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Abstract: We obtain explicit p-Wasserstein distance error bounds be-
tween the distribution of the multi-parameter MLE and the multivari-
ate normal distribution. Our general bounds are given for possibly high-
dimensional, independent and identically distributed random vectors. Our
general bounds are of the optimal O(n−1/2) order. Explicit numerical con-
stants are given when p ∈ (1, 2], and in the case p > 2 the bounds are
explicit up to a constant factor that only depends on p. We apply our
general bounds to derive Wasserstein distance error bounds for the mul-
tivariate normal approximation of the MLE in several settings; these be-
ing single-parameter exponential families, the normal distribution under
canonical parametrisation, and the multivariate normal distribution under
non-canonical parametrisation. In addition, we provide upper bounds with
respect to the bounded Wasserstein distance when the MLE is implicitly
defined.
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1. Introduction

The asymptotic normality of the maximum likelihood estimator (MLE), under
regularity conditions, is one of the most fundamental and well-known results in
statistical theory. However, progress has only been made very recently on the
problem of deriving error bounds for the distance between the distribution of the
MLE, under general regularity conditions, and its limiting normal distribution.
This is in part due to the fact that the MLE is in general a nonlinear statistic
for which classical techniques for distributional approximation, such as Stein’s
method [41], are difficult to apply directly, although, amongst other works, [12]
and [35] have obtained optimal order Berry-Esseen-type bounds for quite broad
classes of nonlinear statistics.

In recent years, however, there have been a number of contributions to the
problem of quantifying the closeness of the MLE to its asymptotic normal distri-
bution. Under general regularity conditions, [4] used Stein’s method to obtain an
explicit O(n−1/2) bound, where n is the sample size, between the distribution of
the single-parameter MLE and the normal distribution in the bounded Wasser-
stein metric (this and all other probability metrics mentioned in this paper will
be defined in Section 2.2). In the special case that the MLE can be expressed as
a suitably smooth function of a sum of independent and identically distributed
(i.i.d.) observations, [3] obtained bounds that sharpen and simplify those of [4].
The results of [4] were extended by [1] to quantify the closeness between the
multi-parameter MLE and its limiting multivariate normal distribution. How-
ever, the added technical difficulties of multivariate normal approximation by
Stein’s method meant that these bounds were given in a smooth test function
metric (we also define this metric in Section 2.2) that is weaker than the bounded
Wasserstein metric. Under the requirement that the statistic of interest can be
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expressed as a sum of independent random elements, [35] used the delta method
to establish uniform and non-uniform Kolmogorov distance bounds on the rate
of convergence to normality for various statistics, including the single-parameter
MLE. The bounds obtained were of the optimal O(n−1/2) order. The recent pa-
per [34] subsequently extended the results of [35] to cover general regularity
conditions and settings in which the MLE is not necessarily a function of the
sum of independent random terms. The nonuniform bounds of [34] are the only
such bounds in the literature for the normal approximation of the MLE.

In this paper, we obtain, under general regularity conditions, optimal or-
der O(n−1/2) bounds on the distance between the distribution of the multi-
parameter MLE and its limiting multivariate normal distribution, with respect
to the p-Wasserstein metric. A general 1-Wasserstein distance bound appears
in Theorem 4, and a simpler bound for the single-parameter MLE is given in
Theorem 5. We provide p-Wasserstein distance analogues of these bounds in
Theorem 6. These results are a technical advancement over the works of [4] and
[1], because the 1-Wasserstein metric is a strictly stronger metric than those
used in these works, and the p-Wasserstein metric (p ≥ 1) is a stronger metric
still (provided it is well-defined for the probability distributions under consider-
ation). Moreover, Wasserstein distances are natural and widely used probability
metrics that have many applications in statistics (see [32]). Our bounds also
remove an additional constant ε that appears in the bounds of [4] and [1], and
further comparisons between our bounds are given in Remark 3.2. In obtaining
our bounds, we use Stein’s method and in particular make use of the very recent
advances in the literature on optimal (or near-optimal) order Wasserstein dis-
tance bounds for the multivariate normal approximation of sums of independent
random vectors; see the recent works [9, 13, 17, 18, 19, 36, 44] for important con-
tributions to this body of research. Our results to some extent complement this
literature by giving optimal order Wasserstein distance bounds for multivari-
ate normal approximation in the much more general setting of the MLE under
general regularity conditions, which is in general a nonlinear statistic. In fact,
to the best of our knowledge, this paper contains the first examples of optimal
order Wasserstein distance bounds for the multivariate normal approximation
of nonlinear statistics.

The work of [34] is significant in that the bounds are given in the Kolmogorov
metric, which is a technically demanding metric to work in when applying Stein’s
method, and is particularly important in statistics, as bounds in this metric can
be used, for example, to construct conservative confidence intervals. It should be
noted, however, that, as already mentioned, Wasserstein distances have many
applications in statistics [32], and, as observed by [6], the Wasserstein distance
between probability distributions has the theoretically desirable property of tak-
ing into account not only the amounts by which their probabilities differ, as is
the case in the Kolmogorov distance, but also where these differences take place.
For the single-parameter case, our results complement those of [34] by giving
bounds in another important probability metric, and have the advantage of be-
ing explicit, whilst those of [34] are (in the case of uniform bounds) of the form
Cn−1/2, where C is an unspecified constant that does not involve n. For the
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multi-parameter MLE, one can extract explicit sub-optimal order O(n−1/4) Kol-
mogorov distance bounds for the multivariate normal approximation from our
1-Wasserstein distance bounds (see inequality (2.14)). It should be noted that
a similar procedure can be used to extract Kolmogorov distance bounds from
those of [1], although, as a consequence of the weaker metric used in that work,
these are of the worse order O

(
n−1/8

)
(see Remark 2.2). For the time being,

to the best of our knowledge, the O(n−1/4) Kolmogorov distance bounds for
the multi-parameter MLE that can be deduced from our Wasserstein distance
bounds have the best dependence on n in the current literature.

The rest of the paper is organised as follows. In Section 2, we present the
setting of the paper. This includes the notation, regularity conditions for our
main results, definitions of the probability metrics used in the paper and a rela-
tionship between the 1-Wasserstein and Kolmogorov metrics, and we also recall
some results from the literature on Stein’s method for normal and multivariate
normal approximation. In Section 3, we state and prove our main results. The-
orem 4 provides an optimal order Wasserstein distance bound on the closeness
between the distribution of the multi-parameter MLE and its limiting multivari-
ate normal distribution. We also present a simplified bound in the univariate
case (Theorem 5). Theorem 6 provides p-Wasserstein distance analogues of the
bounds of Theorems 4 and 5. In Section 4, we apply the results of Section 3 in
the settings of single-parameter exponential families, the normal distribution un-
der canonical parametrisation, and the multivariate normal distribution under
non-canonical parametrisation. In addition, we provide upper bounds for cases
where the MLE cannot be expressed analytically with respect to the bounded
Wasserstein distance. In Section 4.5, we carry out a simulation study to assess
the accuracy of our bounds. Some technical proofs, examples, and calculations
are postponed to Appendix A.

2. Setting

2.1. Regularity conditions

The notation that is used throughout the paper is as follows. The parameter
space is Θ ⊂ R

d equipped with the Euclidean norm. Let θ = (θ1, θ2, . . . , θd)
ᵀ

denote a parameter from the parameter space, while θ0 = (θ0,1, θ0,2, . . . , θ0,d)
ᵀ

denotes the true, but unknown, value of the parameter. For X = (X1,X2, . . . ,
Xn) being i.i.d. random vectors in R

t, t ∈ Z
+, we denote by f(xi|θ) the proba-

bility density (or mass) function of Xi. The likelihood function is L(θ;x) =∏n
i=1 f(xi|θ), where x = (x1,x2, . . . ,xn). Its natural logarithm, called the

log-likelihood function, is denoted by �(θ;x) = logL(θ;x). We shall write
∇ =

(
∂

∂θ1
, . . . , ∂

∂θd

)ᵀ
to denote the gradient operator with respect to the un-

known parameter vector θ. A maximum likelihood estimate (not seen as a ran-
dom vector) is a value in the parameter space which maximises the likelihood
function. For many models, the MLE as a random vector exists and is also
unique, in which case it is denoted by θ̂n(X), the MLE for θ0 based on the
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sample X. A set of assumptions that ensure existence and uniqueness of the
MLE are given in [27]. This is known as the ‘regular’ case. However, existence
and uniqueness of the MLE cannot be taken for granted; see [8] for an example
of non-uniqueness. We shall write E to denote the expectation with respect to
θ0, and Eθ to denote the expectation with respect to θ.

Let us now present standard regularity conditions under which asymptotic
normality of the MLE holds [14]:

(R.C.1) The densities defined by any two different values of θ are distinct.
(R.C.2) For all θ ∈ Θ, Eθ [∇ (� (θ;X))] = 0.
(R.C.3) The expected Fisher information matrix for a single random vector

I(θ) is finite and positive definite. For r, s ∈ {1, 2, . . . , d}, its elements
satisfy

n[I(θ)]rs = Eθ

[
∂

∂θr
�(θ;X)

∂

∂θs
�(θ;X)

]
= Eθ

[
− ∂2

∂θr∂θs
�(θ;X)

]
.

This condition implies that nI(θ) is the covariance matrix of ∇(�(θ;
X)).

(R.C.4) For any θ0 ∈ Θ and for X denoting the support of the data, there exists
ε0 > 0 and functions Mrst(x) (they can depend on θ0), such that for
θ = (θ1, θ2, . . . , θd) and r, s, t,∈ {1, 2, . . . , d}, the third order partial

derivatives ∂3

∂θr∂θs∂θt
�(θ;x) exist almost surely in the neighbourhood

|θj − θ0,j | < ε0, j = 1, 2, . . . , d, and satisfy∣∣∣∣ ∂3

∂θr∂θs∂θt
�(θ;x)

∣∣∣∣ ≤ Mrst(x), ∀x ∈ X, |θj − θ0,j | < ε0, j = 1, . . . , d,

with E[Mrst(X)] < ∞.

In addition to these regularity conditions, [14] assumes that the true value θ0

of θ is interior to the parameter space Θ ⊂ R
d, which is compact. Throughout

this paper, we shall instead assume that the parameter space Θ ⊂ R
d is open.

Conditions (R.C.1), (R.C.3) and (R.C.4) are stated explicitly on page 118 of
[14]. We have expressed (R.C.4) slightly differently to how it is stated in [14], so
that our presentation is consistent with that from the book [10] and a similar
regularity condition (R.C.4’) of [1], which are both referred to in our paper.
Condition (R.C.2) is not stated on page 118 of [14], but is crucial to the proof
and is implied by equation (4.32) on page 124 of [14] in which an interchange
in the order of integration and differentiation is assumed.

The asymptotic normality of the MLE was first discussed by [16]. Here,
with the above regularity conditions, we present the following statement of the
asymptotic normality of the multi-parameter MLE for i.i.d. random vectors; for
the independent but not necessarily identically distributed case see [22].

Theorem 1 (Davison [14]). Let X1,X2, . . . ,Xn be i.i.d. random vectors with
probability density (or mass) functions f(xi|θ), where θ ∈ Θ ⊂ R

d, and Θ

is compact. Assume that the MLE θ̂n(X) exists and is unique and that the
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regularity conditions (R.C.1)–(R.C.4) hold. Let Z ∼ MVN(0, Id), where 0 is
the d× 1 zero vector and Id is the d× d identity matrix. Then

√
n [I(θ0)]

1/2 (
θ̂n(X)− θ0

) d−−−−→
n→∞

Z.

A quantitative version of Theorem 1 was obtained by [1] (in the i.i.d. setting)
under slightly stronger regularity conditions, these being (R.C.1)–(R.C.3) and
the following condition (R.C.4’). Before presenting this condition, we introduce
some notation. Let the subscript (m) ∈ {1, . . . , d} denote an index for which

the quantity |θ̂n(x)(m) − θ0,(m)| is the largest among the d components:

(m) is such that |θ̂n(x)(m) − θ0,(m)| ≥ |θ̂n(x)j − θ0,j |, ∀j ∈ {1, . . . , d} .

Let

Q(m) = Q(m)(X,θ0) := θ̂n(X)(m) − θ0,(m). (2.1)

(R.C.4’) The log-likelihood �(θ;x) is three times differentiable with respect to
the unknown vector parameter θ and the third order partial deriva-
tives are continuous in θ. In addition, for any θ0 ∈ Θ there ex-
ists 0 < ε = ε(θ0) and functions Mkjl(x), ∀k, j, l ∈ {1, 2, . . . , d},
such that

∣∣ ∂3

∂θk∂θj∂θl
�(θ,x)

∣∣ ≤ Mkjl(x) for all θ ∈ Θ with |θj − θ0,j | <
ε, ∀j ∈ {1, 2, . . . , d}. Also, for Q(m) as in (2.1), assume that

E[(Mkjl(X))
2 | |Q(m)| < ε] < ∞.

In Theorems 4 and 6, we shall work with the same regularity conditions as [1],
but with (R.C.4’) replaced by the following condition (R.C.4”(p)). Before stating
condition (R.C.4”(p)), we introduce some terminology. We say that M(θ;x) is
monotonic in the multivariate context if for all fixed θ̃1, θ̃2, . . . , θ̃d and x we have
that, for each s ∈ {1, 2, . . . , d},

θs → M(θ̃1, θ̃2, . . . , θ̃s−1, θs, θ̃s+1, . . . , θ̃d;x) (2.2)

is a monotonic function.

(R.C.4”(p)) All third order partial derivatives of the log-likelihood �(θ;x) with
respect to the unknown vector parameter θ exist. Also, for any
θ ∈ Θ and for X denoting the support of the data, we assume
that for any j, l, q ∈ {1, 2, . . . , d} there exists a functionMqlj(θ;x),
which is monotonic in the sense defined in (2.2), such that∣∣∣∣ ∂3

∂θq∂θl∂θj
�(θ;x)

∣∣∣∣ ≤ Mqlj(θ;x), ∀x ∈ X,

and

max
θ̃m∈{θ̂n(X)m,θ0,m}

m∈{1,2,...,d}

E
[∣∣(θ̂n(X)l − θ0,l)(θ̂n(X)q − θ0,q)×
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×Mqlj(θ̃;X)
∣∣p] < ∞. (2.3)

In the univariate d = 1 case we drop the subscripts and write
M(θ;x).

We include reference to the variable p in the name of our condition (R.C.4”(p))
to emphasis the fact that the integrability condition (2.3) depends on p, the order
of the Wasserstein distance under consideration. In the case p = 1, correspond-
ing to the classical 1-Wasserstein distance, we shall simply write (R.C.4”).

Remark 2.1. For brevity, in this remark we discuss the condition (R.C.4”); sim-
ilar comments apply to the more general condition (R.C.4”(p)). The motivation
for introducing (R.C.4”) is that in the proof of Theorem 4 it allows us to bound
one of the remainder terms in the 1-Wasserstein metric, which would not be pos-
sible if instead working with (R.C.4) or (R.C.4’). Conditions (R.C.4), (R.C.4’)
and (R.C.4”) each require all third order partial derivatives of �(θ;x) to exist.
Each condition then also involves an integrability condition involving a function
that dominates the absolute value of these partial derivatives in a certain way.
For a given MLE, verifying the integrability conditions in (R.C.4’) and (R.C.4”)
each have extra difficulty compared to (R.C.4): (R.C.4’) involves a conditional
expectation, whilst for (R.C.4”) the expectations in (2.3) involve the MLE. In
Section 4, we give some examples in which the MLE takes a relatively simple
form, for which the verification of (R.C.4”) follows from elementary calculations,
and is simpler to work with than the integrability condition involving condi-
tional expectations in (R.C.4’). For complicated MLEs it inevitably becomes
more involved to verify (R.C.4”). In Appendix A.1, we give an illustration of
how (R.C.4”) can be verified for more complicated MLEs using the example of
the inverse gamma distribution. A comparison between (R.C.4’) and (R.C.4”) in
the context of obtaining error bounds for the distance between the distribution
of the MLE and the multivariate normal distribution is given in Remark 3.2.

In the case of univariate i.i.d. random variables we work with (R.C.4”) and
the following simpler regularity conditions:

(R1) The densities defined by any two different values of θ are distinct.
(R2) The density f(x|θ) is three times differentiable with respect to θ, the third

derivative is continuous in θ, and
∫
f(x|θ) dx can be differentiated three

times under the integral sign.
(R3) i(θ0) = 0, where i(θ) is the expected Fisher information for one random

variable.

