required to show that E[
(√

n|X1 − T
mean

n |
)p

] is

bounded for an arbitrarily large p and all n. Furthermore, we may again re-
strict our attention to a driftless Brownian motion by change of measure and
Cauchy-Schwarz inequality. The fact that E[exp(θV (n))] for any θ is bounded
was established in [6], and so it is sufficient to show that

E

[(∫ ∞

0

(1−Hn(xn
−1/2))dx

)p]
≤ E

[(∑
i

∫ ∞

0

F (x+ u
(n)
i − V (n), u

(n)
i − u

(n)
i+1)dx

)p]
is bounded. The right-hand side is increased by pulling the sum out. Using the
explicit expression for F we see that it is left to consider∑

i≥1

E

[(∫ ∞

0

exp
(
−2(x+ u

(n)
i ∧ u

(n)
i+1 − V (n))2

)
dx

)p]
≤ c

∑
i≥1

E

[
exp

(
−p(u

(n)
i ∧ u

(n)
i+1 − V (n))

)]
,

where we used that Φ(4x) < c exp(−x). Moreover, V (n) can be dropped out, be-
cause of Cauchy-Schwarz inequality and boundedness of E[exp(pV (n))]. Finally,
use Lemma 6 to get the bound:∑

i≥1

E[exp(−p min
t∈[i,i+2]

ξt)].
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The above is bounded by∑
i≥1

E[exp(−pξi/2)] +
∑
i≥1

P( min
t∈[i,i+2]

ξt < ξi/2).

The first sum is finite, because the inequality between arithmetic and quadratic
means,

√
a2 + b2 + c2 ≥ (|a|+|b|+|c|)/

√
3, and the definition of Bessel-3 process

imply that the respective terms are bounded by E[exp(−p
√
i|Z|/(2

√
3))3] where

Z is standard normal. By Tauberian theorem this quantity behaves as �i−3/2 for
large i with � being a positive constant, and the first sum is indeed finite. The
second sum can be treated using the arguments from Appendix C. In particular,
we can show that P↑

x(X2 < x/2) < c exp(−x), and hence we are left to consider∑
i exp(−ξi/2) again. The proof is now complete.

A.4.2. Joint estimation: proof of Corollary 2

The only new ingredient needed is the joint convergence of sequences in (24)
corresponding to the processes X and −X to their respective limits which are
independent. Similar result appears in [7, Lem. 1] and only a minor adaptation
is needed.

A.4.3. On simplified estimators: proof of Corollary 3

We only need to show that the analogue of (24) is true, where we take the
respective 2k + 1 elements in the vectors on the left. One can not apply the
continuous mapping theorem for the infinite sequences though. We consider
truncated sequences, apply the continuous mapping theorem, and then show
uniform negligibility of truncation. The latter follows from the fact that

lim
T→∞

sup
n

P

(
sup
|t|>T

ξ
(n)
t < a

)
= 0

for any a > 0, which readily follows from the representation of ξ(n) as in
Lemma 6 in the self-similar case.

A.4.4. Unknown parameters: proof of Proposition 1

We will show that n1/α(T̃mean
n − T

mean

n )
P→ 0 when α ∈ (1, 2], and the same

is true for the conditional median estimator for all α ∈ (0, 2]. The proof of
continuity of the limit disributions follows similar steps, see also [29] for the
convergence of the respective processes ξ. The above readily translates into∫ ∞

0

(Hθn
n (xn−1/α)−Hn(xn

−1/α))dx
P→ 0, sup

x≥0
|Hθn

n (xn−1/α)−H(x)| P→ 0,
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respectively. We focus on the class of strictly stable Lévy processes (the proof for
the class (i) is similar but easier) and let Xn be the process with parameters θn.
Furthermore we write Fn and fn for the analogues of conditional distribution
F and density f .

We claim that it is sufficient to establish that Fn converges to F continuously,
i.e.

Fn(xn, yn) → F (x, y) for any (xn, yn) → (x, y), s.t. x > y+. (31)

For this note that αn is arbitrarily close to α with high probability, and thus
the arguments from the proof of Theorem 2 apply essentially without a change.

