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Abstract: Edge-exchangeable probabilistic network models generate edges
as an i.i.d. sequence from a discrete measure, providing a simple means
for statistical inference of latent network properties. The measure is often
constructed using the self-product of a realization from a Bayesian non-
parametric (BNP) discrete prior; but unlike in standard BNP models, the
self-product measure prior is not conjugate the likelihood, hindering the
development of exact simulation and inference algorithms. Approximation
via finite truncation of the discrete measure is a straightforward alterna-
tive, but incurs an unknown approximation error. In this paper, we de-
velop methods for forward simulation and posterior inference in random
self-product-measure models based on truncation, and provide theoretical
guarantees on the quality of the results as a function of the truncation level.
The techniques we present are general and extend to the broader class of
discrete Bayesian nonparametric models.
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1. Introduction

Probabilistic generative models have for many years been key tools in the analy-
sis of network data [1, 2]. Recent work in the area [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
has begun to incorporate the use of nonparametric discrete measures, in an effort
to address the limitations of traditional models in capturing the sparsity of real
large-scale networks [14]. These models construct a discrete random measure Θ
(often a completely random measure, or CRM [15]) on a space Ψ, associate each
atom of the measure with a vertex in the network, and then use the self-product
of the measure—i.e., the measure Θ×Θ on Ψ2—to represent the magnitude of
interaction between vertices.

While the inclusion of a nonparametric measure enables capturing sparsity, it
also makes both generative simulation and posterior inference via Markov chain
Monte Carlo (MCMC) [16; 17, Ch. 11, 12] significantly more challenging. In
standard Bayesian models with discrete nonparametric measures—such as the
Dirichlet process mixture model [18] or beta process latent feature model [19]—
this issue is typically addressed by exploiting the conjugacy of the (normalized)
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completely random measure prior and the likelihood to marginalize the latent
infinite discrete measure [20]. But in the case of nonparametric network models,
however, there is no such reprieve; the self-product of a completely random mea-
sure is not a completely random measure, and exact marginalization is typically
not possible.

Another option is to truncate the discrete CRM to have finitely many atoms,
and perform simulation and inference based on the truncated CRM. Exact trun-
cation schemes based on auxiliary variables [21, 22, 23] are limited to mod-
els where certain tail probabilities can be computed exactly. Fixed truncation
[24, 25, 26, 27], on the other hand, is easy to apply to any CRM-based model; but
it involves an approximation with potentially unknown error. Although the ap-
proximation error of truncated CRMmodels has been thoroughly studied in past
work [27, 28, 29, 30, 31], these results apply only to generative simulation—i.e.,
not inference—and do not apply to self-product CRMs that commonly appear
in network models.

In this work, we provide tractable methods for both generative simulation and
posterior inference of discrete Bayesian nonparametric models based on trun-
cation, as well as rigorous theoretical analyses of the error incurred by trun-
cation in both scenarios. In particular, our theory and methods require only
the ability to compute bounds on—instead of exact evaluation of—intractable
tail probabilities. Our work focuses on the case of self-product-measure-based
edge-exchangeable network sequences [3, 5, 32, 33], whose edges are simulated
i.i.d.conditional on the discrete random product measure Θ×Θ, but the ideas
here apply without much effort to the broader class of discrete Bayesian non-
parametric models. As an intermediate step of possible independent interest, we
also show that the nonzero rates generated from the rejection representation [34]
of a Poisson process have the same distribution as the well-known but typically
intractable inverse Lévy or Ferguson-Klass representation [35]. This provides a
novel method for simulating the inverse Lévy representation, which has a wide
variety of uses in applications of Poisson processes [36, 37, 38].

2. Background

2.1. Completely random measures and self-products

A completely random measure (CRM) Θ on Ψ is a random measure such that
for any collection of K ∈ N disjoint measurable sets A1, ..., AK ⊂ Ψ, the values
Θ(A1), ...,Θ(AK) are independent random variables [15]. In this work, we focus
on discrete CRMs taking the form Θ =

∑
k θkδψk

, where δx is a Dirac measure
on Ψ at location x ∈ Ψ (i.e., δx(A) = 1 if x ∈ A and 0 otherwise), and (θk, ψk)

∞
k=1

are a sequence of rates θk and labels ψk generated from a Poisson process on
R+ × Ψ with mean measure ν(dθ) × L(dψ). Here L is a diffuse probability
measure, and ν is a σ-finite measure satisfying ν(R+) = ∞, which guarantees
that the Poisson process has countably infinitely many points almost surely. The
space Ψ and distribution L will not affect our analysis; thus as a shorthand, we
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write CRM(ν) for the distribution of Θ:

Θ :=
∑
k

θkδψk
∼ CRM(ν). (1)

One can construct a multidimensional measure Θ(d) on Ψd, d ∈ N from Θ
defined in Eq. (1) by taking its self-product. In particular, we define

Θ(d) :=
∑
i∈Nd

�=

ϑiδζi , ϑi :=
d∏

j=1

θij , ζi := (ψi1 , ψi2 , ..., ψid), (2)

where i is a d-dimensional multi-index, and N
d
�= is the set of such indices with all

distinct components. Note that Θ(d) is no longer a CRM, as it does not satisfy
the independence condition.

2.2. Series representations

To simulate a realization Θ ∼ CRM(ν)—e.g., as a first step in the simulation
of a self-product measure Θ(d)—the rates θk and labels ψk may be generated in
sequence using a series representation [39] of the CRM. In particular, we begin
by simulating the jumps of a unit-rate homogeneous Poisson process (Γk)

∞
k=1

on R+ in increasing order. For a given distribution g on R+ and nonnegative
measurable function τ : R+ × R+ → R+, we set

Θ =

∞∑
k=1

θkδψk
, θk = τ(Uk,Γk), Uk

i.i.d.∼ g, ψk
i.i.d.∼ L. (3)

Depending on the particular choice of τ and g, one can construct several different
series representations of a CRM [28]. For example, the inverse Lévy representa-
tion [35] has the form

θk = ν←(Γk), ν←(x) := inf {y : ν ([y,∞)) ≤ x} . (4)

In many cases, computing ν←(x) is intractable, making it hard to generate θk
in this manner. Alternatively, we can generate a series of rates from CRM(ν)
with the rejection representation [34], which has the form

θk = Tk1
(dν
dμ

(Tk) ≥ Uk

)
, Tk = μ←(Γk), Uk

i.i.d.∼ Unif[0, 1], (5)

where μ is a measure on R+ chosen such that dν
dμ ≤ 1 uniformly and μ←(x)

is easy to calculate in closed-form. While there are many other sequential rep-
resentations of CRMs [28], the representations in Eqs. (3) to (5) are broadly
applicable and play a key role in our theoretical analysis.
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2.3. Edge-exchangeable graphs

Self-product measures Θ(d) of the form Eq. (2) with d = 2 have recently been
used as priors in a number of probabilistic network models [3, 4].1 The focus of
the present work are those models that associate each ψk with a vertex, each
tuple ζi = (ψi1 , . . . , ψid) with a (hyper)edge, and then build a growing sequence
of networks by sequentially generating edges from Θ(d) in rounds n = 1, . . . , N .
There are a number of choices for how to construct such a sequence. For example,
in each round n we may add multiple edges via an independent likelihood process
Xn ∼ LP(h,Θ(d)) defined by

Xn :=
∑
i∈Nd

�=

xniδζi , xni
indep∼ h(·|ϑi), (6)

where xni = k denotes that there were k copies of edge ζi added at round
n, and h(·|ϑ) is a probability distribution on N ∪ {0}. We denote the mean
μ(ϑ) :=

∑∞
k=0 k · h(k |ϑ) and probability of 0 under h to be π(ϑ) := h(0|ϑ) for

convenience. By the Slivnyak-Mecke theorem [40], if h satisfies

∫
Rd

+

μ

⎛
⎝ d∏

j=1

θj

⎞
⎠ d∏

j=1

ν(dθj) < ∞, (7)

then finitely many edges are added to the graph in each round. We make this
assumption throughout this work. Alternatively, if∫

R+

min(1, θ)ν(dθ) < ∞,

then Ω := Θ(d)(Ψd) < ∞, and we may add only a single edge per round n via
a categorical likelihood process Xn ∼ Categorical(Θ(d)) defined by

Xn := δζIn , In ∼ Categorical

((
ϑi

Ω

)
i∈Nd

�=

)
. (8)

This construction has appeared in [4], where Θ follows a Dirichlet process, which
can be seen as a normalized gamma process [41]. Note that our definition of
Categorical(Θ(d)) involves simulating from the normalization; we use this defi-
nition to avoid introducing new notation for normalized processes.

Using either likelihood process, the edges in the network after N rounds are

N∑
n=1

Xn :=
∑
i∈Nd

�=

xiδζi , xi :=

N∑
n=1

xni,

1There are also network models based on self-product measure priors that do not generate
edge-exchangeable sequences [8, 11]; it is likely that many of the techniques in the present
work would extend to these models, but we leave the study of this to future work.
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i.e., xi ∈ N ∪ {0} represents the count of edge i after N rounds.
There are three points to note about this formulation. First, since the atom

locations ζi are not used, we can represent the network using only its array of
edge counts

EN := (xi)i∈Nd
�=
∈ Nd, (9)

where Nd denotes the set of integer arrays indexed by N
d
�= with finitely many

nonzero entries. Note that Nd is a countable set. Second, by construction, the
distribution of EN is invariant to reorderings of the arrival of edges, and thus
the network is edge-exchangeable [3, 5, 6, 7]. Finally, note that the network
EN as formulated in Eq. (9) is in general a directed multigraph with no self-
loops (due to the restriction to indices i ∈ N

d
�= rather than N

d). Although the
main theoretical results in this work are developed in this setting, we provide an
additional result in Section 3.1 to translate to other common network structures
(e.g. binary undirected networks).

3. Truncated generative simulation

In this section, we consider the tractable generative simulation of network mod-
els via truncation, and analyze the approximation error incurred in doing so as
a function of K ∈ N (the truncation level) and number of rounds of generation
N ∈ N. In particular, to construct a truncated self-product measure, we first
split the underlying CRM Θ into a truncation and tail component,

Θ = ΘK +ΘK+, ΘK =

K∑
k=1

θkδψk
, ΘK+ =

∞∑
k=K+1

θkδψk
,

and construct the self-product Θ
(d)
K from the truncation ΘK as in Eq. (2). Fig.

1 provides an illustration of the truncation of Θ and Θ(2), showing that Θ(2)

can be decomposed into a sum of four parts,

Θ(2) = Θ2 = (ΘK +ΘK+)
2 = Θ

(2)
K +

(
ΘK ×ΘK+ +ΘK+ ×ΘK +Θ2

K+

)
.

Thus, while we only discard ΘK+ in truncating Θ to ΘK , we discard three parts

in truncating Θ
(2)
K to Θ

(2)
K ; and in general, we discard 2d − 1 parts of Θ(d) when

truncating it to Θ
(d)
K . We therefore intuitively might expect higher truncation

error when approximating Θ
(d)
K ≈ Θ(d) than when approximating ΘK ≈ Θ; in

Sections 3.2 and 3.3, we will show that this is indeed the case.

