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Abstract: We observe a stochastic process Y on [0, 1]d (d ≥ 1) satisfying
dY (t) = n1/2f(t)dt + dW (t), t ∈ [0, 1]d, where n ≥ 1 is a given scale
parameter (‘sample size’), W is the standard Brownian sheet on [0, 1]d

and f ∈ L1([0, 1]d) is the unknown function of interest. We propose a
multivariate multiscale statistic in this setting and prove that the statistic
attains a subexponential tail bound; this extends the work of Dümbgen
and Spokoiny [11] who proposed the analogous statistic for d = 1. In the
process, we generalize Theorem 6.1 of Dümbgen and Spokoiny [11] about
stochastic processes with sub-Gaussian increments on a pseudometric space,
which is of independent interest. We use the proposed multiscale statistic to
construct optimal tests (in an asymptotic minimax sense) for testing f = 0
versus (i) appropriate Hölder classes of functions, and (ii) alternatives of
the form f = μnIBn , where Bn is an axis-aligned hyperrectangle in [0, 1]d

and μn ∈ R; μn and Bn unknown.
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1. Introduction

Let us consider the following continuous multidimensional white noise model:

Y (t) =
√
n

∫ t1

0

. . .

∫ td

0

f(s1, . . . , sd) dsd . . . ds1 +W (t), (1.1)

where t := (t1, . . . , td) ∈ [0, 1]d, d ≥ 1, {Y (t1, . . . , td) : (t1, . . . , td) ∈ [0, 1]d} is
the observed data, f ∈ L1([0, 1]

d) is the unknown (regression) function of inter-
est, W (·) is the unobserved d-dimensional Brownian sheet (see Definition 6.1),
and n is a known scale parameter. Estimation and inference in this model is
closely related to that of (multivariate) nonparametric regression based on sam-
ple size n; see e.g., Brown and Low [4] and Reiß [41]. We work with this white
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noise model as this formulation is more amiable to rescaling arguments; see
e.g., Donoho and Low [10], Dümbgen and Spokoiny [11], Carter [6].

In this paper we develop optimal tests (in an asymptotic minimax sense)
based on our proposed multidimensional multiscale statistic (i.e., d ≥ 1) for
testing:

(i) f = 0 versus a Hölder class of functions with unknown degree of smooth-
ness;

(ii) f = 0 against alternatives of the form f = μnIBn , where Bn is an unknown
hyperrectangle in [0, 1]d with sides parallel to the coordinate axes (i.e.,
axis-aligned) and μn ∈ R is unknown.

Scenario (i) arises quite often in nonparametric regression where the goal is to
test whether the underlying f is 0 versus f �= 0 with unknown smoothness; see
e.g., Lepski [34], Lepski and Tsybakov [35], Horowitz and Spokoiny [21], Ingster
and Sapatinas [26] and the references therein. Our proposed multiscale statistic,
which extends the work of Dümbgen and Spokoiny [11], that considered the
analogous statistic for d = 1, leads to rate optimal detection in this problem
under the uniform metric. Moreover, with the knowledge of the smoothness of
the underlying f , we construct a asymptotically minimax test which even attains
the exact separation constant (see Section 1.2 for formal definitions and related
concepts).

Setting (ii) is a prototypical problem in signal detection — an unknown
(constant) signal spread over an unknown hyperrectangular region — and the
goal is to detect the presence of such a signal; see e.g., Glaz and Zhang [18],
Arias-Castro et al. [3, 2], Chan [7], Walther [50], Butucea and Ingster [5], Chan
and Walther [8], Frick et al. [15], König et al. [32] for a plethora of examples and
applications. Compared to the several minimax rate optimal tests that have been
proposed in the literature for this problem (see e.g., Arias-Castro et al. [3], Chan
[7] and König et al. [32]), our proposed multiscale test leads to simultaneous
optimal detection of signals both at small and large scales. It may be mentioned
in this regard that Walther [50] proposed a test that leads to optimal detection
of hyperrectangles when the responses are Bernoulli variables. Also recently,
Proksch et al. [39], using a completely differently approach, proved minimax
optimality over hyperrectangles in the general setting of inverse problems.

We first motivate and introduce our multiscale statistic below (Section 1.1)
and briefly describe the asymptotic minimax testing framework. Our main op-
timality results are discussed in Section 1.2.

1.1. Multiscale statistic when d ≥ 1

To motivate our multiscale statistic let us first look at the following testing
problem:

H0 : f = 0 versus H1 : f �= 0 ∈ Hβ,L, (1.2)
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where Hβ,L is the Hölder class of function with parameters β > 0 and L > 0.
For β ∈ (0, 1] and L > 0 the Hölder class Hβ,L is defined as

Hβ,L :=
{
f ∈ L1([0, 1]

d) : |f(x)− f(y)| ≤ L ‖x− y‖β for all x, y ∈ [0, 1]d
}
. (1.3)

For β > 1 the Hölder class Hβ,L is defined similarly; see Definition 6.2.
Our multiscale statistic is based on the idea of kernel averaging. Suppose that

ψ : Rd → R is a measurable function such that:

(i) ψ is 0 outside [−1, 1]d;
(ii) ψ ∈ L2(R

d), i.e.,
∫
Rd ψ

2(x)dx < ∞;
(iii) ψ is of bounded Hardy-Krause (HK)-variation (see Definition A.1 in the

Appendix) and
(iv)
∫
Rd ψ(x)dx > 0.

We call such a function a kernel. For any h := (h1, . . . , hd) ∈ (0, 1/2]d we define

Ah := {t ∈ R
d : hi ≤ ti ≤ 1− hi for i = 1, . . . , d}. (1.4)

For any t ∈ Ah we define the centered (at t) and scaled kernel function ψt,h :
[0, 1]d → R as

ψt,h(x) := ψ

(
x1 − t1

h1
, . . . ,

xd − td
hd

)
, for x = (x1, . . . , xd) ∈ [0, 1]d. (1.5)

Here h ∈ (0, 1/2]d is the smoothing bandwidth and t ∈ Ah ensures that the
scaled kernel function ψt,h is zero outside [0, 1]d. For a fixed t ∈ Ah we can

construct a kernel estimator f̂h(t) of f(t) based on the data process Y (·) as

f̂h(t) :=
1

n1/2(Πd
i=1hi)〈I, ψ〉

∫
[0,1]d

ψt,h(x)dY (x),

where for any functions g1, g2 ∈ L2(R
d), define 〈g1, g2〉 :=

∫
Rd g1(x)g2(x)dx.

Also define I : [−1, 1]d → R such that I(x) := 1 for all x ∈ [−1, 1]d and 0
otherwise. We consider the normalized version of the above kernel estimator
f̂h(t):

Ψ̂(t, h) :=
1

(Πd
i=1hi)1/2 ‖ψ‖

∫
[0,1]d

ψt,h(x)dY (x), (1.6)

where ‖ψ‖2 :=
∫
Rd ψ

2(x)dx < ∞. We can use Ψ̂(t, h) to test

H0 : f(t) = 0 versus H1 : f(t) �= 0

where we would reject the null hypothesis for extreme values of Ψ̂(t, h). So, a
naive approach to testing (1.2) could be to consider supt∈Ah

|Ψ̂(t, h)|. As this
test statistic crucially depends on the choice of the smoothing bandwidth vector
h, an approach that bypasses the choice of the tuning parameter h and also
combines information at various bandwidths (scales) would be to consider the
test statistic

sup
h>0

sup
t∈Ah

|Ψ̂(t, h)|, (1.7)
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where h > 0 is a short-hand for h ∈ (0, 1/2]d. However, under the null hypoth-
esis (1.2)

sup
h>0

sup
t∈Ah

|Ψ̂(t, h)| = ∞ almost surely (a.s.)

as, for a fixed scale h, supt∈Ah
|Ψ̂(t, h)| = Op(

√
2 log(1/(2dh1 . . . hd))); see e.g.,

Giné and Guillou [16]. Thus, to use the above approach to construct a valid
test for (1.2) we need to put the test statistics supt∈Ah

|Ψ̂(t, h)| at different
scales (i.e., h) in the same footing — this leads to the following definition of the
multiscale statistic in d-dimensions:

T (Y, ψ) := sup
h∈(0,1/2]d

sup
t∈Ah

|Ψ̂(t, h)| − Γ(2dh1 . . . hd)

D(2dh1 . . . hd)
(1.8)

where Γ, D : (0, 1] → [0,∞) are two functions defined as

Γ(r) := (2 log(1/r))1/2 (1.9)

and

D(r) := (log(e/r))−1/2 log log(ee/r); (1.10)

see Dümbgen and Spokoiny [11]. In Theorem 2.1, a main result in this paper,
we show that the above multivariate multiscale statistic T (Y, ψ) is well-defined
and is a subexponential random variable for any kernel function ψ satisfying
(i)-(iv) above, when f ≡ 0. This result immediately extends the main result
of Dümbgen and Spokoiny [11, Theorem 2.1] beyond d = 1. Although there has
been several proposals that extend the definition and the optimality properties
of the multiscale statistic of Dümbgen and Spokoiny [11] beyond d = 1 (see
e.g., Walther [50], Chan and Walther [8], König et al. [32]) we believe that our
approach has the closest resemblance to Dümbgen and Spokoiny [11]. Further,
the exact form of T (Y, ψ) leads to optimal tests for (1.2) and other alternatives
(see König et al. [32] for more details).

To show the subexponentiality of the proposed multiscale statistic T (W,ψ)
we prove a general result about a stochastic process with sub-Gaussian incre-
ments on a pseudometric space which may be of independent interest (see The-
orem 2.2). This result mirrors Dümbgen and Spokoiny [11, Theorem 6.1] but
improves it in two ways: Firstly it assumes a weaker condition on the packing
numbers of the pseudometric space on which the stochastic process is defined,
and secondly it proves the subexponentiality (instead of just the finiteness) of
the supremum of the process. This weaker condition on the packing numbers is
crucial to the proof of Theorem 2.1; see Remark 2.1 where we compare our result
with Dümbgen and Spokoiny [11, Theorem 6.1]. Moreover, Lemma 2.1 gives a
bound on the packing numbers of the pertinent (to our application) pseudo-
metric space, which we believe is also new; see Remarks 2.2 and 2.3 where we
compare our result with some relevant recent papers.
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1.2. Optimality of the multiscale statistic

Before we describe our main results let us first introduce the asymptotic mini-
max hypothesis testing framework. There is an extensive literature on nonpara-
metric testing of the simple hypothesis {0}. As a starting point we refer the
readers to Ingster and Suslina [27]. In the nonparametric setting it is usually
assumed that f belongs to a certain class of functions F and its distance from
the null function f = 0 is defined by a seminorm | · |. In this setting, given
α ∈ (0, 1), the goal is to find a level α test φn (i.e., E0[φn(Y )] ≤ α) such that

inf
g∈F:|g|≥δρn

Eg[φn(Y )] (1.11)

is as large as possible for some δ > 0 and ρn > 0 where ρn → 0 as n → ∞ (ρn is
a function of the sample size n); in the above notation Eg denotes expectation
under the alternative function g. However, it can be shown that given F and
| · |, the constants δ and ρn cannot be chosen arbitrarily if one wants to have a
statistically meaningful framework (see the survey papers Ingster [23], Ingster
[24], Ingster [25] for d = 1 and Ingster and Sapatinas [26] for d > 1). It turns
out that if δρn is too small then it is not possible to test the null hypothesis
with nontrivial asymptotic power (i.e., the infimum in (1.11) cannot be strictly
larger than α + o(1)). On the other hand if δρn is very large many procedures
can test f ≡ 0 with significant power (i.e., the infimum in (1.11) goes to 1 as
n → ∞). Note that at first glance it may seem like the detection boundary δρn
may depend on the level of the test α, but as long as α ∈ (0, 1) the detection
boundary generally turns out to be independent of α; see the survey papers by
Ingster [23], Ingster [24], Ingster [25] for details. In our case also the detection
boundary is independent of α as illustrated in Theorems 3.1 and 3.2.

The hypothesis testing problem then reduces to: (a) Finding the largest pos-
sible δρn such that no test can have nontrivial asymptotic power (i.e., under the
alternative f such that |f | ≤ δρn, the asymptotic power is less than or equal to
the level α), and (b) trying to construct test procedures that can detect signals
f , with |f | > δρn, with considerable power (power going to 1 as n → ∞). More
specifically, δ and ρn are defined such that δρn is the largest for which, for all
ε > 0, we have

lim sup
n→∞

sup
φn

inf
g∈F:|g|≥(1−ε)δρn

Eg[φn(Y )] ≤ α,

where the supremum is taken over all sequence of level α tests φn. In this case
ρn is called the minimax rate of testing and δ is called the exact separation
constant (see Lepski and Tsybakov [35], Ingster and Stepanova [22] for more
details about minimax testing). On the other hand, we want to find a test φ̃n

such that
lim

n→∞
inf

g∈F:|g|≥(1+ε)δρn

Eg[φ̃n(Y )] = 1.