Thus we are left to prove (31) by reexamining the proof of Lemma 3. Firstly,
we observe that (Xτ+

xn
, τ+xn

)1{τ+
xn<∞} under Pθn weakly converges to the respec-

tive quantity under P, which follows by the (generalized) continuous mapping
theorem and weak convergence of the Lévy processes. Secondly, the function

gn(t, x, y) := fn
1−t(y − x) = (1− t)−1/αnfn((1− t)−1/αn(y − x))

converges to the obviously defined g(t, x, y) continuously on the domain t ∈
(0, 1), x ≥ 0, y ∈ R, which follows from continuous convergence of the density fn

of Xn
1 , see Lemma 10 below. Hence we have weak convergence of the quantity

under the expectation in (20), and so it is left to show that the respective
quantities are bounded. Lemma 10 completes the proof.

Lemma 10. There is the uniform convergence: supx∈R |fn(x) − f(x)| → 0 as
n → ∞. Moreover, for any ε > 0 it holds that

sup
n

sup
t∈(0,1),x≥ε

fn
t (x) < ∞.

Proof. The characteristic function of Xn
t is given by exp(−c±n |z|αnt) according

to ±z > 0 with c±n being a complex constant with positive real part (converging
to c±), see [43, Thm. C.4]. Thus by inversion formula we have

sup
x∈R

|fn(x)− f(x)| ≤ 1

2π

∫
| exp(−c±n |z|αnt)− exp(−c±|z|αt)|dz,

but this converges to 0 by the dominated convergence theorem, since the real
parts of c±n are positive and bounded away from 0.

With respect to the second statement we need to show that∫ ∞

1

exp(−izx− cnz
αnt)dz

is bounded for all t ∈ (0, 1), x ≥ ε and all n, where cn = c+n ; the integral over
(−∞,−1] is hadled in the same way, whereas the rest is clearly bounded by 2.
Using integration by parts we find that it is sufficient to show that∫ ∞

1

cntαnz
αn−1

ix
exp(−izx− cnz

αnt)dz



924 J. Ivanovs and M. Podolskij

is bounded, or equivalently the boundedness of∫ ∞

1

αnz
αn−1t exp(−rnz

αnt)dz =

∫ ∞

t

exp(−rnz)dz ≤ 1

rn
,

where rn = �(cn). But rn → r > 0 and we are done.

Appendix B: Proofs for local and occupation times

Here X denotes a linear Brownian motion with drift parameter μ ∈ R and scale
σ > 0.

Proof of Lemma 2. The fact that E [Lt(x)|Xt = z] does not depend on μ follows
readily by applying exponential change of measure, for example. Thus we may
assume that μ = 0 and consider the process σX with X being the standard
Brownian motion. Using self-similarity of X we find(

1

2ε

∫ t

0

1(x−ε,x+ε)(σXs)ds, σXt

)
=

(
t

2ε

∫ 1

0

1(x−ε,x+ε)(σXts)ds, σXt

)
d
=

(
t

2ε

∫ 1

0

1(x−ε,x+ε)(σ
√
tXs)ds, σ

√
tX1

)
and we readily find the stated expression for E [Lt(x)|Xt = z] from the definition
of L. For further reference let us also note that

(Lt(x), Xt)
d
= (

√
tL1(x/

√
t),

√
tX1) under P0. (32)

The formula for E [Ot(x)|Xt = z] is obtained similarly, or directly from (14).

Next, we note that g(x, z) = g(−x,−z), G(x, z) = 1−G(−x,−z) follow easily
from symmetry, and so we assume in the following that x ≥ 0. From [15, 1.3.8]
we find

g(x, z) = exp(z2/2)

∫ ∞

0

y(|z − x|+ |x|+ y) exp(−(|z − x|+ |x|+ y)2/2)dy

which indeed evaluates to the given expression. Next, we recall the Mill’s ratio:
Φ(z)/ϕ(z) ∼ 1/z as z → ∞. Hence

g(x, z) ∼ 1

|z − x|+ |x| exp(−(|z−x|+|x|)2/2+z2/2) as |x|∨|z| → ∞, (33)

showing that g(x, z) is bounded since |z − x|+ |x| ≥ |z|.
Finally, G(x, z) is clearly bounded by 1 and the given formulae are found

from the occupation density formula G(x, z) =
∫ ∞
x

g(y, z)dy, see (14).
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B.1. Local time

Proof of (16). Firstly, we may replace t by �tn�/n on the left hand side of (16),
see [30, Rem. 2]. The result would follow from [30, Thm. 2.1] if we show that g
satisfies condition [30, (B-r)] for some r > 3. But this follows from the bound
g(x, z) < c exp(−2|x|+ 2|z|) for all x, z ∈ R, see the proof of Lemma 13.