These regularity conditions are the same as those used in [10] and [4] with
the exception that (R.C.4”) is replaced by a univariate version of (R.C.4) and
(R.C.4’), respectively.

2.2. Probability metrics

Let X and Y be R
d-valued random vectors. Fix p ≥ 1 and suppose that

E[|X|p] < ∞ and E[|Y |p] < ∞, where | · | denotes the usual Euclidean norm.
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Then the p-Wasserstein distance between the distributions of X and Y is de-
fined by

dWp(X,Y ) =
(
inf E[|X ′ − Y ′|p]

)1/p
, (2.4)

where the infimum is taken over all joint distributions of X ′ and Y ′ that have
the same law as X and Y , respectively. In the case p = 1, corresponding to the
1-Wasserstein distance, we shall drop the subscript 1 and write dW. The infimum
in (2.4) is actually a minimum in that there exists a pair of jointly distributed
random variables (X∗,Y ∗) with L(X∗) = L(X) and L(Y ∗) = L(Y ) such that

dWp(X,Y ) =
(
E[|X∗ − Y ∗|p]

)1/p
(see Chapter 6 of [42] and Lemma 1 of [28]). By Hölder’s inequality, it follows
that, if 1 ≤ p < q, then

dWp(X,Y ) ≤ dWq (X,Y ) (2.5)

for all X and Y such that E[|X|q] < ∞ and E[|Y |q] < ∞ (see again Chapter 6
of [42] and Lemma 1 of [28]).

The 1-Wasserstein metric and several other probability metrics used in this
paper can be conveniently expressed as integral probability metrics. For R

d-
valued random vectors X and Y , integral probability metrics are of the form

dH(X,Y ) := sup
h∈H

|E[h(X)]− E[h(Y )]| (2.6)

for some class of functions H. At this stage, we introduce some notation. For
vectors a = (a1, . . . , ad) ∈ R

d and b = (b1, . . . , bd) ∈ R
d, we write a ≤ b

provided ai ≤ bi for i = 1, . . . , d. For a three times differentiable function
h : Rd → R (denoted by h ∈ C3

b (R
d)), we abbreviate |h|1 := maxi

∥∥ ∂
∂xi

h
∥∥, |h|2 :=

maxi,j
∥∥ ∂2

∂xi∂xj
h
∥∥ and |h|3 := maxi,j,k

∥∥ ∂3

∂xi∂xj∂xk
h
∥∥, provided these quantities

are finite. Here (and elsewhere) ‖ ·‖ := ‖ ·‖∞ denotes the usual supremum norm
of a real-valued function. For a Lipschitz function h : Rd → R we denote

‖h‖Lip = sup
x�=y

|h(x)− h(y)|
|x− y| .

With this notation in place, taking

HK = {1(· ≤ z) | z ∈ R
d}, (2.7)

HW = {h : Rd → R |h is Lipschitz, ‖h‖Lip ≤ 1}, (2.8)

HbW = {h : Rd → R |h is Lipschitz, ‖h‖ ≤ 1 and ‖h‖Lip ≤ 1}, (2.9)

H1,2 = {h : Rd → R |h ∈ C2(Rd) with |h|j ≤ 1, j = 1, 2}, (2.10)

H0,1,2,3 = {h : Rd → R |h ∈ C3(Rd) with ‖h‖ ≤ 1 and |h|j ≤ 1, j = 1, 2, 3}
(2.11)

in (2.6) gives the Kolmogorov, 1-Wasserstein and bounded Wasserstein dis-
tances, which we denote by dK, dW and dbW, respectively, as well as smooth test
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function metrics, which we denote by d1,2 and d0,1,2,3. In all the above notation,
we supress the dependence on the dimension d. Of the works mentioned in the
Introduction, the results of [34] are given in the Kolmogorov metric, [3] and
[4] work in the bounded Wasserstein metric, and [1] works in the smooth test
function d0,1,2,3 metric. It is evident that dbW and d0,1,2,3 are weaker than the
dW metric.

We now note the following important relations between the Kolmogorov met-
ric and the 1-Wasserstein and bounded Wasserstein metrics, respectively. Let Y
be any real-valued random variable and Z ∼ N(0, 1). Then by [40, Proposition
1.2] (see also [11, Theorem 3.3]) and [33, Proposition 2.4], we have that

dK(Y, Z) ≤
(
2

π

)1/4√
dW(Y, Z), (2.12)

dK(Y, Z) ≤
(
1 +

1

2
√
2π

)√
dbW(Y, Z). (2.13)

These bounds in terms of dW(Y, Z) and dbW(Y, Z), respectively, are best pos-
sible up to a constant factor [35, p. 1026]. Hence, our forthcoming O(n−1/2)
1-Wasserstein distance bounds for the asymptotic normality of the single-para-
meter MLE and O(n−1/2) bounded Wasserstein distance bounds both yield
O(n−1/4) Kolmogorov distance bounds via (2.12) and (2.13), respectively. As
dW ≤ dWp for p > 1, bounds given with respect to the p-Wasserstein distance
similarly imply such bounds.

For the multi-parameter case, the following generalisation of (2.12) due to
[25] is available. Let Z ∼ MVN(0, Id), d ≥ 1. Then, for any R

d-valued random
vector Y ,

dK(Y ,Z) ≤
√

2(
√
2 log d+ 2)

√
dW(Y ,Z). (2.14)

A similar bound with the slightly bigger multiplicative constant of 3(log(d +
1))1/4 had previously been obtained by [5]. For an analogous relationship be-
tween the 1-Wasserstein and convex distances in R

d see [30].

Remark 2.2. In the univariate case, the same argument to that used in the proof
of Corollary 4.2 of [20] can be used to show that there exists a universal constant

C (which can be found explicitly) such that dK(Y, Z) ≤ C
(
d0,1,2,3(Y, Z)

)1/4
.

Using the approach of [5] with a multivariate analogue of the smoothing function

of [20] would also lead to a bound of the form dK(Y ,Z) ≤ C
(
d0,1,2,3(Y ,Z)

)1/4
,

for d ≥ 1. Consequently, the O(n−1/2) bounds in the d0,1,2,3 metric of [1] for
the multivariate normal approximation of the multi-parameter MLE only yield
O(n−1/8) bounds in the Kolmogorov metric, whilst our O(n−1/2) 1-Wasserstein
distance bounds lead to O(n−1/4) Kolmogorov distance bounds.

2.3. Wasserstein distance bounds by Stein’s method

Optimal order O(n−1/2) 1-Wasserstein distance bounds for the normal approxi-
mation of sums of independent random variables via Stein’s method date as far
back as [15]. We shall make use of the following result.
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Theorem 2 (Reinert [38]). Let ξ1, . . . , ξn be i.i.d. random variables with E[ξ1] =
0, Var(ξ1) = 1 and E[|ξ1|3] < ∞. Denote W = 1√

n

∑n
i=1 ξi and let Z ∼ N(0, 1).

Then

dW(W,Z) ≤ 1√
n

(
2 + E[|ξ1|3]

)
.

Only very recently have optimal order Wasserstein distance bounds been
obtained for multivariate normal approximation of independent random vectors.
There has been quite a lot of activity on this topic over the last few years,
and amongst the bounds from this literature we use a bound of [9] given in
Theorem 3 below. This is on account of the weak conditions, simplicity, and
good dependence on the dimension d that is sufficient for our purposes. It should
be noted, however, that there are bounds in the literature that have a better
dependence on the dimension d; see, for example, [13], in which, in the case of
the 2-Wasserstein distance, the fourth moment condition of [9] is replaced by
a Poincaré inequality condition. If we were to use such a bound with improved
dependence on d in the derivation of our general bounds of Theorems 4 and 6, it
would, however, make no difference to the overall dependence of the bound on
the dimension d. We also note that in the univariate case, optimal order n−1/2 p-
Wasserstein distance bounds have been obtained for the normal approximation
of sums of independent random variables without the use of Stein’s method; see
[39] and references therein.

The bound (2.16) below is not stated in [9], but is easily obtained from the
bound (2.15) (which is given in [9]) by an application of Hölder’s inequality.
The bound (2.18) is also not stated in [9], but is again easily obtained from the
bound (2.17) (which is given in [9]) by this time applying the basic inequality(∑d

j=1 aj
)r ≤ dr−1

∑d
j=1 a

r
j , where a1, . . . , ad ≥ 0 and r ≥ 2.

For a d×d matrix A, let ‖A‖F =
√∑d

i=1

∑d
j=1 |ai,j |2 be the Frobenius norm.

Theorem 3 (Bonis [9]). Let ξ1, . . . , ξn be i.i.d. random vectors in Rd with
E[ξ1] = 0 and E[ξ1ξ

ᵀ
1 ] = Id. Let W = 1√

n

∑n
i=1 ξi and let Z ∼ MVN(0, Id).

Suppose that E[|ξ1|4] < ∞. Then

dW2(W ,Z) ≤ 14d1/4√
n

√
‖E[ξ1ξᵀ1 |ξ1|2]‖F (2.15)

≤ 14d5/4√
n

max1≤j≤d

√
E[ξ41,j ], (2.16)

where ξ1,j is the j-th component of ξ1.
Suppose now that E[|ξ1|p+2] < ∞ for p ≥ 2. Then there exists a constant

Cp > 0 depending only on p such that

dWp(W ,Z) ≤ Cp√
n

(√
‖E[ξ1ξᵀ1 |ξ1|2]‖F +

(
E[|ξ1|p+2]

)1/p)
(2.17)

≤ Cp√
n

(
d5/4max1≤j≤d

√
E[ξ41,j ] + d1/2+1/pmax1≤j≤d

(
E[|ξ1,j |p+2]

)1/p)
. (2.18)
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3. Main results and proofs

For ease of presentation, let us now introduce the following notation:

W =
√
n[I(θ0)]

1/2
(
θ̂n(X)− θ0

)
,

Qj = Qj(X,θ0) := θ̂n(X)j − θ0,j , j ∈ {1, 2, . . . , d} ,

Tlj = Tlj (θ0,X) =
∂2

∂θl∂θj
�(θ0;X) + n[I(θ0)]lj , j, l ∈ {1, 2, . . . , d} ,

Ṽ = Ṽ (n,θ0) := [I(θ0)]
−1/2

,

ξij =

d∑
k=1

Ṽjk
∂

∂θk
log(f(Xi|θ0)), i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , d} .

(3.19)

Notice that, using condition (R.C.3), E [Tlj ] = 0 for all j, l ∈ {1, 2, . . . , d}.
A general 1-Wasserstein distance error bound for the multivariate normal

approximation of the multi-parameter MLE is given in the following theorem.

Theorem 4. Let X = (X1,X2, . . . ,Xn) be i.i.d. Rt-valued, t ∈ Z
+, random

vectors with probability density (or mass) function f(xi|θ), for which the true
parameter value is θ0 and the parameter space Θ is an open subset of Rd. Assume
that the MLE exists and is unique and that (R.C.1)–(R.C.3), (R.C.4”) are sat-
isfied. In addition, for Ṽ as in (3.19), assume that E[|Ṽ∇ (log (f(X1|θ0))) |4] <
∞, where ∇ =

(
∂

∂θ1
, . . . , ∂

∂θd

)ᵀ
. Also, assume that E[Q2

l ] < ∞ for all l ∈
{1, 2, . . . , d} and E[T 2

lj ] < ∞ for all j, l ∈ {1, 2, . . . , d}. Then

dW(W ,Z) ≤ 1√
n

(
K1(θ0) +K2(θ0) +K3(θ0)

)
, (3.20)

where

K1(θ0) = 14d5/4 max
1≤j≤d

√
E[ξ41,j ],

K2(θ0) =
d∑

k=1

d∑
j=1

|Ṽkj |
d∑

l=1

√
E[Q2

l ]
√

E[T 2
lj ],

K3(θ0) =
1

2

d∑
k=1

d∑
j=1

|Ṽkj |
d∑

l=1

d∑
q=1

∑
θ̃m∈{θ̂n(X)m,θ0,m}

m∈{1,2,...,d}

E
∣∣QlQqMqlj(θ̃;X)

∣∣. (3.21)

The following theorem is a simplification of Theorem 4 for the single-para-
meter MLE.

Theorem 5. Let X = (X1, X2, . . . , Xn) be i.i.d. random variables with proba-
bility density (or mass) function f(xi|θ), for which the true parameter value is
θ0 and the parameter space Θ is an open subset of R. Assume that the regularity
conditions (R1)–(R3), (R.C.4”) are satisfied and that the MLE, θ̂n(X), exists
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and is unique. Assume that E
[ ∣∣ d

dθ logf(X1|θ0)
∣∣3 ] < ∞, Var

(
d2

dθ2 log f(X1|θ0)
)
<

∞ and E[(θ̂n(X)− θ0)
2] < ∞. Let Z ∼ N(0, 1). Then

dW(W,Z) ≤ 1√
n

{
2 +

1

[i(θ0)]3/2
E

[∣∣∣∣ ddθ logf(X1|θ0)
∣∣∣∣3]

+
1√
i(θ0)

√
nVar

(
d2

dθ2
log f(X1|θ0)

)√
E
[
(θ̂n(X)− θ0)2

]
+

1

2
√
i(θ0)

(
E
∣∣(θ̂n(X)− θ0)

2M(θ0;X)
∣∣

+ E
∣∣(θ̂n(X)− θ0)

2M(θ̂n(X);X)
∣∣)}. (3.22)

p-Wasserstein distance analogues of the bounds of the above two theorems
are given in the following theorem.

Theorem 6. Let p ≥ 2. Let X = (X1,X2, . . . ,Xn) be i.i.d. Rt-valued, t ∈
Z
+, random vectors with probability density (or mass) function f(xi|θ), for

which the true parameter value is θ0 and the parameter space Θ is an open
subset of R

d. Assume that the MLE exists and is unique and that (R.C.1)–
(R.C.3), (R.C.4”(p)) are satisfied. In addition, for Ṽ as in (3.19), assume that
E[|Ṽ∇ (log (f(X1|θ0))) |p+2] < ∞. Also, assume that E[|Ql|2p] < ∞ for all
l ∈ {1, 2, . . . , d} and E[|Tlj |2p] < ∞ for all j, l ∈ {1, 2, . . . , d}. Then

dWp(W ,Z) ≤ 1√
n

(
K1,p(θ0) +K2,p(θ0) +K3,p(θ0)

)
, (3.23)

where

K1,p(θ0) = Cp

(
d5/4 max

1≤j≤d

√
E[ξ41,j ] + d1/2+1/p

(
E[|ξ1,j |p+2]

)1/p)
,

K2,p(θ0) = d3−3/p

(
d∑

k=1

d∑
j=1

|Ṽkj |p
d∑

l=1

√
E[|Ql|2p]

√
E[|Tlj |2p]

)1/p

,

K3,p(θ0) =
d4−4/p

2

(
d∑

k=1

d∑
j=1

d∑
l=1

d∑
q=1

∑
θ̃m∈{θ̂n(X)m,θ0,m}

m∈{1,2,...,d}

|Ṽkj |p×

× E
[∣∣QlQqMqlj(θ̃;X)

∣∣p])1/p

, (3.24)

and Cp > 0 is a constant depending only on p.
In the case p = 2, we have the following simpler bound with an explicit

constant:

dW2(W ,Z) ≤ 1√
n

(
K1(θ0) +K2,2(θ0) +K3,2(θ0)

)
, (3.25)

where K1(θ0) is defined as in Theorem 4.
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Remark 3.1. (1) Let us demonstrate that the bound (3.20) of Theorem 4 is
of the optimal order O(n−1/2); similar considerations show that the bounds of
Theorems 5 and 6 are O(n−1/2). Firstly, we have that for all j = 1, 2, . . . , d,
E[ξ41,j ] = O(1), and therefore K1(θ0) = O(1). Here and throughout the paper,
O(1) is understood as smaller than a constant which does not depend on n,
but may depend on the dimension d. Assuming that [I(θ0)]

−1 = O(1), we have
that E[Q2

l ] = O(n−1) for all l = 1, 2, . . . , d. To see this, note that because W
is asymptotically standard multivariate normally distributed, it follows that, as
n → ∞,

Cov(W ) = [I(θ0)]
1/2Cov(θ̂n(X))[I(θ0)]

1/2 → Id,

and therefore Cov(θ̂n(X)) → 1
n [I(θ0)]

−1, as n → ∞, from which we read off
that E[Q2

l ] = O(n−1) for all l = 1, 2, . . . , d. Also, using condition (R.C.3) and
that X1,X2, . . . ,Xn are independent we have that

E[T 2
lj ] =

n∑
i=1

Var

(
∂2

∂θl∂θj
log(f(Xi|θ0))

)
= O(n).