Once the measure is truncated, a truncated network—based on Θ
(d)
K —can be

constructed in the same manner as the original network using the independent
likelihood process Eq. (6) or categorical likelihood process Eq. (8). We denote
EN,K = (xi,K)i∈Nd

�=
∈ Nd to be the corresponding edge set of the truncated

network up round N , where xi,K = 0 for any index i ∈ N
d
�= such that some

component ij > K. We keep EN and EN,K in the same space in order to
compare their distributions in Sections 3.1 to 3.3.
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Fig 1. An illustration of the difference between truncation of CRMs (d = 1) and self-product
CRMs with d = 2. Intuitively, increasing d means that a higher proportion of mass is discarded
in the truncation process.

3.1. Truncation error bound

We formulate the approximation error incurred by truncation as the total varia-
tion distance between the marginal network distributions, i.e., of EN and EN,K .
The first step in the analysis of truncation error—provided by Lemma 3.1—is
to show that this is bounded above by the probability that there are edges in
the full network EN involving vertices beyond the truncation level K. To this
end, we denote the maximum vertex index of EN to be

IN := max
i∈Nd

�=

(
max
j∈[d]

ij

)
s.t. xi > 0,

and note that by definition, IN ≤ K if and only if all edges in EN fall in the
truncated region.

Lemma 3.1. Let Θ =
∑∞

k=1 θkδψk
be a random discrete measure, and ΘK =∑K

k=1 θkδψk
be its truncation to K atoms. Let Θ(d) be the self-product of Θ, and

Θ
(d)
K be the self-product of ΘK . Let PN and PN,K be the marginal distributions of

edge sets EN , EN,K ∈ Nd under either the independent or categorical likelihood
process. Then

DTV (PN , PN,K) ≤ 1− P (IN ≤ K) .

As mentioned in Section 2.3, the network EN is in general a directed multi-
graph with no self loops. However, Lemma 3.1—and the downstream trunca-
tion error bounds presented in Sections 3.2 and 3.3—also apply to any graph
E′

N = (x′
i)i∈Nd

�=
that is a function of the original graph E′

N = f(EN ) such that

truncation commutes with the function, i.e., E′
N,K = f(EN,K). For example, to

obtain a truncation error bound for the common setting of undirected binary
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graphs, we generate the directed multigraph EN as above and construct the
undirected binary graph E′

N via

x′
i = 1xi>0 · 1i1<i2<···<id , i ∈ N

d
�=. (10)

Corollary 3.2 provides the precise statement of the result; note that the bound
is identical to that from Lemma 3.1.

Corollary 3.2. Let E′
N := (x′

i)i∈Nd
�=
∈ Nd be the set of edges of a network with

truncation E′
N,K ∈ Nd, and denote their marginal distributions P ′

N and P ′
N,K .

If there exists a measurable function f such that

E′
N = f(EN ) and E′

N,K = f(EN,K),

then

DTV

(
P ′
N , P ′

N,K

)
≤ 1− P (IN ≤ K) .

3.2. Independent likelihood process

We now specialize Lemma 3.1 to the setting where Θ is a CRM generated by a
series representation of the form Eq. (3), and the network is generated via the
independent likelihood process from Eq. (6). As a first step towards a bound
on the truncation error for general hypergraphs with d > 1 in Theorem 3.4, we
present a simpler corollary in the case where d = 2, which is of direct interest
in analyzing the truncation error of popular edge-exchangeable networks.

Corollary 3.3. In the setting of Lemma 3.1, suppose Θ is a CRM generated
from the series representation Eq. (3), edges are generated from the independent
likelihood process Eq. (6), and d = 2 ≤ K. Then

P (IN ≤ K) ≥ exp (−N ·BK) ,

where

BK = BK,1 +BK,2 +BK,3

BK,1 = E

[∫
R2

+

− log π (τ(U1, γ1 + ΓK)τ(U2, γ2 + ΓK)) dγ1dγ2

]

BK,2 = 2E

[∫ ΓK

0

(K − 1)

ΓK

∫ ∞

ΓK

− log π (τ(U1, γ1)τ(U2, γ2)) dγ1dγ2

]

BK,3 = 2E

[∫
R+

− log π (τ(U1,ΓK)τ(U2, γ + ΓK)) dγ

]
.

The proof of this result (and Theorem 3.4 below) in Appendix B follows by
representing the tail of the CRM as a unit-rate Poisson process on [ΓK ,∞).
Though perhaps complicated at first glance, an intuitive interpretation of the
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truncation error terms BK,i is provided by Fig. 1b. BK,1 corresponds to the
truncation error arising from the upper right quadrant, where both vertices
participating in the edge were in the discarded tail region. BK,2 is the truncation
error arising from the bottom right and upper left quadrants, where one of the
two vertices participating in the edge was in the truncation, and the other was
in the tail. Finally, BK,3 represents the truncation error arising from edges in
which one vertex was at the boundary of tail and truncation, and the other was
in the tail.

Theorem 3.4 is the generalization of Corollary 3.3 from d = 2 to the general
setting of arbitrary hypergraphs with d > 1. The bound is analogous to that
in Corollary 3.3—with BK expressed as a sum of terms, each corresponding to
whether vertices were in the tail, boundary, or truncation region—except that
there are d > 1 vertices participating in each edge, resulting in more terms in
the sum. Note that Theorem 3.4 also guarantees that the bound is not vacuous,
and indeed converges to 0 as the truncation level K → ∞ as expected.

Theorem 3.4. In the setting of Lemma 3.1, suppose Θ is a CRM generated
from the series representation Eq. (3), edges are generated from the independent
likelihood process Eq. (6), and 1 < d ≤ K. Then

P (IN ≤ K) ≥ exp (−N ·BK) ,

where

BK = BK,1 +BK,2 +BK,3, (11)

BK,1 = E

[∫
[ΓK ,∞)d

− log π(θ̃)dγ

]

BK,2 =

d−1∑
�=1

(
d

�

)
E

[
(K − 1) !

(K − 1− �) !
Γ−�
K

∫
[0,ΓK ]�×[ΓK ,∞)d−�

− log π(θ̃)dγ

]

BK,3 =

d−1∑
�=1

�

(
d

�

)
E

[
(K − 1) !

(K − �) !
Γ
−(�−1)
K

∫
[0,ΓK ]�×[ΓK ,∞)d−�

−δγ�=ΓK
log π(θ̃)dγ

]
,

δ· is the Dirac delta, dγ :=
∏d

j=1 dγj, and θ̃ :=
∏d

j=1 τ(Uj , γj). Furthermore,
limK→∞BK = 0.

The same geometric intuition from the d = 2-dimensional case applies to
the general hypergraph truncation error in Eq. (11). BK,1 corresponds to the
error arising from the edges whose vertices all belong to the tail region ΘK+.
Each term in the summation in BK,2 corresponds to the error arising from edges
that have � out of d vertices belonging to the truncation ΘK . Each term in the
summation in BK,3 corresponds to the error arising from the edges that have
� − 1 out of d vertices belonging to the truncation ΘK and have one vertex
exactly on the boundary of the truncation. Note that we obtain Corollary 3.3
by taking d = 2 in Eq. (11).
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3.3. Categorical likelihood process

We may also specialize Lemma 3.1 to the setting where the network is generated
via the single-edge-per-step categorical likelihood process in Eq. (8). However,
truncation with the categorical likelihood process poses a few key challenges.
From a practical angle, certain choices of series representation for generating Θ
may be problematic. For instance, when using the rejection representation Eq.
(5) in the typical case where μ �= ν, there is a nonzero probability that

K∑
k=1

1 [θk > 0] < d,

meaning there aren’t enough accepted vertices in the truncation to generate a
single edge. In this case, the categorical likelihood process—which must generate
exactly one edge per step—is ill-defined. An additional theoretical challenge
arises from the normalization of the original and truncated networks in Eq. (8),
which prevents the use of the usual theoretical tools for analyzing CRMs.

Fortunately, the inverse Lévy representation provides an avenue to address
both issues. The rates θk are all guaranteed to be nonzero—meaning as long as
K ≥ d, the categorical likelihood process is well-defined—and are decreasing,
which enables our theoretical analysis in Appendix B.1. However, as mentioned
earlier, the inverse Lévy representation is well-known to be intractable to use in
most practical settings.

Theorem 3.5 provides a solution: we use the rejection representation to sim-
ulate the rates θk, but instead of simulating for iterations k = 1, . . . ,K, we
simulate until we obtain K nonzero rates. This is no longer a sample of a trun-
cated rejection representation; but Theorem 3.5 shows that the first K nonzero
rates have the same distribution as simulating K iterations of the inverse Lévy
representation. Therefore, we can tailor the analysis of truncation error for the
categorical likelihood process in Theorem 3.6 to the inverse Lévy representation,
and simulate its truncation for any K using the tractable rejection representa-
tion in practice.

Theorem 3.5. Let θ1, . . . , θK be the first K rates from the inverse Lévy repre-
sentation of a CRM, and let θ′1, . . . , θ

′
K be the first K nonzero rates from any

rejection representation of the same CRM. Then

(θ1, . . . , θK)
d
= (θ′1, . . . , θ

′
K).

Theorem 3.6. In the setting of Lemma 3.1, suppose Θ is a CRM generated from
the inverse Lévy representation Eq. (4), edges are generated from the categorical
likelihood process Eq. (8), and 1 < d ≤ K. Then

P (IN ≤ K) ≥ (1−BK)Nd ≥ 0,

where

BK :=E

[∫ ∞

−∞
Q(ΓK , x)

(∫ 1

0

Q(ΓKu, x)du

)K−d(
d

dx
e
∫ ∞
0

Q(ΓK+γ, x)−1 dγ

)
dx

]
,
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and

Q(u, t) = exp
(
−ν←(u)e−t

)
and ΓK ∼ Gam(K, 1).

Furthermore, limK→∞ BK = 0.

3.4. Examples

We now apply the results of this section to binary undirected networks (d =
2) constructed via Eq. (10) from common edge-exchangeable networks [3]. We
derive the convergence rate of truncation error, and provide simulations of the
expected number of edges and vertices under the infinite and truncated network.
In each simulation we use the rejection representation to simulate Θ,and run
N = 10, 000 steps of network construction.

Beta-Bernoulli process network Suppose Θ is generated from a beta pro-
cess, and network EN is generated using the independent Bernoulli likelihood
process [3]. The beta process BP(γ, λ, α) [42] with discount parameter α ∈ [0, 1),
concentration parameter λ > −α, and mass parameter γ > 0 is a CRM with
rate measure

ν(dθ) = γ
Γ(λ+ 1)

Γ(1− α)Γ(λ+ α)
1[θ ≤ 1]θ−1−α(1− θ)λ+α−1dθ. (12)

The Bernoulli likelihood has the form

h(x|θ) = 1[x ≤ 1]θx(1− θ)1−x. (13)

To simulate the process, we use a proposal rate measure μ given by

μ(dθ) = γ′1 [θ ≤ 1] θ−1−αdθ, γ′ = γ
Γ(λ+ 1)

Γ(1− α)Γ(λ+ α)
.