Now we have the stated convergence, but the constant in front of the limit
needs to be identified. The expressions in [30] are lengthy and non-trivial to
evaluate, because of the generality assumed therein. In our case, g(x,X1) =
E[L1(x)|X1] is the conditional expectation and, in fact, a rather short direct
proof can be given yielding the constant.

Direct Proof: As in [30] we observe that it is sufficient to consider the
case μ = 0, which can be extended to an arbitrary μ using change of measure
argument. Importantly, L̂t(x) is a functional of X and this functional does not
depend on μ. Next, consider a standard Brownian motion X0

t = Xt/σ and
assume that our result is proven for X0. Noting that Lt(x) =

1
σL

0
t (x/σ) as well

as L̂t(x) =
1
σ L̂

0
t (x/σ) we find that

n1/4
(
L̂t(x)− Lt(x)

)
=

1

σ
n1/4

(
L̂0
t (x/σ)− L0

t (x/σ)
)

dst−→ vl
σ
WL0

t (x/σ)
=

vl
σ
WσLt(x).

It is left to replace the process Wσt by
√
σWt having the same law. Thus we

may assume in the following that X is a standard Brownian motion.

Let Sn
t =

∑�tn	
i=1 ξin be the pre-limiting object, where

ξin = n−1/4
(
g(
√
n(x−X i−1

n
),
√
nΔn

i X)−
√
nL[ i−1

n , i
n ](x)

)
,

Δn
i X = Xi/n−X(i−1)/n and L[a,b](x) denotes the local time at x in the interval

[a, b]. Firstly, observe using the scaling property (32) that

h1(x) := E
(
g(x,

√
nX1/n)−

√
nL1/n(x/

√
n)

)
= E (g(x,X1)− L1(x)) = 0.

Thus we have

E[ξin|F i−1
n
] = n−1/4h1(

√
n(x−X i−1

n
)) = 0,

and similarly we find that

E[ξ2in|F i−1
n
] = n−1/2h2(

√
n(x−X i−1

n
)),

E[ξinΔ
n
i X|F i−1

n
] = n−3/4h3(

√
n(x−X i−1

n
)) = 0,

E[ξ4in|F i−1
n
] = n−1h4(

√
n(x−X i−1

n
)),

where hi(y) = E(g(y,X1) − L1(y))
i for i = 2, 4, and h3(y) = E[(g(y,X1) −

L1(y))X1] = 0.
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Let us show that hi for i = 2, 4 are bounded and in L1(R). By Minkowski’s
and Jensen’s inequality we have the bound hi(y) ≤ 2iE[L1(y)

i]. Using additivity
of L we deduce that

E[L1(y)
i] ≤ P(τy < 1)E[L1(0)

i],

where the latter moment is finite and τy is the first passage time of X into the
level y. Finally, note that∫ ∞

0

P(τy < 1)dy =

∫ ∞

0

P(X1 > y)dy = EX1 < ∞

and hence by symmetry hi(y) are integrable. Thus according to [30, Thm. 1.1]
we have

n−1/2

�nt	∑
i=1

hi(
√
n(x−X i−1

n
))

P→ Lt(x)

∫
hi(x)dx, i = 2, 4,

where the convergence is uniform on compact intervals of time. This immediately
yields that

�nt	∑
i=1

E[ξ2in|F i−1
n
]

P→ v2l Lt(x),

�nt	∑
i=1

E[ξinΔ
n
i X|F i−1

n
] = 0,

�nt	∑
i=1

E[ξ2in1{|ξin|>ε}|F i−1
n
] ≤ ε−2

�nt	∑
i=1

E[ξ4in|F i−1
n
]

P→ 0 for any ε > 0.

Finally, letN be a continuous bounded martingale orthogonal toX, i.e. [X,N ] =
0. For t ≥ (i−1)/n define the process Mt = E[ξin|Ft]. Then the martingale rep-
resentation theorem implies the existence of a progressively measurable process
ηn such that

Mt =

∫ t

i−1
n

ηns dXs.