In such a scenario, φ̃n is called an asymptotically minimax test. Here we would
also like to point out that if there exists a test φ̂n and a constant δ̂ > δ such
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that

lim
n→∞

inf
g∈F:|g|≥δ̂ρn

Eg[φ̂n(Y )] = 1

then the test φ̂n is called a rate optimal test.
In Section 3 we show that our proposed multiscale statistic yields an asymp-

totically minimax test for the following scenarios:
(i) (Optimality for Hölderian alternatives). Consider testing hypothesis (1.2).

If

‖f‖∞ ≥ c∗(1 + εn)(log(en)/n)
β

2β+d ,

where f belongs to the Hölder class Hβ,L with β > 0 and L > 0, ‖f‖∞ :=
supx∈[0,1]d |f(x)| denotes the sup-norm of f , and c∗ is a constant (defined ex-
plicitly in Theorem 3.1), we show that we can construct a level α test based
on the multiscale statistic (1.8) that has power converging to 1, as n → ∞,
provided εn does not go to 0 too fast (see Theorem 3.1 for the exact order of
εn). We note that this multiscale statistic would require the knowledge of β but
not of L.

Moreover, we show that if ‖f‖∞ ≤ c∗(1−εn)(log(en)/n)
β/2β+d no test of level

α ∈ (0, 1) can have nontrivial asymptotic power; see Theorem 3.1 for the details.
This shows that our proposed multiscale test is asymptotically minimax with
rate of testing ρn = (log(en)/n)β/(2β+d) and exact separation constant δ = c∗.
As far as we are aware this is the first instance of an asymptotically minimax test
for the Hölder class Hβ,L when d > 1 (under the supremum norm). Moreover,
if the smoothness β of the Hölder class Hβ,L is unknown (but β ≤ 1) then we
can still construct a rate optimal test for this problem; see Proposition 3.1 for
the details.

(ii) (Optimality for detecting signals at large/small scales). Consider testing
the hypothesis

H0 : f = 0 versus H1 : f = μnIBn , (1.12)

where μn �= 0 ∈ R and

Bn ≡ B∞(t(n), h(n)) := {x ∈ [0, 1]d : |xi − t
(n)
i | < h

(n)
i for all i = 1, . . . , d}

are unknown, for some h(n) ∈ (0, 1/2]d and t(n) ∈ Ah(n) , and IBn denotes the in-
dicator of the hyperrectangle Bn. First, consider the scenario lim infn→∞ |Bn| >
0 where |Bn| denote the Lebesgue measure of Bn. Then, if limn→∞

√
n|μn| →

+∞, we can construct a level α test based on the multiscale statistic (1.8) that
has power converging to 1 as n → ∞; see Theorem 3.2. Further, we show that,
if lim supn→∞

√
n|μn| < ∞, no test of level α can detect the alternative with

power going to 1. Thus, the multiscale test is optimal for detecting signals on
large scales.

On the other hand, let us now consider the case limn→∞ |Bn| = 0. If

|μn|
√
n|Bn| ≥ (1 + εn)

√
2 log(1/|Bn|), for all n,
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we can construct a test of level α, based on the proposed multiscale statistic,
that has power converging to 1 as n → ∞, provided εn does not go to 0 too fast
(see Theorem 3.2). Furthermore, we can show that if

|μn|
√

n|Bn| = (1− εn)
√
2 log(1/|Bn|), for all n,

no test can detect the signal reliably with nontrivial power (i.e., for any level α
test φn there exists a signal fn of the above described strength such that φn will
fail to detect fn with asymptotic probability at least 1 − α); see Theorem 3.2
for the details. This shows that our multiscale test is asymptotically minimax
for signals at small scales.

1.3. Literature review and connection to existing works

Our multiscale statistic (1.8) can be thought of as a penalized scan statistic, as
it is based on the maximum of an ensemble of local test statistics |Ψ̂(t, h)|, pe-
nalized and properly scaled. Scan-type procedures have received much attention
in the literature over the past few decades. Examples of such procedures can be
found in Siegmund and Venkatraman [47], Kulldorff [33], Siegmund and Yakir
[48], Jiang [29], Naus and Wallenstein [36], Haiman and Preda [19] etc. All the
above mentioned papers consider d = 1 and no penalization term (like Γ(·) in
our case) was used. Asymptotic properties of the scan statistic have been studied
expensively. In Naus and Wallenstein [36] and Pozdnyakov et al. [38] the authors
give asymptotic approximations of the distribution of the scan statistic when
d = 1. For d = 2, similar results can be found in Glaz and Zhang [18], Haiman
and Preda [19], Wang and Glaz [51], among others. Recently in Sharpnack and
Arias-Castro [46] the authors give exact asymptotics for the scan statistic for
any dimension d.

In all of the above papers it is noted that the scan statistic is dominated
by small scales; this creates a problem for detecting large scale signals. One
common proposal to fix this problem is to modify the scan statistic so that
instead of the maximum over all scales we look at the maximum over scales
that are in an appropriate interval containing the true scale of the signal; see
e.g., Naus and Wallenstein [36], Sharpnack and Arias-Castro [46]. In particular,
the last two papers show that if the extent of the signal is of a certain order
(log n) then this approach leads to power comparable to an oracle. An obvious
drawback with the above approach is that we need to have some prior knowledge
on which scales the signal(s) may be present. In contrast, our multiscale method
does not require any such knowledge. Proksch et al. [39] used a multiple testing
procedure to obtain optimal detection in both large and small hyperrectangles
in the general setting of inverse problems. Our approach, in fact, can also be
seen as a form of multiple testing procedure.

Another approach that has been proposed to optimally detect signals on both
large and small scales is to use different critical values (of the scan statistic) to
test for signals at different scales separately (see e.g., Walther [50], Chan and
Walther [8]) and use multiple testing procedures (see Hall and Jin [20] and the
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references within) to calibrate the method. Here we would like to note that most
methods, including our multiscale approach, that try to detect signals optimally
for both large and small scales suffers from a loss of power in either small or
large compared to methods that are fine tuned for either scales. Our method
sacrifices power at small scales (compared to the unpenalized scan statistic) in
favor of optimal detection at all scales.

Conceptually, our work is most related to that of Dümbgen and Spokoiny
[11], where the authors proposed our multiscale statistic for d = 1. Thus, our
work can be thought of as a generalization of Dümbgen and Spokoiny [11] to
multidimension (d > 1).

1.4. Organization of the paper

The proposed multiscale statistic is studied in Section 2. In Section 3 we con-
struct optimal tests for: (i) f = 0 versus Hölderian alternatives; (ii) f = 0 versus
alternatives of the form f = μnIBn , where Bn is an axis-aligned hyperrectangle
in [0, 1]d and μn ∈ R (both unknown). In Section 3.3 we discuss the discrete ana-
logue of our statistic and the computational issues. We compare the performance
of our multiscale based test with other competing methods in Section 4. In Sec-
tion 5 we discuss some open problems and possible applications/extensions of
our work. Section 6 gives the proofs of Lemma 2.1 and Theorem 2.2. The proofs
of the other results are relegated to Appendix A.

2. Multidimensional multiscale statistic

Let us first recall the definition of the multivariate multiscale statistic T (Y, ψ)
given in (1.8). The following theorem, our main result in this section, shows that
the multiscale statistic T (Y, ψ) is well-defined and attains a subexponential tail
bound for any kernel function ψ; see Appendix A.2 for a proof.

Theorem 2.1. Let ψ be a kernel function satisfying (i)-(iv) in the Introduction.
For a positive vector h := (h1, . . . , hd) > 0, let Ah be as defined in (1.4). For
t ∈ Ah, let ψt,h(·) and Ψ̂(t, h) be as defined in (1.5) and (1.6), respectively.
Consider the statistic T (W,ψ) as defined in (1.8), where W (·) is the standard
Brownian sheet on [0, 1]d. Then, almost surely, T (W,ψ) < ∞, i.e., T (W,ψ) is
a tight random variable. Moreover, there exists constants c0 and c1 depending
on the kernel ψ such that P(T (W,ψ) > u) ≤ c0 exp(−u/c1) for all u > 0.

Theorem 2.1 immediately extends the main result of Dümbgen and Spokoiny
[11, Theorem 2.1] beyond d = 1. The proof of the above theorem crucially relies
on the following two results. We first introduce some notation.

Definition 2.1 (Packing number). For any pseudometric space (F , ρ) and
ε > 0, the packing number N(ε,F ) is defined as the supremum of the number
of elements in F ′ where F ′ ⊆ F and for all a �= b ∈ F ′ we have ρ(a, b) > ε.
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We will prove Theorem 2.1 as a consequence of the following more general
result about stochastic processes with sub-Gaussian increments on some pseu-
dometric space (see Section 6.2 for its proof).

Theorem 2.2. Let X be a stochastic process on a pseudometric space (F , ρ)
with continuous sample paths. Suppose that the following three conditions hold:

(a) There is a function σ : F → (0, 1] and a constant K ≥ 1 such that

P
(
X(a) > σ(a)η

)
≤ K exp(−η2/2) ∀ η > 0, ∀ a ∈ F .

Moreover, σ2(b) ≤ σ2(a) + ρ2(a, b), ∀ a, b ∈ F .
(b) For some constants L,M ≥ 1,

P
(
|X(a)−X(b)| > ρ(a, b)η

)
≤ L exp(−η2/M) ∀ η > 0, ∀ a, b ∈ F .

(c) For some constants A,B, V, p > 0,

N((δu)1/2, {a ∈ F : σ2(a) ≤ δ}) ≤ Au−Bδ−V (log(e/δ))p ∀u, δ ∈ (0, 1].

Then the random variable

S(X) := sup
a∈F

X2(a)/σ2(a)− 2V log(1/σ2(a))

log log(ee/σ2(a))
(2.1)

is subexponential. More precisely, P(S(X) > u) ≤ ξ1 exp(−u/ξ2) for all
u > 0, for some ξ1, ξ2 > 0 depending only on the constants K,L,M,A,
B, p and V .

Remark 2.1 (Connection to Dümbgen and Spokoiny [11]). A similar result
to Theorem 2.2 above appears in Dümbgen and Spokoiny [11, Theorem 6.1].
However note that there is a subtle and important difference: The bound on the
packing number in (c) of Theorem 2.2 involves the additional logarithmic factor
(log(e/δ))p which is not present in Dümbgen and Spokoiny [11, Theorem 6.1]. In
fact, we show that even with this additional logarithmic factor, the random vari-
able S(X), defined in (2.1), involves the same penalization term 2V log(1/σ2(a))
as in Dümbgen and Spokoiny [11, Theorem 6.1]. Hence, we can think of Theo-
rem 2.2 as a generalization of Dümbgen and Spokoiny [11, Theorem 6.1]. Here
we would also like to point out that our result improves Dümbgen and Spokoiny
[11, Theorem 6.1] by proving the subexponentiality of the random variable S(X)
instead of just its finiteness.

To apply Theorem 2.2 to prove Theorem 2.1 we need to define a suitable
pseudometric space (F , ρ) and a stochastic process, and verify that conditions
(a)-(c) in Theorem 2.2 hold. In that vein, let us define the set

F :=
{
(t, h) ∈ R

d × (0, 1/2]d : hi ≤ ti ≤ 1− hi, for all i = 1, 2, . . . , d
}

with the following pseudometric

ρ2((t, h), (t′, h′)) := |B∞(t, h)�B∞(t′, h′)|, for (t, h), (t′, h′) ∈ F ,
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where B∞(t, h) := Πd
i=1(ti − hi, ti + hi), A�B := (A ∩Bc) ∪ (Ac ∩B) denotes

the symmetric difference of the sets A and B, and |A| denotes the Lebesgue
measure of the set A. Also, define

σ2(t, h) := |B∞(t, h)| = 2dΠd
i=1hi, for (t, h) ∈ F .

The following important result shows that indeed for the above defined pseudo-
metric space (F , ρ) condition (c) of Theorem 2.1 holds; see Section 6.3 for its
proof.

Lemma 2.1. Let F , ρ(·, ·) and σ(·) be as described above. Then, for all u, δ ∈
(0, 1],

N
(
(uδ)1/2, {(t, h) ∈ F : σ2(t, h) ≤ δ}

)
≤ Ku−2dδ−1(log(e/δ))d−1 (2.2)

for some constant K depending only on d.

Remark 2.2. Here we would like to point out that Lemma 2.1 shows that con-
dition (c) of Theorem 2.2 holds with B = 2d, p = d−1 and most importantly for
V = 1, which was also the case when d = 1 (as shown in Dümbgen and Spokoiny
[11]). An equivalent result for d = 2 is proved in Walther [50, Theorem 1].

Remark 2.3 (Connection to Sharpnack [45]). Note that a similar multiscale
statistic, as in (1.8) without the log log(ee/(2dh1 . . . hd)) multiplier in the de-
nominator, has been proposed in Sharpnack [45] where the subexponentiality of
their statistic was also proved. Here we would like to point out the main differ-
ences between the two papers. Translated to our setting, Sharpnack [45] scans
over hyperrectangles such that each side is greater than a prespecified number
(1/L), whereas our multiscale statistic (1.8) scans over hyperrectangles of any
length. As our multiscale statistic scans over hyperrectangles of any length we
can optimally test for signals distributed over hyperrectangles on any scale, which
would not be possible for the test statistic proposed in Sharpnack [45]; see Sec-
tion 3.2 for more details.