Dense network: When α = 0, the binary beta-Bernoulli graph is dense and

μ←(u) = e−u/γ′
,

dν

dμ
= (1− θ)λ−1.

Therefore the rejection representation Eq. (5) of BP(γ, λ, 0) can be written as

θk = Tk1
(
Uk ≤ (1− Tk)

λ−1
)
, Tk = e−Γk/γ

′
.

In Appendix C.2, we show that there exists K0 ∈ N such that

∀K ≥ K0, BK ≤ 12γ(1− e−1)λ−2

(
γ′

1 + γ′

)K

.

This implies that the truncation error of the dense binary beta-Bernoulli network
converges to 0 geometrically in K. Fig. 2a corroborates this result in simulation
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Fig 2. Beta-independent Bernoulli network

with λ = 2 and γ = 1; it can be seen that for the dense beta-Bernoulli graph,
truncated graphs with relatively low truncation level—in this case, K ≈ 50—
approximate the true network model well.

Sparse network: When α ∈ (0, 1), the binary beta-Bernoulli graph is sparse
and

μ←(u) =

(
1 +

αu

γ′

)−1/α

,
dν

dμ
= (1− θ)λ+α−1.

Therefore the rejection representation Eq. (5) of BP(γ, λ, α) can be written as

θk = Tk1
(
Uk ≤ (1− Tk)

λ+α−1
)
, Tk = (1 + αΓk/γ

′)−1/α.

In Appendix C.2, we show that there exists K0 ∈ N such that

∀K ≥ K0, BK ≤ 6α(γ′α−1)1/α eγ
′α−1

(K − 1)
α−1
α .

This bound suggests that the truncation error for the sparse binary beta-Ber-
noulli network converges to 0 much more slowly than for the dense graph. Fig.
2b corroborates this result in simulation with λ = 2, γ = 1, and α = 0.6; it
can be seen that for the sparse beta-Bernoulli graph, truncated graphs behave
significantly differently from the true graph for moderate truncation levels. In
practice, one should select an appropriate (large) value of K using our error
bounds as guidance, and use sparse data structures to avoid undue memory
burden.

Gamma-independent Poisson network Next, consider the network with
Θ generated from a gamma process, and the network EN generated using the
independent Poisson likelihood process. The gamma process ΓP(γ, λ, α) [43]
with discount parameter α ∈ [0, 1), scale parameter λ > 0 and mass parameter
γ > 0 has rate measure

ν(dθ) = γ
λ1−α

Γ(1− α)
θ−α−1e−λθdθ.
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Fig 3. Gamma-independent Poisson graph

The Poisson likelihood has the form

h(x|θ) = θx

x!
e−θ.

Dense network: When α = 0, the gamma-Poisson graph is dense, and we
choose the proposal measure μ to be

μ(dθ) = γλθ−1(1 + λθ)−1dθ,

such that

μ←(u) = 1/
(
λ
(
e(γλ)

−1u − 1
))

,
dν

dμ
= (1 + λθ)e−λθ.

Therefore, the rejection representation in Eq. (5) has the form

θk = Tk1
(
Uk ≤ (1 + λTk)e

−λTk
)
, Tk =

1

λ
(
e(γλ)−1Γk − 1

) .
In Appendix C.3, we show that there exists K0 ∈ N such that

∀K ≥ K0, BK ≤ 6
γ

λ

(
γλ

1 + γλ

)K−1

.

Again, for the dense network BK converges to 0 geometrically, indicating that
truncation may provide reasonable approximations to the original network. Fig.
3a corroborates this result in simulation with λ = 2 and γ = 1; for K ≈ 50, no
vertices are discarded on average by truncation.

Sparse network: When α ∈ (0, 1), the gamma-Poisson graph is sparse, and
we choose the proposal measure μ to be

μ(dθ) = γ
λ1−α

Γ(1− α)
θ−1−αdθ,
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such that

μ←(u) = (γ′u−1)1/d, γ′ := γ
λ1−α

αΓ(1− α)
,

dν

dμ
= e−λθ.

Therefore the rejection representation in Eq. (5) has the form

θk = Tk1
(
Uk ≤ e−λTk

)
, Tk =

(
γ′Γ−1

k

)1/α
.

In Appendix C.3, we show there exists K0 ∈ N such that

∀K ≥ K0, BK ≤ 12γ2λ1−α

(1− α)Γ(1− α)

(
3γ′

K − 1

) 1−α
α

.

Again, for the sparse network BK converges to 0 slowly, suggesting that the trun-
cation error for the sparse binary gamma-Poisson graph converges more slowly
than for the dense graph. Fig. 3b corroborates this result in simulation with
λ = 2, γ = 1, and α = 0.6; for a moderate range of truncation values K ≤ 100,
the truncated graph behaves very differently from the true graph. Therefore
in practice, one should follow the above guidance for the beta-Bernoulli net-
work: select a value of K using our error bounds, and avoid intractable memory
requirements by using sparse data structures.

4. Truncated posterior inference

In this section, we develop a tractable approximate posterior inference method
for network models via truncation, and analyze its approximation error. In par-
ticular, given an observed network EN , we want to simulate from the posterior
distribution of the CRM rates and the parameters of the CRM rate measure.
Since exact expressions of full conditional densities are not available, we trun-
cate the model and run an approximate Markov chain Monte Carlo algorithm.
We provide a rigorous theoretical justification for this simple approach by estab-
lishing a bound on the total variation distance between the truncated and exact
posterior distribution. This in turn provides a method to select the truncation
level in a principled manner.

Although this section focuses on self-product-CRM-based network models,
the method and theory we develop are both general and extend easily to other
CRM-based models, e.g. for clustering [44], feature allocation [45], and trait
allocation [6]. In particular, the methodology only requires bounds on tail occu-
pancy probabilities (e.g., in the present context, the probability that IN ≤ K)
rather than the exact evaluation of these quantities.

4.1. Truncation error bound

We begin by examining the density of the posterior distribution of the Kth rate
from the inverse Lévy representation θK for some fixed K ∈ N, the unordered
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collection of rates (θk)
K−1
k=1 such that θk ≥ θK , and the parameters σ ∈ R

m of
the CRM rate measure νσ given the observed set of edges EN . We denote νσ(θ)
to be the density of νσ(dθ) and p(σ) to be the prior density of σ, both with
respect to the Lebesgue measure. Given these definitions the posterior density
can be expressed as

p(σ, θ1:K , X1:N ) ∝ p(σ) · e−νσ[θK ,∞) ·
K∏

k=1

1[θK ≤ θk]νσ(θk)

·

⎛
⎝ N∏

n=1

∏
i∈[K]d�=

h(xni |∏d
j=1θij )

⎞
⎠ · p(xK+

1:N |θ1:K , σ), (14)

where [K]d�= is the subset of Nd
�= such that maxj∈[d] ij ≤ K, and xK+

1:N is shorthand

for the set of (xni)n∈[N ],i∈Nd
�=
such that i /∈ [K]d�=. All the factors on the first row

correspond to the prior of σ and (θk)
K
k=1, and the first factor on the second row

corresponds to the likelihood of the portion of the network involving only vertices
1 . . .K; these are straightforward to evaluate, though νσ[θK ,∞) will occasionally
require a 1-dimensional numerical integration. The last factor corresponds to the
likelihood of the portion of the network involving vertices beyond K, and is not
generally possible to evaluate exactly.

To handle this term, suppose that K is large enough that xK+
1:N = 0. Then

p(xK+
1:N |θ1:K , σ) = P (IN ≤ K |Γ1:K , σ), i.e., the probability that no portion of

the network involves vertices of index > K. Theorem 4.1 provides upper and
lower bounds on this probability akin to those of Theorem 3.4—indeed, Theorem
4.1 is an intermediate step in the proof of Theorem 3.4—that apply conditionally
on the values of U1:K , Γ1:K rather than marginally. This theorem also makes
the dependence of the bound on the rate measure parameters σ notationally
explicit via parametrized series representation components τσ and gσ from Eq.
(3). Finally, though Theorem 4.1 applies to general series representations, we
require only the specific instantiation for the inverse Lévy representation in the
present context.

Theorem 4.1. The conditional probability P (IN ≤ K |U1:K ,Γ1:K , σ) satisfies

1 ≥ P (IN ≤ K |U1:K ,Γ1:K , σ) ≥ exp (−N ·B(U1:K ,Γ1:K , σ)) ,

where

B(U1:K ,Γ1:K , σ) =

d−1∑
�=0

(
d

�

) ∑
L⊆[K]
|L|=�

B(U1:K ,Γ1:K , σ,L)

B(U1:K ,Γ1:K , σ,L) =
∫
[ΓK ,∞)d−�

E

⎡
⎣− log π

⎛
⎝∏

j∈L
θj

d−�∏
j=1

τσ(U
′
j , γj)

⎞
⎠ | θ1:K

⎤
⎦ dγ,

where dγ =
∏d−�

j=1 dγj and U ′
j

i.i.d.∼ gσ.
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Since U1:K is unused in the inverse Lévy representation, in the present context
we use the notation B(Γ1:K , σ) for brevity. The bound in Theorem 4.1 implies
that as long as K is set large enough such that both xK+

1:N = 0 and B(Γ1:K , σ) ≤
ε/N for some ε > 0 then

1− ε ≤ p(xK+
1:N |θ1:K , σ) ≤ 1.

Therefore as K increases, this term should become ≈ 1 and have a negligible
effect on the posterior density. We use this intuition to propose a truncated
Metropolis–Hastings algorithm that sets K > IN , ignores the p(xK+

1:N |θ1:K , σ)
term in the acceptance ratio, and fixes xK+

N to 0. Theorem 4.2 provides a rigorous
analysis of the error involved in using the truncated sampler.

Theorem 4.2. Fix K > IN . Let Π be the distribution of σ, θ1:K given EN ,
and let Π̂ be the distribution with density proportional to Eq. (14) without the
p(xK+

1:N |θ1:K , σ) term and with xK+
1:N fixed to 0. If for some η ∈ [0, 1),

Π̂ {B(Γ1:K , σ) ≤ ε/N} ≥ 1− η,

then

DTV

(
Π̂,Π

)
≤ 3(ε+ η)

2
− εη. (15)

4.2. Adaptive truncated Metropolis–Hastings

Crucially, as long as one can obtain samples from the truncated posterior dis-
tribution, one can estimate the bound in Eq. (15) using sample estimates of
the tail probability Π̂ {B(Γ1:K , σ) ≤ ε/N} ≥ 1− η. Therefore, one can compute
the bound Eq. (15) without needing to evaluate p(xK+

1:N |θ1:K , σ) exactly. This
suggests the following adaptive truncation procedure:

1. Pick a value of K > IN and desired total variation error ξ ∈ (0, 1).
2. Obtain samples from the truncated posterior.
3. Minimize the bound in Eq. (15) over ε ∈ (0, 1), using the samples to

estimate η = 1− Π̂ {B(Γ1:K , σ) ≤ ε/N} for each value of ε.
4. If the minimum bound exceeds ξ, increase K and return to 2.
5. Otherwise, return the samples.