Since [X,N ] = 0 we conclude that

E[Δn
i Nξin|F i−1

n
] = E[Δn

i NΔn
i M |F i−1

n
] = 0.

The result now follows from [32, Thm. IX.7.28]. Moreover, we have a simple
expression for v2l =

∫
h2(y)dy which is evaluated in Lemma 11 below.

It is left to calculate v2l , which is the integrated reduction in variance when
L1(y) is replaced by its conditional mean E[L1(y)|X1]:

Lemma 11. For a standard Brownian motion we have∫
R

E[(g(y,X1)− L1(y))
2
]dy = 2

3 log(1 +
√
2)−

√
2

3
√
π

.
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Proof. Recalling that g(y,X1) = E[L1(y)|X1] we find∫
R

(
E[L2

1(y)]− E[g2(y,X1)]
)
dy = 2

∫ ∞

0

(
E[L2

1(y)]− E[g2(y,X1)]
)
dy.

According to [15, 1.3.4] we calculate∫ ∞

0

E[L2
1(y)]dy =

∫ ∞

0

∫ ∞

0

x2

√
2

π
exp(−(x+ y)2/2)dxdy =

2

3

√
2

π
,

and∫ ∞

0

E[g2(y,X1)]dy =

∫ ∞

0

∫
R

Φ
2
(|z − y|+ y)/ϕ(z)dzdy =

√
2− log(1 +

√
2)√

π
,

where in both cases we first integrate in y > 0. Combine these formulae to get
the result.

B.2. Occupation time

Proof of (17). We may assume that μ = 0 and let X0
t = Xt/σ. Supposing that

the result is true for X0 we get

n
3
4

(
Ôt(x)−Ot(x)

)
= n

3
4

(
Ô0

t (x/σ)−O0
t (x/σ)

)
→ voWL0

t (x/σ)
= voWσLt(x)

and so we assume that X is a standard Brownian motion in the following.
Letting

ξin = n− 1
4

(
G

(√
n(x−X i−1

n
),
√
nΔn

i X
)
− n

∫ i
n

i−1
n

1(x,∞)(Xs)ds

)
and using

(nO1/n(x/
√
n),

√
nX1/n)

d
= (O1(x), X1)

we find that

E[ξ2in|F i−1
n
] = n−1/2h2(

√
n(x−X i−1

n
)),

E[ξinΔ
n
i X|F i−1

n
] = 0,

E[ξ4in|F i−1
n
] = n−1h4(

√
n(x−X i−1

n
)),

where hj(y) = E[G(y,X1)−O1(y)]
j for j = 2, 4.

It is left to prove that hj are bounded and in L1(R) for j = 2, 4. The result
then follows from [30, Thm. 1.1] and [32, Thm. IX.7.28] as for the local time.
It would be sufficient to show the same property for E[(O1(y)− cy)

j ] where cy
is arbitrary, because G(y,X1)− cy is the conditional expectation of O1(y)− cy
given X1. When y ≥ 0 we take cy = 0 and observe that E[O1(y)

j ] ≤ P(τy < 1)
which is bounded and integrable over [0,∞), see the local time case. When
y < 0 we take cy = 1 and observe that E[(1 − O1(y))

j ] ≤ P(τy < 1) and the
same conclusion is true. The proof is complete upon calculation of v2o which is
given in Lemma 12 below.
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Lemma 12. For a standard Brownian motion we have∫
R

E [G(y,X1)−O1(y)]
2
dy =

13
√
2− 15 log(1 +

√
2)

45
√
π

.

Proof. Note that∫
R

E [G(y,X1)−O1(y)]
2
dy = 2

∫ ∞

0

(EO1(y)
2 − EG(y,X1)

2)dy,

because for y < 0 the integrand can be rewritten as E[(1 − O1(y))
2] − E[(1 −

G(y,X1))
2] corresponding to the occupation time in (−∞, y) and its conditional

expectation, and it is left to apply symmetry.
The density of the occupation time O1(y) is given in [15, 1.4.4] and reads as

1

π
√
x(1− x)

exp

(
− y2

2(1− x)

)
, x ∈ (0, 1).

Thus we find
∫ ∞
0

E[O1(y)
2]dy =

√
2

5
√
π
by integrating in y first.

