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Abstract: Gaussian process modeling is a standard tool for building emu-
lators for computer experiments, which are usually used to study determin-
istic functions, for example, a solution to a given system of partial differen-
tial equations. This work investigates applying Gaussian process modeling
to a deterministic function from prediction and uncertainty quantification
perspectives, where the Gaussian process model is misspecified. Specifically,
we consider the case where the underlying function is fixed and from a re-
producing kernel Hilbert space generated by some kernel function, and the
same kernel function is used in the Gaussian process modeling as the corre-
lation function for prediction and uncertainty quantification. While upper
bounds and the optimal convergence rate of prediction in the Gaussian pro-
cess modeling have been extensively studied in the literature, a comprehen-
sive exploration of convergence rates and theoretical study of uncertainty
quantification is lacking. We prove that, if one uses maximum likelihood
estimation to estimate the variance in Gaussian process modeling, under
different choices of the regularization parameter value, the predictor is not
optimal and/or the confidence interval is not reliable. In particular, lower
bounds of the prediction error under different choices of the regularization
parameter value are obtained. The results indicate that, if one directly ap-
plies Gaussian process modeling to a fixed function, the reliability of the
confidence interval and the optimality of the predictor cannot be achieved
at the same time.

Keywords and phrases: Gaussian process modeling, computer experi-
ments, uncertainty quantification, Matérn correlation functions.
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1. Introduction

Computer experiments are often used to study a system of interest. For example,
[36] studies a complex simulation model for turbulent flows in swirl injectors.
Other examples include [12], who estimates sexual transmissibility of human
papillomavirus infection, and [40], who uses the Cardiovascular Disease Policy
Model to project cost-effectiveness of treating hypertension in the U.S. according
to 2014 guidelines. In these examples, the simulators are expensive, and the
inputs/responses pairs are often not available for an extensive exploration of the
underlying function. One well-established approach for solving this problem is
the use of an emulator, which is an inexpensive approximation for the simulator.
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In computer experiments, the two major problems are prediction and un-
certainty quantification. Gaussian process modeling, which is a widely used
method in computer experiments, naturally enables prediction and statistical
uncertainty quantification. In the Gaussian process modeling, the underlying
function is assumed to be a realization of a Gaussian process. Based on the
Gaussian process assumption, the conditional distribution can be constructed
at each unobserved point in a region, which provides a natural predictor via
conditional expectation and a pointwise confidence interval. The pointwise con-
fidence intervals can be used for statistical uncertainty quantification.

However, in practice, the Gaussian process is usually misspecified. The re-
sponses of a computer model usually come from a deterministic function which
may not be a sample path of the Gaussian process used in Gaussian process
modeling, or may come from a smaller function space that has probability zero
[4, 11, 25, 55, 68]. For example, a function in an infinite-dimensional reproduc-
ing kernel Hilbert space is typically smoother than a sample path of the corre-
sponding Gaussian process [52]. Here, the word “corresponding” means that the
covariance function of the Gaussian process and the kernel function of the repro-
ducing kernel Hilbert space are the same, up to a constant multiplier. Therefore,
if one applies Gaussian process modeling to a function in the corresponding re-
producing kernel Hilbert space, a model misspecification issue occurs.

Despite this model misspecification, maximum likelihood estimation is com-
monly used to estimate unknown parameters in the covariance function within
the Gaussian process model [46]. Applying maximum likelihood estimation when
a model is misspecified may be problematic because the estimated parameter
can diverge as the sample size goes to infinity. For example, [67] shows that if the
underlying function is f(x) = xγ on [0, 1] and a Gaussian correlation function
is used in the Gaussian process modeling, the estimated variance can either go
to zero or infinity as the sample size increases to infinity. Another question is:
when the Gaussian process model is misspecified, are the confidence intervals
with estimated parameters reliable? In practice, it is often observed that Gaus-
sian process models have poor coverage of their confidence intervals [23, 30, 69].
One possible reason is that the Gaussian process model may be misspecified;
thus the confidence intervals may be inadequate for quantifying the uncertainty
of predictions.