In this work, we start by initializing K to IN + 1. In order to decide how
much to increase K by in each iteration, we use the sequential representation
to extrapolate the total variation bound Eq. (15) to larger values of K without
actually performing MCMC sampling. In particular, for each posterior sample,
we use its hyperparameters to generate additional rates from the sequential rep-
resentation. We then use these extended samples to compute the total variation
error guarantee as per step 3 above. We continue to generate additional rates
(typically doubling the number each time) until the predicted total variation
guarantee is below the desired threshold. Finally, we use linear interpolation
between the last two predicted errors to find the next truncation level K that
matches the desired (log) error threshold. This fixes a new value of K; at this
point, we return to step 2 above and iterate.
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Fig 4. Posterior of α, γ, λ for the dense simulated network. Orange histograms depict the
first adaptation iteration, and blue histograms depict the second and final iteration.

Fig 5. Posterior of α, γ, λ for the sparse simulated network. Orange histograms depict the
first adaptation iteration, and blue histograms depict the second and final iteration.

4.3. Experiments

In this section, we examine the properties of the proposed adaptive truncated
inference algorithm for the beta-independent Bernoulli network model in Eqs.
(12) and (13) with discount α ∈ (0, 1), concentration λ > 1, mass γ > 0,
unordered collection of rates θ1:K−1, and Kth rate from the sequential represen-
tation θK . In order to simplify inference, we transform each of these parameters
to an unconstrained version:

α =
exp(αu)

1 + exp(αu)
, λ = 1 + exp(λu), γ = exp(γu),

θK =
exp(θu,K)

1 + exp(θu,K)
, θk =

θK + exp(θu,k)

1 + exp(θu,k)
k = 1, . . . ,K − 1.

We use a Markov chain Monte Carlo algorithm that includes an exact Gibbs
sampling move for γ, and separate Gaussian random-walk Metropolis–Hastings
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Fig 6. Visualization of the truncation expansion procedure. Black circles denote the trun-
cation level and error in each iteration of the adaptation. The adaptation stops when the
truncation error falls below the desired threshold (here log10(0.01) = −2). Grey dashed lines
and circles visualize the predicted truncation error using rates generated from the sequential
representation. The vertical dotted line shows that the algorithm selects a value of K that
attempts to match the desired log10 error threshold of −2 using the predictions.

moves for αu, λu, θu,K , all θu,k such that vertex k has degree 0 (jointly), and
each θu,k such that vertex k has nonzero degree (individually).

Synthetic data We first apply the model to synthetic data simulated from
the generative model. We simulate a sparse network with parameters λ = 2,
γ = 1, α = 0.2, and N = 105, and a dense network with λ = 2, γ = 1, α = 0,
and N = 107. In both settings we set the truncation level for data generation
to 500, the desired total variation bound from Eq. (15) to 0.01, and initialize
the sampler with α = 0.4, λ = 5, γ = 2 and θ generated from the sequential
representation. All Metropolis–Hastings moves have proposal standard deviation
0.1 except the sparse network αu move, which has standard deivation 0.03.

Figs. 4 and 5 show histograms of 5,000 marginal posterior samples of the hy-
perparameters for the dense (true α = 0) and sparse (true α = 0.2) networks. In
both cases, the approximate posterior in the first round of adaptation (orange
histogram) does not concentrate on the true hyperparameter values, despite the
relatively large number of generative rounds N . Fig. 6—which displays the trun-
cation error and predictive adaptation procedure—shows why this is the case.
In both networks, the first adaptation iteration identifies a large truncation
error. After a single round of adaptation, the approximate posterior distribu-
tions (blue histograms) in Figs. 4 and 5 concentrate more on the true values
as expected, and the truncation errors fall well below the desired threshold
(log10(0.01) = −2). It is worth noting that the predictive extrapolation appears
to be quite conservative in these examples, and especially in the dense network.
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Fig 7. Posterior of α, γ, λ in the Facebook-like network

Fig 8. (8a,8b): The characteristics of the observed Facebook-like network (black) and 100
samples from the posterior predictive distribution (blue). (8c): The truncation adaptation
process, with truncation level and error bound in each iteration (black circles) and predictive
truncation errors (grey dashed lines).

This happens because the approximate posterior for the dense network (respec-
tively, sparse network) assigns mass to higher values of α (respectively, γ) than
it should, which results in larger truncation error and thus a larger predicted
required truncation level.

Real network data Next, we apply the model to a Facebook-like Social Net-
work2 [46]. The original source network contains a sequence of 61,734 weighted,
time-stamped edges, and 1,899 vertices. We preprocess the data by removing the
edge weights, binning the edge sequence into 30-minute intervals, and removing
the initial transient of network growth, resulting in 1,899 vertices and 10,435
edges over N = 6,427 rounds of generation. We again set a desired total vari-
ation error guarantee of 0.01 during inference. All Metropolis–Hastings moves
have proposal standard deviation 0.1 except the αu and degree-0 θu moves,
which have standard deviation 0.04 and 0.03, respectively. We initialize the
sampler to α = 0.1, γ = 2, λ = 20 and sample rates θ from the prior sequential

2Available at https://toreopsahl.com/datasets/

https://toreopsahl.com/datasets/
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representation.
Fig. 7 shows the posterior marginal histograms for the hyperparameters

α, λ, γ in both the first iteration (orange) and the second and final iteration
(blue) of truncation adaptation. The posterior distribution suggests that the
network is dense (i.e. α ≈ 0). This conclusion is supported both by the close
match of 100 samples from the posterior predictive distribution, shown in Figs.
8a and 8b, and the findings of past work using this data [8]. Further, as in the
synthetic examples, the truncation adaptation terminates after two iterations;
but in this case the histograms do not change very much between the two.
This is essentially because the truncation error in the first iteration is relatively
low (≈ 0.02), leading to a reasonably accurate truncated posterior and hence
accurate predictions of the truncation error at higher truncation levels.

5. Conclusion

In this paper, we developed methods for tractable generative simulation and
posterior inference in statistical models with discrete nonparametric priors via
finite truncation. We demonstrated that these approximate truncation-based
approaches are sound via theoretical error analysis. In the process, we also
showed that the nonzero rates of the (tractable) rejection representation of a
Poisson process are equal in distribution to the rates of the (intractable) inverse
Lévy representation. Simulated and real network examples demonstrated that
the proposed methods are useful in selecting truncation levels for both forward
generation and inference in practice.

Appendix A: Equivalence between nonzero rates from a rejection
representation and the inverse Lévy representation

Proof of Theorem 3.5. Denote Tk1 be the first nonzero element that is generated
from the rejection representation from Eq. (5) and correspondingly, denote Γk1

be the jump of the unit-rate homogeneous Poisson process on R+ such that
Tk1 = μ←(Γk1), where μ is the proposal measure in the rejection representation.
Let f be a bounded continuous function. Then

E[f(Tk1)]=E[f(μ←(Γk1))]

=E

⎡
⎣ ∞∑
j=1

f(μ←(Γj))1

[
dν

dμ
(μ←(Γj)) ≥ Uj)

] j−1∏
i=1

1

[
dν

dμ
(μ←(Γi)) < Ui

]⎤⎦

=E

⎡
⎣ ∞∑
j=1

f(μ←(Γj))
dν

dμ
(μ←(Γj))

j−1∏
i=1

(
1− dν

dμ
(μ←(Γi))

)⎤⎦

=

∞∑
j=1

E

[
f(μ←(Γj))

dν

dμ
(μ←(Γj))E

[
j−1∏
i=1

(
1− dν

dμ
(μ←(Γi))

)∣∣∣∣∣Γj

]]
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Note that given Γj , Γi
i.i.d.∼ Unif(0,Γj), for i = 1, · · · , j − 1, so

E

[
j−1∏
i=1

(
1− dν

dμ
(μ←(Γi))

)∣∣∣∣∣Γj

]
= E

[
1− dν

dμ
(μ←(U)) |Γj

]j−1

,

where U
i.i.d.∼ Unif(0,Γj). Using the change of variable y = μ←(u), we obtain

E

[
1− dν

dμ
(μ←(U)) |Γj

]
= 1− 1

Γj

∫ Γj

0

dν

dμ
(μ←(u))du = 1− 1

Γj

∫ ∞

μ←(Γj)

dν.

Therefore, using the same change of variable trick,

E[f(Tk1)]=

∞∑
j=1

E

⎡
⎣f(μ←(Γj))

dν

dμ
(μ←(Γj))

(
1− 1

Γj

∫ ∞

μ←(Γj)

dν

)j−1
⎤
⎦

=

∞∑
j=1

∫ ∞

0

f(μ←(γ))
dν

dμ
(μ←(γ))

(
1− 1

γ

∫ ∞

μ←(γ)

dν

)j−1
γj−1

(j − 1)!
e−γdγ

=
∞∑
j=1

∫ ∞

0

f(y)
(
1− μ[y,∞)−1ν[y,∞)

)j−1 μ[y,∞)j−1

(j − 1)!
e−μ[y,∞)ν(dy)

=

∫ ∞

0

f(y)

∞∑
j=1

(μ[y,∞)− ν[y,∞))
j−1

(j − 1)!
e−μ[y,∞)ν(dy)

=

∫ ∞

0

f(y)e−ν[y,∞)ν(dy).

Suppose that θ1 is the first rate generated using the inverse Lévy representation.
Then

E[f(θ1)] =

∫ ∞

0

f(ν←(γ))e−γdγ.

Making the change of variable y = ν←(γ), we obtain

E[f(θ1)] =

∫ ∞

0

f(y)e−ν[γ,∞)ν(dy) = E[f(Tk1)].

Therefore, the first nonzero rate θk1 from the rejection representation has the
same marginal distribution as the first rate θ1 from the inverse Lévy represen-
tation.

We now employ an inductive argument. Suppose that we have shown that
the marginal distribution of first nonzeroM elements ΞM := (Tk1 , Tk2 , · · · , TkM

)
from the rejection representation has the same marginal distribution as the first
M elements ΘM := (θ1, · · · , θM ) from the inverse Lévy representation. To prove
the same for M+1 elements, it suffices to show that the conditional distribution
of TkM+1

given ΞM is equal to the conditional distribution of θM+1 given ΘM

when ΞM = ΘM .
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Denote Γ′
j =
∑j

i=1 e
′
i, where e′i

i.i.d.∼ Exp(1), and U ′
i

i.i.d.∼ Unif[0, 1]. Then

E[f(TkM+1
)|ΞM ] = E[f(μ←(ΓkM+1

))|ΞM ]

= E

⎡
⎣ ∞∑

j=1

f(μ←(ΓkM
+ Γ′

j))1[. . . ]

∣∣∣∣∣∣ΞM

⎤
⎦ ,

where 1[. . . ] is shorthand for

1[. . . ] = 1

[
dν

dμ
(μ←(ΓkM

+ Γ′
j)) ≥ U ′

j

] j−1∏
i=1

1

[
dν

dμ
(μ←(ΓkM

+ Γi)) < U ′
i

]
.