Therefore K2(θ0) = O(1). Since �(θ;x) =
∑n

i=1 log(f(xi|θ)), we have that
∂3

∂θq∂θl∂θj
�(θ;x) = O(n) and therefore Mqlj(θ;x) = O(n). As we also have that

E[Q2
l ] = O(n−1) (and so E|QlQq| = O(n−1) by the Cauchy-Schwarz inequal-

ity) it seems intuitive that E|QlQqMqlj(θ̃;X)| = O(1). However, this cannot

be guaranteed because Mqlj(θ̃;X) is random. If we additionally assume that
E[Q4

l ] < ∞ for all l = 1, 2, . . . , d and

maxθ̃m∈{θ̂n(X)m,θ0,m}
m∈{1,2,...,d}

E[(Mqlj(θ̃;X))2] < ∞

for all j, l, q ∈ {1, 2, . . . , d} then we are guaranteed that E|QlQqMqlj(θ̃;X)| =
O(1), meaning that K3(θ0) = O(1). This is because Mqlj(θ;x) = O(n), and
E[Q4

l ] = O(n−2) for all l = 1, 2, . . . , d, provided [I(θ0)]
−1 = O(1). To see this,

note that, by the asymptotic normality of the MLE, we have that, for all l =

1, 2, . . . , d, θ̂n(X)l−θ0,l
d→ N(0, 1

nI∗), as n → ∞, where I∗ =
∑d

j=1([I(θ0)]
−1)lj .

Hence, E[Q4
l ] = E[(θ̂n(X)l − θ0,l)

4] → 3
n2 I

2
∗ , as n → ∞. Here we used that, for

Y ∼ N(0, σ2), E[Y 4] = 3σ4. Two applications of the Cauchy-Schwarz inequality
then give

E
∣∣QlQqMqlj(θ̃;X)

∣∣ ≤ (E[Q4
l ]E[Q

4
q]
)1/4(

E[(Mqlj(θ̃;X))2]
)1/2

= O(1).

Since K1(θ0), K2(θ0) and K3(θ0) are all O(1) as n → ∞, it follows that the
bound in Theorem 4 is O(n−1/2).

(2) In general �(θ;x) and log(f(xi|θ0)) will depend on the dimension d (and
therefore so will Ṽkj and Mqlj(θ;x), for example), and therefore it is difficult to
make precise general statements regarding the dependence of the bound (3.20)
of Theorem 4 on the dimension d. However, it is clear that the term K3(θ0) has
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a very poor dependence on the dimension d. Assuming that Mqlj(θ;x) = O(1)

and Ṽkj = O(1), we have that K3(θ0) = O(d42d).

This poor dependence on the dimension is a consequence of the crude in-
equality (3.32) used in the proof of Theorem 4 below, which we now state:

E |QlQqMqlj(θ
∗
0;X)| ≤

∑
θ̃m∈{θ̂n(x)m,θ0,m}

m∈{1,2,...,d}

E
∣∣QlQqMqlj(θ̃;X)

∣∣, (3.26)

where θ∗
0 = (θ∗0,1, θ

∗
0,2, . . . , θ

∗
0,d)

ᵀ, and θ∗0,j := θ∗0,j(x) = αjθ0,j + (1 − αj)θ̂(x)j ,
αj ∈ (0, 1), j = 1, 2, . . . , d. (We also introduce the monotonicity assump-
tion on Mqlj to obtain inequality (3.32).) Inequality (3.26) is useful in that
the expectations in the sum are easier to bound directly than the quantity
E|QlQqMqlj(θ

∗
0;X)|, but this comes at the cost of having a sum with 2d terms,

resulting in a poor dependence on the dimension d. However, as is demonstrated
in the examples of Section 4, when the number of dimensions is low, inequality
(3.26) (which leads to the term K3(θ0)) is very useful as the computation of the
expectations in the sum are often straightforward.

Remark 3.2. Theorem 2.1 of [4] gives a bounded Wasserstein bound on the
distance between the distribution of the single-parameter MLE and the normal
distribution, and Theorem 2.1 of [1] gives a bound on the distance between the
distribution of multi-parameter MLE and the multivariate normal distribution
with respect to the d0,1,2,3 metric. Both bounds are of the optimal O(n−1/2)
order. We now give further comparisons between our bounds and those of [4]
and [1].

Theorem 2.1 of [4] holds under the same regularity conditions as our Theorem
4, but with condition (R.C.4’) instead of (R.C.4”) Condition (R.C.4’) introduces
a constant ε. This causes two complications in the bound of [4]. Firstly, some ad-
ditional conditional expectations (which involve ε) must be estimated; secondly,
ε appears in other terms in the bound and so in applications of the bound ε
must later be optimised. Our bound (3.22) has no such complications and in
most applications we would expect that the expectations that must be esti-
mated in our bound are easier to work with than those of [4], and ultimately
lead to better bounds (even when given in a stronger metric). Indeed, in Section
4.1 we apply Theorem 4 to derive 1-Wasserstein distance bounds for the nor-
mal approximation of the MLE of the exponential distribution in the canonical
and non-canonical parametrisations, and we find that in both cases our bounds
outperform those that were obtained by [4].

Theorem 2.1 of [1] also holds under the same regularity conditions as our
Theorem 4, but with condition (R.C.4’) instead of (R.C.4”). The bound of [1]
therefore has similar complications to the bound of [4], and overall the bound
of [1] takes a more complicated form than our bound (3.20) in Theorem 4.
For small dimension d, we would therefore expect our bound to be preferable
to that of [1] and lead to better bounds in applications. However, as noted in
Remark 3.1, the term K3(θ0) of bound (3.20) has a very poor dependence on
the dimension d; much worse than the bound of [1]. In applications in which the
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dependence on the dimension is more important than the choice of metric, the
bound of [1] may therefore be preferable to our bound (3.20).

Proof of Theorem 4. By the triangle inequality we have that

dW(W ,Z) ≤ dW

(
1√
n
Ṽ∇ (�(θ0;X)) ,Z

)
+ dW

(
W ,

1√
n
Ṽ∇ (� (θ0;X))

)
=: R1 +R2. (3.27)

We now proceed to find upper bounds for the terms R1 and R2.
The term R1 is readily bounded by an application of Theorem 3. We have

∇ (� (θ0;X)) =
∑n

i=1 ∇ (log (f(Xi|θ0))) and we can write S = 1√
n

∑n
i=1 ξi, for

ξi = Ṽ∇ (log (f(Xi|θ0))), i = 1, 2, . . . , n, being i.i.d. random vectors in R
d.

From the regularity condition (R.C.3), it follows that E[ξ1] = 0. In addition,
using (R.C.3), we have that due to the symmetry of Ṽ ,

Var (S) =
1

n
Ṽ

n∑
i=1

{Var (∇(log(f(Xi|θ0))))} Ṽ = Ṽ I(θ0)Ṽ = Id.

Therefore, from Theorem 3 (using that dW ≤ dW2) we have that

R1 ≤ 14d5/4√
n

max
1≤j≤d

√
E[ξ41,j ] =

K1(θ0)√
n

,

where ξ1j =
∑d

k=1 Ṽj,k
∂

∂θk
(log (f(X1|θ0))).

Now we turn our attention to the more involved part of the proof, that of
bounding R2. We begin by obtaining a useful expression forW =

√
n[I(θ0)]

1/2×
(θ̂n(x)− θ0). From the definition of the MLE we have that ∂

∂θk
�(θ̂n(x);x) = 0

for all k = 1, 2, . . . , d. A second order Taylor expansion of ∂
∂θk

�(θ̂n(x);x) around
θ0 gives that

d∑
j=1

Qj
∂2

∂θk∂θj
�(θ0;x) = − ∂

∂θk
�(θ0;x)

− 1

2

d∑
j=1

d∑
q=1

QjQq
∂3

∂θk∂θj∂θq
� (θ;x)

∣∣∣
θ=θ∗

0

. (3.28)

Here θ∗
0 = (θ∗0,1, θ

∗
0,2, . . . , θ

∗
0,d)

ᵀ, where θ∗0,j := θ∗0,j(x) = αjθ0,j + (1− αj)θ̂(x)j ,

αj ∈ (0, 1), j = 1, 2, . . . , d. Adding now
∑d

j=1 n[I(θ0)]kjQj on both sides of
(3.28), we obtain

d∑
j=1

n[I(θ0)]kjQj =
∂

∂θk
�(θ0;x) +

d∑
j=1

QjTkj

+
1

2

d∑
j=1

d∑
q=1

QjQq
∂3

∂θk∂θj∂θq
� (θ;x)

∣∣∣
θ=θ∗

0

. (3.29)
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The equality above holds for all k = 1, 2, . . . , d, which means that, for [I(θ0)][j]
denoting the j-th column of the matrix I(θ0),

W =
√
n[I(θ0)]

1/2
(
θ̂n(x)− θ0

)
=

1√
n
Ṽ

{
∇ (� (θ0;x)) +

d∑
j=1

Qj

(
∇
(

∂

∂θj
�(θ0;x)

)
+ n[I(θ0)][j]

)

+
1

2

d∑
j=1

d∑
q=1

QjQq∇
(

∂2

∂θj∂θq
� (θ;x)

∣∣∣
θ=θ∗

0

)}
, (3.30)

where we multiplied both sides by 1√
n
[I(θ0)]

−1/2 = 1√
n
Ṽ .

Now, from the integral probability metric representation of the 1-Wasserstein
distance we have that

R2 = sup
h∈HW

|E[h(W )]− E[h(n−1/2Ṽ∇ (�(θ0;X)))]|.

Let h ∈ HW. Then, by (3.30),∣∣E[h(W )]− E[h(n−1/2Ṽ∇ (�(θ0;X)))]
∣∣

≤ ‖h‖LipE
∣∣∣∣ 1√

n
Ṽ

{ d∑
j=1

Qj

(
∇
(

∂

∂θj
�(θ0;x)

)
+ n[I(θ0)][j]

)

+
1

2

d∑
j=1

d∑
q=1

QjQq∇
(

∂2

∂θj∂θq
� (θ;x)

∣∣∣
θ=θ∗

0

)}∣∣∣∣,
and, by the triangle inequality,∣∣E[h(W )]− E[h(n−1/2Ṽ∇ (�(θ0;X)))]

∣∣
≤ ‖h‖Lip√

n

{ d∑
k=1

d∑
j=1

d∑
l=1

|Ṽkj |E|QlTlj |

+
1

2

d∑
k=1

d∑
j=1

|Ṽkj |
d∑

l=1

d∑
q=1

E

∣∣∣∣QlQq
∂3

∂θq∂θl∂θj
� (θ;X)

∣∣∣
θ=θ∗

0

∣∣∣∣}

≤ ‖h‖Lip√
n

d∑
k=1

d∑
j=1

|Ṽkj |
{ d∑

l=1

√
E[Q2

l ]
√
E[T 2

lj ]

+
1

2

d∑
l=1

d∑
q=1

E |QlQqMqlj(θ
∗
0;X)|

}
, (3.31)

whereMqlj(θ;x) is as in the condition (R.C.4”). In obtaining the final inequality
we used the Cauchy-Schwarz inequality.
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Let us now focus on bounding E|QlQqMqlj(θ
∗
0;X)|. As Mqlj is a monotonic

function in the sense defined in (2.2), we have that, for all x ∈ X,

Mqlj(θ
∗
0(x);x) ≤ maxθ̃m∈{θ̂n(x)m,θ0,m}

m∈{1,2,...,d}

Mqlj(θ̃;x).

Therefore

E |QlQqMqlj(θ
∗
0;X)| ≤ E

∣∣∣∣QlQqmaxθ̃m∈{θ̂n(X)m,θ0,m}
m∈{1,2,...,d}

Mqlj(θ̃;X)

∣∣∣∣
≤ E

∣∣∣∣QlQq

∑
θ̃m∈{θ̂n(X)m,θ0,m}

m∈{1,2,...,d}

Mqlj(θ̃;X)

∣∣∣∣
=
∑

θ̃m∈{θ̂n(X)m,θ0,m}
m∈{1,2,...,d}

E
∣∣QlQqMqlj(θ̃;X)

∣∣. (3.32)

Applying inequality (3.32) to (3.31) gives the bound∣∣E[h(W )]− E[h(n−1/2Ṽ∇ (�(θ0;X)))]
∣∣

≤ ‖h‖Lip√
n

d∑
k=1

d∑
j=1

|Ṽkj |
{

d∑
l=1

√
E[Q2

l ]
√

E[T 2
lj ]

+
1

2

d∑
l=1

d∑
q=1

∑
θ̃m∈{θ̂n(X)m,θ0,m}

m∈{1,2,...,d}

E
∣∣QlQqMqlj(θ̃;X)

∣∣}

=
‖h‖Lip√

n

(
K2(θ0) +K3(θ0)

)
,

Since h ∈ HW we have that ‖h‖Lip ≤ 1, and therefore R2 ≤ 1√
n

(
K2(θ0) +

K3(θ0)
)
. Finally, combining our bounds for R1 and R2 yields inequality (3.20).

�

Proof of Theorem 5. The proof is exactly the same as that of Theorem 4 with
the exception that the term R1 in (3.27) is bounded using Theorem 2, rather
than Theorem 3. �

Proof of Theorem 6. The proof is similar to that of Theorem 4. Let p ≥ 2. By
the triangle inequality we have that

dWp(W ,Z) ≤ dWp

(
1√
n
Ṽ∇ (�(θ0;X)) ,Z

)
+ dWp

(
W ,

1√
n
Ṽ∇ (� (θ0;X))

)
=: R1,p +R2,p.

The term R1,p can be bounded similarly to how we bounded R1 in the proof
of Theorem 4. In the case p = 2 we obtain the same bound K1(θ0) for R1,2,
and for the case p ≥ 2 the only way our argument changes is that we apply
inequality (2.18), rather than inequality (2.16).
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To bound R2,p, we note that the random vectors W and 1√
n
Ṽ∇ (� (θ0;X))

are defined on the same probability space and thus provide a coupling of them.
It therefore follows from the definition of the p-Wasserstein distance that

R2,p = dWp

(
W ,

1√
n
Ṽ∇ (� (θ0;X))

)
≤
(
E

[∣∣∣∣W − 1√
n
Ṽ∇ (� (θ0;X))

∣∣∣∣p]
)1/p

.

Substituting (3.30) into this bound and using the triangle inequality now gives
that

R2,p ≤ 1√
n

(
E

[( d∑
k=1

d∑
j=1

d∑
l=1

|ṼkjQlTlj |

+
1

2

d∑
k=1

d∑
j=1

d∑
l=1

d∑
q=1

∣∣∣∣ṼkjQlQq
∂3

∂θq∂θl∂θj
� (θ∗

0;X)

∣∣∣∣)p])1/p

≤ 1√
n

{(
E

[( d∑
k=1

d∑
j=1

d∑
l=1

|ṼkjQlTlj |
)p])1/p

+
1

2

(
E

[( d∑
k=1

d∑
j=1

d∑
l=1

d∑
q=1

∣∣∣∣ṼkjQlQq
∂3

∂θq∂θl∂θj
� (θ∗

0;X)

∣∣∣∣)p])1/p}
.

We now apply the inequality
(∑d

j=1 aj
)r ≤ dr−1

∑d
j=1 a

r
j , where a1, . . . , ad ≥ 0

and r ≥ 2, to get

R2,p ≤ 1√
n

{
d3−3/p

(
d∑

k=1

d∑
j=1

|Ṽkj |p
d∑

l=1

E
[
|QlTlj |p

])1/p

+
d4−4/p

2

(
d∑

k=1

d∑
j=1

|Ṽkj |p
d∑

l=1

d∑
q=1

E

[∣∣∣∣QlQq
∂3

∂θq∂θl∂θj
� (θ∗

0;X)

∣∣∣∣p]
)1/p}

≤ 1√
n

{
d3−3/p

(
d∑

k=1

d∑
j=1

|Ṽkj |p
d∑

l=1

√
E[|Ql|2p]

√
E[|Tlj |2p]

)1/p

+
d4−4/p

2

(
d∑

k=1

d∑
j=1

d∑
l=1

d∑
q=1

∑
θ̃m∈{θ̂n(X)m,θ0,m}

m∈{1,2,...,d}

|Ṽkj |p×

× E
[∣∣QlQqMqlj(θ̃;X)

∣∣p])1/p
}

=
1√
n

(
K2,p(θ0) +K3,p(θ0)

)
,

where in obtaining the second inequality we used the Cauchy-Schwarz inequality
and a similar argument to the one used to obtain inequality (3.32). Summing
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up our bounds for R1,p and R2,p, in the cases p ≥ 2 and p = 2, yields the desired
bounds (3.23) and (3.25), respectively. �

4. Examples

In this section, we apply the general theorems of Section 3 to obtain explicit
optimal O(n−1/2) Wasserstein distance bounds for the multivariate normal ap-
proximation of the MLE in several important settings. Each of the examples
given is of interest in its own right and taken together the examples provide a
useful demonstration of the application of the general theorems to derive explicit
bounds for particular MLEs of interest. Our focus in this section is mostly on
obtaining bounds with respect to the 1-Wasserstein metric, although we do de-
rive some bounds with respect to the 2-Wasserstein metric. It should be noted,
however, that p-Wasserstein (p ≥ 1) analogues of each of the bounds derived in
this section can be obtained through an application of Theorem 6; see Corollary
2 for a 2-Wasserstein distance bound for the normal approximation of the ex-
ponential distribution under canonical parametrisation. In Section Proposition
1 we provide an upper bound with respect to the bounded Wasserstein distance
for cases where the MLE cannot be expressed analytically.