Compare the numerator of our multiscale statistic (1.8) with the multiscale
statistic proposed in König et al. [32, Equation (6)]. Translated to our setting, in
König et al. [32] the authors propose a penalization term ΓV (2

dh1 . . . hd) where
ΓV : (0, 1] → (0,∞) is defined as

ΓV (r) := (2V log(1/r))1/2.

In König et al. [32, Section 1.1] the authors also recommend to choose the
constant V in the penalization term ΓV as small as possible for optimal testing.
König et al. [32, Example 2.3] recommend choosing V = 1 by appealing to
Lemma 2.1 of our paper. The following proposition shows that indeed V = 1 is
the smallest possible permissible value; see Appendix A.3 for a proof.

Proposition 2.1. Suppose V < 1. Let ΓV and F be as defined above. Then we
have

sup
(t,h)∈F

|Ψ̂(t, h)| − ΓV (2
dh1 . . . hd) = ∞ a.s.
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Thus, sup(t,h)∈F
|Ψ̂(t,h)|−ΓV (2dh1...hd)

D(2dh1...hd)
= ∞ a.s.

3. Optimality of the multiscale statistic in testing problems

In this section we prove that we can construct tests based on the multiscale
statistic that are optimal for testing (1.2) and (1.12). For both the testing prob-
lems we can define a multiscale test based on kernel ψ as follows: Let

κα,ψ = inf{c ∈ R : P(T (W,ψ) > c) ≤ α},

where W is the standard Brownian sheet on [0, 1]d. For notational simplicity we
would denote κα,ψ by κα from now on.

For testing (1.2) and (1.12) a test of level α can be defined as follows:

Reject H0 if and only if T (Y, ψ) > κα.

Let us call this testing procedure the multiscale test. Although any kernel ψ
can be used to construct the above test, in Sections 3.1 and 3.2 we show that
specific choices of the kernel function ψ lead to asymptotically minimax tests.

3.1. Optimality against Hölder classes of functions

Let us recall the definition of the Hölder class of functions Hβ,L, for β ∈ (0, 1]
and L > 0, as in (1.3); see Definition 6.2 for the formal definition of Hβ,L for
any β > 0. Let ψβ : Rd → R, for 0 < β < ∞, be the unique solution of the
following optimization problem:

Minimize ‖ψ‖ over all ψ ∈ Hβ,1 with ψ(0) ≥ 1. (3.1)

Elementary calculations show that for 0 < β ≤ 1, we have

ψβ(x) = (1− ‖x‖β)I(‖x‖ ≤ 1);

see Appendix A.4 for a proof. For β > 1, ψβ can be calculated numerically. We
consider the kernel ψβ , for β > 0, described above and state our first optimality
result for testing (1.2); see Appendix A.5.1 for a proof.

Theorem 3.1. Let Tβ ≡ T (Y, ψβ) be the multiscale statistic defined in (1.8)
with kernel ψβ, for 0 < β < ∞. Define

ρn :=

(
logn

n

) β
2β+d

and

c∗ ≡ c∗(β, L) :=

(
2dLd/β

(2β + d) ‖ψβ‖2

) β
2β+d

.

Then, for arbitrary εn > 0 with εn → 0 and εn
√
logn → ∞ as n → ∞, the

following hold:
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(a) For any arbitrary sequence of tests φn with level α for testing (1.2), we
have

lim sup
n→∞

inf
g∈Hβ,L:‖g‖∞=(1−εn)c∗ρn

Eg[φn(Y )] ≤ α;

(b) for Jn := [(c∗ρn/L)
1/β , 1− (c∗ρn/L)

1/β ]d, we have

lim
n→∞

inf
g∈Hβ,L:‖g‖Jn,∞≥(1+εn)c∗ρn

Pg(Tβ > κα) = 1

where ‖g‖Jn,∞ := supt∈Jn
|g(t)|.

The above result generalizes Dümbgen and Spokoiny [11, Theorem 2.2] be-
yond d = 1. Theorem 3.1 can be interpreted as follows: (a) for every test φn there
exists a function with supremum norm (1 − εn)c∗ρn which cannot be detected
with nontrivial asymptotic power; whereas (b) when we restrict to functions
with signal strengths (i.e., supremum norm in the interior of [0, 1]d) just a bit
larger than the above threshold, our proposed multiscale test is able to detect
every such function with asymptotic power 1. In this sense our proposed test is
optimal in detecting departures from the zero function for Hölder classes Hβ,L.
We note here that to calculate Tβ we need the knowledge of β but we do not
need to know L.

If β is unknown, but is less than or equal to 1, we can use T1 as a test statistic
for testing (1.2). Although the resulting test is not asymptotically minimax, the
test is still rate optimal. The following result formalizes this; see Appendix A.5.2
for its proof.

Proposition 3.1. Consider testing (1.2) where β ≤ 1 is unknown. Let us recall
the definition of ψ1 in (3.1). Let T1 ≡ T (Y, ψ1) be the multiscale statistic defined
in (1.8) with kernel ψ1. Define

ρn :=

(
logn

n

) β
2β+d

and let M be any constant such that M >
(

2dLd/β‖ψ1‖2

(2β+d)〈ψ1,ψβ〉2
) β

2β+d

. Let Jn :=

[(Mρn/L)
1/β , 1− (Mρn/L)

1/β ]d. Then we have

lim
n→∞

inf
g∈Hβ,L:‖g‖Jn,∞≥Mρn

Pg(T > κα) = 1

where κα is the (1 − α) quantile of the multiscale statistic T (Y, ψ1) under the
null hypothesis.

Remark 3.1. Instead of using the test statistic Tβ if we use the test statistic

T 	
β := sup

h∈(0,1/2]d
sup
t∈Ah

[
|Ψ̂(t, h)| − Γ(2dh1 . . . hd)

]
(3.2)

with the kernel ψβ, then the same conclusions as that of Theorem 3.1 and Propo-
sition 3.1 would hold. Thus the multiscale statistic T 	

β is also optimal against
Hölderian alternatives.
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3.2. Optimality against axis-aligned hyperrectangular signals

In Theorem 3.1 we proved the optimality of the multiscale test when the supre-
mum norm of the signal is large. A natural question that arises next is: “What
if the signal is not peaked but distributed evenly on some subset of [0, 1]d?”.
To answer this question we look at the testing problem (1.12), and establish
below the optimality of our multiscale test in this setting (see Appendix A.5.3
for a proof of Theorem 3.2). Note that when d = 1 similar optimality results are
known for the multiscale statistic; see Frick et al. [15, Theorem 2.6] and Chan
and Walther [8, Section 4]. For d > 1 see Walther [50] for a similar optimality
result when the response variable is Bernoulli. For h = (h1, . . . , hd) ∈ (0, 1/2]d,
let us first define

Bh := {B ⊆ [0, 1]d : B = Πd
i=1(ti − hi, ti + hi) for some t = (t1, . . . , td) ∈ Ah}.

Theorem 3.2. Let T ≡ T (Y, ψ0) where ψ0 = I[−1,1]d . Let fn = μnIBn where
Bn is an axis-aligned hyperrectangle and let |Bn| denote the Lebesgue measure
of the set Bn. Then we have the following results:

(a) Suppose that lim infn→∞ |Bn| > 0. Let φn be any test of level α ∈ (0, 1) for
(1.12). Then, for any fn = μnIBn such that lim supn |μn|

√
n|Bn| < ∞,

we have
lim sup
n→∞

Efn [φn(Y )] < 1.

Moreover, for the proposed multiscale test based on T , we have

lim
n→∞

inf
fn:lim |μn|

√
n|Bn|=∞

Pfn(T > κα) = 1.

(b) Now let us look at the case limn→∞ |Bn| = 0. Let hn = (h1,n, . . . , hd,n) ∈
(0, 1/2]d be any sequence of points such that limn→∞ Πd

i=1hi,n → 0. Let

G−
n := {fn = μnIBn : |μn|

√
n|Bn| = (1− εn)

√
2 log(1/|Bn|), Bn ∈ Bhn}

with εn → 0 and εn
√

2 log(1/|Bn|) → ∞. (Here we have omitted the
dependence of hn in the notation G−

n ). If φn be any test of level α ∈ (0, 1)
for (1.12) then we have

lim sup
n→∞

inf
fn∈G−

n

Efn [φn(Y )] ≤ α.

Moreover, let

G+
n := {fn = μnIBn : |μn|

√
n|Bn| ≥ (1 + εn)

√
2 log(1/|Bn|), Bn ∈ Bhn}.

Then for our multiscale test we have

lim
n→∞

inf
fn∈G+

n

Pfn(T > κα) = 1.
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Remark 3.2. If we use the test statistic T 	, as defined in (3.2) (with the kernel
ψ0), instead of T in Theorem 3.2, the optimality results described in the theorem
still hold.

Our first result in Theorem 3.2 shows that as long as lim infn→∞ |Bn| > 0, for
any test to have power converging to 1 we need to have lim |μn|

√
n|Bn| = ∞, in

which case our multiscale test achieves asymptotic power 1. Thus our multiscale
test is optimal for detecting large scale signals. The next result can be interpreted
as follows: (i) For signals with small spatial extent (i.e., limn→∞ |Bn| = 0) if the
signal strength is too small (|μn|

√
n|Bn| ≤ (1− εn)

√
2 log(1/|Bn|)) no test can

detect the signal reliably with nontrivial probability (i.e., for every test φn there
exist a signal such that φn will fail to detect it with probability 1−α+o(1)); (ii)
on the other hand, if the signal strength is a bit larger than the threshold (i.e.,
the exact separation constant) described above our multiscale test will detect
the signal with asymptotic power 1. This shows that our multiscale test achieves
optimal detection for signals with small spatial footprint. We would like to
emphasize here that by using the same exact test (using the same kernel ψ0) we
are able to optimally detect both large and small scale signals. In Proksch et al.
[39], the authors used a multiple testing method to achieve optimal detection in
both large and small scale hyperrectangles.

Remark 3.3. We would like to point out that the proofs for the minimax lower
bound that have been derived for the two scenarios in Theorems 3.1 and 3.2 fol-
low the standard techniques that have been used in Ingster [23], Ingster [24], In-
gster [25], Lepski and Tsybakov [35], Dümbgen and Spokoiny [11], Arias-Castro
et al. [3], Ingster and Sapatinas [26], Arias-Castro et al. [2], Frick et al. [15],
etc. Note that although all the above cited papers have similar proof techniques
there is quite some variation in the strength of their results. Our results and
proofs most closely follow that of Dümbgen and Spokoiny [11].

3.2.1. Comparison with the scan and average likelihood ratio statistics when
d = 1

When d = 1 there exists an extensive literature on the optimal detection thresh-
old for signals of the form fn = μnIBn , where now Bn ⊆ [0, 1] is an interval.
In Chan and Walther [8] the authors compare the performance of the scan
statistic (i.e., the statistic (1.7) in the discrete setup with ψ = I[−1,1]) and
the average likelihood ratio (ALR) statistic (which is the discrete analogue of∫ 1/2
0

∫ 1−h

h
exp[|Ψ̂(t, h)|2/2]dt dh); see Section 4 for a description and comparison

of the two competing methods with our multiscale test when d = 2.
When lim infn→∞ |Bn| > 0 the scan statistic can only detect the signal, with

asymptotic power 1, when |μn|
√
n ≥ (1+εn)

√
2 logn, whereas the ALR statistic

(and the proposed multiscale statistic) can detect the signal whenever we have
|μn|

√
n → ∞ (which is a less stringent condition). Note that |μn|

√
n → ∞ is

also required for any test to detect the signal with asymptotic power 1. This
shows that the scan statistic is not optimal for detecting large scale signals.
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On the other hand if limn→∞ |Bn| = 0, the scan statistic can detect the signal
if |μn|

√
n|Bn| ≥ (1+εn)

√
2 logn whereas the ALR statistic can detect the signal

when |μn|
√
n|Bn| ≥

√
2(1+εn)

√
2 log(1/|Bn|). The optimal detection threshold

in this scenario is |μn|
√

n|Bn| ≥ (1 + εn)
√
2 log(1/|Bn|), which is attained by

the multiscale statistic. Thus that scan statistic is optimal in detecting signals
only when |Bn| = O(1/n). The ALR statistic requires the signal to be at least√
2 times the (detectable) threshold. This shows that neither the standard scan

or the ALR is able to achieve the optimal threshold for detecting small scale
signals.