In this work, we investigate the prediction and confidence intervals in mis-
specified Gaussian process models used to recover deterministic functions from
a frequentist view, i.e., assuming the underlying function is fixed but unknown.
This is different from the Bayesian perspective, where a Gaussian process prior
on the function space is induced. Specifically, we consider the following settings.

Settings 1.1. The underlying deterministic function f is fixed and lies in a
reproducing kernel Hilbert space. A Gaussian process model is applied for pre-
diction and uncertainty quantification. The kernel function of the reproducing
kernel Hilbert space and the correlation function in the Gaussian process model
are the same.

In Settings 1.1, we assume that the variance in the Gaussian process model
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is unknown and needs to be estimated. For more on the formal settings con-
sidered in this work and more discussion, see Section 2.5. As stated before,
the model misspecification occurs under Settings 1.1. This model misspecifica-
tion does not change the form of the predictor (which is one reason that the
Gaussian process model is typically misspecified), but significantly changes the
uncertainty quantification results. We consider two cases: one case is that the
observations have no noise; the other is that the observations have noise. When
the observations have no noise, we show that if an estimated variance obtained
by maximum likelihood estimation is used in the confidence intervals, then the
confidence intervals are not reliable. Here, the reliability is used in the sense that
is to be introduced later; see Section 2.3. This suggests that, if the Gaussian
process model is misspecified, the confidence interval needs to be carefully con-
structed to quantify the uncertainties—not merely derived by the corresponding
Gaussian process model.

In many cases, computer experiments are stochastic, in the sense that stochas-
tic errors are introduced to simulate the randomness in real systems. A recent
overview of stochastic emulators is [8]. In stochastic computer experiments, a
regularization parameter is used to counteract the noise’s influence. The value
of this regularization parameter is usually a constant [3, 8, 14]. It is known that
the optimal convergence rate for non-parametric regression is determined by the
smoothness of the underlying function, denoted by ν. The optimal convergence
rate is n− ν

2ν+d , where n is the sample size, and d is the dimension of the input
space [53]. In this work, we show that if the regularization parameter value is
chosen to be a constant, the corresponding predictor is not optimal, in the sense
that the convergence rate of the prediction error is of a higher order than the
optimal rate. Furthermore, with an estimated variance obtained by maximum
likelihood estimation, we show that under different choices of the regularization
parameter value (not restricted to be a constant), the corresponding predictor
is not optimal, or the confidence interval is not reliable. We also derive some
lower bounds on the convergence rates of the prediction error of Gaussian pro-
cess modeling. These results suggest that we may lose the prediction efficiency
or reliability of uncertainty quantification if the Gaussian process model is mis-
specified and maximum likelihood estimation is used.

The rest of this paper is arranged as follows. In Section 2, we introduce Gaus-
sian process modeling, maximum likelihood estimation, and reproducing kernel
Hilbert spaces, as well as our definition of reliability of confidence intervals. The
main results of this work are also summarized in Section 2. In Sections 3 and
4, we present the main results of this work, under the case where observations
have no noise and the case where observations have noise, respectively. Simula-
tion studies are reported in Section 5. Conclusions and discussion are made in
Section 6. The technical proofs are given in Appendix.

2. Preliminaries

This section provides a brief introduction to Gaussian process modeling, max-
imum likelihood estimation, and reproducing kernel Hilbert spaces, which are
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used in developing the main results. We also provide our definition of the re-
liability of confidence intervals. Problem settings and a summary of the main
results are presented at the end of this section.

2.1. Gaussian process modeling

In this work, we consider applying Gaussian process modeling to a fixed func-
tion f , defined on a convex and compact set1 Ω ⊂ R

d with a positive Lebesgue
measure. Because the domain Ω is fixed, the corresponding asymptotic frame-
work is called fixed-domain asymptotics [50, 51]. Suppose we have n observed
pairs (xk, yk), k = 1, . . . , n, given by

yk = f(xk) + εk, (2.1)

where xk ∈ Ω are distinct measurement locations (i.e., xk �= xj for k �= j) and
εk ∼ N(0, σ2

ε ) are i.i.d. normally distributed random errors with variance σ2
ε ≥ 0.