4.1. Single-parameter exponential families

The distribution of a random variable, X, is said to be a single-parameter ex-
ponential family distribution if the probability density (or mass) function is of
the form

f(x|θ) = exp {k(θ)T (x)−A(θ) + S(x)}1{x∈B}, (4.33)

where the set B = {x : f(x|θ) > 0} is the support of X and does not depend on
θ; k(θ) and A(θ) are functions of the parameter; T (x) and S(x) are functions
only of the data. Many popular distributions are members of the exponential
family, including the normal, gamma and beta distributions.

The choice of the functions k(θ) and T (X) is not unique. If k(θ) = θ we
have the so-called canonical case. In this case θ and T (X) are called the natural
parameter and natural observation [10]. It is often of interest to work under
the canonical parametrisation due to appealing theoretical properties that can,
for example, simplify the theory and computational complexity in generalised
linear models. In fact, as noted in Remark 4.1 below, our general (4.34) bound
in Corollary 1 for the normal approximation of the MLE for exponential family
distributions simplifies in the canonical case. Canonical parametrisations are
important in, amongst other examples, Gaussian graphical models [26] and pre-
cision matrix estimation [29].

Corollary 1. Let X1, X2, . . . , Xn be i.i.d. random variables with the probabil-
ity density (or mass) function of a single-parameter exponential family distri-
bution, as given in (4.33). Assume that (R1)–(R3) are satisfied and that the



Wasserstein distance bounds for the vector MLE 5777

MLE exists. Assuming that k′(θ0) = 0 and denoting by D(θ) = A′(θ)
k′(θ) , then with

W =
√
n i(θ0)(θ̂n(x)− θ0) and Z ∼ N(0, 1), it holds that

(1) If (R.C.4”) is satisfied and for M(θ,x) as in (R.C.4”), then

dW(W,Z) ≤
1√
n

[
2 +

E[|T (X1)−D(θ0)|3]
[Var(T (X1))]

3/2
+

|k′′(θ0)|√
i(θ0)

√
nVar (T (X1))

√
E
[
(θ̂n(X)− θ0)2

]
+

1

2
√
i(θ0)

(
E
∣∣(θ̂n(X)− θ0)

2M(θ0;X)
∣∣+ E

∣∣(θ̂n(X)− θ0)
2M(θ̂n(X);X)

∣∣)].
(4.34)

(2) If (R.C.4”(2)) is satisfied and for M(θ,x) as in (R.C.4”(2)), then

dW2(W,Z) ≤ 1√
n

[
14

i(θ0)
[k′(θ0)]

2
√
E [(T (X1)−D(θ0))4]

+
|k′′(θ0)|√

i(θ0)

(
E
[
(θ̂n(X)− θ0)

4
])1/4(

E

[( n∑
i=1

{T (Xi)− E[T (Xi)]}
)4])1/4

+
1

2
√
i(θ0)

(
E
[
(θ̂n(X)− θ0)

4(M(θ0;X))2
]

+ E
[
(θ̂n(X)− θ0)

4(M(θ̂n(X);X))2
])1/2]

. (4.35)

In both (1) and (2) above, i(θ0) = Var
(

d
dθ log f(X1|θ0)

)
= [k′(θ0)]

2Var(T (X1))
which is positive.

Proof. (1): We have that

E

[ ∣∣∣∣ ddθ log f(X1|θ0)
∣∣∣∣3 ] = |k′(θ0)|3E

[
|T (X1)−D(θ0)|3

]
and

Var

(
d2

dθ2
log f(X1|θ0)

)
= Var (k′′(θ0)T (X1)−A′′(θ0))

= [k′′(θ0)]
2
Var (T (X1)) ,

and applying these formulas to the bound (3.22) yields the bound (4.34).

(2): Using the general result in (3.25) and the expression of K1(θ0) as in (3.21),
we have in this specific case for d = 1 that

K1(θ0) =
14

i(θ0)

√√√√E

[(
d

dθ
log f(X1|θ0)

)4
]
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=
14[k′(θ0)]

2

i(θ0)

√
E
[
(T (X1)−D(θ0))

4 ]
. (4.36)

With respect to K2,2(θ0) as in (3.24), we have that

K2,2(θ0) =
1√
i(θ0)

(
E
[
(θ̂n(X)− θ0)

4
])1/4(

E
[
(�′′(θ0;X) + n i(θ0))

4
])1/4

=
|k′′(θ0)|√

i(θ0)

(
E
[
(θ̂n(X)− θ0)

4
])1/4

×

×
(
E

[( n∑
i=1

{T (Xi)− E[T (Xi)]}
)4])1/4

. (4.37)

Combining (4.36) and (4.37) with the general result of (3.25) leads to the upper
bound in (4.35).

Remark 4.1. In the canonical case, k′′(θ0) ≡ 0 and the second term of the bounds

in (4.34) and (4.35) vanishes. Also, in this specific case, d2

dθ2 log f(x|θ) = −A′′(θ)

and i(θ0) = A′′(θ0). In addition, d3

dθ3 log f(x|θ) = −A(3)(θ) is independent of the
random variables. This will make it easier to find a monotonic function M(θ)
as in (R.C.4”) and (R.C.4”(2)), which will be a bound for n|A(3)(θ)|.

We give two examples using the exponential distribution, firstly, in its canon-
ical form, and then, in Appendix A.2 under a change of parametrisation. The
example given in the appendix is given for purely illustrative purposes, as an
improved bound can be obtained directly by Stein’s method.

In the case of X1, X2, . . . , Xn exponentially distributed Exp(θ), i.i.d. random
variables where θ > 0, the probability density function is

f(x|θ) = θexp{−θx}1{x>0} = exp{log θ − θx}1{x>0}

= exp {k(θ)T (x)−A(θ) + S(x)}1{x∈B},

where B = (0,∞), θ ∈ Θ = (0,∞), T (x) = −x, k(θ) = θ, A(θ) = − log θ
and S(x) = 0. Hence Exp(θ) is a single-parameter canonical exponential family

distribution. The MLE is unique and given by θ̂n(X) = 1
X̄
.

Corollary 2. Let X1, X2, . . . , Xn be i.i.d. random variables that follow the
Exp(θ0) distribution. Let W =

√
n i(θ0)(θ̂n(x)− θ0) and Z ∼ N(0, 1). Then,

(1) For n > 2,

dW(W,Z) <
5.41456√

n
+

√
n(n+ 2)

(n− 1)(n− 2)
+

2

n3/2
. (4.38)

(2) For n > 4,

dW2(W,Z) ≤ 42√
n
+

1

2
√
n

[
1144n4 + 2028n3 + 1576n2 + 480n

(n− 1)(n− 2)(n− 3)(n− 4)

]1/2
.

(4.39)
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Remark 4.2. The rate of convergence of the bounds (4.38) and (4.39) is n−1/2

and the bounds do not depend on the value of θ0. A bound with such properties
was also obtained by [4] in the bounded Wasserstein metric. Despite working in
a stronger metric, in the case of the 1-Wasserstein metric result of (4.38), we
are able to give smaller numerical constants than [4].

It should be noted that the exact values for dW(W,Z) and dW2(W,Z) do not
depend on θ0. This is because a simple scaling argument using the fact that
i(θ0) =

1
θ2
0
shows that the distribution of W =

√
n i(θ0)(θ̂n(x) − θ0) does not

involve θ0. Hence, it is a desirable feature of our bounds that they do not depend
on θ0.

Proof. Straightforward steps can be followed in order to prove that the assump-
tions (R1)–(R3), (R.C.4”), and (R.C.4”(2)) hold for this example. We will not
show that here. The log-likelihood function is

�(θ0;x) = −nA(θ0) + k(θ0)

n∑
i=1

T (xi) = n(log θ0 − θ0x̄),

and its third derivative is given by �(3)(θ0;x) = −nA(3)(θ0) =
2n
θ3
0
. We see that

|�(3)(θ;x)| = 2n
θ3 , which is a decreasing function with respect to θ, and therefore

conditions (R.C.4”) and (R.C.4”(2)) that are necessary for the results in (4.38)
and (4.39), respectively, are satisfied with M(θ,x) = 2n

θ3 . We now proceed to
separately prove results (1) and (2) of Corollary 2.

For (1): Basic calculations of integrals show that E[|T (X1)−D(θ0)|3] = E
[∣∣ 1

θ0
−

X1

∣∣3] < 2.41456
θ3
0

. In addition, since T (x) = x, we have that Var(T (X1)) =

Var(X1) =
1
θ2
0
and therefore for the first term of the upper bound in (4.34), we

have that

1√
n

(
2 +

E[|T (X1)−D(θ0)|3]
[Var(T (X1))]

3/2

)
<

4.41456√
n

. (4.40)

According to Remark 4.1, the second term of the bound in (4.34) vanishes.
Finally, we consider the third term. Recall that we can take M(θ,x) = 2n

θ3 . We
know that since Xi ∼ Exp(θ0), i = 1, 2, . . . , n, we have that X̄ ∼ G(n, nθ0),
with G(α, β) being the gamma distribution with shape parameter α and rate

parameter β. Using now the fact that θ̂n(x) =
1
x̄ , the results in pp. 70–73 of [24]

give that, for n > 2,

E
∣∣(θ̂n(X)− θ0)

2M(θ0;X)
∣∣ = 2n

θ30
E

[(
1

X̄
− θ0

)2 ]
=

2n(n+ 2)

θ0(n− 1)(n− 2)
(4.41)

and

E
∣∣(θ̂n(X)− θ0)

2M(θ̂n(X);X)
∣∣ = 2nE

[
X̄3

(
1

X̄
− θ0

)2 ]
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= 2nE
[
X̄ + θ20X̄

3 − 2θ0X̄
2
]

=
2n

θ0

(
1 +

(n+ 1)(n+ 2)

n2
− 2

n+ 1

n

)
=

2(n+ 2)

nθ0
. (4.42)

Applying the results of (4.40), (4.41) and (4.42) to (4.34) and using that i(θ0) =
1
θ2
0
, yields result (1) of the corollary.

For (2): For the first term of the upper bound in (4.35) we have, since i(θ0) =
1
θ2
0

and k(θ0) = θ0, that

14√
n i(θ0)

[k′(θ0)]
2
√

E
[
(T (X1)−D(θ0))

4 ]
=

14θ20√
n

√
E

[(
X1 −

1

θ0

)4]
=

42√
n
, (4.43)

where we used that the fourth central moment of X ∼ Exp(θ0) is given by
E[(X − 1

θ0
)4] = 9

θ4
0
. The second term in (4.35) vanishes due to k′′(θ0) = 0. With

respect to the third term, since �(3)(θ0;x) = 2n
θ3
0
, we take M(θ0;x) = 2n

θ3
0
. We

have already mentioned that θ̂n(X) = 1
X̄

and X̄ ∼ G(n, nθ0). Therefore, simple
calculations yield

E
[
(θ̂n(X)− θ0)

4(M(θ0;X))2
]
=

4n2

θ60
E

[(
1

X̄
− θ0

)4]
=

4n2(3n2 + 46n+ 24)

θ20(n− 1)(n− 2)(n− 3)(n− 4)
(4.44)

and

E
[
(θ̂n(X)− θ0)

4(M(θ̂n(X);X))2
]
= 4n2

E

[(
1

X̄
− θ0

)4 (
X̄
)6 ]

= 4n2
E
[
θ40(X̄)6 − 4θ30(X̄)5 + 6θ20(X̄)4 − 4θ0(X̄)3 + (X̄)2

]
=

4(283n4 + 461n3 + 370n2 + 120n)

n4θ20
. (4.45)

Applying now the results of (4.43), (4.44) and (4.45) to (4.35) and using that the
second term of the bound in (4.35) vanishes, yields result (2) of the corollary.
Note that the inequality n−4 ≤ [(n− 1)(n− 2)(n− 3)(n− 4)]−1, for any n > 4,
has also been used.

4.2. The normal distribution under canonical parametrisation

The distribution of a random variable X is said to be a canonical multi-para-
meter exponential family distribution if, for η ∈ R

d, the probability density (or
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mass) function takes the form

f(x|η) = exp

{ d∑
j=1

ηjTj(x)−A(η) + S(x)

}
1{x∈B},

where B = {x : f(x|η) > 0}, the support of X, does not depend on η; A(η) is a
function of the parameter η; and Tj(x) and S(x) are functions of only the data.

Here, we apply Theorem 4 in the case that X1, X2, . . . , Xn are i.i.d. random
variables following the N(μ, σ2) distribution, an exponential family distribution.
Let

η0 = (η1, η2)
ᵀ
=

(
1

2σ2
,
μ

σ2

)ᵀ
, (4.46)

be the natural parameter vector. The MLE for η0 exists, it is unique and equal
to

η̂(X) = (η̂1, η̂2)
ᵀ
=

n∑n
i=1

(
Xi − X̄

)2 (12 , X̄
)ᵀ

.

This can be seen from the invariance property of the MLE and the result of
[14, p. 116] in which the MLEs for μ and σ2 are given. In Corollary 3, we
give an explicit bound on the 1-Wasserstein distance between the distribution
of η̂(X) and its limiting multivariate normal distribution. As η̂(X) is a non-
linear statistic, this result demonstrates the power of our general theorems of
Section 3; to the best of our knowledge no other such optimal order bounds have
been given for multivariate normal approximation of non-linear statistics in the
1-Wasserstein metric.

Corollary 3. Let X1, X2, . . . , Xn be i.i.d. N(μ, σ2) random variables. Let η0 be
as in (4.46), and for ease of presentation we denote α := α(η1, η2) = η1(1 +√
η1)

2 + η22. Let W =
√
n[I(η0)]

1/2(η̂(X) − η0) and Z ∼ MVN(0, I2). Then,
for n > 9,

dW(W ,Z) <
189

α
√
n

(
15(1 +

√
η1)

4(η1 + η22)
2 +

3η62
η1

(
10 +

3η22
η1

))1/2

+
1√
2αn

(3η1 + 4η21 + 3η22)

[
206
√
η1

+
1286

η1
+

393|η2|
η1

+
1792η22
η21

]
.

(4.47)

Remark 4.3. A bound of order O(n−1/2) on the distance between W =√
n[I(η0)]

1/2(η̂(X) − η0) and Z in the weaker d0,1,2,3 metric was given in [1].
Aside from being given in a stronger metric, our bound has the advantage of tak-
ing a simpler form with a better dependence on the parameters η1 and η2. The
numerical constants in our bound and that of [1] are of the same magnitude.
In deriving the bound (4.47) we made no attempt to optimise the numerical
constants and instead focused on giving a clear proof and simple final bound.

The following lemma will be used in the proof of Corollary 3. The proof is
given in Appendix A.3.
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Lemma 1. Let Qi = η̂i − ηi, i = 1, 2. Then, for n > 9,

E[Q2
1] ≤

10η21
n

, E[Q2
2] <

1

n
(6η1 + 10η22), E[Q4

1] <
6958η41
n2

,

E[Q4
2] <

1

n2
(5886η21 + 11700η42), E[Q2

1Q
2
2] <

η21
n2

(6400η1 + 9023η22),

and

E[η̂−8
1 ] <

31

η81
, E[η̂−6

1 ] <
7

η61
, E[η̂−4

1 ] <
2

η41
,

E[η̂22 ] < η1 + 3η22 , E[η̂42 ] < 69η21 + 153η42 ,

E

[
|η̂2|
η̂31

]
<

|η2|
η31

, E

[
η̂22
η̂61

]
<

1

η61
(η1 + 2η22), E

[
η̂42
η̂81

]
<

2

η81
(η21 + 2η42).