Frick et al. [15, Theorem 2.6] shows the optimality of the multiscale statistic
(which is a modification of the scan statistic) in detecting signals in both cases
when d = 1. In Rivera and Walther [42] and Chan and Walther [8] the authors
propose a condensed ALR statistic which, much like the multiscale statistic, is
able to attain the optimal threshold for detection in both regimes of Bn. As
far as we are aware the condensed ALR statistic has not been extended beyond
d = 1 and therefore whether it achieves the optimal threshold for d > 1 is not
known. In summary, Theorem 3.2 shows that our multidimension multiscale test
is asymptotically minimax even when d > 1.

3.3. The discrete analogue of the multiscale statistic

Although thus far we have defined and analyzed the multiscale statistic arising
from a continuous white noise model, in real applications we have to invariably
deal with a discrete analogue of this problem. In this subsection we briefly
describe this discrete setting and comment on the applicability of our results.

Let us start with the connection to nonparametric regression on gridded
design. Let x1, . . . , xn ∈ R

d be an enumeration of the m × · · · × m uniform
grid Gm := {1/m, 2/m, . . . , (m − 1)/m, 1}d where md = n. Let us look at the
following nonparametric regression problem:

Yi = f(xi) + εi, for i = 1, . . . , n (3.3)

where f : [0, 1]d → R is the unknown regression function and εi’s are i.i.d. stan-
dard normal random variables. For a kernel function ψ : Rd → R and h, t ∈ Gm,
such that t− h, t+ h ∈ Gm we can define a kernel estimator f̂h of f as

f̂h(t) =

∑
i:xi∈B∞(t,h) Yi ψ

(
(xi − t)/h

)
∑

i:xi∈B∞(t,h) ψ
(
(xi − t)/h

)
where by (u1, . . . , ud)/(h1, . . . , hd) we mean the vector (u1/h1, . . . , ud/hd). We
can also define the standardized kernel estimator as

Ψ̂n(t, h) =

∑
i:xi∈B∞(t,h) Yi ψ

(
(xi − t)/h

)
√∑

i:xi∈B∞(t,h) ψ
2
(
(xi − t)/h

) .
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Table 1

Critical values κ0.05 for different n = m2.

Critical values
m 95% quantile m 95% quantile
25 3.02 75 3.27
40 3.12 100 3.31
50 3.18 125 3.32
60 3.22 150 3.30�

� Note that 0.95 quantiles necessarily increase as n increases. But in our simulations the
0.95 quantile for n = 1502 turned out to be slightly less than that of n = 1252 due to

sampling variability.

Then the multiscale statistic for this regression problem reduces to

Tn(Y, ψ) := sup
h∈Gm:t−h,t+h∈Gm

sup
t∈Gm

|Ψ̂n(t, h)| − Γ (|B∞(t, h) ∩Gm|)
D (|B∞(t, h) ∩Gm|) (3.4)

where |B∞(t, h) ∩Gm| now denotes the number of elements in B∞(t, h) ∩Gm;
Γ(·) and D(·) are defined in (1.9) and (1.10) respectively. Note that T (Y, ψ) (as
defined in (1.8)) stochastically dominates Tn(Y, ψ) and thus Tn(Y, ψ) is well-
defined and finite a.s.

Let us now comment on the computation of the discrete multiscale statistic.
Observe that a naive approach to computing Tn(Y, ψ) will involve taking the
maximum over O(n2) ≡ O(m2d) rectangles. This can indeed be prohibitive for
n large. A natural idea is to consider a well chosen subset of all possible hyper-
rectangles when taking the supremum; we refer the reader to Walther [50] where
such a suitably rich collection (of the order of O(n log n)) of hyperrectangles is
proposed and analyzed. We believe that such an approximation of the multiscale
statistic will still preserve its optimality properties (up to logarithmic factors in
the rates).

4. Simulation studies

In this section we demonstrate the performance of the multiscale testing pro-
cedure described in Section 3 and compare it with other competing methods
through simulation studies. For computational tractability, we choose d = 2 and
replace the continuous white noise model (1.1) with its discrete analogue (3.3).
For the simulations we have used the kernel function ψ = I[−1,1]d . In Table 1 we
give the empirical 0.95-quantile of the multiscale statistic Tn(W,ψ) (see (3.4))
for different values of n = m2; the computation of the empirical quantiles were
based on 3000 replications. Observe that the empirical quantiles seem to stabilize
as m increases beyond 100. Figure 1 shows the empirical distribution function
estimates of Tn(W,ψ) for different values of n, based on 3000 replications.

In Tables 2 and 3 we compare the powers of the multiscale test, a test based
on a scan-statistic, and the ALR test (see Chan and Walther [8] for the details).
Formally, we consider testing (1.12) against alternatives of the form H1 : f =
μnIBn , for both small and large scale signals (Bn). We briefly describe the
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Table 2

Power of the scan, the multiscale and the ALR tests for m = 40 (i.e., n = 402) as μ
changes.

k = 1
μ Scan Multiscale ALR
3.5 0.23 0.08 0.07
4.0 0.34 0.13 0.08
4.5 0.50 0.18 0.08
5.0 0.71 0.30 0.08
5.5 0.86 0.53 0.09

k = 4
μ Scan Multiscale ALR

1.00 0.22 0.14 0.11
1.20 0.43 0.31 0.30
1.35 0.60 0.48 0.44
1.50 0.74 0.55 0.52
1.65 0.86 0.72 0.61

k = 18
μ Scan Multiscale ALR

0.20 0.15 0.21 0.19
0.30 0.49 0.68 0.67
0.35 0.65 0.80 0.82
0.40 0.80 0.90 0.89

k = 40
μ Scan Multiscale ALR

0.040 0.15 0.32 0.31
0.043 0.30 0.56 0.54
0.047 0.45 0.78 0.78
0.050 0.68 0.94 0.95

above two competing procedures. For m ≥ 1, let B be the set of all axis-aligned
rectangles on [0, 1]2 with corner points in the following grid:

B :=

{( i1
m
,
i2
m

]
×
( j1
m
,
j2
m

]
: 0 ≤ i1 < i2 ≤ m, 0 ≤ j1 < j2 ≤ m

}
.

For every B ∈ B define

Ψ̂(B) :=
1√
|B|

∑
(i/m,j/m)∈B

Y

(
i

m
,
j

m

)
.

Note that Ψ̂(·) is the discrete analogue of the normalized kernel estimator as
defined in (1.6). The scan test statistic (see Glaz et al. [17, Chapter 5]) for this
problem is defined as

Mn := max
B∈B

|Ψ̂(B)|.

The ALR test statistic (see Chan [7]) is defined as

An :=
1(

m+1
2

)2 ∑
B∈B

exp(Ψ̂(B)2/2).

The scan test (ALR test) rejects the null hypothesis if the observed Mn (An)
exceeds the 0.95-quantile for Mn (An) under the null hypothesis. In Tables 2
and 3 we compare the performances of the three procedures where μ denotes the
signal strength, and k/m denotes the length of each side of the square signal Bn

(i.e., Bn is a square of size k/m× k/m). The power of the tests were calculated
using 1000 replications. In each replication the location of the square signal Bn

was chosen randomly.
We make the following observations. For both the cases (m = 40 and 100)

when the signal is at the smallest scale, e.g., k = 1, the scan statistic outper-
forms everything else. However, when m = 100, even in relatively small scales,
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Fig 1. The empirical distribution functions of the multiscale statistic for different values of
n.

e.g., k = 8 (i.e., about 0.6% of the observations contain the signal) our multi-
scale test starts to outperform the scan test. Note that in this setting (small
scales) the ALR performs the worst. As the spatial extent of the signal increases,
our multiscale procedure and the ALR procedure starts performing favorably
whereas the performance of the scan statistics deteriorates. Thus, the simulation
experiments corroborate our theoretical findings.

5. Discussion

In this paper we have proposed a multidimensional multiscale statistic in the
continuous white noise model and used this statistic to construct asymptotically
minimax tests for testing f = 0 against (i) Hölder classes of functions; and
(ii) alternatives of the form f = μnIBn , where Bn is an unknown axis-aligned
hyperrectangle in [0, 1]d and μn ∈ R is unknown. However, there are many open
questions in this area. We briefly delineate a few of them below and in the
process describe some important papers in related areas of research.

We have shown that for the Hölder class Hβ,L, if the smoothness parameter
β is known, we can construct an asymptotically minimax test. However, if β
is unknown (and β ≤ 1) we can only construct a rate optimal test. A natural
question that arises is whether a test can be constructed that is asymptotically
minimax (for the Hölder class of functions with the supremum norm) without the
knowledge of the smoothness parameter β (and L > 0); see Ji and Nussbaum
[28, Section 1.3]. Another interesting question would be to try to extend our
results to other smoothness classes like Sobolev/Besov classes; in Ingster and
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Table 3

Power of the scan, the multiscale and the ALR tests for m = 100 (i.e., n = 1002) as μ
changes.

k = 1
μ Scan Multiscale ALR
4.5 0.34 0.11 0.06
5.0 0.52 0.28 0.06
5.5 0.75 0.43 0.09
6.0 0.95 0.61 0.13

k = 8
μ Scan Multiscale ALR

0.25 0.08 0.17 0.07
0.30 0.35 0.46 0.13
0.35 0.60 0.72 0.22
0.40 0.82 0.96 0.50

k = 30
μ Scan Multiscale ALR

0.040 0.07 0.22 0.22
0.050 0.17 0.42 0.45
0.055 0.42 0.74 0.75
0.060 0.58 0.93 0.96

k = 100
μ Scan Multiscale ALR

0.014 0.08 0.42 0.42
0.018 0.17 0.62 0.63
0.020 0.22 0.84 0.86
0.025 0.45 0.96 0.95

Stepanova [22] the authors gave the minimax rate of testing for Sobolov class,
but no test was proposed that achieves the exact separation constant.

Note that we have shown that our multiscale test is asymptotically mini-
max for detecting the presence of a signal on an axis-aligned hyperrectangle in
[0, 1]d. One obvious extension of our work would be to correctly identify the
hyperrectangle on which the signal is present. Further, we could go beyond hy-
perrectangles and try to identify signals that are present on some other geometric
structures A ⊂ [0, 1]d (i.e., f = μIA where A is not necessarily an axis-aligned
hyperrectangle). Examples of such geometric structures could be: (i) A is an
hyperrectangle which is not necessarily axis-aligned, (ii) A is a d-dimensional

ellipsoid, (iii) A =
⋃k

i=1 Ai where each Ai ⊆ [0, 1]d is an (axis-aligned) hy-
perrectangle, etc. Frick et al. [15] and the references therein investigated the
problem of finding change points in d = 1 which can be thought of as detection
of multiple intervals. In Arias-Castro et al. [3] the authors use the scan statistic
to detect regions in R

d where the underlying function is non-zero. Arias-Castro
et al. [2] considers the problem of finding a cluster of signals (not necessarily
rectangular) in a network using the scan statistic. Although the method they
propose achieves the optimal boundary for detection, it requires the knowledge
of whether the signal shape is “thick” or “thin”. For hyperrectangles this refers
to whether or not the minimum side length is of order logn/n or not. We be-
lieve that the multiscale statistic, with proper modifications, can be used to find
asymptotically minimax/rate optimal tests in such problems.

In our white noise model (1.1) we assume that the distribution of the re-
sponse variables is (homogeneous and independent) Gaussian. Similar questions
about signal detection can be asked when the response is non-Gaussian; see
e.g., Walther [50], Rivera and Walther [42], Chan and Walther [9], König et al.
[32], etc. In Pein et al. [37] the authors looked at the problem of detecting change
points under heterogeneous variance of the response variable (when d = 1). Ro-
hde [43] looked at this problem where the error distribution is known to be
symmetric (when d = 1). A multiscale approach could be used to tackle such
problems as well. Here we note that Walther [50] studied a similar problem
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where the response variable is binary when d > 1.
Several interesting applications of the multiscale approach exist when d = 1

(following the seminal paper of Dümbgen and Spokoiny [11]): In Dümbgen and
Walther [12] the authors propose a multiscale test statistic to make inference
about a probability density on the real line given i.i.d. observations; Schmidt-
Hieber et al. [44] use multiscale methods to make inference in a deconvolution
problem; Rivera and Walther [42] use multiscale methods to detect a jump
in the intensity of a Poisson process; Eckle et al. [13] and Eckle et al. [14]
use multiscale approaches to make inferences about multivariate densities in
deconvolution problems, etc. We believe that our extension beyond d = 1 will
also lead to several interesting multidimensional applications.

6. Proofs of our main result

6.1. Some useful concepts

In this subsection we formally define some technical concepts that we use in this
paper.

Definition 6.1 (Brownian sheet). By a d-dimensional Brownian sheet we mean
a mean-zero Gaussian process {W (t) : t ∈ [0, 1]d} with covariance

Cov(W (t1, . . . , td),W (s1, . . . , sd)) = Πd
i=1 min(ti, si),

for (t1, . . . , td), (s1, . . . , sd) ∈ [0, 1]d. The Brownian sheet is the d-dimensional
counterpart of the standard Brownian motion; see e.g., Wong and Zakai [52],
Khoshnevisan [31, Chapter 5] for detailed properties of the Brownian sheet. See
Appendix A.1.1 for some important properties of the Brownian sheet used in our
proofs.