Using steps similar to the base case,

E[f(TkM+1
)|ΞM ]=

∞∑
j=1

E

[
f(μ←(ΓkM

+ Γ′
j))

dν

dμ
(μ←(ΓkM

+ Γ′
j))E[. . . ]

j−1

∣∣∣∣ΞM

]
,

where

E[. . . ] = E

[
1− dν

dμ
(μ←(ΓkM

+ U))

∣∣∣∣Γ′
j ,ΞM

]
U ∼ Unif[0,Γ′

j ].

Making the change of variable y = μ←(ΓkM
+ u) as before, we obtain

E

[
1− dν

dμ
(μ←(ΓkM

+ U))

∣∣∣∣Γ′
j ,ΞM

]
= 1−

∫ Γ′
j

0

1

Γ′
j

dν

dμ
(μ←(ΓkM

+ u))du

= 1− 1

Γ′
j

∫ μ←(ΓkM
)

μ←(ΓkM
+Γ′

j)

dν.

Making another change of variables y = μ←(ΓkM
+ γ) in the original integral—

and hence γ = μ[y,∞)− ΓkM
= μ[y, μ←(ΓkM

))—yields

E[f(TkM+1
)|ΞM ]

=

∞∑
j=1

∫ ∞

0

f(μ←(ΓkM
+ γ))

dν

dμ
(μ←(ΓkM

+ γ))E[. . . ]j−1 γj−1

(j − 1)!
e−γdγ

=
∞∑
j=1

∫ μ←(ΓkM
)

0

f(y)

(
1− 1

γ

∫ μ←(ΓkM
)

y

dν

)j−1
γj−1

(j − 1)!
e−γν(dy)

=

∞∑
j=1

∫ μ←(ΓkM
)

0

f(y)
(μ[y, μ←(ΓkM

))− ν[y, μ←(ΓkM
)))j−1

(j − 1)!
e−μ[y,μ←(ΓkM

))ν(dy)

=

∫ μ←(ΓkM
)

0

f(y)e−ν[y,μ←(ΓkM
))ν(dy) =

∫ TkM

0

f(y)e−ν[y,TkM
)ν(dy).
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On the other hand,

E[f(θM+1)|ΘM ] = E[f(ν←(ΓM + Γ′
1))|ΘM ] =

∫ ∞

0

f(ν←(ΓM + γ))e−γdγ

=

∫ ν←(ΓM )

0

f(y)e−ν[y,ν←(ΓM ))ν(dy) =

∫ θM

0

f(y)e−ν[y,θM )ν(dy).

Thus the distribution of the (M + 1)th nonzero rate in the rejection represen-
tation TkM+1

given ΞM is equal to the distribution of the (M + 1)th rate from
the inverse Lévy representation θM+1 given ΘM when ΞM = ΘM .

Appendix B: Truncation error bounds for self-product measures

Proof of Lemma 3.1. Denote Θ̃ = {Θ(d),Θ
(d)
K }. Denote the marginal probability

mass function (PMF) of EN ∈ Nd and EN,K ∈ Nd as PN and PN,K , and denote

their PMFs given Θ̃ as f(x|Θ̃) and fK(x|Θ̃) respectively.

DTV (PN , PN,K)

=
1

2

∑
x∈Nd

∣∣∣PN (x)− PN,K(x)
∣∣∣

=
1

2

∑
x∈Nd

∣∣∣E[f(x|Θ̃)]− E[fK(x|Θ̃)]
∣∣∣

≤ 1

2
P(IN ≤ K)

∑
x∈Nd

∣∣∣E[f(x|Θ̃)|IN ≤ K]− E[fK(x|Θ̃)|IN ≤ K]
∣∣∣

+
1

2
P(IN > K)

∑
x∈Nd

∣∣∣E[f(x|Θ̃)|IN > K]− E[fK(x|Θ̃)|IN > K]
∣∣∣

Conditioned on IN ≤ K, f(x|Θ̃) = fK(x|Θ̃) under both the independent and
categorical likelihood. So

E[f(x|Θ̃)|IN ≤ K]− E[fK(x|Θ̃)|IN ≤ K] = 0.

By Fubini’s Theorem,

DTV (PN , PN,K)

≤1

2
P(IN > K)

∑
x∈Nd

(
E[f(x|Θ̃)|IN > K] + E[fK(x|Θ̃)|IN > K]

)

=
1

2
P(IN > K)

(
E

[ ∑
x∈Nd

f(x|Θ̃)

∣∣∣∣∣ IN > K

]
+ E

[ ∑
x∈Nd

fK(x|Θ̃)

∣∣∣∣∣ IN > K

])

=P(IN > K) = 1− P (IN ≤ K) .
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Proof of Theorems 3.4 and 4.1. Denote the set of indices

I�,K := {i ∈ N
d
�= : 1 ≤ i1, · · · , i� ≤ K, K + 1 ≤ i�+1, · · · , id < ∞}

such that i ∈ I�,K indicates that the first � elements of i belong to the truncation,
and the remaining d− � elements belong to the tail. By Jensen’s inequality,

P (IN ≤ K |U1:K ,Γ1:K)

= E

⎡
⎣exp

⎧⎨
⎩N

d−1∑
�=0

(
d

�

) ∑
i∈I�,K

log π (ϑi)

⎫⎬
⎭ |U1:K ,Γ1:K

⎤
⎦

≥ exp

⎧⎨
⎩N

d−1∑
�=0

(
d

�

)
E

⎡
⎣ ∑
i∈I�,K

log π (ϑi) |U1:K ,Γ1:K

⎤
⎦
⎫⎬
⎭ . (16)

This equation arises by noting that IN ≤ K if and only if for all i involving an
index ij > K, the count of edge i is 0 after N rounds; the factor

(
d
�

)
accounts

for the fact that ϑi =
∏d

j=1 θij is independent of the ordering of the ij .
Consider a single term

∑
i∈I�,K

log π(ϑi) in the above sum. Since we are con-
ditioning on U1:K ,Γ1:K , we have that θi1 , . . . , θi� are fixed in the expectation,
and the remaining steps ΓK+1,ΓK+2, · · · are the ordered jumps of a unit rate ho-
mogeneous Poisson process on [ΓK ,∞). By the marking property of the Poisson
process [47], conditioned on ΓK , we have that (Ui,Γi)

∞
i=K+1 is a Poisson process

on R+× [ΓK ,∞) with rate measure g(du)dγ. Thus we apply the Slivnyak-Mecke
theorem [40] to the remaining d− � indices to obtain

E

⎡
⎣ ∑

i∈I�,K

log π (ϑi)

∣∣∣∣∣∣U1:K ,Γ1:K

⎤
⎦

E

⎡
⎣ ∑

i∈I�,K

log π

⎛
⎝ �∏

j=1

θij

d∏
j=�+1

τ(Uij ,Γij )

⎞
⎠
∣∣∣∣∣∣U1:K ,Γ1:K

⎤
⎦

=
∑

i1 �=···�=i�≤K

E

⎡
⎣∫

R
d−�
+

log π

⎛
⎝ �∏

j=1

θij

d∏
j=�+1

τ(Uij ,ΓK + γj)

⎞
⎠ d∏

j=�+1

dγj |U1:K ,Γ1:K

⎤
⎦

=
∑

L⊆[K]
|L|=�

∫
[ΓK ,∞)d−�

E

⎡
⎣log π

⎛
⎝∏

j∈L
θj ·

d−�∏
j=1

τ(U ′
j , γj)

⎞
⎠ | θ1:K

⎤
⎦ dγ1:d−�,

where U ′
j

i.i.d.∼ g. Substitution of this expression into Eq. (16) yields the re-
sult of Theorem 4.1. Next, we consider the bound on the marginal probability
P (IN ≤ K). By Jensen’s inequality applied to Eq. (16) and following the previ-
ous derivation, we find that

P (IN ≤ K) ≥ exp

⎧⎨
⎩N

d−1∑
�=0

(
d

�

)
E

⎡
⎣ ∑
i∈I�,K

log π (ϑi)

⎤
⎦
⎫⎬
⎭ ,
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and

E

⎡
⎣ ∑
i∈I�,K

log π (ϑi)

⎤
⎦

=
∑

i1 �=···�=i�≤K

E

⎡
⎣∫

[ΓK ,∞)d−�

log π

⎛
⎝ �∏

j=1

θij

d−�∏
j=1

τ(U ′
j , γj)

⎞
⎠ dγ1:d−�

⎤
⎦ .

Using the fact that conditioned on ΓK , Γ1:K−1 are uniformly distributed on
[0,ΓK ], and that at most one ij can be equal to K,

∑
i1 �=···�=i�≤K

E

⎡
⎣∫

[ΓK ,∞)d−�

log π

⎛
⎝ �∏

j=1

θij

d−�∏
j=1

τ(U ′
j , γj)

⎞
⎠dγ1:d−�

⎤
⎦

=
(K − 1)!

(K − 1− �)!
E

⎡
⎣Γ−�

K

∫
[0,ΓK ]�×[ΓK ,∞)d−�

log π

⎛
⎝ d∏

j=1

τ(Uj , γj)

⎞
⎠ dγ1:d

⎤
⎦

+ �
(K − 1)!

(K − �)!
E

⎡
⎣Γ−(�−1)

K

∫
[0,ΓK ]�×[ΓK ,∞)d−�

δγ1=ΓK
log π

⎛
⎝ d∏

j=1

τ(Uj , γj)

⎞
⎠ dγ1:d

⎤
⎦ ,

where the first and second terms arise from portions of the sum where all indices
satisfy ij �= K and one index satisfies ij = K, respectively.

To complete the result, we study the asymptotics of the marginal probability
bound. It follows from Eq. (7) that IN < ∞ almost surely. Therefore

lim
K→∞

E

⎡
⎣exp

⎧⎨
⎩N

d−1∑
�=0

(
d

�

) ∑
i∈I�,K

log π (ϑi)

⎫⎬
⎭
⎤
⎦ = lim

K→∞
P(IN ≤ K) = 1.

It then follows from [28, Lemma B.1] and continuous mapping theorem that

d−1∑
�=0

⎡
⎣(d

�

) ∑
i∈I�,K

log π (ϑi)

⎤
⎦ p→ 0 as K → ∞.

Since this sequence is monotonically increasing in K, we have that

BK = E

⎡
⎣d−1∑

�=0

⎡
⎣(d

�

) ∑
i∈I�,K

− log π (ϑi)

⎤
⎦
⎤
⎦→ 0 as K → ∞.