Proof of Corollary 3. The first and second-order partial derivatives of the loga-
rithm of the normal density function are given by

∂

∂η1
log f(x1|η0) = −x2

1 +
1

2η1
+

η22
4η21

,
∂

∂η2
log f(x1|η0) = x1 −

η2
2η1

,

∂2

∂η21
log f(x1|η0) = −

(
1

2η21
+

η22
2η31

)
,

∂2

∂η22
log f(x1|η0) = − 1

2η1
,

∂2

∂η1∂η2
log f(x1|η0) =

∂2

∂η2∂η1
log f(x1|η0) =

η2
2η21

. (4.48)

Therefore, the expected Fisher information matrix for one random variable is

I(η0) =
1

2η1

(
1
η1

+
η2
2

η2
1

−η2

η1

−η2

η1
1

)
, (4.49)

and simple calculations give that

[I(η0)]
−1/2

= Ṽ =

√
2

α

(
η
3/2
1

(
1 +

√
η1
)

η1η2
η1η2 η1

(
1 +

√
η1
)
+ η22

)
,

where α = η1
(
1 +

√
η1
)2

+ η22 is defined as in the statement of the corollary.
We now set about bounding dW(W ,Z) by applying the general bound (3.20).
To this end, we first note that K2(η0) = 0 due to the fact that E[T 2

lj ] = 0, for
all l, j ∈ {1, 2}. This follows from the definition of Tkj in (3.19) and the results
of (4.48) and (4.49).

We now focus on bounding K1(η0). Let

R1,j = E

[( d∑
k=1

Ṽj,k
∂

∂θk
log (f(X1|η0))

)4]
, j = 1, 2.

Then

R1,1 = E

[(√
2

α
η
3/2
1 (1 +

√
η1)

(
1

2η1
+

η22
4η21

−X2
1

)
+

√
2

α
η1η2

(
X1 −

η2
2η1

))4]
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≤ 32

α2

{
η61(1 +

√
η1)

4
E

[(
X2

1 − 1

2η1
− η22

4η21

)4]
+ η41η

4
2E

[(
X1 −

η2
2η1

)4]}
,

(4.50)

where we used the inequality (a+b)4 ≤ 8(a4+b4). In terms of the parameters η1
and η2, we have that μ = η2

2η1
and σ2 = 1

2η1
, so that X1 ∼ N( η2

2η1
, 1
2η1

). Therefore

E

[(
X1 −

η2
2η1

)4]
=

3

4η21
,

and a longer calculation using standard formulas for the lower order moments
of the normal distribution gives that

E

[(
X2

1 − 1

2η1
− η22

4η21

)4]
= E[(X2

1 − (σ2 + μ2))4]

= 60σ8 + 240σ6μ2 + 48σ4μ4 =
15

4η41
+

30η22
η51

+
3η42
4η61

.

Substituting these formulas into (4.50) gives that

R1,1 ≤ 32

α2

{
η61(1 +

√
η1)

4

(
30η22
η51

+
3η42
4η61

)
+ η41η

4
2 ·

3

4η21

}
<

32

α2
(1 +

√
η1)

4

(
15η21 + 30η1η

2
2 +

3

2
η42

)
.

We bound R1,2 similarly:

R1,2 =
4

α2
E

[(
η
3/2
1 η1η2

(
1

2η1
+

η22
4η21

−X2
1

)
+ (η1(1 +

√
η1) + η22)

(
X1 −

η2
2η1

))4]
≤ 32

α2

{
η41η

4
2E

[(
X2

1 − 1

2η1
− η22

4η21

)4]
+ (η1(1 +

√
η1) + η22)

4
E

[(
X1 −

η2
2η1

)4]}
≤ 32

α2

{
η42
η21

(
15η21 + 30η1η

2
2 + 3η42

)
+ 8(η41(1 +

√
η1)

4 + η82) ·
3

4η21

}
=

32

α2

{
η42
η21

(
15η21 + 30η1η

2
2 + 9η42

)
+ 6η21(1 +

√
η1)

4

}
.

Combining our bounds for R1,1 and R1,2 gives that

K1(η0) = 14 · 25/4 max
1≤j≤2

(
E

[( 2∑
k=1

Ṽj,k
∂

∂θk
log (f(X1|θ0))

)4])1/2
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<
14 · 25/4 ·

√
32

α
×

×
(
(1 +

√
η1)

4(15η21 + 30η1η
2
2 + 15η42) +

30η62
η1

+
9η82
η21

)1/2

<
189

α

(
15(1 +

√
η1)

4(η1 + η22)
2 +

3η62
η1

(
10 +

3η22
η1

))1/2

. (4.51)

We now bound K3(η0), as given by

K3(η0) =
1

2

2∑
k=1

2∑
j=1

|Ṽkj |
2∑

l=1

2∑
q=1

∑
η̃m∈{η̂n(X)m,η0,m}

m∈{1,2}

E
∣∣QlQqMqlj(η̃;X)

∣∣

=:
1

2

2∑
k=1

2∑
j=1

|Ṽkj |
2∑

l=1

2∑
q=1

R
Mqlj

q,l,j . (4.52)

Here the superscript Mqlj in R
Mqlj

q,l,j emphasises the fact the quantity depends on
the choice of dominating function Mqlj . In bounding K3(η0) we first note the
following inequalities which will simplify the final bound:

|Ṽ11|+ |Ṽ21| =
√

2

α

(
η
3/2
1 (1 +

√
η1) + η1|η2|

)
≤ 3

2
η1 + 2η21 +

3

2
η22 ,

|Ṽ12|+ |Ṽ22| =
√

2

α

(
η1|η2|+ η1(1 +

√
η1) + η22

)
≤ 3

2
η1 + 2η21 +

3

2
η22 ,

which can be seen to hold from several applications of the simple inequality
ab ≤ 1

2 (a
2 + b2).

From the formulas in (4.48) we readily obtain that

∂3

∂η31
�(η;x) =

n

η31
+

3nη22
2η41

,
∂3

∂η32
�(η;x) = 0,

∂3

∂η21∂η2
�(η;x) =

∂3

∂η1∂η2∂η1
�(η;x) =

∂3

∂η2∂η21
�(η;x) = −nη2

η31
,

∂3

∂η1∂η22
�(η;x) =

∂3

∂η2∂η1∂η2
�(η;x) =

∂3

∂η22∂η1
�(η;x) =

n

2η21
.

Therefore we can take

M111(η̃,x) =
n

η31
+

3nη22
2η41

, M112(η̃,x) = M121(η̃,x) = M211(η̃,x) =
n|η2|
η31

,

M122(η̃,x) = M212(η̃,x) = M221(η̃,x) =
n

2η21
, M222(η̃,x) = 0.

At this stage we note that RM222
2,2,2 = 0 and that RM121

1,2,1 = RM112
1,1,2 and RM212

2,1,2 =

RM221
2,2,1 . Therefore we only need to bound RM111

1,1,1 , RM211
2,1,1 , RM112

1,1,2 , RM212
2,1,2 and
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RM122
1,2,2 . In order to bound each of these terms, we must consider four cases:

(A) η̃ = (η1, η2), (B) η̃ = (η̂1, η2), (C) η̃ = (η1, η̂2) and (D) η̃ = (η̂1, η̂2). It will

be convenient to write RM111,A
1,1,1 = E

∣∣QlQqMqlj((η1, η2);X)
∣∣, with the notation

RM111,B
1,1,1 , RM111,C

1,1,1 and RM111,D
1,1,1 defined in the obvious manner.

We first bound RM111
1,1,1 . We consider the four case (A), (B), (C) and (D), and

bound the terms by using the Cauchy-Schwarz inequality and the bounds of
Lemma 1:

RM111,A
1,1,1 = E

[
Q2

1

(
n

η31
+

3nη22
2η41

)]
≤ 1

η21
(15η1 + 3η22),

RM111,B
1,1,1 = E

[
Q2

1

(
n

η̂31
+

3nη22
2η̂41

)]
≤ n

√
E[Q4

1]E[η̂
−6
1 ] +

3η22n

2

√
E[Q4

1]E[η̂
−8
1 ]

<
1

η21
(221η1 + 126η22),

RM111,C
1,1,1 = E

[
Q2

1

(
n

η31
+

3nη̂22
2η41

)]
≤ n

η31
E[Q2

1] +
3n

2η41

√
E[Q4

1]E[η̂
4
2 ]

<
10

η1
+

3

2η41

√
6958η41(69η

2
1 + 153η42) <

1

η21
(1050η1 + 1548η22),

RM111,D
1,1,1 = E

[
Q2

1

(
n

η̂31
+

3nη̂22
2η̂41

)]
≤
√

E[Q4
1]E[η̂

−6
1 ] +

3

2

√
E[Q4

1]E

[
η̂42
η̂81

]
<

1

η1

√
6958× 7 +

3

2η21

√
6958× 2(η21 + 2η42) <

1

η21
(398η1 + 251η22).

Thus,

RM111
1,1,1 <

1684

η1
+

1928η22
η21

.

Similar calculations (which are given in Appendix A.3) show that

RM211
2,1,1 <

168
√
η1

+
494|η2|

η1
, RM112

1,1,2 <
386

η1
+

746η22
η21

,

RM212
2,1,2 <

122
√
η1

+
146|η2|

η1
, RM122

1,2,2 <
116

η1
+

164η22
η21

.

Applying these bounds to (4.52) yields the following bound:

K3(η0) ≤
1

2
√
2α

(3η1 + 4η21 + 3η22)

[(
1684

η1
+

1928η22
η21

)
+

(
386

η1
+

746η22
η21

)
+

(
168
√
η1

+
494|η2|

η1

)
+

(
122
√
η1

+
146|η2|

η1

)
+

(
386

η1
+

746η22
η21

)
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+

(
116

η1
+

164η22
η21

)
+

(
122
√
η1

+
146|η2|

η1

)]
=

1√
2α

(3η1 + 4η21 + 3η22)

[
206
√
η1

+
1286

η1
+

393|η2|
η1

+
1792η22

η21

]
. (4.53)

Finally, summing up the bounds (4.51) and (4.53) completes the proof. �

4.3. The multivariate normal distribution under non-canonical
parametrisation

4.3.1. Diagonal covariance matrix

Let X1, . . . ,Xn be i.i.d. MVN(μ,Σ) random variables, where μ = (μ1, . . . , μp)
ᵀ

and Σ = diag(σ2
1 , . . . , σ

2
p). Here θ0 = (μ1, . . . , μp, σ

2
1 , . . . , σ

2
p)

ᵀ. The density func-
tion here is

f(x|θ) = 1

(2π)p/2
√

σ2
1 · · ·σ2

p

exp

{
−

p∑
i=1

(xi − μi)
2

2σ2
i

}
, x = (x1, . . . , xp)

ᵀ ∈ R
p.

For 1 ≤ j ≤ p, let X̄j denote the sample mean of X1,j , . . . , Xn,j . Then it is
well-known in this case that the MLE is unique and equal to

θ̂n(X) =

(
X̄1, . . . X̄p,

1

n

n∑
i=1

(Xi,1 − X̄1)
2, . . . ,

1

n

n∑
i=1

(Xi,p − X̄p)
2

)ᵀ
.

Let W =
√
n[I(θ0)]

1/2
(
θ̂n(X)− θ0

)
. Then it is readily checked that all the

assumptions of Theorem 4 are met and so an application of the bound (3.20)
would yield a bound of the form dW(W ,Z) ≤ Cn−1/2, where Z ∼ MVN(0, I2p),
for some constant C that does not depend on n. However, the term K3(θ0) has
a very poor dependence on the dimension d and would be tedious to compute.
Instead, we take advantage of the particular representation of the MLE to derive
a neat optimal O(n−1/2) 1-Wasserstein distance (and 2-Wasserstein distance)
bound with good dependence on the dimension. In deriving this bound we make
use of Theorem 3.

Theorem 7. Let X1, . . . ,Xn be i.i.d. MVN(μ,Σ) random vectors, where μ =

(μ1, . . . , μp)
ᵀ and Σ = diag(σ2

1 , . . . , σ
2
p). Let W =

√
n[I(θ0)]

1/2
(
θ̂n(X) − θ0

)
and Z ∼ MVN(0, I2p). Then

dW(W ,Z) ≤ dW2(W ,Z) < 56

√
p

n
. (4.54)

Remark 4.4. Corollary 3.1 of [2] gave a bound in the weaker d1,2 metric for the
case that X1, . . . , Xn are i.i.d. N(μ, σ2) random variables. Theorem 7 generalises
the setting from p = 1 to p ≥ 1 and gives a bound in the stronger 1-Wasserstein
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distance. Our bound shows that the MLE converges in distribution to the mul-
tivariate normal distribution for even large p provided p � n. We believe that
the dependence on the dimension p in our bound is optimal, and this seems to
be supported by empirical results in Section 4.5.

Proof. The inequality dW(W ,Z) ≤ dW2(W ,Z) is immediate from (2.5), and
the rest of the proof is devoted to bounding dW2(W ,Z). We begin by recalling
the standard result that the expected Fisher information matrix is given by

I(θ0) = diag

(
1

σ2
1

, . . . ,
1

σ2
p

,
1

2σ4
1

, . . . ,
1

2σ4
p

)
,

and therefore

[I(θ0)]
1/2 = diag

(
1

σ1
, . . . ,

1

σp
,

1√
2σ2

1

, . . . ,
1√
2σ2

p

)
.

Now, for 1 ≤ i ≤ n, write Xi = (Xi,1, . . . , Xi,p)
ᵀ, and define the standardised

random variables Yi,j = (Xi,j − μj)/σj , 1 ≤ i ≤ n, 1 ≤ j ≤ p. For 1 ≤ j ≤ p,
let X̄j and Ȳj denote the sample means of X1,j , . . . , Xn,j and Y1,j , . . . , Yn,j . A
simple calculation gives the useful equation

n∑
i=1

(Xi,j − X̄j)
2 =

n∑
i=1

(Xi,j − μj)
2 − n(X̄j − μj)

2.

Putting all this together gives that W can be written as W = (W1, . . . ,W2p)
ᵀ,

where, for 1 ≤ j ≤ p,

Wj =
1√
n

n∑
i=1

Xi,j − μj

σj
=

1√
n

n∑
i=1

Yi,j

and

Wj+p =
1√
n

n∑
i=1

(Xi,j − μj)
2 − σ2

j√
2σ2

j

−
√
n
(X̄j − μj)

2

√
2σ2

j

=
1√
n

n∑
i=1

Y 2
i,j − 1
√
2

−
√
n√
2
(Ȳj)

2.

It will be useful to define V = (V1, . . . , V2p)
ᵀ, where, for 1 ≤ j ≤ p,

Vj = Wj and Vj+p =
1√
n

n∑
i=1

Y 2
i,j − 1
√
2

.

We now note that X̄1, . . . X̄p,
1
n

∑n
i=1(Xi,1−X̄1)

2, . . . , 1
n

∑n
i=1(Xi,p−X̄p)

2 are
independent (see Section 3b.3 of [37]), from which it follows thatW1, . . . ,W2p are
independent. As the infimum in the definition (2.4) of the 2-Wasserstein distance
is attained, for each j = 1, . . . , 2p we may construct a probability space on which
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the random variables W ∗
j and Z∗

j with L(W ∗
j ) = L(Wj) and L(Z∗

j ) = L(Zj)

are such that dW2(Wj , Zj) =
√

E[(W ∗
j − Z∗

j )
2]. By independence, on taking the

product of these probabilities spaces, we can construct random vectors W ∗ =
(W ∗

1 , . . . ,W
∗
2p)

ᵀ and Z∗ = (Z∗
1 , . . . , Z

∗
2p)

ᵀ with L(W ∗) = L(W ) and L(Z∗) =

L(Z) such that dW2(W ,Z) =
√

E[|W ∗ −Z∗|2]. Therefore

dW2(W ,Z) =
√
E[|W ∗ −Z∗|2]

=

√√√√ 2p∑
j=1

E[(W ∗
j − Z∗

j )
2]

=

√√√√ 2p∑
j=1

dW2(Wj , Zj)2. (4.55)

For j = 1, . . . , p, Wj ∼ N(0, 1), and so dW2(Wj , Zj) = 0 for j = 1, . . . , p. Now
suppose j ∈ {p+ 1, . . . , 2p}. Then, by the triangle inequality,

dW2(Wj , Zj) ≤ dW2(Wj , Vj) + dW2(Vj , Zj). (4.56)

By the definition of the 2-Wasserstein distance,

dW2(Wj , Zj) ≤

√√√√E

[(( n∑
i=1

Y 2
ij − 1
√
2

−
√
n√
2
(Ȳj)2

)
−

n∑
i=1

Y 2
ij − 1
√
2

)2]

=

√
n√
2

√
E[(Ȳj)2] =

√
3

2n
,

where we used that Ȳj ∼ N(0, 1
n ), so that E[(Ȳj)

4] = 3
n2 .