Definition 6.2. Fix β > 0 and L > 0. Let �β� be the largest integer which is

strictly less than β and for k = (k1, k2, . . . , kd) ∈ N
d set ‖k‖1 :=

∑d
i=1 ki. The

Hölder class Hβ,L on [−1, 1]d is the set of all functions f : [−1, 1]d → R having
all partial derivatives of order �β� on [−1, 1]d such that

∑
0≤‖k‖1≤�β

sup
x∈[0,1]d

∣∣∣∣∣ ∂‖k‖1f(x)

∂xk1
1 . . . ∂xkd

d

∣∣∣∣∣ ≤ L

and

∑
‖k‖1=�β

∣∣∣∣∣ ∂‖k‖1f(y)

∂xk1
1 . . . ∂xkd

d

− ∂‖k‖1f(z)

∂xk1
1 . . . ∂xkd

d

∣∣∣∣∣ ≤ L ‖y − z‖β−�β ∀ y, z ∈ [−1, 1]d.

See Appendix A.1.2 for an important property of Hölder classes of functions
useful in our proofs.
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6.2. Proof of Theorem 2.2

In the following proofs K would be used to denote a generic constant whose
value would change from line to line.

For every v > 0, we define

Γ(X, v) := sup
a,b∈F ,ρ(a,b)≤v

|X(a)−X(b)|.

For simplicity we divide the proof in three steps.

Step 1: In this step we will prove that

P
(
Γ(X, v) > η

)
≤ K exp

(
− η2

Kv2 log(e/v)

)
∀ η > 0 and v ∈ (0, 1], (6.1)

where K > 0 is a positive constant not depending on v. We will prove the
above result by introducing the notion of Orlicz norm. Let λ : R+ → R be a
nondecreasing convex function with λ(0) = 0. For any random variable X the
Orlicz norm ‖X‖λ is defined as

‖X‖λ = inf

{
C > 0 : Eλ

(
|X|
C

)
≤ 1

}
.

The Orlicz norm is of interest to us as any Orlicz norm easily yields a bound on
the tail probability of a random variable i.e., P(|X| > x) ≤ [λ(x/ ‖X‖λ)]−1, for
all x ∈ R (see van der Vaart and Wellner [49, Page 96] for a simple proof). Let
us define λ(x) := exp(x2)− 1, x > 0. Hence,

P
(
|X| > x

)
≤ min

{
1,

1

exp(x2/ ‖X‖2λ)− 1

}
≤ 2× exp(−x2/ ‖X‖2λ). (6.2)

Hence, it is enough to bound the Orlicz norm of Γ(X, v). A bound on the Orlicz
norm of Γ(X, v) can be shown by appealing to van der Vaart and Wellner [49,
Theorem 2.2.4] which we state below.

Lemma 6.1. Let λ : R+ → R be a convex, nondecreasing, non-zero function

with λ(0) = 0 and for some constant c > 0, lim supx,y→∞
λ(x)λ(y)
λ(cxy) < ∞. Let

{Xa, a ∈ F} be a separable stochastic process with

‖Xa −Xb‖λ ≤ Cρ(a, b) for all a, b ∈ F

for some pseudometric ρ on F and constant C. Then for any ζ, v > 0,

‖Γ(X, v)‖λ ≤ K

[∫ ζ

0

λ−1(N(ε,F ))dε+ vλ−1(N2(ζ,F ))

]

for some constant K depending only on λ and C.



5224 P. Datta and B. Sen

We apply the above lemma with λ(x) := exp(x2)− 1 (i.e., λ−1(y)
=
√

log(1 + y)). Note that condition (b) of Theorem 2.2 directly implies that
‖Xa −Xb‖λ ≤ Cρ(a, b) by an application of van der Vaart and Wellner [49,
Lemma 2.2.1].

By taking δ = 1, ε = u1/2, condition (c) of Theorem 2.2 yields N(ε,F ) ≤
Aε−2B. Thus, Lemma 6.1 gives (with ζ = v)

‖Γ(X, v)‖λ ≤ K

[∫ v

0

√
log(1 +Aε−2B)dε+ v

√
log(1 +A2v−4B)

]
.

The expression on the right side of the above display can be easily shown to be
less than or equal to Kv

√
log(e/v) for some constant K. This result along with

an application of (6.2) with Γ(X, v) instead of X imply

P
(
Γ(X, v) > η

)
≤ K exp

(
− η2

Kv2 log(e/v)

)
for all η > 0, 0 < v ≤ 1,

for some constant K.

Step 2: Let us define F (δ) := {a ∈ F : δ/2 < σ2(a) ≤ δ}, for δ ∈ (0, 1], and

Π(δ) := P

(
X2(a)

σ2(a)
> 2V log(

1

δ
) + S log log(

ee

δ
) for some a ∈ F (δ)

)
(6.3)

for S ≥ 4p+ 1. In this step we will prove that

Π(δ) ≤ K exp((K − S/K) log log(ee/δ))

for some constant K.
Fix u < 1/2. Let F (δ, u) be a

√
uδ-packing set of F (δ). By our assump-

tion the cardinality of F (δ, u) is less than or equal to Au−Bδ−V (log(e/δ))p.
Fix a ∈ F (δ). From the definition of F (δ, u) we can associate â ∈ F (δ, u)
(corresponding to a ∈ F (δ)) such that ρ2(a, â) ≤ uδ. Using assumption (a) of
Theorem 2.2 we have

σ2(a) ≥ σ2(â)− uδ ≥ σ2(â)(1− 2u) (6.4)

where the last inequality follows from the fact that â ∈ F (δ) (thus σ2(â) > δ/2).
We want to study the event

X2(a)

σ2(a)
> r (6.5)

for some r > 0. Obviously, for any λ ∈ (0, 1), either (i) |X(a)−X(â)|2 > λ2X2(a)
or (ii) |X(a) − X(â)|2 ≤ λ2X2(a) (which, in particular implies |X(â)| ≥ (1 −
λ)|X(a)|). The above two cases reduce to:

Γ(X, (uδ)1/2)2 ≥ |X(a)−X(â)|2 > λ2X2(a) ≥ λ2rσ2(a) ≥ λ2r
δ

2
(6.6)
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(here the first inequality follows from the definition of Γ(X, (uδ)1/2) and the
third inequality follows from condition (6.5)), and

X2(â) ≥ (1− λ)2X2(a) ≥ (1− λ)2rσ2(a) ≥ (1− λ)2r(1− 2u)σ2(â) (6.7)

(here the second inequality follows from (6.5) and last inequality follows from
(6.4)). Therefore, for any r > 0,

Πr(δ) := P

(
X2(a)

σ2(a)
> r for some a ∈ F (δ)

)

≤ P

(
Γ(X, (uδ)1/2)2 > λ2δr/2

)
+
∑

â∈F(δ,u)

P
(
X2(â)/σ2(â) > (1− λ)2r(1− 2u)

)

where we have used the fact that if X2(a)/σ2(a) > r for some a ∈ F , then
either (6.6) holds or (6.7) is satisfied for some â ∈ F (δ, u). The first term on
the right side of the above display can be bounded by appealing to (6.1) with
η =

√
λ2δr/2 and v =

√
uδ and the second term can be bounded by using

conditions (a) and (c) of Theorem 2.2. Hence we get

Πr(δ) ≤ K exp

(
− λ2δr/2

Kuδ log(e/
√
uδ)

)

+Au−Bδ−V
(
log(

e

δ
)
)p

exp

(
− (1− λ)2r(1− 2u)

2

)

≤ K
[
exp

(
− λ2r

Ku log(e/(uδ))

)

+ exp
(
B log(1/u) + V log(1/δ) + p log log(e/δ) + ur − (1/2− λ)r

)]
.

(6.8)

Fix S ≥ 8p+ 1 and set

r := 2V log(1/δ) + S log log
(ee
δ

)
and

λ :=
1

r

(
(S/4) log log(ee/δ)− p log log(e/δ)

)
.

Observe that r > 1 and 0 < λ < 1/4. Moreover, we have

(1/2− λ)r = V log(1/δ) + p log log(e/δ) + (S/4) log log(ee/δ).

Putting these values in (6.8) gives us

Π(δ) ≡ Πr(δ) ≤ K

[
exp

(
− (S − 4p)2(log log(ee/δ))2

Kur log(e/(uδ))

)
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+exp
(
B log(1/u) + ur − (S/4) log log(ee/δ)

)]
(6.9)

where we have used the fact that λ2r2 = ((S/4) log log(ee/δ)−p log log(e/δ))2 ≥
(S − 4p)2(log log(ee/δ))2/16. Now, let us pick

u :=
S

8r log(e/δ)
<

1

2
.

Then we have 1
u ≤ K log2(e/δ) for some constant K. Let us consider the two

terms on the right side of (6.9) separately. For the first term, using ur =
S[log(e/δ)]−1/8, and that 1

u ≤ K log2(e/δ), we have

(S − 4p)2(log log(ee/δ))2

Kur log(e/(uδ))
=

8(S − 8p+ 16p2/S)(log log(ee/δ))2 log(e/δ)

K
(
log(e/δ) + log(u−1)

)
≥ (S − 8p)

( (log log(ee/δ))2 log(e/δ)

K
(
log(e/δ) + logK + 2 log log(e/δ)

))
≥ (1/K′)(S − 8p)(log log(ee/δ)).

Here the last inequality follows from the following fact: As

τ(δ) :=
(log log(ee/δ)) log(e/δ)

K
(
log(e/δ) + logK + 2 log log(e/δ)

) → ∞, as δ → 0,

we can find a lower bound K ′ > 0 such that τ(δ) ≥ 1/K ′ for all δ ∈ (0, 1].
For the second term on the right side of (6.9) we have

B log(1/u) + ur − (S/4) log log(ee/δ)

≤ B logK + 2B log log(e/δ) + S/8− (S/4) log log(ee/δ)

≤ B logK + 2B log log(e/δ)− (S/8) log log(ee/δ)

≤ B logK + (2B − S/8) log log(ee/δ).

Thus, both the terms on the right side of (6.9) have the form K exp[(C −
S/K ′) log log(ee/δ)] for some constants K,C,K ′ > 0. Putting these values
in (6.9) gives us, for suitable constant K > 0, we get

Π(δ) ≤ K exp ((K − S/K) log log(ee/δ)) .

Step 3: In this step we will prove that as S → ∞

P

(
X2(a)

σ2(a)
> 2V log(1/σ2(a)) + S log log

( ee

σ2(a)

)
for some a ∈ F

)
→ 0.

First let us define

Π̃(δ) :=P

(
X2(a)

σ2(a)
> 2V log(1/σ2(a)) + S log log

( ee

σ2(a)

)
for some a ∈ F (δ)

)
.
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Comparing with (6.3) we can see that for any δ ∈ (0, 1],

Π̃(δ) ≤ Π(δ)

as: If a ∈ F (δ) then σ2(a) ≤ δ and x �−→ 2V log(1/x) + S log log(ee/x) is a
decreasing function of x. Hence, we have

Π̃(δ) ≤ K exp ((K − S/K) log log(ee/δ)) .

Therefore, for S > 0 such that S/K > K + 1 (as F =
⋃

l≥0 F (2−l)),

P

(
X2(a)

σ2(a)
> 2V log(1/σ2(a)) + S log log

( ee

σ2(a)

)
for some a ∈ F

)

≤
∞∑
l=0

Π̃(2−l)

≤ K
∞∑
l=0

exp((K − S/K) log log(ee2l))

= K

∞∑
l=0

(e+ l log 2)−(S/K−K)

≤ K

∞∑
j=2

j−(S/K−K).

Note that the last term can be further upper bounded as

K

∞∑
j=2

j−(S/K−K) ≤ K

∫ ∞

2

x−(S/K−K)dx ≤ K 2−(S/K−K)+1

(S/K −K)− 1
≤ ξ1 exp(−S/ξ2)

for some constants ξ1 and ξ2 depending only on the constantsK,L,M,A,B, p, V .

This proves that S(X) := supa∈F
X2(a)/σ2(a)−2V log(1/σ2(a))

log log(ee/σ2(a)) is a subexponential

random variable.

6.3. Proof of Lemma 2.1

First let us define the following sets:

Fδ,(l1,...,ld) :=
{
(t, h) ∈ F : δ/2 < σ2(t, h) ≤ δ, 2li−1 <

hi

δ1/d
≤ 2li ,

∀ i = 1, . . . , d
}
for some (l1, . . . , ld) ∈ Z

d,

F (δ) :=
{
(t, h) ∈ F : δ/2 < σ2(t, h) ≤ δ

}
.

We note that Fδ,(l1,...,ld) is empty unless we have

(i) li ≤ (1/d) log2(1/δ) for all i = 1, . . . , d;
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(this restriction is a consequence of the fact that hi ≤ 1/2) and

(ii) − (d+ 1) <

d∑
i=1

li ≤ 0

(this restriction is a consequence of the fact that δ/2 < σ2(t, h) ≤ δ).