B.1. Proof of Theorem 3.6

We first state an useful results which states that if one perturbs the probabilities
of a countable discrete distribution by i.i.d. Gumbel(0, 1) random variables, the
arg max of the resulting set is a sample from that distribution.
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Lemma B.1. [28, Lemma 5.2] Let (pj)
∞
j=1 be a countable collection of posi-

tive numbers such that
∑

j pj < ∞ and let p̄j =
pj∑
k pk

. If (Wj)
∞
j=1 are i.i.d

Gumbel(0, 1) random variables, then argmaxj∈N Wj + log pj exists, is unique
a.s., and has distribution

argmax
j∈N

Wj + log pj ∼ Categorical
(
(p̄j)

∞
j=1

)
.

Proof of Theorem 3.6. Since the N edges from the categorical likelihood process
are i.i.d.categorical random variables, by Jensen’s inequality,

P(IN ≤ K) = E [P(IN ≤ K|Θ)] = E
[
P(I1 ≤ K|Θ)N

]
≥ E [P(I1 ≤ K|Θ)]

N
.

Next, since ϑi =
∏d

j=1 θij , we can simulate a categorical variable with prob-

abilities proportional to ϑi, i ∈ N
d
�= by sampling d indices (J1, · · · , Jd) in-

dependently from a categorical distribution with probabilities proportional to
(θ1, θ2, . . . ) and discarding samples where Jj = Jk for some 1 ≤ j, k ≤ d. De-

note θ′k = θk/
∑

k θk to be the normalized rates, PJ,K :=
∑K

j=J θ′j , and the event
Q := {Jj �= Jk, ∀1 ≤ j, k ≤ d}. Then

P(I1 ≤ K|Θ) = P(1 ≤ Jj ≤ K, 1 ≤ j ≤ d | Q,Θ).

Since the normalized rates θ′k are generated from the inverse Lévy representa-
tion, they are monotone decreasing. Therefore

P(1 ≤ Jj ≤ K, 1 ≤ j ≤ d | Q,Θ) ≥ P1,K

1− 0
· P2,K

1− P1,1
· · · Pd,K

1− P1,d−1

≥
(

Pd,K

1− P1,d−1

)d

.

By Jensen’s inequality,

E[P(1 ≤ Jj ≤ K, 1 ≤ j ≤ d | Q,Θ)] ≥ E

[
Pd,K

1− P1,d−1

]d
.

Note that for a categorical random variable J with class probabilities given by
θ′j/(1 − P1,d−1), j ≥ d, the quantity Pd,K/(1 − P1,d−1) is the probability that
d ≤ J ≤ K. So by the infinite Gumbel-max sampling lemma,

E

[
Pd,K

1− P1,d−1

]
= P

(
d ≤ argmax

j≥d
(log θj +Wj) ≤ K

)
, Wj

i.i.d.∼ Gumbel(0, 1),

where we can replace θ′j with the unnormalized θj because the normalization
does not affect the argmax. Denoting

MK := max
d≤k≤K

log ν←(Γk) +Wk, MK+ := sup
k>K

log ν←(Γk) +Wk,
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we have that

P(IN ≤ K) ≥ (1− E[P(MK < MK+|ΓK)])
N ·d

,

and so the remainder of the proof focuses on the conditional expectation. Con-
ditioned on ΓK ,

MK
d
= max

{
log ν←(ΓK) +WK , max

d≤k≤K
log ν←(uk) +Wk

}
.

The cumulative distribution function and the probability density function of the
Gumbel distribution Gumbel(0, 1) is

F (x) = e−e−x

, f(x) = e−(x+e−x).

So

P(log ν←(ΓK) +WK ≤ x | ΓK) = e−ν←(ΓK)e−x

,

and

P(log ν←(uk) +Wk ≤ x | ΓK) =

∫ 1

0

e−ν←(ΓKu)e−x

du.

Therefore,

P(MK ≤ x | ΓK) =

(∫ 1

0

e−ν←(ΓKu)e−x

du

)K−d

e−ν←(ΓK)e−x

.

Denote Q(u, t) = e−ν←(u)e−t

, and

P(MK ≤ x | ΓK) =

(∫ 1

0

Q(ΓKu, x)du

)K−d

Q(ΓK , x).

Conditioned on ΓK , the tail ΓK+1,ΓK+2, · · · is a unit rate homogeneous Poisson
process on [ΓK ,∞) that is independent of Γ1, · · · ,ΓK−1. So conditioned on ΓK ,

MK+
d
= sup

k≥1
log ν←(ΓK + Γ′

k) +Wk,

where Γ′
k is unit rate of homogeneous Poisson process on R+. Since Γ′

k is a
Poisson process, log ν←(ΓK + Γ′

k) +Wk is also a Poisson process with the rate
measure (∫ ∞

0

e−(t−log ν←(ΓK+γ))−e−(t−log ν←(ΓK+γ))

dγ

)
dt.

P(MK+ ≤ x | ΓK) is the probability that no atom of the Poisson process is
greater than x. For a Poisson process with rate measure μ(dt), this probability
is e−

∫ ∞
x

μ(dt),

P(MK+ ≤ x | ΓK) = e
−
∫ ∞
x

(∫ ∞
0

e−(t−log ν←(ΓK+γ))−e−(t−log ν←(Γ+γ))
dγ

)
dt
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= e
∫ ∞
0

(
e−ν←(ΓK+γ)e−x−1

)
dγ

= e
∫ ∞
0

Q(ΓK+γ, x)−1 dγ ,

where the second equation comes from the fact that the inner integrand is the
probability density function of a Gumbel distribution. Therefore,

P(MK < MK+ | ΓK)

=

∫ ∞

−∞
P(MK ≤ x | ΓK)

d

dx
P(MK+ ≤ x | ΓK)dx

=

∫ ∞

−∞
Q(ΓK , x)

(∫ 1

0

Q(ΓKu, x)du

)K−d(
d

dx
e
∫ ∞
0

Q(ΓK+γ, x)−1 dγ

)
dx.

For the categorical variable J with class probabilities given by θ′j/(1− P1,d−1),
j ≥ d, it holds that P(d ≤ J ≤ K) ↑ 1 as K → ∞. By the monotone convergence
theorem

BK = P

(
argmax

j≥d
(log θj +Wj) > K

)
= 1− E

[
Pd,K

1− P1,d

]
→ 0.

Appendix C: Error bounds for edge-exchangeable networks

C.1. Rejection representation

We first derive the specific form of BK in Corollary 3.3 for the rejection repre-
sentation from Eq. (5), where

τ(U,Γ) = μ←(Γ)1

[
dν

dμ
(μ←(Γ)) ≥ U

]
,

and U ∼ Unif[0, 1]. So in Corollary 3.3,

BK,1

=E

[∫
R4

+

− log π (τ(u1, γ1 + ΓK)τ(u2, γ2 + ΓK)) dγ1dγ2g(u1)du1g(u2)du2

]

=E

[∫ ∞

ΓK

∫ ∞

ΓK

∫ 1

0

∫ 1

0

− log π (τ(u1, γ1)τ(u2, γ2)) du1du2dγ1dγ2

]
.

Since π(0) = 1, log π(0) = 0, we can take the indicator in τ out of the function
log π(τ(u1, γ1)τ(u2, γ2)) to obtain∫ 1

0

∫ 1

0

log π (τ(u1, γ1)τ(u2, γ2)) du1du2

=

∫ 1

0

∫ 1

0

log π (μ←(γ1)μ
←(γ2))1

[
dν

dμ
(μ←(γ1)) ≥ u1

]
1

[
dν

dμ
(μ←(γ2)) ≥ u2

]
du1du2
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= log π (μ←(γ1)μ
←(γ2))

dν

dμ
(μ←(γ1))

dν

dμ
(μ←(γ2)).

Transforming variables via x1 = μ←(γ1) and x2 = μ←(γ2), and noting that
μ←(ΓK) ≥ x ⇐⇒ ΓK ≤ μ[x,∞),

BK,1 = E

[∫ μ←(ΓK)

0

∫ μ←(ΓK)

0

− log π(x1x2)
dν

dμ
(x1)

dν

dμ
(x2)μ(dx1)μ(dx2)

]

= E

[∫
R2

+

− log π(x1x2)1[x1 ≤ μ←(ΓK)]1[x2 ≤ μ←(ΓK)]ν(dx1)ν(dx2)

]

=

∫
R2

+

− log π(x1x2)E [1[ΓK ≤ μ[max{x1, x2},∞)]] ν(dx1)ν(dx2)

=

∫
R2

+

− log π(x1x2)FK (μ[max{x1, x2},∞)) ν(dx1)ν(dx2), (17)

where FK is the cumulative distribution function of ΓK . Using the same variable
transformation again,

1

2(K − 1)
BK,2

=E

[∫ ΓK

0

∫
R3

+

− 1

ΓK
log π (τ(u1, γ1)τ(u2, γ2 + ΓK)) g(u1)du1g(u2)du2dγ1dγ2

]

=E

[∫ ∞

μ←(ΓK)

∫ μ←(ΓK)

0

− 1

ΓK
log π(x1x2)

dν

dμ
(x1)

dν

dμ
(x2)μ(dx1)μ(dx2)

]

=

∫
R2

+

−E

[
1

ΓK
1[μ[x1,∞) ≤ ΓK ≤ μ[x2,∞)]

]
log π(x1x2)ν(dx1)ν(dx2).

BK,3 = 2E

[∫
R3

+

− log π (τ(u1,ΓK)τ(u2, γ2 + ΓK)) g(u1)du1g(u2)du2dγ2

]

= 2E

[∫ ∞

ΓK

− log π (μ←(ΓK)μ←(γ2))
dν

dμ
(μ←(ΓK))

dν

dμ
(μ←(γ2))dγ2

]

= 2E

[∫ μ←(ΓK)

0

− log π (μ←(ΓK)x)
dν

dμ
(μ←(ΓK))

dν

dμ
(x)μ(dx)

]

= 2E

[∫
R+

− log π (μ←(ΓK)x)
dν

dμ
(μ←(ΓK))1[ΓK ≤ μ[x,∞)]ν(dx)

]
.

C.2. Beta-independent Bernoulli process network

Dense network When α = 0,

ν(dθ) = γλθ−1(1− θ)λ−1dθ, μ(dθ) = γλθ−1dθ,
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and

dν

dμ
= (1− θ)λ−1, μ ([x, 1]) = −γ′ log x, μ←(u) = e−u/γ′

.

Substituting ν(dx), μ(dx) and π(θ) into Eq. (17) and noting that the integrand
is symmetric around the line x1 = x2,

BK,1 = 2

∫ 1

0

∫ 1

x1

− log(1− x1x2)FK (μ[x2, 1]) γλx
−1
2 (1− x2)

λ−1dx2ν(dx1).

Next, note that 0 ≤ FK (μ[x2, 1]) ≤ FK (μ[x1, 1]) when x2 ≥ x1 and

0 ≥ log(1− x1x2) ≥ −
(

1

1− x1x2
− 1

)
= −

(
x1x2

1− x1x2

)
≥ −

(
x1x2

1− x1

)
.

So

BK,1 ≤ 2γλ

∫ 1

0

FK (μ([x1, 1]))

∫ 1

x1

x1x2

1− x1
x−1
2 (1− x2)

λ−1dx2ν(dx1)

= 2γ2λ

∫ 1

0

(1− x)2(λ−1)FK (μ([x, 1])) dx.