To bound dW2(Vj , Zj), we apply Theorem 3 in the univariate case d = 1. We
can write Vj =

1√
n

∑n
i=1 ξi,j , where ξ1,j , . . . , ξn,j are i.i.d. random variables with

ξi,j =
1√
2
(Y 2

i,1 − 1), i = 1, . . . , n. We note that that the assumptions E[ξ1,j ] = 0

and E[ξ21,j ] = 1 are satisfied. Applying the bound (2.15) of Theorem 3 now
yields, for j = p+ 1, . . . , 2p,

dW2(Vj , Zj) ≤
14√
n

√
E[ξ41,j ] =

7√
n

√
E[(Y 2

1,j − 1)4] =
7√
n

√
E[(Z2 − 1)4]

=
14

√
15√
n

,

where we used that Y1,j =d Z ∼ N(0, 1), and the final equality follows from
an application of standard formulas for moments of the normal distribution.
Substituting our bounds for dW2(Wj , Vj) and dW2(Vj , Zj) into (4.56) gives that,
for j = p+ 1, . . . , 2p,

dW2(Wj , Zj) ≤
(√

3

2
+ 14

√
15

)
1√
n
,
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and plugging this bound into (4.55) yields

dW2(W ,Z) ≤

√
p

(√
3

2
+ 14

√
15

)2
1

n
< 56

√
p

n
,

as required.

4.3.2. The general case

Let X1, . . . ,Xn be i.i.d. MVN(μ,Σ) random vectors, where μ = (μ1, . . . , μp)
ᵀ

and Σ = (σi,j). Here θ0 = (μ1, . . . , μp, σ1,1, . . . , σ1,p, . . . σp,1, . . . , σp,p)
ᵀ. The

density function here is

f(x|θ) = 1

(2π)p/2
√
det(Σ)

exp

{
− 1

2
(x− μ)ᵀΣ−1(x− μ)

}
,

x = (x1, . . . , xp)
ᵀ ∈ R

p.

It is well-known in this case that the MLE is unique and equal to θ̂n(X) =(
X̄, 1

n

∑n
i=1(Xi− X̄)(Xi− X̄)ᵀ

)ᵀ
. Since the covariance matrix Σ and its MLE

estimator Σ̂ are symmetric, for the purpose of presenting a multivariate normal
approximation for the MLE we restrict θ0 to only include σi,j , i ≥ j, and

θ̂n(X) to only include the estimators σ̂i,j , i ≥ j. This restricted MLE has
p+
(
p
2

)
= p(p+3)/2 parameters. As in diagonal case, we could apply Theorem 4

to obtain a optimal order O(n−1/2) 1-Wasserstein distance bound, but we prefer
to proceed as we did there and exploit the particular representation of the MLE
in deriving our bound.

The proof of the following theorem follows a similar basic approach to that of
Theorem 7, again making use of Theorem 3, although as the components of the
random vector W are now no longer independent our calculations are a little
more involved, as we cannot reduce the problem to the univariate case as we
did in proving Theorem 7. We defer the proof to Appendix A.4. For a matrix
A, let ‖A‖max = maxi,j |ai,j |.
Theorem 8. Let X1, . . . ,Xn be i.i.d. MVN(μ,Σ) random vectors, where μ =

(μ1, . . . , μp)
ᵀ and Σ = (σij) ∈ R

p×p is positive semi-definite. Let θ̂n(X) be the

MLE restricted in the manner as described above. Let W =
√
n[I(θ0)]

1/2
(
θ̂n(X)

− θ0

)
and Z ∼ MVN(0, Ip(p+3)/2). Write σ2

∗ = max1≤j≤p σjj (the largest vari-
ance in the covariance matrix Σ). Then

dW(W ,Z)<
1√
n

(
p4σ2

∗‖[I(θ0)]
1/2‖max+15.1 p13/4(p+3)13/4σ4

∗‖[I(θ0)]
1/2‖2max

)
.

4.4. Implicitly defined MLEs

In order to be calculated, the general upper bound on the 1-Wasserstein distance
of interest, as expressed in Theorem 4, requires a closed-form expression for the
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MLE. In this section, we explain how an upper bound on the weaker bounded
Wasserstein distance can be obtained when the MLE is implicitly defined. Our
strategy is split into two steps; first, put the dependence of the bound on the
MLE only through the mean squared error (MSE), E[

∑d
j=1 Q

2
j ] with Qj as in

(3.19), and secondly discuss how upper bounds can be obtained for the MSE.
In addition to the regularity conditions needed in Theorem 4, in order to attain
an upper bound on the bounded Wasserstein distance when the MLE is not
expressed analytically, we replace assumption (R.C.4”) by (Con.1) as below:

(Con.1) For ε > 0 and for all θ0 ∈ Θ,

sup
θ:|θq−θ0,q|<ε
∀q∈{1,2,...,d}

∣∣∣∣ ∂3

∂θk∂θj∂θi
log f(x1|θ)

∣∣∣∣ ≤ Mkji, (4.57)

where Mkji = Mkji(θ0) only depends on θ0.

Theorem 4 provides an upper bound on the 1-Wasserstein distance between the
distribution of the MLE and the multivariate normal distribution. In Proposition
1 below, we put the dependence of the upper bound in (3.20) on the MLE only

through the MSE, E[
∑d

j=1 Q
2
j ].

Proposition 1. Let X = (X1,X2, . . . ,Xn) be i.i.d. R
t-valued, t ∈ Z

+, random
vectors with probability density (or mass) function f(xi|θ), for which the true
parameter value is θ0 and the parameter space Θ is an open subset of Rd. Assume
that the MLE exists and is unique, but cannot be expressed in a closed-form, and
that (R.C.1)–(R.C.3) and (Con.1) are satisfied. In addition, for Ṽ as in (3.19),
assume that E[|Ṽ∇ (log (f(X1|θ0))) |4] < ∞, where ∇ =

(
∂

∂θ1
, . . . , ∂

∂θd

)ᵀ
. Then,

for ε > 0 being a positive constant, as in (Con.1), that need not depend on the
sample size n, and with W as in (3.19),

dbW (W ,Z) ≤ 1√
n
K1(θ0)

+
√
d

d∑
k=1

d∑
l=1

|Ṽlk|

√√√√ d∑
i=1

Var

(
∂2

∂θk∂θi
log f(X1|θ0)

)√√√√E

[ d∑
j=1

Q2
j

]

+
2

ε2
E

[ d∑
j=1

Q2
j

]
+

√
n

2

d∑
k=1

d∑
l=1

|Ṽlk|
d∑

m=1

d∑
i=1

MkmiE

[ d∑
j=1

Q2
j

]
. (4.58)

where K1(θ0) is as in (3.21).

Remark 4.5. There is a well-developed theory to verify the bound

sup
n

E[|
√
n(θ̂n(X)− θ0)|p] < ∞

for any p > 0 in general settings (see Chapter III, Sections 1 and 3 of [23], and
Sections 3–4 of [43]). Using such results, we can deduce that the bound (4.58)
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is of the optimal order O
(
n−1/2

)
; notice that the positive constant ε need not

depend on n and its choice could be optimised in examples. In addition, we note
that the bound (4.58) has a better dependence on the dimension d than the 1-
Wasserstein distance bound of Theorem 4. To be more precise, assuming that
Ṽlk = O(1) and Mkmi = O(1) it can be seen that (4.58) is of order O(d5), while
the 1-Wasserstein distance bound (3.20) is of the much larger order O(d42d).

Remark 4.6. Condition (Con.1) in (4.57) is non-restrictive and is satisfied by
various distributions for which the MLE of their parameters cannot be expressed
analytically. Here, we give two examples:

1. Gamma distribution: With α, β > 0 and θ = (α, β)ᵀ being the vector

parameter, the probability density function is f(x|θ) = βα

Γ(α)x
α−1e−βx,

x > 0. We have that

∂j+1

∂αj+1
log f(x|θ) = −ψj(α), ∀j ∈ Z

+,
∂3

∂β3
log f(x|θ) = 2α

β3
,

∂3

∂α2∂β
log f(x|θ) = 0,

∂3

∂α∂β2
log f(x|θ) = − 1

β2
, (4.59)

where, for any z ∈ C \ {0,−1,−2, . . .}, the polygamma function ψm(z) is
defined by ψm(z) := dm

dzm (ψ(z)), with ψ(z) = d
dz (log Γ(z)) denoting the

digamma function. The polygamma function has the series representation
(differentiate both sides of formula 5.15.1 of [31])

ψm(z) = (−1)m+1m!

∞∑
k=0

1

(z + k)m+1
, (4.60)

which holds for any m ≥ 1 and any z ∈ C \ {0,−1,−2, . . .}. It is easy to
see that for x > 0, |ψ2(x)| is a decreasing function of x and, using (4.59),
(Con.1) is satisfied with M112 = 0 and

sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ31
log f(x1|θ)

∣∣∣∣ ≤ |ψ2(α− ε)| = M111,

sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ32
log f(x1|θ)

∣∣∣∣ ≤ 2(α+ ε)

(β − ε)3
= M222,

sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ1∂θ22
log f(x1|θ)

∣∣∣∣ ≤ 1

(β − ε)2
= M122.

2. Beta distribution: The probability density function is

f(x|θ) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

with α, β > 0 and x ∈ (0, 1). Hence, for j, k ∈ Z
+

∂j+1

∂αj+1
log f(x|θ) = ψj(α+ β)− ψj(α),
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∂j+1

∂βj+1
log f(x|θ) = ψj(α+ β)− ψj(β),

∂k+j

∂αk∂βj
log f(x|θ) = ψk+j−1(α+ β), (4.61)

where as in the case of the gamma distribution, ψj(·) is the polygamma
function defined in (4.60). (Con.1) is again satisfied with

sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ31
log f(x1|θ)

∣∣∣∣ ≤ |ψ2(α+ β − 2ε)|+ |ψ2(α− ε)| = M111,

sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ32
log f(x1|θ)

∣∣∣∣ ≤ |ψ2(α+ β − 2ε)|+ |ψ2(β − ε)| = M222,

sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ1∂θ22
log f(x1|θ)

∣∣∣∣ = sup
θ:|θq−θ0,q|<ε

∀q∈{1,2}

∣∣∣∣ ∂3

∂θ21∂θ2
log f(x1|θ)

∣∣∣∣
≤ |ψ2(α+ β − 2ε)| = M122 = M112.

Proof of Proposition 1. With Ṽ and W as in (3.19), we obtain through the
method of proof of Theorem 4, that

dbW (W ,Z) ≤ dbW

(
1√
n
Ṽ∇ (�(θ0;X)) ,Z

)
+ dbW

(
W ,

1√
n
Ṽ∇ (� (θ0;X))

)
(4.62)

For the first quantity on the right-hand side of the result in (4.62), we obtain
using Theorem 3 that

dbW

(
1√
n
Ṽ∇ (�(θ0;X)) ,Z

)
≤ dW2

(
1√
n
Ṽ∇ (�(θ0;X)) ,Z

)
≤ 1√

n
K1(θ0). (4.63)

With respect to the second term in (4.62), note that

dbW

(
W ,

1√
n
Ṽ∇ (� (θ0;X))

)
= sup

h∈HbW

∣∣∣∣E[h(W )]− E

[
h

(
1√
n
Ṽ∇ (� (θ0;X))

)]∣∣∣∣ . (4.64)

For h ∈ HbW and with Ṽ and Qj as in (3.19), for ease of presentation let us
denote by

R1(θ0;x) =
1

2
√
n
Ṽ

d∑
j=1

d∑
q=1

QjQq

(
∇
(

∂2

∂θj∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

))
,
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D1 = D1(θ0;X, h) := h (W )− h

(
1√
n
Ṽ (∇(�(θ0;x))) +R1(θ0;X)

)
, (4.65)

D2 = D2(θ0;X, h) := h

(
1√
n
Ṽ (∇(�(θ0;x))) +R1(θ0;x)

)
− h

(
1√
n
Ṽ (∇ (�(θ0;X)))

)
,

where θ∗
0 is as in (3.28). Using the above notation and the triangle inequality,∣∣∣∣E[h(W )]− E

[
h

(
1√
n
Ṽ∇ (� (θ0;X))

)]∣∣∣∣ = |E [D1 +D2]|

≤ E|D1|+ E|D2|. (4.66)

Since W is as in (3.19), then for A[j] denoting the j-th row of a matrix A, a
first order multivariate Taylor expansion gives that

|D1| ≤ ‖h‖Lip

∣∣∣∣∣∣
d∑

j=1

⎛⎝√
n
[
[I(θ0)]

1
2

]
[j]

(θ̂n(X)− θ0)−
1√
n
Ṽ[j]∇ (�(θ0;X))

− 1

2
√
n
Ṽ[j]

⎧⎨⎩
d∑

k=1

d∑
q=1

QkQq

(
∇
(

∂2

∂θk∂θq
�(θ;x)

∣∣∣
θ=θ∗

0

))⎫⎬⎭
⎞⎠∣∣∣∣∣∣ .

Using (3.29) component-wise and the Cauchy-Schwarz inequality, we have that,
for Tkj as in (3.19),

E|D1| ≤
‖h‖Lip√

n

d∑
k=1

d∑
l=1

|Ṽlk|
d∑

j=1

√
E[Q2

j ]E[T
2
kj ]. (4.67)

Since E[Tkj ] = 0, ∀j, k ∈ {1, 2, . . . , d}, we have that

E|D1| ≤ ‖h‖Lip
d∑

k=1

d∑
l=1

|Ṽlk|
d∑

j=1

√
E[Q2

j ]

√
Var

(
∂2

∂θk∂θj
log f(X1|θ0)

)

≤ ‖h‖Lip
d∑

k=1

d∑
l=1

|Ṽlk|
d∑

j=1

√
E[Q2

j ]

√√√√ d∑
i=1

Var

(
∂2

∂θk∂θi
log f(X1|θ0)

)
,

(4.68)

where the inequality trivially holds since the variance of a random variable is
always non-negative. Now, using that (

∑d
j=1 αj)

2 ≤ d(
∑d

j=1 α
2
j ) for αj ∈ R,

yields ( d∑
j=1

√
E[Q2

j ]

)2

≤ d

d∑
j=1

E[Q2
j ].
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Taking square roots in both sides of the above inequality and applying this
inequality to (4.68) yields

E|D1| ≤ ‖h‖Lip
√
d

d∑
k=1

d∑
l=1

|Ṽlk|

√√√√ d∑
i=1

Var

(
∂2

∂θk∂θi
log f(X1|θ0)

)√√√√E

[ d∑
j=1

Q2
j

]
.