If the observations are not corrupted by noise, we have σ2
ε = 0, otherwise σ2

ε > 0.
One popular method to recover the function f is stationary Gaussian process
modeling. Let Z be a stationary Gaussian process defined on R

d. For the ease of
mathematical treatment, we consider simple kriging. Therefore, we assume Z has
mean zero, variance σ2 and correlation function Ψ, denoted by Z ∼ GP (0, σ2Ψ).
The correlation function Ψ is stationary, i.e., the function value of Ψ(x, x′) only
depends on the difference x − x′; thus we can write Ψ(x − x′) := Ψ(x, x′). We
also assume Ψ is strictly positive definite and integrable on R

d, and Ψ(0) = 1.
By Bochner’s theorem (Page 208 of [19]; Theorem 6.6 of [64]) and Theorem 6.11
of [64], there exists a function fΨ such that

Ψ(h) =

∫
Rd

eiω
ThfΨ(ω)dω

for any h ∈ R
d. The function fΨ is known as the spectral density of Z or Ψ. In

this work, we suppose that fΨ decays algebraically, i.e., satisfies the following
condition.

Condition 2.1. There exist constants c2 ≥ c1 > 0 and ν > d/2 such that, for
all ω ∈ R

d,
c1(1 + ‖ω‖22)−ν ≤ fΨ(ω) ≤ c2(1 + ‖ω‖22)−ν ,

where ‖ · ‖2 denotes the Euclidean metric.

One example of correlation functions satisfying Condition 2.1 is the isotropic
Matérn correlation function [51], given by

ΨM (h) =
1

Γ(ν)2ν̃−1
(2
√
ν̃φ‖h‖2)ν̃Kν̃(2

√
ν̃φ‖h‖2), (2.2)

1 This condition can be relaxed to a compact set satisfying interior cone condition and
with Lipschitz boundary; see [1, 64] for discussion of these conditions. In fact, the compactness
and convexity imply the interior cone condition and Lipschitz boundary; see [26, 41].
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with the spectral density [57]

fΨ(ω; ν̃, φ) = π−d/2Γ(ν̃ + d/2)

Γ(ν̃)
(4ν̃φ2)ν̃(4ν̃φ2 + ‖ω‖22)−(ν̃+d/2),

where φ, ν̃ > 0, and Kν̃ is the modified Bessel function of the second kind. By
setting ν = ν̃ + d/2, we can see ΨM satisfies Condition 2.1.

Another example of correlation functions satisfying Condition 2.1 is the gen-
eralized Wendland correlation function [9, 13, 21], given by

ΨGW (h) =

{
1

B(2κ,μ+1)

∫ 1
h
u(u2 − h2)κ−1(1− u)μdu, 0 ≤ h < 1,

0, h ≥ 1,

where κ > 0 and μ ≥ (d+1)/2+κ, and B is the beta function. It can be shown
that ΨGW also satisfies Condition 2.1; see Theorem 1 of [9].

Suppose we are interested in the value of Z(x) on Ω and we observe data

zj = Z(xj) + ε′j , j = 1, ..., n, (2.3)

where xk ∈ Ω are distinct measurement locations (i.e., xk �= xj for k �= j)
and ε′k ∼ N(0, σ2

ε ) are i.i.d. normally distributed random errors with variance
σ2
ε ≥ 0. Conditional on Z = (z1, ..., zn)

T , Z(x) is normally distributed at point
x. Note that Z is a random vector, where the randomness is induced by Z(xj)
and ε′j . The conditional expectation of Z(x) is given by

E[Z(x)|Z] = r(x)T (R+ μIn)
−1Z, (2.4)

where r(x) = (Ψ(x−x1), . . . ,Ψ(x−xn))
T , R = (Ψ(xj −xk))jk, In is an identity

matrix, and μ = σ2
ε /σ

2. The conditional expectation is a nature predictor of
Z(x), and it can be shown that the conditional expectation (2.4) is the best linear
unbiased predictor [46, 51]. A predictor given by Gaussian process modeling is
then the conditional expectation of Z(x).