For any a ∈ (0, 1), dividing the integral into two parts and bounding each part
separately,

BK,1 ≤ 2γ2λ

[∫ a

0

(1− x)2(λ−1)dx+

∫ 1

a

FK (−γ′ log x) (1− x)2(λ−1)dx

]
.

Assume for the moment that λ �= 0.5. Use the fact that FK(t) ≤ (3t/K)K and
note also that when x ∈ [a, 1], − log x ≤ [− log a/(1− a)] (1− x),

1

2γ2λ
BK,1

≤1− (1− a)2λ−1

2λ− 1
+

∫ 1

a

(
3γ′ [− log a/(1− a)] (1− x)

K

)K

(1− x)2λ−2dx

=
1− (1− a)2λ−1

2λ− 1
+

(
−3γ′ log a

K

)K
1

K + 2λ− 1
(1− a)2λ−1.

It can be seen that there exists a constant value c > 1 such that 3γ′ log c = 1/c.
Setting a = c−K and using the first order Taylor’s expansion to approximate
the first term, it can be seen that

1− (1− a)2λ−1

2λ− 1
∼ c−K ,

(
−3γ′ log a

K

)K
1

K + 2λ− 1
(1− a)2λ−1 ∼ 1

K
c−K .

Therefore, there exists K0 such that when K > K0,

BK,1 ≤ 4γ2λc−K .
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If λ = 0.5,

BK,1 ≤ 2γ2λ

∫ 1

0

(1− x)−1FK (μ([x, 1])) dx

≤ 2γ2λ

[
− log(1− a) +

(
3γ′

K

)K
1

K
(− log a)K

]
,

which can be bounded similarly by choosing the same c and setting a = c−K .
Therefore we can find a constant K0 and for K > K0,

BK,1 ≤ 4γ2λc−K .

Next, the term BK,2 is bounded via

1

2
BK,2

=

∫ 1

0

∫ 1

x1

− log(1− x1x2) [FK−1 (μ([x1, 1]))− FK−1 (μ([x2, 1]))] ν(dx2)ν(dx1)

≤
∫ 1

0

∫ 1

x1

− log(1− x1x2)FK−1 (μ[x1, 1]) ν(dx2)ν(dx1).

This has exactly the same form as BK,1, except that the CDF of ΓK is replaced
with that of ΓK−1. Therefore, it can be shown that for large K,

BK,2 ≤ 4γ2λc−(K−1).

Finally, BK,3 may be expressed as

1

2
BK,3

=E

[∫ 1

0

− log (1− μ←(ΓK)x)
dν

dμ
(μ←(ΓK))1 [x ≤ μ←(ΓK)]

]
ν(dx)

=γλE

[∫ μ←(Γk)

0

− log (1− μ←(ΓK)x) (1− μ←(ΓK))
λ−1

x−1(1− x)λ−1dx

]
.

Since log (1− μ←(ΓK)x) ≥ −μ←(ΓK)x/ (1− μ←(ΓK)),

BK,3 ≤ 2γλE

[
(1− μ←(ΓK))

λ−2
μ←(ΓK)

∫ μ←(ΓK)

0

(1− x)λ−1dx

]

≥ 2γE
[
(1− μ←(ΓK))

λ−2
μ←(ΓK)

]
= 2γ

∫ ∞

0

(
1− e−x/γ′

)λ−2

e−x/γ′ xK−1

Γ(K)
e−xdx.
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We split the analysis of this term into two cases. In the first case, assuming
λ ≥ 2, we have that

BK,3 ≤ 2γ

∫ ∞

0

xK−1

Γ(K)
e−x(1+γ′)/γ′

dx = 2γ

(
γ′

1 + γ′

)K

.

On the other hand, if λ < 2, we bound the integral over [0, γ′] and over [γ′,∞)
separately. Since 1− e−x ≥ x2 for x ∈ [0, 1],

1

2γ
BK,3

≤
∫ γ′

0

(
x

γ′

)2(λ−2)
xK−1

Γ(K)
e−x(1+γ′)/γ′

dx+ (1− e−1)λ−2

∫ ∞

γ′

xK−1

Γ(K)
e−x(1+γ′)/γ′

dx

≤γ′ 2(2−λ)

∫ γ′

0

xK−1+2(λ−2)

Γ(K)
dx+ (1− e−1)λ−2

∫ ∞

0

xK−1

Γ(K)
e−x(1+γ′)/γ′

dx

=
1

Γ(K)

γ′K

K + 2(λ− 2)
+ (1− e−1)λ−2

(
γ′

1 + γ′

)K

.

As K → ∞, the second term will dominate the first term, so when λ − 2 < 0,
the following inequality holds for large K,

BK,3 ≤ 4γ(1− e−1)λ−2

(
γ′

1 + γ′

)K

.

BK = BK,1 +BK,2 +BK,3 and as K → ∞, BK,3 will dominate BK,1 and BK,2.
So there exists a K0 ∈ N such that for K > K0,

BK ≤ 12γ(1− e−1)λ−2

(
γ′

1 + γ′

)K

−→ 0.

Sparse network When α > 0,

ν(dθ) = γ′θ−1−α(1− θ)λ+α−1dθ, μ(dθ) = γ′θ−1−αdθ,

and

dν

dμ
= (1− θ)λ+α−1, μ ([x, 1]) = γ′α−1(x−α − 1), μ←(u) =

(
1 +

αu

γ′

)−1/α

.

Similar to the case when α = 0,

BK,1=2

∫ 1

0

∫ 1

x1

− log(1− x1x2)FK (μ([x2, 1])) γ
′x−1−α

2 (1− x2)
λ+α−1dx2ν(dx1).

Since log(1− x1x2) ≥ −x1x2/(1− x1),

BK,1 ≤ 2γ′ 2
∫ 1

0

FK

(
γ′α−1(x−α − 1)

)
x−2α(1− x)2[(λ+α)−1]dx
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≤ 2γ′ 2
∫ 1

0

(γ′α−1x−α(1− xα))K

Γ(K + 1)
x−2α(1− x)2[(λ+α)−1]dx

≤ 2γ′ 2
∫ 1

0

(γ′α−1x−α)K

Γ(K + 1)
x−2α(1− x)2[(λ+α)−1]dx

≤ 2α2

∫ 1

0

(
γ′α−1x−α

)K+2

Γ(K + 1)
dx.

Denoting t = γ′α−1x−α, then

BK,1 ≤ 2α(γ′α−1)1/α
∫ ∞

γ′α−1

tK+1−1/α

Γ(K + 1)
dt

≤ 2α(γ′α−1)1/α eγ
′α−1 Γ(K + 2− 1/α)

Γ(K + 1)

∫ ∞

γ′α−1

tK+1−1/α

Γ(K + 2− 1/α)
e−t dt

≤ 2α(γ′α−1)1/α eγ
′α−1 Γ(K + 2− 1/α)

Γ(K + 1)
.

By Stirling’s formula,

BK,1 ≤ 2α(γ′α−1)1/α eγ
′α−1

K
α−1
α .

Now we consider the error bound for BK,2. As we have shown in the example
when α = 0, here we can obtain that

BK,2 ≤ 2α(γ′α−1)1/α eγ
′α−1

(K − 1)
α−1
α .

Similar to BK,1 and BK,2,

BK,3

=2E

[∫ 1

0

− log (1− μ←(ΓK)x)
dν

dμ
(μ←(ΓK))1 (ΓK ≤ μ←[x, 1]) ν(dx)

]

≤2γ′
E

[
(1− μ←(ΓK))

λ+α−1
∫ μ←(ΓK)

0

μ←(ΓK)x

1− x
x−1−α(1− x)λ+α−1dx

]

=2γ′
E

[
(1− μ←(ΓK))

λ+α−1
μ←(ΓK)

∫ μ←(ΓK)

0

x−α(1− x)λ+α−2dx

]
.

We again split our analysis into two cases. First, suppose that λ + α − 2 ≥ 0.
Then

BK,3

≤ 2γ′

1− α
E

[
(1− μ←(ΓK))

λ+α−1
μ←(ΓK)2−α

]

=
2γ′

1− α

∫ ∞

0

[
1−
(
1 +

αx

γ′

)−1/α
]λ+α−1(

1 +
αx

γ′

)−(2−α)/α
xK−1

Γ(K)
e−xdx.
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Since α < 1, (
1 +

αx

γ′

)−(2−α)/α

≤
(
αx

γ′

)−(2−α)/α

,

and so

BK,3 ≤ 2γ′

1− α

∫ ∞

0

(
α

γ′

)−(2−α)/α
xK−1−(2−α)/α

Γ(K)
e−xdx

≤ 2γ′

1− α

(
α

γ′

)−(2−α)/α
Γ(K − (2− α)/α)

Γ(K)

∼ 2γ′

1− α

(
α

γ′

)−(2−α)/α

K−(2−α)/α,

where the last equation is obtained from Stirling’s formula.
On the other hand, if λ+ α− 2 < 0,

BK,3

≤2γ′
E

[
(1− μ←(ΓK))

λ+α−1
μ←(ΓK)

∫ μ←(ΓK)

0

x−α(1− x)λ+α−2dx

]

≤ 2γ′

1− α
E

[
(1− μ←(ΓK))

2(λ+α)−3
μ←(ΓK)2−α

]

=
2γ′

1− α

∫ ∞

0

[
1−
(
1 +

αx

γ′

)−1/α
]2(λ+α)−3(

1 +
αx

γ′

)−(2−α)/α
xK−1

Γ(K)
e−xdx.

If 2(λ+ α)− 3 ≥ 0, we get the same result as in the case when λ+ α − 2 ≥ 0.
When 2(λ+α)− 3 ≤ 0, note that we can find an x0 such that when x ∈ [0, x0],

1−
(
1 +

αx

γ′

)−1/α

≥ x2.

So

BK,3

≤ 2γ′

1− α

{∫ x0

0

x4(λ+α)−6

(
1 +

αx

γ′

)−(2−α)/α
xK−1

Γ(K)
e−xdx

+

[
1−
(
1 +

αx0

γ′

)−1/α
]2(λ+α)−3 ∫ ∞

x0

(
1 +

αx

γ′

)−(2−α)/α
xK−1

Γ(K)
e−xdx

⎫⎬
⎭

≤ γ′

1− α

(
α

γ′

)−(2−α)/α{∫ x0

0

xK−1+4(λ+α)−6−(2−α)/α

Γ(K)
e−xdx

+

[
1−
(
1 +

αx0

γ′

)−1/α
]2(λ+α)−3

Γ(K − (2− α)/α)

Γ(K)

⎫⎬
⎭ .
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Because here we assume that 2(λ+ α)− 3 < 0, the second term will dominate.
So in this case we obtain that for large K,

BK,3 ≤ 4γ′

1− α

(
α

γ′

)−(2−α)/α
[
1−
(
1 +

αx0

γ′

)−1/α
]2(λ+α)−3

K−(2−α)/α.