(4.69)
To bound now E |D2|, with D2 as in (4.65), we need to take into account that

∂3

∂θk∂θq∂θj
�(θ;x)

∣∣∣
θ=θ∗

0

is in general not uniformly bounded and there is a positive

probability that the MLE will be outside an ε-neighbourhood of the true value of
the parameter. For ε > 0, the law of total expectation and Markov’s inequality
yield

E |D2| ≤ 2‖h‖P
(
|Q(m)| ≥ ε

)
+ E
[
|D2|
∣∣ |Q(m)| < ε

]
≤ 2‖h‖

ε2
E

[ d∑
j=1

Q2
j

]
+ E
[
|D2|
∣∣ |Q(m)| < ε

]
, (4.70)

where for the subscript (m) ∈ {1, . . . , d} it holds that

(m) is such that |θ̂n(x)(m) − θ0,(m)| ≥ |θ̂n(x)j − θ0,j |, ∀j ∈ {1, . . . , d} ,

and Q(m) = Q(m)(X,θ0) := θ̂n(X)(m) − θ0,(m). It remains now to bound

E
[
|D2|
∣∣ |Q(m)| < ε

]
by a quantity whose dependence on the MLE is merely

through the MSE. A first-order Taylor expansion and (3.30) yield

|D2| ≤
‖h‖Lip
2
√
n

d∑
k=1

d∑
l=1

|Ṽlk|
d∑

j=1

d∑
v=1

∣∣∣∣QjQv
∂3

∂θk∂θj∂θv
�(θ;X)

∣∣∣
θ=θ∗

0

∣∣∣∣ . (4.71)

Therefore, from (4.70) and (4.71) we have that

E|D2| ≤
2‖h‖
ε2

E

[ d∑
j=1

Q2
j

]
+

‖h‖Lip
2
√
n

d∑
k=1

d∑
l=1

|Ṽlk|×

× E

[ d∑
j=1

d∑
v=1

∣∣∣∣QjQv
∂3

∂θk∂θj∂θv
�(θ;X)

∣∣∣
θ=θ∗

0

∣∣∣∣ ∣∣∣∣ ∣∣Q(m)

∣∣ < ε

]
,

and using (Con.1), we have that

E|D2| ≤
2‖h‖
ε2

E

[ d∑
j=1

Q2
j

]

+

√
n‖h‖Lip

2

d∑
k=1

d∑
l=1

|Ṽlk|E
[ d∑

j=1

d∑
l=1

|QjQi|Mkji

∣∣∣∣ |Q(m)| < ε

]



Wasserstein distance bounds for the vector MLE 5795

Simple calculations lead to

d∑
j=1

d∑
i=1

|QjQi|Mkji =

d∑
j=1

Q2
jMkjj + 2

d−1∑
i=1

d∑
j=i+1

|Qj | |Qi|Mkij

and using that 2αβ ≤ α2 + β2, ∀α, β ∈ R,

d∑
j=1

d∑
i=1

|QjQi|Mkji ≤
d∑

j=1

Q2
jMkjj +

d−1∑
i=1

d∑
j=i+1

[
Q2

j +Q2
i

]
Mkji

=

d∑
j=1

Q2
j

d∑
i=1

Mkji

≤
d∑

j=1

Q2
j

d∑
m=1

d∑
i=1

Mkmi. (4.72)

Using (4.72) and Lemma 4.1 from [1], yields

E|D2| ≤
2‖h‖
ε2

E

[ d∑
j=1

Q2
j

]

+

√
n‖h‖Lip

2

d∑
k=1

d∑
l=1

|Ṽlk|
d∑

m=1

d∑
i=1

MkmiE

[ d∑
j=1

Q2
j

]
. (4.73)

Hence, from (4.62), (4.63), (4.66), (4.69) and (4.73) and using that ‖h‖ ≤ 1 and
‖h‖Lip ≤ 1 for h ∈ HbW, we obtain the upper bound (4.58), which depends on

θ̂n(X) only through the MSE, E[
∑d

j=1 Q
2
j ]. �

4.5. Empirical results

In this section, we investigate, through a simulation study, the accuracy of our
bounds given in Sections 4.1 – 4.3. We carried out the study using R. For the ex-
ponential distribution with θ = 1 under canonical and non-canonical parametri-
sation (this bound is given in Appendix A.2) and the normal distribution under
canonical parametrisation with η = (1, 1)ᵀ, we calculated our bound and es-
timated the true value of dW(W ,Z) for sample sizes n = 10j , j = 1, 2, 3, 4
(Tables 1 – 3). For the multivariate normal distribution under non-canonical
parametrisation with diagonal covariance matrix we studied the dependence of
dW(W ,Z) on the dimension p with n = 1000 fixed and μk = σ2

k = 1 for all
1 ≤ k ≤ p (Figure 1).

Calculating our bounds is straightforward, but estimating the 1-Wasserstein
distance dW(W ,Z) is more involved. For a given example and given sample
size n, we simulated N realisations of the distributions of W and Z to obtain
the empirical distribution functions of both distributions. We then used the R



5796 A. Anastasiou and R. E. Gaunt

package transport to compute the 1-Wasserstein distance between these two
empirical distributions. As we simulated the distributions, we only obtained
an estimate for the 1-Wasserstein distance dW(W ,Z), although this estimate
improves as N increases. To mitigate the random effects from the simulations,
we repeated this K = 100 times and then took the sample mean to obtain
our estimate d̂W(W ,Z). We used N = 104 for all simulations, except for the
multivariate normal distribution under non-canonical parametrisation for which
we used N = 103 on account of the many simulations for the 99 values of the
dimension p.

Table 1

Simulation results for the Exp(1) distribution under canonical parametrisation

n d̂W(W,Z) Bound Error

10 0.351 2.303 1.952
100 0.100 0.649 0.548

1000 0.034 0.203 0.169
10,000 0.020 0.064 0.044

Table 2

Simulation results for the Exp(1) distribution under non-canonical parametrisation

n d̂W(W,Z) Bound Error Bound using Theorem 2

10 0.103 7.499 7.396 0.321
100 0.036 1.498 1.463 0.101

1000 0.021 0.458 0.437 0.032
10,000 0.017 0.144 0.127 0.010

Table 3

Simulation results for the N(1, 1) distribution under canonical parametrisation

n d̂W(W ,Z) Bound Error

10 1.032 8962.830 8961.798
100 0.224 2834.296 2834.072

1000 0.083 896.283 896.200
10,000 0.057 283.430 283.373

From the tables we see that at each step we increase the sample size by a
factor of ten, the value of the upper bound drops by approximately a factor of√
10, which is expected as our bounds are of order O

(
n−1/2

)
. The simulated

1-Wasserstein distances d̂W(W ,Z) do not decrease by a factor of roughly
√
10

for larger sample sizes, because the approximation errors resulting from taking a
finite value ofN become more noticeable when the value of d̂W(W ,Z) decreases.

Our bounds for the exponential distribution perform reasonably well, par-
ticularly in the canonical parametrisation case. In Table 2 for the exponential
distribution under non-canonical parametrisation we also provide the bound ob-
tained from a direct application of Theorem 2 (this is inequality (A.77)), which
as expected is an order of magnitude better than our bound resulting from
the general approach. The bounds for the normal distribution under canonical
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Fig 1. Simulated values of dW(W ,Z) in the setting of Theorem 7 when the dimension p
varies in the set {2, 3, 4, . . . , 100}.

parametrisation are much bigger than for the exponential distribution. This is a
result of the increased complexity of this example and the fact that we sacrificed
best possible constants in favour of a simpler proof and compact final bound.

Figure 1 shows the behaviour of the simulated 1-Wasserstein distance d̂W(W ,
Z) for the multivariate normal distribution with diagonal covariance matrix with
μk = σ2

k = 1, 1 ≤ k ≤ p, when the dimension p varies from 2 up to 100. Here our
focus was on the dependence on the dimension for fixed n, so we chose a small
sample size n = 1000 to reduce the computational complexity of the simulations.
Figure 1 also contains a log-log plot. Across all 99 data points there is clearly not
a straight line fit, but after the value 3.8 for log(p) (the 45th data point), we start
to see some stabilisation towards a straight line. We obtained a slope of 0.576
between the 70th and 99th data points, which reduced to 0.569 between the
90th and 99th data points. The results from these simulations suggest that the
slope is converging down to 0.5, which would be consistent with the theoretical
O(p1/2) scaling of our bound (4.54).

Appendix A: Further examples, proofs and calculations

A.1. Verifying (R.C.4”) for the inverse gamma distribution

Let X1, X2, . . . , Xn be i.i.d. inverse gamma random variables with parameters
α > 0 and β > 0 and probability density function

f(x|α, β) = βα

Γ(α)
x−α−1 exp

{
− β

x

}
, x > 0.

In this appendix, we verify condition (R.C.4”) for the single-parameter MLE
for the inverse gamma distribution (fixed α or fixed β). The purpose is to give
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an illustration of how (R.C.4”) can be verified for more complicated MLEs than
those considered in Section 4. To keep the calculations manageable, we focus on
the single-parameter case.

For the moment, let θ denote the unknown parameter, either α or β. Recall
that in the single-parameter case condition (R.C.4”) is

maxθ̃∈{θ̂n(X),θ0}E
∣∣(θ̂n(X)− θ0)

2M(θ̃;X)
∣∣ < ∞.

We shall verify the stronger (and, in this case, simpler to verify) condition that

E
[
(θ̂n(X)− θ0)

4
]
maxθ̃∈{θ̂n(X),θ0}E

[(
M(θ̃;X)

)2]
< ∞,

which implies (R.C.4”) by the Cauchy-Schwarz inequality. It should be noted

that provided E
[
(θ̂n(X) − θ0)

4
]
< ∞, the argument of part (1) of Remark

3.1 shows that this quantity is order O(n−2). In verifying that the expecta-
tions involving the monotonic dominating function M are finite, we shall see,
as expected, that these expectations are order O(n2). Therefore the final term
in bound (3.22) of Theorem 5 is of the desired order O(1). An application of
Theorem 5, and further calculations to bound the other (simpler) terms would
confirm that we obtain a Wasserstein distance bound with O(n−1/2) convergence
rate.

1. Unknown β, fixed α = α0. The log-likelihood function is

�(β;x) = nα0 log β + n log Γ(α0)− (α0 + 1)

n∑
i=1

log xi − β

n∑
i=1

x−1
i ,

from which we readily obtain the unique MLE β̂ = nα0∑n
i=1 X−1

i

. Note that β̂
d
=

G−1, where G ∼ G(nα0, nα0β0), which can be seen from standard properties of
the gamma distribution and the relation that if X ∼ Inv.G(α, β), then X−1 ∼
G(α, β). Therefore

E[(β̂ − β0)
4] ≤ 8(E[β̂4] + β4

0) = 8(E[G−4] + β4
0) < ∞, for α0 > 4n−1.

We have that �(3)(β;x) = 2nα0

β3 , and so we may take M(β;x) = 2nα0

β3 . We have

E[(M(β0;X))2] =
4n2α2

0

β6
0

< ∞, E
[
(M(β̂;X))2

]
= 4n2α2

0E[G
6] < ∞,

and, moreover, E[(M(β̂;X))2] = O(n2), since E[G6] = O(1).

2. Unknown α, fixed β = β0. The log-likelihood function is

�(α;x) = nα log β0 + n log Γ(α)− (α+ 1)
n∑

i=1

log xi − β0

n∑
i=1

x−1
i ,
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and differentiating gives

�′(α;x) = n log β0 + nψ(α)−
n∑

i=1

log xi,

where ψ(x) = d
dx (log Γ(x)) is the digamma function. The unique MLE is thus

given by

α̂ = ψ−1

(
1

n

n∑
i=1

log
(Xi

β0

))
,

where ψ−1(x) is the inverse digamma function. In verifying (R.C.4”), we shall
make use of the following inequality of [7]:

1

log(1 + e−x)
< ψ−1(x) < ex +

1

2
, x ∈ R. (A.74)

Let us first show that E[(α̂ − α0)
4] < ∞. We have that E[(α̂ − α0)

4] ≤
8(E[α̂4] + α4

0), so it suffices to prove that E[α̂4] < ∞. By the upper bound in
(A.74),

E[α̂4] ≤ E

[(
exp

{
1

n

n∑
i=1

log
(Xi

β0

)}
+

1

2

)4]

≤ 8

(
E

[
exp

{
4

n

n∑
i=1

log
(Xi

β0

)}]
+

1

16

)

=
1

2
+ E

[ n∏
i=1

(Xi

β0

)4/n]
=

1

2
+

1

βn
0

(
E[X

4/n
1 ]
)n

< ∞, for α0 > 4n−1,

where we used that X1, . . . , Xn are i.i.d. in the final equality, and in the final
step we used that, for X ∼ Inv.G(α, β), E[Xγ ] < ∞ for α > γ.

We have that �(3)(α;x) = −nψ2(α), where ψ2(x) = d2

dx2 (ψ(x)) is a poly-
gamma function. From the infinite series representation ψ2(x) = −2

∑∞
k=0(k +

x)−3, x > 0 (differentiate both sides of formula 5.15.1 of [31]), it follows that
−ψ2(x) a positive, monotone strictly decreasing function of x on (0,∞). We may
therefore take M(α;x) = −nψ2(α). As in the case of unknown β and fixed α =
α0, it is immediate that E[(M(α0;X))2] < ∞, and that this quantity is O(n2).
We now focus on the more involved task of showing that E[(M(α̂;X))2] < ∞.
We begin by noting the elementary inequality −ψ2(x) ≤ 2x−3+x−2, x > 0 [21].
On using this inequality we obtain

E[(M(α̂;X))2] = n2
E[(ψ2(α̂))

2]

≤ n2
E

[(
2

α̂3
+

1

α̂2

)2]
≤ 2n2

(
4E[α̂−6] + E[α̂−4]

)
.
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Using the lower bound of (A.74) followed by the elementary inequality log(1 +
e−x) ≤ log 2 + |x|, x ∈ R, we obtain that, for m = 4, 6,

E[α̂−m] ≤ E

[(
log 2 +

1

n

∣∣∣∣ n∑
i=1

log
(Xi

β0

)∣∣∣∣)m]
, (A.75)

which is finite because E[| log(Xi)|k] < ∞, for k = 1, . . . , 6. Moreover, it is
readily seen from (A.75) that E[α̂−4] = O(1) and E[α̂−6] = O(1). We therefore
conclude that E[(M(α̂;X))2] < ∞, and that this quantity is of the expected
order O(n2).

A.2. Exponential distribution: the non-canonical case

Let X1, X2, . . . , Xn be i.i.d. random variables from the Exp
(
1
θ

)
distribution

with probability density function

f(x|θ) = 1

θ
exp

{
−1

θ
x

}
1{x>0} = exp

{
−logθ − 1

θ
x

}
1{x>0}

= exp {k(θ)T (x)−A(θ) + S(x)}1{x∈B},

where B = (0,∞), θ ∈ Θ = (0,∞), T (x) = −x, k(θ) = 1
θ , A(θ) = logθ and

S(x) = 0. Thus, Exp
(
1
θ

)
is a non-canonical exponential family distribution. The

MLE is unique and equal to θ̂n(X) = X̄.

Corollary 4. Let X1, X2, · · · , Xn be i.i.d. random variables that follow the
Exp( 1

θ0
) distribution. Let W =

√
n i(θ0)(θ̂n(x) − θ0) and Z ∼ N(0, 1). Then,

for n > 3,

dW(W,Z) <
10.41456√

n
+

4n3/2(n+ 6)

(n− 1)(n− 2)(n− 3)
+

6

n3/2
. (A.76)

Remark A.1. (1) This example is given for purely illustrative purposes, as
an improved bound can be obtained directly by Stein’s method. Define S =√

n(X̄−θ0)
θ0

= 1√
n

∑n
i=1 Yi, where Yi =

Xi−θ0
θ0

are i.i.d. zero mean and unit vari-

ance random variables. Therefore, by Theorem 2,

dW(W,Z) ≤ 1√
n

(
2 +

1

θ30
E[|X1 − θ0|3]

)
<

4.41456√
n

. (A.77)

However, in order to apply Stein’s method directly, we require the quantity
W =

√
n i(θ0)(θ̂n(x) − θ0) to be a sum of independent random variables. The

general theorems obtained in this paper are, however, applicable whatever the
form of the MLE is, as long as the regularity conditions are met.
(2) Like the bound of Corollary 2 for the exponential distribution under canon-
ical parametrisation, the bound (A.76) of Corollary 4 is of order O(n−1/2) and
does not depend on θ0. These features are shared by the bound (A.77) obtained
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by a direct application of Stein’s method. A bound with these features was also
obtained by [4] in the weaker bounded Wasserstein metric. Despite being given
in a stronger metric, our bound has numerical constants that are an order of
magnitude smaller.

Proof. It is straightforward to show that θ̂n(X) = X̄ and that the conditions
(R1)–(R3), (R.C.4”) are satisfied for this specific example. The log-likelihood
function is

�(θ0;x) = −nA(θ0) + k(θ0)

n∑
i=1

T (xi) = −n

(
log θ0 +

x̄

θ0

)
.