In addition to prediction, uncertainty quantification plays an essential role in
statistics. Gaussian process modeling enables statistical uncertainty quantifica-
tion via confidence intervals [45, 46]. Conditional on Z, the conditional variance
of Z(x) is given by

Var[Z(x)|Z] = σ2(1− r(x)T (R+ μI)−1r(x)),

where R, r(x) and μ are as in (2.4). Let Φ denote the cumulative distribution
function of the standard normal distribution N(0, 1) and let qβ = Φ−1(1−β/2)
denote the (1−β/2)th quantile, where β ∈ (0, 1). A level (1−β)100% pointwise
confidence interval on point x ∈ Ω can be constructed by

CIn,β(x) = [E[Z(x)|Z]− cn,β(x),E[Z(x)|Z] + cn,β(x)],

where

cn,β(x) =q1−β/2

√
Var[Z(x)|Z] = q1−β/2

√
σ2(1− r(x)T (R+ μIn)−1r(x)),

(2.5)
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and r(x) and R are as in (2.4). The confidence interval is often used in the
numerical simulations to show the uncertainty quantification results in Gaussian
process modeling. A few examples are [4, 22, 28, 65].

Recall that we apply Gaussian process modeling to the deterministic function
f . Therefore, we treat the observations Y = (y1, ..., yn)

T as the observations from
the Gaussian process Z. The predictor of f(x) becomes

fn(x) := E[Z(x)|y1, . . . , yn] = r(x)T (R+ μIn)
−1Y, x ∈ Ω, (2.6)

and the confidence interval becomes

CIn,β(x) = [fn(x)− cn,β(x), fn(x) + cn,β(x)], (2.7)

where cn,β(x) is as in (2.5).

2.2. Maximum likelihood estimation

Recall that we consider that the underlying function is deterministic and lies
in some reproducing kernel Hilbert space (see Settings 1.1). The Gaussian pro-
cess modeling is used for prediction and uncertainty quantification, where the
correlation function is the same as the kernel function of the reproducing ker-
nel Hilbert space. Despite the model misspecification issue, i.e., the underly-
ing function is typically smoother than the sample path in the corresponding
Gaussian process, maximum likelihood estimation [45, 46, 51] is often used to
specify the parameters values that are not pre-determined in the covariance
function σ2Ψ(· − ·). Let Ψθ be a family of correlation functions indexed by
θ = (θ1, . . . , θq)

T ∈ Θ ⊂ R
q, and R(θ) = (Ψθ(xj − xk))jk. By direct calculation

and reparametrization, it can be shown that, up to an additive constant, the
log-likelihood function is (Page 169 of [51]; Page 66 of [46])

�(θ, σ2, μ;X,Y ) = −n

2
log σ2 − 1

2
log det(R(θ) + μIn)−

Y T (R(θ) + μIn)
−1Y

2σ2
.

(2.8)

The maximum likelihood estimate of the unknown parameters θ, σ2, μ can be
found by maximizing the log-likelihood function. In practice, it is often assumed
that the scale parameter, which is φ in (2.2) if a Matérn correlation function
is used, and the variance σ2 are unknown and need to be estimated [5, 10, 27,
29, 34, 35, 45, 46, 51]. The smoothness parameter ν̃ in the Matérn correlation
function (2.2) is usually pre-determined. We will discuss the parameter μ later.
The consistency of parameter estimation has been studied in literature under
the assumption that the underlying truth is a realization of a Gaussian process
[2, 9, 32, 37, 61, 72, 73, 75]. In particular, [9, 32, 61, 72, 75] show that the
parameter estimation can be inconsistent and only the microergodic parameter
can be estimated. For details of microergodic parameters, see [39]; also see pages
163-165 of [51].
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If the underlying truth is a fixed function that is not a sample path of the
Gaussian process used in the Gaussian process modeling, to the best of our
knowledge, the only related work is [67]. In [67], it is shown that if the underlying
function is f(x) = xγ with γ ≥ 0 defined on [0, 1] and a Gaussian correlation
function is used in the Gaussian process modeling, the estimated variance can
either go to infinity or converge to zero as the sample size increases. Other works
related to the parameter estimation under model misspecification include [6, 7].