Asymptotically, BK,2 will dominate BK,1 and BK,3, so there exists K0 ∈ N such
that when K > K0,

BK ≤ 6α(γ′α−1)1/α eγ
′α−1

(K − 1)
α−1
α −→ 0.

C.3. Gamma-independent Poisson network

Dense network When α = 0,

ν(dθ) = γλθ−1e−λθdθ, μ(dθ) = γλθ−1(1 + λθ)−1dθ.

In this case,

dν

dμ
=(1 + λθ)e−λθ, μ[x,∞)=γλ log(1 + (λx)−1), μ←(u)=

1

λ(e(γλ)−1u − 1)
.

For Poisson distribution, π(θ) = e−θ, so

BK,1 =

∫
R2

+

x1x2FK (μ[max{x1, x2},∞)) ν(dx1)ν(dx2).

Note that the integrand is symmetric around the line x1 = x2, so we only need
to compute the integral above the line x1 = x2. In this region, e−λx2 ≤ e−λx1

and 0 ≤ FK (μ[x2,∞)) ≤ FK (μ[x1,∞)) ≤ 1. So

BK,1 = 2

∫
R+

x1

∫ ∞

x1

x2FK (μ[x2,∞))λγx−1
2 e−λx2dx2ν(dx1)

≤ 2

∫
R+

x1FK (μ[x1,∞)) γe−λx1ν(dx1)

= 2γ2λ

∫
R+

FK (μ[x,∞)) e−2λxdx.

For any a > 0, we divide the integral into two parts and bound each part
separately. We denote b = log(1+(λa)−1) and use the fact that

∫ a

0
e−2λxdx ≤ a

and FK(t) ≤ tK/K! ≤ (3t/K)K . So

BK,1 ≤ 2γ2λ

[∫ a

0

e−2λxdx+ FK (μ[a,∞))

∫ ∞

a

e−2λxdx

]

≤ 2γ2λ

[
a+

1

2λ
FK

(
γλ log(1 + (λa)−1)

)]
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≤ 2γ2λ

[(
λ(eb − 1)

)−1
+

1

λ

(
3γλb

K

)K
]
.

Setting two terms equal and use the fact that (eb − 1)−1 ≈ e−b when b is large,
we get b = KW0((3γλ)

−1) and W0 is defined by

W0(y) = x ⇐⇒ xex = y.

Therefore,

BK,1 ≤ 4γ2

eKW0((3γλ)−1) − 1
∼ 4γ2e−KW0((3γλ)−1).

Similarly,

1

2(K − 1)
BK,2

=

∫
R2

+

x1x2E

[
1

ΓK
1 (μ[x2,∞) ≤ ΓK ≤ μ[x1,∞))

]
ν(dx1)ν(dx2).

Note that

E

[
1

ΓK
1 (μ[x2,∞) ≤ ΓK ≤ μ[x1,∞))

]

=
1

K − 1
[FK−1 (μ[x1,∞))− FK−1 (μ[x2,∞))] .

Keeping only the positive part,

BK,2 ≤ 2

∫
R+

x1FK−1 (μ[x1,∞))

∫ ∞

x1

γλe−λx2dx2ν(dx1)

= 2γ2λ

∫
R+

FK−1 (μ[x,∞)) e−2λxdx.

This has the same form as BK,1, so

BK,2 ≤ 4γ2

e(K−1)W0((3γλ)−1) − 1
∼ 4γ2e−(K−1)W0((3γλ)−1).

Next,

BK,3

=2E

[∫
R+

xμ←(ΓK)
dν

dμ
(μ←(ΓK))1 [ΓK ≤ μ[x,∞)]

]
ν(dx)

=2E

[∫ μ←(ΓK)

0

xμ←(ΓK) (1 + λμ←(ΓK)) e−λμ←(ΓK)γλx−1e−λxdx

]
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=2γE
[
μ←(ΓK) (1 + λμ←(ΓK)) e−λμ←(ΓK)

(
1− e−λμ←(ΓK)

)]
≤2γλE

[
μ←(ΓK)2 (1 + λμ←(ΓK)) e−λμ←(ΓK)

]
.

Note that (1 + x)e−x ≤ 1, so

BK,3 ≤ 2λγE
[
μ←(ΓK)2

]
≤ 2

γ

λ
E

[
e−(γλ)−1ΓK

]
= 2

γ

λ

(
γλ

1 + γλ

)K−1

.

Since BK,3 will dominate BK,1 and BK,2 asymptotically, there exists K0 ∈ N

such that for K > K0,

BK ≤ 3BK,3 ≤ 6
γ

λ

(
γλ

1 + γλ

)K−1

.

Sparse network When α > 0,

ν(dθ) = γ
λ1−α

Γ(1− α)
θ−α−1e−λθdθ, μ(dθ) = γ

λ1−α

Γ(1− α)
θ−α−1dθ,

and

dν

dμ
= e−λθ, μ[x,∞) = γ′x−α, μ←(u) = (γ′u−1)1/α, γ′ = γ

λ1−α

αΓ(1− α)
.

Similar to the example when α = 0,

BK,1 =

∫
R2

+

x1x2FK (μ[max{x1, x2},∞)) ν(dx1)ν(dx2)

= 2

∫
R+

x1

∫ ∞

x1

FK (μ[x2,∞)) γ
λ1−α

Γ(1− α)
x−α
2 e−λx2dx2ν(dx1)

≤ 2γ

∫
R+

x1FK (μ[x1,∞))

∫ ∞

x1

λ1−α

Γ(1− α)
x−α
2 e−λx2dx2ν(dx1).

Note that the integrand with respect to x2 is the density function of the gamma
distribution with shape α and rate λ, so the integral is less than 1. We partition
the outer integral into two parts and bound them separately,

BK,1 ≤ 2γ

∫
R+

FK (μ[x,∞)) γ
λ1−α

Γ(1− α)
x−αe−λxdx

≤ 2γ2 λ1−α

Γ(1− α)

[∫ a

0

x−αdx+ FK (μ[a,∞))

∫ ∞

a

x−αeλxdx

]

≤ 2γ2 1

Γ(1− α)

[
λ1−α

1− α
a1−α + Γ(1− α)

(
3γ′a−α

K

)K
]
.
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By setting the two terms in the brackets equal, we get

a =

[
(1− α)Γ(1− α)

λ1−α

] 1
(K−1)α+1

(
3γ′

K

) K
(K−1)α+1

∼
(
3γ′

K

) 1
α

.

So

BK,1 ≤ 4γ2λ1−α

(1− α)Γ(1− α)

(
3γ′

K

) 1−α
α

.

Similar to the last example where α = 0, here

BK,2

=2(K − 1)

∫
R2

+

x1x2E

[
1

ΓK
1 (μ[x2,∞) ≤ ΓK ≤ μ[x1,∞))

]
ν(dx1)ν(dx2)

≤2

∫
R+

x1FK−1 (μ[x1,∞))

∫ ∞

x1

x2ν(dx2)ν(dx1)

≤2γ

∫
R+

x1FK−1 (μ[x1,∞)) ν(dx1).

This has the same form as BK,1, and therefore

BK,2 ≤ 4γ2λ1−α

(1− α)Γ(1− α)

(
3γ′

K − 1

) 1−α
α

.

Finally, since both e−λx < 1 and e−λμ←(ΓK) < 1,

BK,3

=2E

[∫
R+

μ←(ΓK)xe−λμ←(ΓK)1 [x ≤ μ←(ΓK)] γ
λ1−α

Γ(1− α)
x−1−αe−λxdx

]

≤2γ
λ1−α

Γ(1− α)
E

[
μ←(ΓK)

∫ μ←(ΓK)

0

x−αdx

]

≤2γ
λ1−α

(1− α)Γ(1− α)
E
[
μ←(ΓK)2−α

]
=2γ

λ1−α

(1− α)Γ(1− α)
(γ′)

2−α
α

Γ(K − 2−α
α )

Γ(K)
.

By Stirling’s formula,

Γ(K − (2− α)/α)

Γ(K)
∼

√
2π(K − 2−α

α )
(

K−(2−α)/α
e

)K−(2−α)/α

√
2πK

(
K
e

)K ∼ K− 2−α
α .
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So

BK,3 ≤ 2γ
λ1−α

(1− α)Γ(1− α)
(γ′)

2−α
α K− 2−α

α .

BK,2 dominates BK,1 and BK,3 asymptotically, so there exists K0 ∈ N such that
for K > K0,

BK ≤ 12γ2λ1−α

(1− α)Γ(1− α)

(
3γ′

K − 1

) 1−α
α

.

Appendix D: Truncated inference

Proof of Theorem 4.2. Fix K ∈ N and ε > 0, and define the subset of state

space A =
{
XK+

N+1 = 0, B(Γ1:K , σ) ≤ ε
N+1

}
. By assumption,

Π̂ (A) ≥ 1− η.

Further, by applying the bound from Theorem 4.1, we know that for states in
A,

1− ε ≤ p(XK+
1:N+1 | θ1:K , σ) ≤ 1.

Suppose p is the RHS of Eq. (14) that is proportional to the density of Π, and p̂
is the RHS of Eq. (14) removing the term p(XK+

1:N |θ1:K , σ), which is proportional

to the density of Π̂:

p ≤ p̂, and within A, p ≥ (1− ε)p̂.

Define the normalization constants Z, Ẑ such that
∫
p/Z =

∫
p̂/Ẑ = 1. Then

the above bounds yield

Ẑ=

∫
p̂≥
∫

p=

∫
A

p+

∫
Ac

p≥
∫
A

(1− ε)p̂ =(1− ε)

∫
A
p̂∫
p̂

∫
p̂≥(1− ε)(1− η)Ẑ.

Therefore, (1− ε)(1− η)Ẑ ≤ Z ≤ Ẑ, and hence

Π(A) =

∫
A

p/Z ≥ (1− ε)

∫
A

p̂/Z ≥ (1− ε)

∫
A

p̂/Ẑ ≥ (1− ε)(1− η).

The above results yield the total variation bound via

1

2

∫ ∣∣∣∣ pZ − p̂

Ẑ

∣∣∣∣ = 1

2

∫
A

∣∣∣∣ pZ − p̂

Ẑ

∣∣∣∣+ 1

2

∫
Ac

∣∣∣∣ pZ − p̂

Ẑ

∣∣∣∣
≤ 1

2

∫
A

∣∣∣∣ pZ − p

Ẑ

∣∣∣∣+ 1

2

∫
A

∣∣∣∣ pẐ − p̂

Ẑ

∣∣∣∣+ 1

2

(
Π(Ac) + Π̂(Ac)

)

=
1

2

∣∣∣∣ 1Z − 1

Ẑ

∣∣∣∣
∫
A

p+
1

2

1

Ẑ

∫
A

(p̂− p) +
1

2

(
Π(Ac) + Π̂(Ac)

)

≤ 1

2
(1− (1− ε)(1− η)) +

1

2
ε+

1

2
(1− (1− η)(1− ε) + η)

=
3(ε+ η)

2
− εη.
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