We have that

|�(3)(θ;x)| = n

∣∣∣∣ 2θ3 − 6x̄

θ4

∣∣∣∣ ≤ 2n

θ3

∣∣∣∣1 + 3x̄

θ

∣∣∣∣ ,
which is a decreasing function with respect to θ, and therefore condition (R.C.4”)
is satisfied with M(θ;x) = 2n

θ3

∣∣1 + 3x̄
θ

∣∣. Basic calculations of integrals show that

E[|T (X1) −D(θ0)|3] = E[|θ0 −X1|3] < 2.41456θ30. In addition, since T (x) = x,
we have that Var(T (X1)) = Var(X1) = θ20 and therefore for the first term of the
upper bound in (4.34), we have that

1√
n

(
2 +

E[|T (X1)−D(θ0)|3]
[Var(T (X1))]

3/2

)
<

4.41456√
n

. (A.78)

Now, consider the second term. The quantity E[(X̄ − θ0)
2] is calculated using

the results in p. 73 and the equations (3.38), p. 70 of [24] along with the fact

that θ̂n(X) = X̄ ∼ G
(
n, n

θ0

)
. We obtain that E[(X̄ − θ0)

2] =
θ2
0

n . We also have

that i(θ0) =
1
θ2
0
, and therefore

|k′′(θ0)|√
i(θ0)

√
Var (T (X1))

√
E
[(
θ̂n(X)− θ0

)2]
=

2√
n
. (A.79)

Finally, we work on the third term. Since X̄ ∼ G
(
n, n

θ0

)
and 1

X̄
∼ Inv.G

(
n, n

θ0

)
(where Inv.G denotes the inverse gamma distribution), we have that

E
∣∣(θ̂n(X)− θ0)

2M(θ0;X)
∣∣ = 2n

θ40
E
[ (

X̄ − θ0
)2 (

3X̄ + θ0
) ]

=
2n

θ40

{
3E[X̄3]− 5θ0E[X̄

2] + θ20E[X̄] + θ30
}

=
2n

θ40

{
3n(n+ 1)(n+ 2)θ30

n3
− 5n(n+ 1)θ30

n2
+ 2θ30

}
=

4(2n+ 3)

nθ0
(A.80)
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and, for n > 3,

E
∣∣(θ̂n(X)− θ0)

2M(θ̂n(X);X)
∣∣ = 8nE

[(
X̄ − θ0

)2
X̄3

]
= 8nE

[
1

X̄
+

θ20
X̄3

− 2θ0
X̄2

]
=

8n

n− 1

(
n

θ0
+

n3

(n− 2)(n− 3)θ0
− 2n2

(n− 2)θ0

)
=

8n2(n+ 6)

(n− 1)(n− 2)(n− 3)θ0
. (A.81)

Applying the results of (A.78), (A.79), (A.80) and (A.81) to (4.34), and using
that i(θ0) =

1
θ2
0
, yields the desired bound.

A.3. Further calculations from the proof of Corollary 3

Proof of Lemma 1. Let us first note the standard result that X̄ and
∑n

i=1

(
Xi−

X̄
)2

are independent, which follows from Basu’s theorem. We also have that X̄ ∼
N(μ, σ2

n ) and 1
σ2

∑n
i=1

(
Xi − X̄

)2 ∼ χ2
(n−1), the chi-square distribution with

n− 1 degrees of freedom. We therefore have that η̂1 =d
n

2σ2V and η̂2 =d
n
σ2UV ,

where U ∼ N(μ, σ2

n ) and V ∼ Inv−χ2
(n−1) are independent. All expectations as

given in the lemma can therefore be computed exactly using the formulas

E[U ] = μ, E[U2] = μ2 +
σ2

n
, E[U3] = μ3 +

3μσ2

n
,

E[U4] = μ4 +
6μ2σ2

n
+

3σ4

n2
,

E[V k] =
1

(n− 3)(n− 5) · · · (n− 2k − 1)
, k = 1, 2, . . . , n > 2k + 1,

E[V −k] = (n− 1)(n+ 1) · · · (n+ 2k − 3), k = 1, 2, . . . , n > 1,

and then expressing the resulting expression in terms of the canonical parametri-
sation (η1, η2) = ( 1

2σ2 ,
μ
σ2 ). (Here the expectations E[V k] and E[V −k], follow

from the standard formula that, for Y ∼ χ2
(r), E[Y

m] = 2m Γ(m+r/2)
Γ(r/2) , r > 0,

m > − r
2 and the identity Γ(x+ 1) = xΓ(x).) As an example,

E[Q2
1] = E[η̂21 ]− 2η1E[η̂1] + η21

=
η21n

2

(n− 3)(n− 5)
− 2η21n

n− 3
+ η21

=
η21(2n+ 15)

(n− 3)(n− 5)
.

To obtain the compact bound for E[Q2
1] as stated in the lemma, we note that

f(n) := n(2n+15)
(n−3)(n−5) is a decreasing function of n for n > 9 with f(10) = 10.
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Similar calculations show that, for n > 9,

E[Q2
2] =

2η1n+ (2n+ 15)η2
(n− 3)(n− 5)

, E[Q4
1] =

η41(12n
2 + 516n+ 945)

(n− 3)(n− 5)(n− 7)(n− 9)
,

E[Q4
2] =

12n2η21 + 12n(2n+ 63)η1η
2
2 + 3(4n2 + 172n+ 315)η42

(n− 3)(n− 5)(n− 7)(n− 9)
,

and, by the Cauchy-Schwarz inequality, E[Q2
1Q

2
2] ≤

√
E[Q4

1]E[Q
4
2]. We also have

that, for n > 9,

E[η̂−8
1 ] =

(n− 1)(n+ 1)(n+ 3) · · · (n+ 13)

η81n
8

,

E[η̂−6
1 ] =

(n− 1)(n+ 1)(n+ 3) · · · (n+ 9)

η61n
6

,

E[η̂−4
1 ] =

(n− 1)(n+ 1)(n+ 3)(n+ 5)

η41n
4

,

E[η̂22 ] =
n2

(n− 3)(n− 5)

(
η22 +

2η1
n

)
,

E[η̂42 ] =
n4

(n− 3)(n− 5)(n− 7)(n− 9)

(
η42 +

12η1η
2
2

n
+

12η21
n2

)
,

E

[
η̂2
η̂31

]
=

(n− 1)(n+ 1)η2
n2η31

,

E

[
η̂22
η̂61

]
=

(n− 1)(n+ 1)(n+ 3)(n+ 5)

η61n
4

(
η22 +

2η1
n

)
,

E

[
η̂42
η̂81

]
=

(n− 1)(n+ 1)(n+ 3)(n+ 5)

η81n
4

(
η42 + 12

η1η
2
2

n
+

12η21
n2

)
.

From these formulas we are able to obtain compacts bounds for all expectations
given in the lemma, that are valid for n ≥ 10, using a similar argument to the
one we used to bound E[Q2

1]. We round up all numerical constants to the nearest
integer We further simplify the bounds for E[Q4

2], E[η̂
4
2 ] and E[η̂42/η̂

8
1 ] using the

inequality ab ≤ 1
2 (a

2 + b2). �

Bounding the terms RM211
2,1,1 , R

M112
1,1,2 , R

M212
2,1,2 and RM122

1,2,2 .

RM211
2,1,1 :

RM211,A
2,1,1 = E

[
Q2

1

n|η2|
η31

]
≤ 10|η2|

η1
,

RM211,B
2,1,1 = E

[
Q2

1

n|η2|
η̂31

]
≤ n|η2|

√
E[Q4

1]E[η̂
−6
1 ] < |η2|

√
6958η41 ·

7

η61
<

221|η2|
η1

,

RM211,C
2,1,1 = E

[
Q2

1

n|η̂2|
η31

]
≤ n

η31

√
E[Q4

1]E[η̂
2
2 ] <

1

η31

√
6958η41(η1 + 3η22)
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<
84
√
η1

+
145|η2|

η1
,

RM211,D
2,1,1 = E

[
Q2

1

n|η̂2|
η̂31

]
≤ n

√
E[Q4

1]E

[
η̂22
η̂61

]
<

√
6958η41 ·

1

η61
(η1 + 2η22)

<
84
√
η1

+
118|η2|

η1
.

RM112
1,1,2 :

RM112,A
1,1,2 = E

∣∣∣∣Q1Q2
n|η2|
η31

∣∣∣∣ ≤ n|η2|
η31

√
E[Q2

1]E[Q
2
2] <

n|η2|
η31

√
10η21(6η1 + 10η22)

<
8|η2|
η
3/2
1

+
10η22
η21

≤ 4

η1
+

14η22
η21

,

RM112,B
1,1,2 = E

∣∣∣∣Q1Q2
n|η2|
η̂31

∣∣∣∣ ≤ n|η2|
√
E[Q2

1Q
2
2]E[η̂

−6
1 ]

< n|η2|
√

η21(6400η1 + 9023η22) ·
7

η61
<

212|η2|
η
3/2
1

+
252η22
η21

≤ 106

η1
+

358η22
η21

,

RM112,C
1,1,2 = E

∣∣∣∣Q1Q2
n|η̂2|
η31

∣∣∣∣ ≤ n

η31

√
E[Q2

1Q
2
2]E[η̂

2
2 ]

<
1

η31

√
η21(6400η1 + 9023η22)(η1 + 3η22) ≤

1

η31

√
41023

2
η21 +

82361

2
η42

<
144

η1
+

203η22
η21

,

RM112,D
1,1,2 = E

∣∣∣∣Q1Q2
n|η̂2|
η̂31

∣∣∣∣ ≤ n

√
E[Q2

1Q
2
2]E

[
η̂22
η̂61

]

<
1

η31

√
η21(6400η1 + 9023η22) ·

1

η61
(η1 + 2η22)

≤ 1

η31

√
34623

2
η21 +

57915

2
η42 <

132

η1
+

171η22
η21

.

RM212
2,1,2 :

RM212,A
2,1,2 = RM212,C

2,1,2 = E

[
Q1Q2

n

2η21

]
≤ n

2η21

√
E[Q2

1]E[Q
2
2]
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<
n

2η21

√
10η21(6η1 + 10η22) <

4
√
η1

+
5|η2|
η1

,

RM212,B
2,1,2 = RM212,D

2,1,2 = E

[
Q1Q2

n

2η̂21

]
≤ n

2

√
E[Q2

1Q
2
2]E[η̂

−4
1 ]

<
n

2

√
η21(6400η1 + 9023η22)×

2

η41
<

57
√
η1

+
68|η2|
η1

.

RM122
1,2,2 :

RM122,A
1,2,2 = RM122,C

1,2,2 = E

[
Q2

2

n

2η21

]
<

3

η1
+

5η22
η21

,

RM122,B
1,2,2 = RM122,D

1,2,2 = E

[
Q2

2

n

2η̂21

]
≤ n

2

√
E[Q4

2]E[η̂
−4
1 ]

<
1

2

√
(5886η21 + 11700η42) ·

2

η41
<

55

η1
+

77η22
η21

.

A.4. Proof of Theorem 8

Proof. Let W̃ =
√
n(θ̂n(X) − θ0), so that W = [I(θ0)]

1/2W̃ . Now, for 1 ≤
i ≤ n, write Xi = (Xi,1, . . . , Xi,p)

ᵀ, and define the centered random variables
Yi,j = Xi,j − μj , 1 ≤ i ≤ n, 1 ≤ j ≤ p. For 1 ≤ j ≤ p, let X̄j and Ȳj denote the
sample means of X1,j , . . . , Xn,j and Y1,j , . . . , Yn,j . A simple calculation gives the
useful equation

n∑
i=1

(Xi,j − X̄j)
2 =

n∑
i=1

(Xi,j − μj)
2 − n(X̄j − μj)

2.

Putting this together gives that W̃ can be written as W̃ =(W̃1, . . . , W̃p(p+3)/2)
ᵀ,

where, for 1 ≤ j ≤ p,

W̃j =
1√
n

n∑
i=1

Xi,j − μj =
1√
n

n∑
i=1

Yi,j ,

and, for p+1 ≤ j ≤ p(p+3)/2, we associate W̃j with an ordering of the random

variables W̃k,
 which are given, for 1 ≤ � ≤ k ≤ p, by

W̃k,
 =
1√
n

n∑
i=1

((Xi,k − μk)(Xi,
 − μ
)− σk,
)−
√
n(X̄k − μk)(X̄
 − μ
)

=
1√
n

n∑
i=1

(Yi,kYi,
 − σk,
)−
√
nȲkȲ
.
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Now define Ṽ = (Ṽ1, . . . , Ṽp(p+3)/2)
ᵀ, where, for 1 ≤ j ≤ p and 1 ≤ � ≤ k ≤ p,

Ṽj = W̃j and Ṽk,
 =
1√
n

n∑
i=1

(Yi,kYi,
 − σk,
),

(here we associate Ṽj , p+ 1 ≤ j ≤ p(p+ 3)/2, with an ordering of Ṽk,
, 1 ≤ � ≤
k ≤ p) and let V = [I(θ0)]

1/2Ṽ .
Let h ∈ HW. Then

E[h(W )]− E[h(Z)] =
(
E[h(W )]− E[h(V )]

)
+
(
E[h(V )]− E[h(Z)]

)
=: R1 +R2. (A.82)

Now write [I(θ0)]
1/2 = (ai,j). The remainder R1 is readily bounded by applying

the mean value theorem:

|R1| ≤ ‖h‖LipE
∣∣∣∣ ∑
1≤k≤j≤p

∑
1≤r≤q≤p

a(j,k),(q,r)
√
nȲqȲr

∣∣∣∣
≤

∑
1≤k≤j≤p

∑
1≤r≤q≤p

√
n‖[I(θ0)]

1/2‖max max
1≤t≤p

E[(Ȳt)
2]

<
p4σ2

∗‖[I(θ0)]
1/2‖max√

n
,

where in the second step we used the triangle inequality and the Cauchy-Schwarz
inequality, and that ‖h‖Lip ≤ 1, since h ∈ HW.

Now we bound R2. We can write V = 1√
n

∑n
i=1 ξi, where ξ1, . . . , ξn are i.i.d.

random vectors, and Ṽ = 1√
n

∑n
i=1 ξ̃i, where ξ̃1, . . . , ξ̃n are i.i.d. random vectors

with ξi = [I(θ0)]
1/2ξ̃i. Here the components of ξ̃1 are given by ξ̃1,j = Y1,j ,

1 ≤ j ≤ p, and ξ̃1,(k,
) = Y1,kY1,
 − σk,
, 1 ≤ � ≤ k ≤ p, where, for d+ 1 ≤ j ≤
p(p+3)/2 we associate ξ̃1,j with an ordering of ξ̃1,(k,
), 1 ≤ � ≤ k ≤ p. We begin
by showing that the assumptions of Theorem 3 are met, that is E[ξ1] = 0 and
E[ξ1ξ

ᵀ
1 ] = Ip(p+3)/2. The components of ξ̃1 are given by ξ̃1,j = Y1,j and ξ̃(k,
),1 =

Y1,kY1,
−σk,
. We can immediately see that E[ξ1] = [I(θ0)]
1/2E[ξ̃1] = 0. Let us

now show that E[ξ1ξ
ᵀ
1 ] = Ip(p+3)/2. As the MLE is asymptotically multivariate

normally distributed we have that W
d→ Z, as n → ∞ (with an abuse of

notation, as we have not indexed W with n). We have just shown that R1 → 0,
as n → ∞, (again with the same abuse of notation) for all h ∈ H1. Therefore by

(A.82) we have that V
d→ Z, as n → ∞. Therefore E[V V ᵀ] = Ip(p+3)/2 + o(1),

as n → ∞. But since ξ1, . . . , ξn are i.i.d. we have that E[ξ1ξ
ᵀ
1 ] = E[V V ᵀ]. Since

E[ξ1ξ
ᵀ
1 ] does not involve n, we deduce that E[ξ1ξ

ᵀ
1 ] = Ip(p+3)/2.

Now we obtain the bound

E[([I(θ0)]
1/2ξ̃1,j)

4] = E

[( p(p+3)/2∑
q=1

aj,q ξ̃1,q

)4]
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≤ p4(p+ 3)4

16
‖[I(θ0)]

1/2‖4max ·max1≤t≤p(p+3)/2E[ξ̃
4
1,t]

=
p4(p+ 3)4

16
‖[I(θ0)]

1/2‖4max · 105σ8
∗.

As the assumptions of Theorem 3 are satisfied, we may apply inequality (2.16)
to obtain the bound

R2 ≤ 14(p(p+ 3)/2)5/4√
n

(
p4(p+ 3)4

16
‖[I(θ0)]

1/2‖4max · 105σ8
∗

)1/2

<
15.1√

n
p13/4(p+ 3)13/4σ4

∗‖[I(θ0)]
1/2‖2max.

Finally, combining the bounds for R1 and R2 gives the bound for dW(W ,Z) as
stated in the theorem.
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[27] Mäkeläinen, T., Schmidt, T. K. and Styan, G. P. H. On the existence and

uniqueness of the maximum likelihood estimate of a vector-valued param-
eter in fixed size samples. Ann. Stat. 9 (1981), 758–767. MR0619279

[28] Mariucci, E. and Reiß, M. Wasserstein and total variation distance between
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