Similar trick works in the calculation of∫ ∞

0

E[G2(y,X1)]dy =

√
2 + 3 log(1 +

√
2)

18
√
π

.

Combination of these expressions yields the result.

B.3. Unknown parameters

Let us define gσ(x, z) =
1
σ g(x/σ, z/σ) together with Gσ(x, z) = G(x/σ, z/σ).

Lemma 13. For any σ0 > 0 there exist constants ε ∈ (0, σ0) and c, a > 0 such
that

sup
σ∈[σ0−ε,σ0+ε]

∣∣∣∣∂gσ(x, z)∂σ

∣∣∣∣ ∨ ∣∣∣∣∂Gσ(x, z)

∂σ

∣∣∣∣ ≤ c exp(a(|z| − |x|))

for all x, z ∈ R.

Proof. Recall that g(x, z) = g(−x,−z), G(x, z) = 1−G(−x,−z) and so we may
assume that x ≥ 0. Furthermore, it is sufficient to establish the stated property
for ∂gσ/∂σ. This is so, because Gσ(x, z) =

∫ ∞
x

gσ(y, z)dy, the derivative ∂gσ/∂σ
is continuous in σ away from 0 and integrable in y ≥ 0. Hence

∂Gσ(x, z)

∂σ
=

∫ ∞

x

∂gσ(y, z)

∂σ
dy ≤ c

∫ ∞

x

exp(−ay)dy exp(a|z|)

and the bound follows.
It is sufficient to establish the bound for x ≥ 0:∣∣∣∣∂g(x/σ, z/σ)∂σ

∣∣∣∣ ≤ c(exp(a(|z| − x)) ∧ 1)
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locally uniformly in σ > 0. This is so, because g(x/σ, z/σ)/σ2 satisfies the
analogous bound, see (33).

Writing x′, z′ for x/σ, z/σ, respectively, we find from Lemma 2 for z ≥ x that

∂g(x/σ, z/σ)/∂σ = z′
ϕ(z′)− z′Φ(z′)

2σϕ(z′)
=: h(z′).

By L’Hôpitale and Mill’s ratio this quantity tends to 0 as z′ → ∞, and thus
this quantity is bounded for all z ≥ x ≥ 0 locally uniformly in σ > 0.

Next, we consider z < x where

∂g(x/σ, z/σ)/∂σ =
(2x′ − z′)ϕ(2x′ − z′)− z′2Φ(2x′ − z′)

2σϕ(z′)

=
2x′(x′ − z′)

σ(2x′ − z′)
exp(−2x′(x′ − z′)) +

z′2

(2x′ − z′)2
h(2x′ − z′) exp(−2x′(x′ − z′)).

Note that 2x′ − z′ > (x′ − z′) ∨ |z′| and so the above terms stay bounded when

2x′ − z′ → 0 implying that x′, z′ → 0. Moreover, z′2/(2x′ − z′)2 is bounded
and so it is left to consider (1 + 2x′(x′ − z′)) exp(−2x′(x′ − z′)) as x′ → ∞.
For x′ > z′ + 1 this is bounded by c exp(−x′) and otherwise by c, which is
sufficient.

Proof of Proposition 2. Observe that

n1/4 sup
t≤T

∣∣∣L̂t(x)− L̃t(x)
∣∣∣

≤ n−1/4

�nT	∑
i=1

∣∣∣gσ(√n(x−X i−1
n
),
√
nΔn

i X)− gσn(
√
n(x−X i−1

n
),
√
nΔn

i X)
∣∣∣ .

According to (18) we may assume that n1/4|σn − σ| < h for an arbitrary h > 0
and all large n. By mean value theorem and Lemma 13 we have an upper bound

n−1/4

�nT	∑
i=1

|σn − σ|g̃(
√
n(x−X i−1

n
),
√
nΔn

i X)

≤ hn−1/2

�nT	∑
i=1

g̃(
√
n(x−X i−1

n
),
√
nΔn

i X),

where g̃(x, z) = c exp(−a|x| + a|z|). But g̃ verifies condition (B-0) in [30] and
thus our upper bound converges to hL in probability, where L is a certain finite
random variable, see [30, Thm. 1.1]. The proof is complete since h > 0 can
be arbitrarily small. The corresponding proof for the occupation time follows
exactly the same arguments.
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Appendix C: On X conditioned to stay positive

Throughout this section we assume that α ∈ (0, 2) and β �= ±1. Let us recall
that (ξ(−t)−)t≥0 is a Feller process and, as usual, we denote its law when started

from x > 0 by P
↑
x((Xt)t≥0 ∈ ·). Such a process can be seen as X conditioned to

stay positive in a certain limiting sense, see [19, 16] for the basic properties of
this process. The law of (ξt)t≥0 is then (−X) conditioned to stay positive, and
the following bound holds without a change.