In this work, we do not consider the consistency of parameter estimation,
but we investigate the influence of parameter estimation on the prediction and
uncertainty quantification of Gaussian process modeling under model misspec-
ification. For the ease of mathematical treatment, we assume Ψ is known. It
follows the standard arguments that the maximizer of (2.8) with respect to σ2

is
σ̂2 = Y T (R+ μIn)

−1Y/n. (2.9)

Similar settings have also been considered by [31], where they call σ a scale
parameter and consider only estimating σ. In practice, μ is usually imposed as
a constant [14], estimated by the sample average if there are replicates on each
measurement location [3], or estimated via maximum likelihood estimation [62].
We mainly focus on the first approach (using an imposed μ̂n) and note that
the results can be easily generalized to the case of using the second approach.
The third approach is much more complicated, and we do not consider it in the
present work. Here we use μ̂n to stress the difference, because it may not be
the true value of μ. Recall that the underlying truth is a deterministic function
from a frequentist point of view. Thus there is no definition of the “true” value
of σ2. It is also not clear what is the “true” μ = σ2

ε /σ
2. In this work, we call

μ̂n a regularization parameter, because this parameter is imposed. Nevertheless,
we consider that the value of the regularization parameter μ̂n can increase or
decrease with the sample size and is not restricted to be a constant.

By plugging in estimated (and imposed) parameters, we can obtain the corre-

sponding predictor and confidence interval. We use f̂n(x) to denote the predictor
with imposed μ̂n on an unobserved point x, i.e.,

f̂n(x) = r(x)T (R+ μ̂nIn)
−1Y, (2.10)

where r(x) and R are as in (2.4). By plugging σ̂2 as in (2.9) and μ̂n into (2.7)
and (2.5), we obtain the estimated pointwise confidence interval on point x ∈ Ω

ĈIn,β(x) = [f̂n(x)− ĉn,β(x), f̂n(x) + ĉn,β(x)], (2.11)

where

ĉn,β(x) =q1−β/2

√
σ̂2(1− r(x)T (R+ μ̂nIn)−1r(x)), (2.12)

and f̂n(x) is as in (2.10). In (2.12), we impose a regularization parameter μ̂n >
0 if σ2

ε > 0, and set μ̂n = 0 if σ2
ε = 0. Note that the estimated variance

σ̂2 is not present in (2.10); thus it does not influence the predictor. However,
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σ̂2 appears in (2.11) and as we will see later, it influences the reliability of
the confidence interval; thus the uncertainty quantification results of Gaussian
process modeling.

2.3. Reliability of confidence intervals

In practice, the Gaussian process model is often misspecified. The underlying
fixed function may lie in a subspace of the support of the corresponding Gaussian
process and the subspace may have probability zero, or may not even be in
the support. This model misspecification may influence the reliability of the
confidence interval thus the quality of uncertainty quantification. However, it is
not possible to quantify the reliability of confidence intervals without having a
clear definition of the term “reliability”. In this section, we first review some
possible ways to define the reliability, and propose our definition of the reliability
of confidence intervals.

Recall that in this work, we assume that the underlying truth is a determinis-
tic function. Therefore, we mainly consider the reliability of confidence intervals
for a fixed function. Let g ∈ G be a fixed function, where G is a Hilbert space of
functions equipped with norm ‖·‖G . Let IXg be a linear predictor for a function
g ∈ G, where X = {x1, ..., xn} ⊂ Ω is the set of measurement locations. The
predictor IXg depends on X and observations. Suppose the observations are

y
(g)
j for j = 1, ..., n, given by

y
(g)
j = g(xj) + εj , (2.13)

where εj ’s are i.i.d. noise realizations of a random variable with mean zero and
variance σ2