Step 1: First, we will show that for any (l1, . . . , ld) ∈ Z
d, and δ, u ∈ (0, 1],

N
(
(uδ)1/2,Fδ,(l1,...,ld)

)
≤ Ku−2dδ−1. (6.10)

Let F ′ be a subset of Fδ,(l1,...,ld) such that for any two elements (t, h), (t′, h′) ∈
F ′ we have

ρ2((t, h), (t′, h′)) > uδ. (6.11)

Our aim is to show that
|F ′| ≤ Ku−2dδ−1,

for some constant K independent of (l1, . . . , ld), u and δ. If Fδ,(l1,...,ld) is empty
then the assertion is trivial. So assume that Fδ,(l1,...,ld) is non-empty which
imposes bounds on the li’s as shown above.

Let us define the following partition of [0, 1]d into disjoint hyperrectangles:

R :=
{
M(i1,...,id) ∩ [0, 1]d : M(i1,...,id) := Πd

k=1

(
(ik − 1)

uδ
1
d 2lk

c
, ik

uδ
1
d 2lk

c

]
,

1 ≤ ik ≤ �cu−1δ−
1
d 2−lk�

}
where we take c := d4d. We would like to point out that in the above definition
when ik = 1, for any k = 1, . . . , d, by

(
(ik − 1)c−1uδ1/d2lk , ikc

−1uδ1/d2lk
]
we

mean the closed interval
[
0, c−1uδ1/d2lk

]
. Observe that all the sets in R are

disjoint and moreover
⋃

M∈R M = [0, 1]d. Observe that

2li−1δ1/d < hi ≤ 1/2 ⇒ 2liδ1/d < 1 ⇒ cu−1δ−1/d2−li > 1

⇒ �cu−1δ−1/d2−li� ≤ 2cu−1δ−1/d2−li .

Hence we can easily see that

|R| = Πd
i=1�cu−1δ−1/d2−li� ≤ 2dcdu−dδ−12−

∑d
i=1 li ≤ 22d+1cdu−dδ−1.

Here the last inequality follows from the fact that
∑d

i=1 li ≥ −(d + 1). Let us
define the following set:

R2 :=
{
(M i

∼
,M i

∼
′) ∈ R×R : ∃ (t, h) ∈ F ′ s.t. t− h ∈ M i

∼
and t+ h ∈ M i

∼
′

}
.

Note that if (t, h) ∈ F ′ then hk ≤ 2lkδ1/d for all k = 1, . . . , d. This implies that
if (M i

∼
,M i

∼
′) ∈ R2, where i

∼
= (i1, . . . , id) and i

∼
′ = (i′1, . . . , i

′
d), then

(i′k − ik) ≤ (1 + 2cu−1), for all k = 1, . . . , d, (6.12)
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as (i) (i′k − 1)uδ1/d2lkc−1 ≤ tk + hk, and (ii) ikuδ
1
d 2lkc−1 ≥ tk − hk. Thus for

each hyperrectangle M i
∼
∈ R the number of hyperrectangles M i

∼
′ ∈ R such that

(M i
∼
,M i

∼
′) ∈ R2 is less than or equal to (1+2cu−1)d ≤ 4dcdu−d. Hence we have

|R2| ≤ |R| × 4dcdu−d ≤ 24d+1c2du−2dδ−1 ≤ d2d24d
2+4d+1u−2dδ−1.

Thus, our proof will be complete if we can show that |R2| = |F ′|. From the
definition of R2 and the fact that elements in R are disjoint it is easy to observe
that |R2| ≤ |F ′|.

Therefore, the only thing left to show is that |F ′| ≤ |R2|. Let us assume the
contrary, i.e., |R2| < |F ′|. This implies that there exist two elements (t, h) and
(t′, h′) ∈ F ′ and (M i

∼
,M i

∼
′) ∈ R2 such that both t−h and t′−h′ belong to M i

∼

and, also, t+ h and t′ + h′ belong to M i
∼

′ . Let us first define the following two

hyperrectangles:

B1 := Πd
k=1(ik−1, i′k]×c−1uδ1/d2lk and B2 := Πd

k=1(ik, i
′
k−1]×c−1uδ1/d2lk .

Our goal is to show that

B∞(t, h)�B∞(t′, h′) ⊆ B1 \B2 (6.13)

which is implied by the following two assertions:

(1) B∞(t, h) ∪B∞(t′, h′) ⊆ B1 and
(2) B2 ⊆ B∞(t, h) ∩B∞(t′, h′).

See Figure 2 for a visual illustration of (6.13) when d = 2. Now, as t− h ∈ M i
∼
,

this implies tk − hk ≥ (ik − 1)c−1uδ1/d2lk , for all k = 1, . . . , d. Also t+ h ∈ M i
∼

′

implies that tk +hk ≤ i′kc
−1uδ1/d2lk , for all k = 1, . . . , d. Therefore, B∞(t, h) =

Πd
i=1(ti − hi, ti + hi) ⊆ B1. A similar argument shows that B∞(t′, h′) ⊆ B1.

Hence assertion (1) above holds.

Now as t − h ∈ M i
∼
, we have tk − hk ≤ ikc

−1uδ1/d2lk , for all k = 1, . . . , d.

Also t+h ∈ M i
∼

′ implies that tk +hk ≥ (i′k −1)c−1uδ1/d2lk , for all k = 1, . . . , d.

Hence we have B2 ⊆ B∞(t, h). A similar argument shows that B2 ⊆ B∞(t′, h′).
Therefore, assertion (2) is also satisfied. Now let us define the following set

I :=
{
j
∼
= (j1, . . . , jd) ∈ N

d : jk ∈ (ik − 1, i′k], for all k = 1, . . . , d,

∃ l ∈ {1, . . . , d} such that jl = il or i
′
l

}
.

Clearly, using (6.12),
|I| ≤ 2d(2 + 2cu−1)d−1.

Also see that w = (w1, . . . , wd) ∈ B1 \B2 if and only if

(1) for every k = 1, . . . , d, we have wk ∈
(
ik −1, i′k

]
× c−1uδ1/d2lk (this is true

as w ∈ B1),
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Fig 2. The figure shows how the symmetric difference of the hyperrectangles B∞(t, h) (denoted
by the green border) and B∞(t′, h′) (denoted by the blue border) is contained in the set B1\B2

(denoted by the shaded region).

(2) there exists l ∈ {1, 2, . . . , d} such that either wl ∈
(
il − 1, il

]
× c−1uδ1/d2ll

or wl ∈
(
i′l − 1, i′l

]
× c−1uδ1/d2ll (this is true as w �∈ B2 implies that there

exist l such that wl �∈ (il, i
′
l − 1] × c−1uδ1/d2ll and w ∈ B1 implies that

wl ∈ (il − 1, i′l]× c−1uδ1/d2ll).

Therefore, we see that

B1 \B2 =
⋃
j
∼
∈I

Mj
∼
.

Also, note that, |Mj
∼
| ≤ udδc−d2

∑d
i=1 li ≤ udδc−d for all j

∼
. Therefore, us-

ing (6.13) and the fact that c = d4d, we easily see that

ρ2((t, h), (t′, h′)) ≤ |B1 \B2| ≤ 2d(2+2cu−1)d−1u
dδ

cd
≤ 2dd(1+ c−1)d−1uδ

c
< uδ

which contradicts (6.11). This proves that two elements of F ′ cannot correspond
to the same pair of hyperrectangles (M i

∼
,M i

∼
′) ∈ R2. Hence we have proved

(6.10).

Step 2: In this part of the proof we show that

N
(
(uδ)1/2,F (δ)

)
≤ Ku−2dδ−1(log(e/δ))d−1. (6.14)

Let us define the set

S :=
{
(l1, . . . , ld) ∈ Z

d : −(d+ 1) <

d∑
k=1

lk ≤ 0 and lk ≤ 1

d
log2(1/δ) ∀ k = 1, . . . , d

}
.
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Now it can be easily seen that l := (l1, . . . , ld) ∈ S implies lk ≥ −(d+1)− (d−
1)(1/d) log2(1/δ), for all k = 1, . . . , d. This shows that each lk can only take at
most (d + 2) + log2(1/δ) ≤ (d + 2) + log(1/δ) log2(e) ≤ d + 2(log(e/δ)) many
values. This shows that

|S| ≤ (d+ 1)(d+ 2 log(e/δ))d−1 ≤ (d+ 2)d(log(e/δ))d−1.

Note that the power of (d+ 2 log(e/δ)) in the above display is d− 1 because if
we fix the values of l1, l2, . . . , ld−1 then ld can only take at most (d + 1) values

such that (l1, l2, . . . ld) ∈ S (as
∑d

k=1 lk can take at most d+ 1 distinct values).
Also note that

F (δ) ⊆
⋃
l∈S

Fδ,l.

The above representation of F (δ) along with the trivial fact that N(ε,
⋃n

i=1 Ai)
≤
∑n

i=1 N(ε, Ai) gives us (6.14).

Step 3: In this step we will complete the proof of Lemma 2.1. We want
control the

√
uδ-packing number of the set {(t, h) ∈ F : σ2(t, h) ≤ δ} which

can be decomposed in the following way: for u ∈ (0, 1],

{(t, h) ∈ F : σ2(t, h) ≤ δ}=

⎛
⎝�1+log2(1/u)⋃

l=0

F (δ2−l)

⎞
⎠∪{a ∈ F : σ2(a) ≤ uδ/2}.

Now we can control the
√
uδ-packing number of each of the above sets. First

observe that N((uδ)1/2, {(t, h) ∈ F : σ2(t, h) ≤ uδ/2}) = 1. Also, for any
u ∈ (0, 2) and δ ∈ (0, 1] we have

N((uδ)1/2,F (δ)) ≤ N((uδ/2)1/2,F (δ)) ≤ Ku−2dδ−1(log(e/δ))d−1 (6.15)

for some constant K. Putting δ ← δ/2l and u ← 2lu for 0 ≤ l ≤ �1+ log2(1/u)�
in (6.15) we get

N((uδ)1/2,F (δ2−l)) ≤ K2−(2d−1)lu−2dδ−1(log(e/δ))d−1.

Now from the trivial fact that N(ε,
⋃m

i=1 Ai) ≤
∑m

i=1 N(ε, Ai) we get

N
(√

uδ, {(t, h) ∈ F : σ2(t, h) ≤ δ}
)

≤
�1+log2(1/u)∑

l=0

N
(√

uδ,F (δ2−l)
)
+N
(√

uδ, {(t, h) ∈ F : σ2(t, h) ≤ uδ/2}
)

≤ 1 +Ku−2dδ−1(log(e/δ))d−1
∞∑
l=0

2−(2d−1)l

≤ 1 + 2Ku−2dδ−1(log(e/δ))d−1 ≤ (2K + 1)u−2dδ−1(log(e/δ))d−1,

which proves Lemma 2.1.
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Appendix A: Proofs

In this Appendix we: (i) Elaborate on some parts of the main text that were
deferred so as not to impede the flow of the paper, and (ii) prove some of the
results that were stated in the main paper.

A.1. Some useful concepts

In this subsection we discuss some important concepts and properties that are
used in the proofs.

A.1.1. Properties of Brownian Sheet

In the following we give some useful properties of the Brownian sheet W (·).

• If g ∈ L2([0, 1]
d) then

∫
gdW :=

∫
[0,1]d

g(t)dW (t) ∼ N(0, ‖g‖2).
• If g1, g2 ∈ L2([0, 1]

d) then Cov
(∫

g1dW,
∫
g2dW

)
=
∫
[0,1]d

g1(t)g2(t)dt.

• Cameron-Martin-Girsanov Theorem for Brownian sheet: Let us state the
simplest version of the Cameron-Martin-Girsanov Theorem that we will
use in this paper (see Protter [40, Chapter 3] for detailed discussion about
change of measure and the result).

Assume f ∈ L1([0, 1]
d) and let {W (t) : t ∈ [0, 1]d} be a standard Brownian

sheet. Let Ω be the set of all real-valued continuous functions defined on
[0, 1]d. Let P denote the measure on Ω induced by the Brownian sheet
{W (t) : t ∈ [0, 1]d} and let Q denote the measure induced by {Y (t) : t ∈
[0, 1]d} where Y (t) is defined as in (1.1). Then Q is absolutely continuous
with respect to P and the Radon-Nikodym derivative is given by

dQ

dP
(Y ) = exp

(√
n

∫
fdW − n

2
‖f‖2
)
.

This, in turn, implies that for any measurable function φ we have

EQ (φ(Y )) = EP

(
φ(Y )

dQ

dP
(Y )

)
.

A.1.2. Properties of Hölder functions

One of the most important properties of Hβ,L that we will use is the following:
If f ∈ Hβ,1 then, for any h = (h1, . . . , hd) > 0 and t ∈ Ah,

g(x1, . . . , xd) := Lmin(h)βf

(
x1 − t1

h1
, . . . ,

xd − td
hd

)
∈ Hβ,L

where min(h) := mini=1,...,d hi. The proof of the above result follows directly
from the definition of Hölder functions.
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A.1.3. Definition and Properties of Hardy-Krause variation

The notion of bounded variation for a function f : Rd → R, where d ≥ 2, is
more involved than when d = 1. In fact there is no unique notion of bounded
variation for a function when d ≥ 2. Below we describe the notion of Hardy
and Krause variation as given in Aistleitner and Dick [1], which suffices for our
purpose.