Proposition 5. There exists a constant c > 0 such that for all x, v > 0 with
x > v we have

P
↑
x( sup

h∈[0,1]

|X1+h −Xh| > v) < cv−α.

The proof will be at the end of this section. Let us note that the restriction
x > v can not be removed in the above bound. We start with a simpler result
where h = 0:

Lemma 14. There exists c > 0 such that for all x > v > 0 we have

P
↑
x(|X1 − x| > v) < cv−α.

Proof. Let ρ = P(X1 < 0) be the negativity parameter. Recall the semigroup of
the conditioned process [16]:

P
↑
x(X1 ∈ dy) =

yαρ

xαρ
Px(X1 ∈ dy,X1 > 0).

Hence

P
↑
x(|X1 − x| > v) =

1

xαρ
Ex[X

αρ
1 ; |X1 − x| > v,X1 > 0]

≤ 1

xαρ
E[(X1 + x)αρ; |X1| > v,X1 > −x]

=
1

xαρ

(∫ ∞

v

(x+ y)αρf(y)dy +

∫ −v

−x

(x+ y)αρf(y)dy

)
.

Recall that f(y) ≤ c|y|−α−1 as y → ±∞, and hence the first integral is upper
bounded by

2αρc

∫ ∞

x

yαρ−α−1dy + (2x)αρc

∫ x

v

y−α−1dy ≤ cxαρv−α

and the second has a similar bound. The result now follows.

The following is an immediate consequence of the Doob’s h-transform repre-
sentation of the kernel; here h(x) = xαρ.

Lemma 15. For any B ∈ F1 it holds that

P
↑
x(B,X1 ∈ dy) = P

↑
x(X1 ∈ dy)Px(B|X1 > 0, X1 = y)
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Proof. For 0 < t1 < · · · < tk < 1 we have

P
↑
x(Xt1 ∈ dx1, . . . , Xtk ∈ dxk, X1 ∈ dy)

=
h(x1)

h(x)
Px(Xt1 ∈ dx1, Xt1

> 0)× · · · × h(y)

h(xk)
Pxk

(X1−tk ∈ dy,X1−tk
> 0)

=
h(y)

h(x)
Px(Xt1 ∈ dx1, . . . , Xtk ∈ dxk, X1 ∈ dy,X1 > 0)

= P
↑
x(X1 ∈ dy)Px(Xt1 ∈ dx1, . . . , Xtk ∈ dxk|X1 = y,X1 > 0)

and the result follows.

Lemma 16. There exists c > 0 such that for all x > v > 0 we have

P
↑
x(X1 − x > v) < cv−α, P

↑
x(x−X1 > v) < cv−α.

Proof. We only show the first statement, since the second follows the same
arguments. According to Lemma 15 we find that

P
↑
x(X1 − x > v) =

∫
P
↑
x(X1 ∈ x+ dy)Px(X1 − x > v|X1 > 0, X1 = x+ y).

We may restrict the integration to the interval [−v/2, v/2] in view of Lemma 14.
Thus it is sufficient to establish that

P(X1 > v|X1 > −x,X1 = y) < cv−α

for all x > v and y ∈ [−v/2, v/2]. But the quantity on the left is upper bounded
by

F (v, y)/P(X1 > −x|X1 = y),

where F (v, y) ≤ cv−α according to Lemma 4; for bounded v the result is obvious.
Finally, observe that P(X1 > −x|X1 = y) is bounded away from 0; here we may
use Lemma 4 applied to the process −X. The proof is complete.

Proof of Proposition 5. Observe that the quantity of interest is upper bounded
by

P
↑
x(X2 − x > v/2 or x−X2 > v/2).

Hence the bound follows from Lemma 16, which also holds for time 2 instead
of 1; use e.g. self-similarity here.
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