ε ∈ [0,∞). Typically, IXg is a linear combination of the observations,
i.e., has the form

IXg(x) =

n∑
j=1

bj(x)y
(g)
j (2.14)

for point x ∈ Ω, where bj ’s are functions not depending on g but can depend
on X. Let CIX,β(x) = [IXg(x) − aβ(x), IXg(x) + aβ(x)] be an imposed level
(1 − β)100% pointwise confidence interval on point x ∈ Ω (determined by the
uncertainty quantification method that a user applies), where β ∈ (0, 1) and
aβ is a non-negative function. Clearly, this imposed confidence interval may
not have confidence level (1− β)100%. We want to define the reliability of this
imposed confidence interval. Note that CIX,β and aβ can depend on X, but
we suppress the dependency for notational simplicity. Also note the confidence
interval on point x is centered at IXg(x).

Probably the most natural way to define the reliability is by the definition
of confidence intervals. This approach is considered by [48]. Consider the prob-
ability Pg(g(x) ∈ CIX,β(x)) for point x ∈ Ω, where Pg refers to the distribution

of y
(g)
1 , ..., y

(g)
n as in (2.13), where the “true” g is given. If confidence intervals
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are reliable, the probability Pg(g(x) ∈ CIX,β(x)) should be close to the nom-
inal level (1 − β)100%, or at least larger than (1 − β)100% (conservative). In
[48], a function defined on [0, 1] and a Brownian motion prior are considered.
The measurement locations are equally spaced. Under these settings, [48] shows
that CIX,β can be conservative or unreliable, depending on the smoothness of
g. However, as stated in [48], the exact formulas strongly depend on the equally
spaced measurement locations and cannot be easily extended to a more general
choice of measurement locations.

Another probability-based definition of reliability of confidence intervals is
by the average coverage probability (ACP) [43]. In [43], confidence intervals
are considered to be reliable if the ACP for the function g and the confidence
interval CIX,β

1

n

n∑
j=1

P(g(xj) ∈ CIX,β(xj))

is close to the nominal level (1 − β)100%, where xj and g(xj) are as in (2.13).
This definition only quantifies the reliability of the confidence interval on the
measurement locations and does not count the confidence interval CIX,β(x) at
any unobserved point x ∈ Ω. Therefore, the ACP is not suitable to be used for
quantifying the uncertainties because if the observations are noiseless and an
interpolant is used, the ACP is always equal to one.

Coverage rates are often used to assess the reliability of the confidence interval
in the field of computer experiments [30, 34, 54]. The coverage rate is defined
by

Vol({x|g(x) ∈ CIX,β(x)})
Vol(Ω)

, (2.15)

where Vol(A) denotes the volume of a set A ⊂ Ω with respect to the Lebesgue
measure. A practical way to compute the coverage rate is by random sampling.
Suppose x′

1, ..., x
′
N are N uniformly distributed points in Ω. Then the coverage

rate can be approximated by

card({x′
j |g(x′

j) ∈ CIX,β(x
′
j)})

N
,

where card(B) denotes the cardinality of a set B. However, we find it is hard to
theoretically investigate the quantity (2.15), because {x|g(x) ∈ CIX,β(x)} can
be irregular and hard to characterize.

In this work, we consider the ratio of the prediction error and the width
of the confidence interval, given by (g − IXg)/|CIX,β |, where |CIX,β | = 2aβ
denotes the width of CIX,β . We use the convention 0/0 = 0 if |CIX,β(x)| = 0
for some x ∈ Ω. If the confidence interval CIX,β is reliable, the width of the
confidence interval should be large enough to cover the difference between the
predictor IXg and the true function g with high probability such that the ratio
|g(x) − IXg(x)|/|CIX,β(x)| is small for x ∈ Ω. In particular, we consider the
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expectation
(
E‖(g − IXg)/|CIX,β |‖pLp(Ω)

)1/p
for 2 ≤ p ≤ ∞ (we assume it

exists; if it does not exist, then the confidence interval is thought to be not
reliable), where the expectation is taken with respect to the noise and the set of
measurement locations X, and ‖f‖Lp(Ω) is the Lp-norm of f ∈ Lp(Ω), defined
by

‖f‖pLp(Ω) =

∫
Ω

|f(x)|pdx.