Definition A.1 (Hardy-Krause variation). Let f : [−1, 1]d → R be a measurable
function. Let a = (a1, . . . , ad) and b = (b1, . . . , bd) be elements of [−1, 1]d such
that a < b (coordinate-wise). We introduce the d-dimensional difference operator
Δ(d) which assigns to the axis-aligned box A := [a, b] a d-dimensional quasi-
volume

Δ(d)(f ;A) =

1∑
j1=0

· · ·
1∑

jd=0

(−1)j1+···+jdf(b1 + j1(a1 − b1), . . . , bd + jd(ad − bd)).

Let m1, . . . ,md ∈ N. For s = 1, . . . , d, let −1 =: x
(s)
0 < x

(s)
1 < · · · < x

(s)
ms := 1 be

a partition of [−1, 1] and let P be a partition of [−1, 1]d which is given by

P :=
{
[x

(1)
l1

, x
(1)
l1+1]× · · · × [x

(d)
ld

, x
(d)
ld+1] : ls = 0, 1, . . . ,ms − 1, for s = 1, . . . , d

}
.

Then the variation of f on [−1, 1]d in the sense of Vitali is given by

V (d)(f ; [−1, 1]d) := sup
P

∑
A∈P

|Δ(d)(f ;A)|

where the supremum is extended over all partitions of [−1, 1]d into axis-parallel
boxes generated by d one-dimensional partitions of [−1, 1]. For 1 ≤ s ≤ d and
1 ≤ i1 < . . . < is ≤ d, let V (s)(f ; i1, . . . , is; [−1, 1]d) denote the s-dimensional
variation in the sense of Vitali of the restriction of f to the face

U
(i1,...,is)
d =

{
(x1, . . . , xd) ∈ [−1, 1]d : xj = 1 for all j �= i1, . . . , is

}
of [−1, 1]d. Then the variation of f on [−1, 1]d in the sense of Hardy and Krause
anchored at 1, abbreviated by HK-variation, is given by

TV (f) :=

d∑
i=1

∑
1≤s≤d

V (s)(f ; i1, . . . , is; [−1, 1]d).

We say a function f has bounded HK-variation if TV (f) < ∞.

The main property of a bounded HK-variation function that we will need in
this paper is stated below.

Remark A.1. If f is a right continuous function on [−1, 1]d which has bounded
HK-variation then there exists a unique signed Borel measure ν on [−1, 1]d for
which

f(x) = ν([−1, x]), x ∈ [−1, 1]d;
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A.2. Proof of Theorem 2.1

We use Theorem 2.2 to prove Theorem 2.1. Let us recall the definitions of F , σ
and ρ as introduced just before Lemma 2.1 in the main article. Without loss of
generality we assume that ‖ψ‖ = 1. For h ∈ (0, 1/2]d, let us define the stochastic
process

X(t, h) := 2d/2(h1h2 . . . hd)
1/2Ψ̂(t, h) = 2d/2

∫
ψt,h(x)dW (x), t ∈ Ah,

where W (·) is the standard Brownian sheet on [0, 1]d. This defines a centered
Gaussian process with Var

(
X(t, h)

)
= σ2(t, h). Also by a standard calculation

on the variance we have Var
(
X(t, h) − X(t′, h′)

)
≤ 2dTV 2(ψ)ρ2((t, h), (t′, h′))

when the function ψ has finite HK-variation. Note that when ψ satisfy aver-
age Hölder condition with parameters γ > 1/2 and L we have Var

(
X(t, h) −

X(t′, h′)
)
≤ 2ddLρ2((t, h), (t′, h′)). As X(t, h) and X(t, h)−X(t′, h′) have nor-

mal distributions this shows that conditions (a) and (b) of Theorem 2.2 are
satisfied. Condition (c) is also satisfied because of Lemma 2.1. Thus, by an
application of Theorem 2.2 we have

P

(
sup

0<h≤1/2

sup
t∈Ah

Ψ̂2(t, h)− 2 log(1/2dh1h2...hd)

log log(ee/2dh1h2...hd)
< S

)
≥ 1− ξ1 exp(−S/ξ2)

for some constants ξ1 and ξ2 and large enough S.
For notational simplicity, let us define κ1 := 2 log(1/σ2(t, h)) and κ2 :=

2
√
2S log log(ee/σ2(t, h)). Therefore,

P

(
|Ψ̂(t, h)| ≤

√
2 log

(
1

σ2(t, h)

)
+ S

(
log log(ee/σ2(t, h))

log
1
2 (1/σ2(t, h))

)
∀(t, h) ∈ F

)

= P

(
|Ψ̂(t, h)| ≤ κ

1/2
1 + κ

−1/2
1 κ2/2 ∀ (t, h) ∈ F

)
= P

(
Ψ̂(t, h)2 ≤

(
κ
1/2
1 + κ

−1/2
1 κ2/2

)2
∀(t, h) ∈ F

)

≥ P

(
Ψ̂(t, h)2 ≤ κ1 + κ2 ∀(t, h) ∈ F

)

= P

(
sup

t,h∈F

Ψ̂2(t, h)− 2 log(1/2dh1h2...hd)

log log(ee/2dh1h2...hd)
< 2

√
2S

)

≥ 1− ξ1 exp

(
−2

√
2S

ξ2

)
.

A.3. Proof of Proposition 2.1

The proof of this result follows from the following result. Suppose that Z1, . . . , Zn

are i.i.d. standard normal random variables. Then, we know that

max1≤i≤n Zi√
2 logn

→ 1 a.s.
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The above result follows trivially from Kabluchko and Munk [30, Theorem 1.1].
Let Fn be the distribution function of max1≤i≤n Zi/

√
2 logn, i.e., Fn(x) :=

P(max1≤i≤n Zi ≤ x
√
2 logn), for x ∈ R. Therefore, for every x < 1, we have

Fn(x) → 0. We want to show that

sup
(t,h)∈F

|Ψ̂(t, h)| − ΓV (2
dh1 . . . hd) = ∞ a.s.

Hence it is enough to show that for every s ∈ R we have P(sup(t,h)∈F |Ψ̂(t, h)|−
ΓV (2

dh1 . . . hd) < s) = 0. Fix m ∈ N. Now,

P

(
sup

(t,h)∈F
|Ψ̂(t, h)| − ΓV (2

dh1 . . . hd) < s

)

≤ P

⎛
⎝ sup

t∈A
( 1

2m
,..., 1

2m )

∣∣∣∣Ψ̂
(
t,

(
1

2m
, . . . ,

1

2m

))∣∣∣∣− ΓV (m
−d) < s

⎞
⎠

≤ P

(
sup
t∈A�

m

|Ψ̂(t, (2m)−1)| − ΓV (m
−d) < s

)

where A	
m := {(t1, . . . , td) : ti = ki/2m for some odd integer ki < 2m, for all

i = 1, . . . , d}. Thus, the last term in the above display can be further upper
bounded by

P

(
sup
t∈A�

m

Ψ̂(t, (2m)−1)√
2 log(md)

−
√
V <

s√
2 log(md)

)
= Fmd(

√
V + s/

√
2 log(md)),

where we have used the fact that now we are dealing with md i.i.d. standard
normal random variables. Now, for every s > 0, choose m such that

√
V +

s/
√

2 log(md) < 1−ε, for some fixed ε > 0. Hence, Fmd(
√
V +s/

√
2 log(md)) ≤

Fmd(1− ε), if m is large enough. As this is true for all large m, taking m → ∞
gives us the desired result.

A.4. Solution to (3.1)

Let ψ ∈ Hβ,1 such that ψ(0) ≥ 1. Hence by the property of Hβ,1 we have

|ψ(x)− ψ(0)| ≤ ‖x‖β , for all x ∈ R
d,

which implies ψ(x) ≥ 1 − ‖x‖β . Hence, on the set ‖x‖ ≤ 1, we have ψ(x) ≥
1− ‖x‖β ≥ 0. Therefore, we have∫

‖x‖≤1

ψ2(x)dx ≥
∫
‖x‖≤1

(1− ‖x‖β)2dx ⇒ ‖ψ‖ ≥ ‖ψβ‖ ,



5236 P. Datta and B. Sen

where ψβ(x) = (1− ‖x‖β)I(‖x‖ ≤ 1). Hence the only thing left to prove is that
ψβ ∈ Hβ,1. Suppose that x, y ∈ R

d such that 1 ≥ ‖x‖ ≥ ‖y‖. Then

0 ≤ ψβ(y)− ψβ(x) = ‖x‖β − ‖y‖β ≤ (‖x‖ − ‖y‖)β ≤ ‖x− y‖β .

Here the third inequality follows from the fact that when β ≤ 1 the function
u �→ uβ is a β-Hölder continuous function; the last inequality follows from the
triangle inequality. If x, y ∈ R

d such that ‖x‖ ≥ 1 ≥ ‖y‖ then we have

0 ≤ ψβ(y)− ψβ(x) = 1− ‖y‖β ≤ (1− ‖y‖)β ≤ (‖x‖ − ‖y‖)β ≤ ‖x− y‖β .

If x, y ∈ R
d is such that ‖x‖ ≥ ‖y‖ ≥ 1 then the assertion is trivial. Hence we

have proved that ψβ minimizes (3.1).

A.5. Proofs of Theorems 3.1 and 3.2

The proofs of Theorems 3.1 and 3.2 depend on the following lemma (stated and
proved in Dümbgen and Spokoiny [11, Lemma 6.2]).

Lemma A.1. Let Z1, Z2, . . . be a sequence of independent standard normal vari-
ables. If wm := (1− εm)

√
2 logm with limm→∞ εm

√
logm = ∞ and limm→∞ εm

= 0 then we have

lim
m→∞

E

∣∣∣∣∣ 1m
m∑
i=1

exp

(
wmZi −

w2
m

2

)
− 1

∣∣∣∣∣ = 0.

A.5.1. Proof of Theorem 3.1

Proof of part (a). For any bandwidth h = (h1, . . . , hd) ∈ (0, 1/2]d and t =
(t1, . . . , td) ∈ Ah, let us define the function gt : [0, 1]

d → R as

gt(x) := Lmin(h)βψ
(β)
t,h (x), for x ∈ [0, 1]d,

where min(h) := min{h1, h2, . . . , hd} and ψ
(β)
t,h (x1, . . . , xd) = ψβ((x1−t1)/h1, . . .,

(xd − td)/hd). Elementary calculations show that gt ∈ Hβ,L and ‖gt‖∞ =
Lmin(h)β . Now let us define the set

S :=
{
t ∈ Ah : ti = kihi for some odd integer ki, i = 1, . . . , d

}
.

Let φn be an arbitrary test for (1.2) with level α. Then,

inf
g∈Hβ,L:‖g‖∞=Lmin(h)β

Eg[φn(Y )]− α ≤ min
gt:t∈S

Egt [φn(Y )]− E0[φn(Y )]

≤ |S|−1
∑
t∈S

Egt [φn(Y )]− E0[φn(Y )]

≤ E0

[(
|S|−1

∑
t∈S

dPgt

dP0
(Y )− 1

)
φn(Y )

]
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≤ E0

∣∣∣|S|−1
∑
t∈S

dPgt

dP0
(Y )− 1

∣∣∣. (A.1)

Here P0 denotes the measure of the process Y under the null hypothesis f = 0
and Pgt denotes the measure of Y under the alternative f = gt. Also for g ∈
Hβ,L,

dPg

dP0
denotes the Radon-Nikodym derivative of the measure Pg with respect

to the measure P0. By Cameron-Martin-Girsanov’s Theorem (see Protter [40,
Chapter 3] for more details about absolutely continuous measures and Radon-
Nikodym derivatives) we get that

log

(
dPg

dP0
(Y )

)
=

√
n

∫
gdW − n

2
‖g‖2 .

For gt(·) = Lmin(h)βψ
(β)
t,h (·),

√
n
∫
gtdW =

√
nL ‖ψβ‖min(h)β

√
Πd

i=1hiΨ̂(t, h).

Observe that {Zt ≡ Ψ̂(t, h)}t∈S are i.i.d. standard normals; note that the in-
dependence of the normals arises from the disjoint supports of the functions
{gt : t ∈ S}. Let

wn :=
√
nL ‖ψβ‖min(h)β

√
Πd

i=1hi.

Then Γt = exp(wnZt − w2
n

2 ) and we can write
dPgt

dP0
(Y )− 1 = Γt − 1.

Hence we have E0

∣∣∣|S|−1
∑

t∈S
dPgt

dP0
(Y )− 1

∣∣∣ = E0

∣∣|S|−1
∑

t∈S Γt − 1
∣∣. Ac-

cording to Lemma A.1 the above term will go to zero if |S| → ∞ and the
corresponding wn’s satisfy:(

1− wn√
2 log |S|

)
→ 0 and

√
log |S|

(
1− wn√

2 log |S|

)
→ ∞.