The expectation
(
E‖(g − IXg)/|CIX,β |‖pLp(Ω)

)1/p
is the Lp-norm on the proba-

bility space (A,B, P ), where A is the sample space, B is the Borel algebra, and P
is the probability measure induced by the noise ε and X. Note that the random-
ness in (g− IXg)/|CIX,β | does not come from the function g, because g is fixed
from a frequentist perspective. Because we are interested in the scenario when
the number of measurement locations increases, we consider an infinite sequence
of the set of measurement locations, denoted by X = {X1, X2, ..., Xn, ...}. With-
out loss of generality, we assume that card(Xn) = n, where n takes its value
in an infinite subset of N+. We call X a sampling scheme, as in [56]. In the
rest of this work, we suppress the dependency of X on n for notational simplic-

ity. If the confidence interval CIX,β is reliable,
(
E‖(g − IXg)/|CIX,β |‖pLp(Ω)

)1/p
should be small, at least should be less than a constant that does not depend
on the sample size. From a standard frequentist perspective, we consider the
minimax setting, i.e., we consider the worst case.

According to the prior knowledge on the function g, we consider two subcases.
Recall that g ∈ G, where G is a Hilbert space of functions equipped with norm
‖ · ‖G . The first subcase is that ‖g‖G is upper bounded by some known constant.
Without loss of generality, assume this known constant is one, i.e., the function
g lies in the unit ball of G. We say the confidence interval CIX,β is Lp-weakly-
reliable, if

sup
g∈G,‖g‖G≤1

(
E‖(g − IXg)/|CIX,β |‖pLp(Ω)

)1/p
≤ C (2.16)

holds for all X ∈ X and all n, where C is a constant not depending on n. In
other words, the confidence interval is weakly-reliable if it is reliable in a ball of
G with certain radius. However, in practice we cannot always expect ‖g‖G to be
bounded by a known constant. Since g is a fixed function in G, we know ‖g‖G is
finite. Therefore, for any increasing sequence {an}n≥1 not depending on g and
limn→∞ an = ∞, there exists an N such that for all n ≥ N , ‖g‖G ≤ an. We say
the confidence interval CIX,β is Lp-strongly-reliable, if there exists an increasing
sequence {an}n≥1 not depending on g such that limn→∞ an = ∞ and

sup
g∈G,‖g‖G≤an

(
E‖(g − IXg)/|CIX,β |‖pLp(Ω)

)1/p
≤ C ′ (2.17)



5024 W. Wang

holds for all X ∈ X and all n, where C ′ is a constant not depending on n. Here
we note that the constants C and C ′ can depend on X . Roughly speaking, a con-
fidence interval is strongly-reliable if it is eventually reliable in the entire space
G as the sample size increases to infinity. We summarize the above arguments
in the following definition. Note in Definition 2.1, we suppress the dependency
of X on n for notational simplicity.

Definition 2.1. Let β ∈ (0, 1) be fixed, and X be a sampling scheme. Let IXg
be a linear predictor as in (2.14) and n = card(X) be the sample size. Let
CIX,β be an imposed level (1−β)100% confidence interval centered at IXg with
limn→∞ supx∈Ω |CIX,β(x)| = 0, where |CIX,β(x)| is the width of CIX,β(x).

For 2 ≤ p ≤ ∞, CIX,β is said to be Lp-weakly-reliable if (2.16) holds for all
n, and is said to be Lp-strongly-reliable if there exists an increasing sequence
{an}n≥1 not depending on g, and limn→∞ an = ∞ such that for all n, (2.17)
holds, where C and C ′ are constants not depending on n but possibly depending
on p, β, and X . The expectation is taken with respect to noise and X.