Now let us pick

h1 = . . . = hd = L− 2
2β+d ((1− εn)ρn)

1/β
(
‖ψβ‖2 (2β + d)/2d

)−1/(2β+d)

=: h̃.

Then,

wn =
√
nL ‖ψβ‖L−1 ((1− εn)ρn)

2β+d
2β

(
‖ψβ‖2 (2β + d)/2d

)−1/2

=
√
n(1− εn)

1+d/2β

√
log n

n

√
(2d/(2β + d))

=
√
(2d/(2β + d))(1− εn)

1+d/2β
√
logn. (A.2)

Also, as n → ∞, |S|/(Πd
i=1(1/hi)) → 2−d. Therefore, for a suitable constant K,

log |S|/ logn = (−d log h̃− d log 2 + o(1))/ log n

= [K + o(1)− (d/β) log ((1− εn)ρn)]/ logn

=

(
K + o(1)− d

β
log(1− εn) +

d

2β + d
log

(
n

log n

))
/ logn
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→ d

2β + d
as n → ∞. (A.3)

Also notice that for all large n, log |S|/
(

d
2β+d logn

)
< 1. Combining (A.2)

and (A.3), we get

wn√
2 log |S|

=
wn√
logn

√
logn√

2 log |S|
→ 1 as n → ∞.

Similarly, for suitable constants K,K ′ > 0,

√
log |S|

(
1− wn√

2 log |S|

)
≥

√
K
√
logn

(
1− (1− εn)

1+d/2β + o(1)
)

≥
√
K ′
√
log n (εn + o(1)) → ∞ as n → ∞,

as the o(1) term above is positive when n is large. This proves part (a) of
Theorem 3.1 by noting that Lmin(h)β = (1− εn)c∗ρn.

Proof of part (b). Let δ ≡ δn := c∗ρn and hi,n = (δ/L)1/β =: h̃n for all
i = 1, 2, . . . , d. For notational simplicity, in the following we drop the subscript
n. As the term D(2dh1 . . . hd) is bounded from above, for any t ∈ J ≡ Jn, the
probability of rejecting the null hypothesis, Pg(Tβ(Y ) > κα), is bounded from
below by, for some constant K > 0,

Pg

(
|Ψ̂(t, h)| > Γ(2dh̃d) +K

)
= P0

(∣∣∣∣Ψ̂(t, h) +

√
n

h̃d
‖ψβ‖−1 〈g, ψ(β)

t,h 〉
∣∣∣∣ > Γ(2dh̃d) +K

)

≥ P0

(
−sign(〈g, ψ(β)

t,h 〉)Ψ̂(t, h) <

√
n

h̃d

|〈g, ψ(β)
t,h 〉|

‖ψβ‖
−K − Γ(2dh̃d)

)

= Φ

(√
n

h̃d
‖ψβ‖−1 |〈g, ψ(β)

t,h 〉| −K − Γ(2dh̃d)

)
(A.4)

where Φ is the standard normal distribution function. Hence, to prove our claim
it suffices to show that

(1 + εn)max
t∈J

√
n

h̃d
‖ψβ‖−1 |〈g, ψ(β)

t,h 〉| − Γ(2dh̃d) → ∞

uniformly for all g ∈ Hβ,L such that ‖g‖J,∞ ≥ δ. Note that Ah = J .
Let g be any such function, and let t ∈ J be such that |g(t)| ≥ δ. Let us

assume that g(t) ≥ δ; the other case where g(t) ≤ −δ can be handled similarly

by looking at −g. By construction of ψβ we have δψ
(β)
t,h ∈ Hβ,L. Also note that

as ψβ minimizes ‖ψ‖ in the set {ψ ∈ Hβ,1 : ψ(0) ≥ 1}, δψ(β)
t,h minimizes ‖ψ‖ in

the set {ψ ∈ Hβ,L : ψ(t) ≥ δ}. Note that both g and δψ
(β)
t,h belong to the closed
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convex set {ψ ∈ Hβ,L : ψ(t) ≥ δ}. As δψ(β)
t,h is the projection of the zero function

onto the above closed convex set, we have

|〈ψ(β)
t,h , g〉| = δ−1|〈δψ(β)

t,h , g〉| ≥ δ−1‖δψ(β)
t,h ‖2 = δ ‖ψβ‖2 h̃d.

Thus,

(1 + εn)max
t∈J

√
n

h̃d
‖ψβ‖−1 |〈g, ψ(β)

t,h 〉| − Γ(2dh̃d)

≥ (1 + εn) ‖ψβ‖ δ
√
nh̃d − Γ(2dh̃d)

= (1 + εn) ‖ψβ‖ c∗ρn
√
n(c∗ρn)

d/2βL−d/2β − Γ(2dh̃d)

= (1 + εn)

√(
2d

2β + d

)
logn−

√
K +

(
2d

2β + d

)
log

(
n

log n

)

≥ εn(2d/(2β + d))1/2(logn)1/2 + o(1) → ∞.

This proves part (b) of Theorem 3.1.

A.5.2. Proof of Proposition 3.1

Let h := (h̃, . . . , h̃) ∈ R
d, where h̃ = (Mρn/L)

1/β , for M as defined in the
statement of the proposition. By the same argument as in (A.4) we have

Pg(T (Y ) > κα) ≥ Φ

(√
n

h̃d
‖ψ1‖−1 |〈g, ψ(1)

t,h〉| −K − Γ(2dh̃d)

)
.

Now we would want to bound |〈g, ψ(1)
t,h〉| uniformly for all g ∈ Hβ,L such that

‖g‖Jn,∞ ≥ Mρn. Without loss of generality, let us assume that g(t) ≥ Mρn for
some t ∈ Jn and g ∈ Hβ,L. Then

g(x) ≥ g(t)− L ‖x− t‖β ≥ Mρn − L ‖x− t‖β = Mρn

(
1−
∥∥∥∥x− t

h̃

∥∥∥∥
β
)
.

This shows that if ‖x− t‖ ≤ h̃ then g(x) ≥ 0. Hence,

〈g, ψ(1)
t,h〉 ≥

∫
‖x−t‖≤h̃

Mρn

(
1−
∥∥∥∥x− t

h̃

∥∥∥∥
β
)(

1−
∥∥∥∥x− t

h̃

∥∥∥∥
)
dx

= Mρnh̃
d

∫
‖x‖≤1

(1− ‖x‖)
(
1− ‖x‖β

)
dx

= Mρnh̃
d〈ψβ , ψ1〉.

Here the last equality follows as ψβ(x) = (1− ‖x‖β)I(‖x‖ ≤ 1). Also note that

Γ(2dh̃d) =

√
2d log

(
1

2

)
+

2d

β
log

(
L

M

)
+

2d

2β + d
log

(
n

log n

)
≤
√

2d

2β + d
log n
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for large n. Therefore, for large n,√
n

h̃d
‖ψ1‖−1 |〈g, ψ(1)

t,h〉| −K − Γ(2dh̃d)

≥
√

nh̃dMρn
〈ψβ , ψ1〉
‖ψ1‖

−K −
√

2d

2β + d
logn

= −K +
√

logn

(
L−d/2βM

(d+2β)
2β

〈ψβ , ψ1〉
‖ψ1‖

−
√

2d

2β + d

)
→ ∞ as n → ∞.

Here the last equality holds by the choice of M , as√
nh̃dMρn

〈ψβ , ψ1〉
‖ψ1‖

=
√
nM

d
2β ρ

d
2β
n L− d

2β Mρn
〈ψβ , ψ1〉
‖ψ1‖

=
√

logn L−d/2βM
(d+2β)

2β
〈ψβ , ψ1〉
‖ψ1‖

>
√

logn

√
2d

2β + d
.

Hence limn→∞ Pg(T (Y ) > κα) = 1.

A.5.3. Proof of Theorem 3.2

Proof of part (a). Let us suppose that Bn := B∞(tn, hn) ⊆ [0, 1]d for some
tn, hn ∈ [0, 1]d. Let us first look at the case when lim infn→∞ |Bn| > 0. Now
assume that the location Bn was known and it was also known that μn > 0.
In such a scenario the best test statistic would be Ψ̂(tn, hn) (with kernel ψ0)
which follows the normal distribution with mean 0 and variance 1, under the null
hypothesis. Hence in this case, the UMP test rejects H0 : μn = 0 if Ψ̂(tn, hn) >
z1−α where z1−α is the (1−α)’th quantile of the standard normal distribution.
When Bn is not known then, obviously, the power of any level α test φn is less
than the test described above. Hence,

Efn [φn(Y )] ≤ Pμn

(
Ψ̂(tn, hn) ≥ z1−α

)
= P0

(
Ψ̂(tn, hn) +

√
n|Bn|μn ≥ z1−α

)
= 1− Φ

(
z1−α −

√
n|Bn|μn

)
�→ 1 unless μn

√
n|Bn| → ∞.

A similar argument can be made when μn < 0 as well. Hence the power of any
level α test does not go to 1 unless |μn|

√
n|Bn| → ∞.

Now suppose that |μn|
√
n|Bn| → ∞. Then we will show that limn→∞ Pfn(T

> κα) = 1. Without loss of generality assume μn > 0. Hence,

Pfn(T > κα) ≥ Pfn

(
|Ψ̂(tn, hn)| − Γ(|Bn|)

D(|Bn|)
> κα

)
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= P0

(∣∣∣Ψ̂(tn, hn) + μn

√
n|Bn|

∣∣∣− Γ(|Bn|) ≥ καD(|Bn|)
)

≥ P0

(∣∣∣Ψ̂(tn, hn) + μn

√
n|Bn|

∣∣∣ ≥ K
)
→ 1 as μn

√
n|Bn| → ∞.

Here the last inequality follows from the fact that as lim infn |Bn| > 0, Γ(|Bn|)+
καD(|Bn|) is bounded from above (say, by K) for all large n.

Proof of part (b). Now let us look at the case lim |Bn| → 0. Let us assume that

|μn|
√
n|Bn| = (1− εn)

√
2 log(1/|Bn|) where εn → 0 and also εn

√
2 log(1/|Bn|)

→ ∞. Without loss of generality also assume that μn > 0. Recall that Bn =
B∞(tn, hn) for hn = (h1,n, . . . , hd,n) ∈ (0, 1/2]d. Let us first define the following
grid points:

Ghn :=
{
t = (t1, . . . , td) ∈ [0, 1]d : ti = (2ki − 1)hi,n for ki ∈ N, B∞(t, hn) ⊆ [0, 1]d

}
.

Clearly |Ghn | ≤ 1/|Bn|. Also, as n → ∞, |Ghn ||Bn| → 1. For each t ∈ Ghn

define ft := μnIB∞(t,hn). Clearly as |Bn| = |B∞(t, hn)|, we have ft ∈ G−
n . Let

φn be a test of level α for testing (1.12). Similar arguments as in (A.1) show
that

inf
g∈G−

n

Egφn(Y )− α ≤ E0

∣∣∣∣∣∣|Ghn |−1
∑

t∈Ghn

dPft

dP0
(Y )− 1

∣∣∣∣∣∣ .
Now by an argument similar to that in the proof of Theorem 3.1, we have

log

(
dPft

dP0
(Y )

)
=

√
n

∫
ftdW − n ‖ft‖2 /2 = μn

√
n|Bn|Ψ̂(t, hn)− μ2

nn|Bn|/2.

Also note that the collection of random variables in {Ψ̂(t, hn) : t ∈ Ghn} are
mutually independent. Now putting wn = μn

√
n|Bn| = (1− εn)

√
2 log(1/|Bn|)

and m = |Ghn | we see that

E0

∣∣∣∣∣|Ghn |−1
∑
t∈G

dPft

dP0
(Y )− 1

∣∣∣∣∣→ 0

if εn → 0 and εn
√
log(1/|Bn|) → ∞, by a direct application of Lemma A.1.

This proves that
lim sup
n→∞

inf
fn∈G−

n

Efnφn ≤ α.

Now let us assume that |μn|
√
n|Bn| ≥ (1+εn)

√
2 log(1/|Bn|). Without loss of

generality also assume that μn > 0. A similar argument as in part (a) shows that

Pfn(T > κα) ≥ Pfn

(
|Ψ̂(tn, hn)| − Γ(|Bn|)

D(|Bn|)
> κα

)

= P0

(∣∣∣Ψ̂(tn, hn) + μn

√
n|Bn|

∣∣∣ ≥ Γ(|Bn|) + καD(|Bn|)
)

≥ P0

(
Ψ̂(tn, hn) ≥ Γ(|Bn|) + καD(|Bn|)− μn

√
n|Bn|

)
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≥ P0

(
Ψ̂(tn, hn) ≥ −εn

√
2 log(1/|Bn|) + καD(|Bn|)

)
→ 1

as n → ∞. This completes the proof of Theorem 3.2.
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[11] Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative
hypotheses. Ann. Statist., 29(1):124–152.
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