Remark 2.1. In Definition 2.1, the reason we require the width of the confidence
interval satisfies limn→∞ supx∈Ω |CIX,β(x)| = 0 because we want the confidence
interval to provide some information, otherwise we can select a wide confidence
interval (for example, CIX,β(x) = [IXg(x)−n, IXg(x)+n] for all x ∈ Ω) which
can cover g(x) and does not provide any useful information.

Definition 2.1 is motivated by the properties of confidence intervals of Gaus-
sian process. Let Z ∼ GP (0, σ2Ψ) be a Gaussian process defined on Ω. On

point x ∈ Ω, let I
(1)
X Z(x) = E[Z(x)|Z], where E[Z(x)|Z] is as in (2.4). It can

be seen that I
(1)
X Z is a linear predictor and has the form as in (2.14). Let

CIn,β(x) be the confidence interval as in (2.7). Furthermore, assume the obser-
vations are not corrupted by noise, which implies σ2

ε = 0 and μ = 0. Consider(
E‖(Z − I

(1)
X Z)/|CIn,β |‖pLp(Ω)

)1/p
. We have the following proposition.

Proposition 2.1. Let Z, I
(1)
X Z,CIn,β be described above, and β ∈ (0, 1). Then

we have (
E‖(Z − I

(1)
X Z)/|CIn,β |‖pLp(Ω)

)1/p
= C (2.18)

holds for all n and any 2 ≤ p < ∞, where C is a constant only depending on p,
β and Ω.

It can be seen that our definition of reliability stated in Definition 2.1 is anal-
ogous to (2.18). According to Definition 2.1, if a confidence interval CIX,β is
reliable, then for any fixed constant c > 0, cCIX,β := [IXg(x)−caβ(x), IXg(x)+
caβ(x)] is also reliable. Furthermore, the “less than or equal to” relationship in
Definition 2.1 encourages a wider confidence interval. Therefore, our definition
of the reliability is more like a necessary condition rather than a sufficient condi-
tion. One way to specify the constant in Definition 2.1 is by using the constant
C in Proposition 2.1. However, one can argue that this constant may not be
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appropriate because unlike the unbiased predictor I
(1)
X Z, IXg is usually a bi-

ased predictor, and the constant in Proposition 2.1 may not be large enough
to cover the bias. Practitioners may also consider other constants to counteract
the model misspecification. How to choose an appropriate constant is out of the
scope of this work, and we do not make any further discussion.

2.4. Reproducing kernel Hilbert spaces and power functions

In this subsection, we review reproducing kernel Hilbert spaces and power func-
tions, which are closely related to the Gaussian process model. Under the set-
tings of computer experiments, if μ = 0 in the Gaussian process model, the
right-hand side of (2.6) is called a kriging interpolant [63], denoted by

IΨ,Xf(x) = r(x)TR−1Y, (2.19)

whereX = {x1, ..., xn} denotes the set of measurement locations. Note that xk ∈
Ω are distinct measurement locations and Ψ is strictly positive definite, thus R is
invertible. In the area of scattered data approximation, the interpolation using
operator IΨ,X is also called radial basis function approximation. A standard
theory of radial basis function approximation works by employing reproducing
kernel Hilbert spaces. One way to define the reproducing kernel Hilbert space
generated by a stationary correlation function is via the Fourier transform,
defined by

F(f)(ω) = (2π)−d/2

∫
Rd

f(x)e−ixTωdx

for f ∈ L1(R
d). The definition of the reproducing kernel Hilbert space can be

generalized to f ∈ L2(R
d) ∩ C(Rd). See [20] and Theorem 10.12 of [64].

Definition 2.2. Let Ψ be a stationary correlation function that is integrable on
R

d. Define the reproducing kernel Hilbert space NΨ(R
d) generated by Ψ as

NΨ(R
d) := {f ∈ L2(R

d) ∩ C(Rd) : F(f)/
√
F(Ψ) ∈ L2(R

d)},

with the inner product

〈f, g〉NΨ(Rd) = (2π)−d/2

∫
Rd

F(f)(ω)F(g)(ω)

F(Ψ)(ω)
dω.

For a positive number ν > d/2, the Sobolev space on R
d with smoothness ν

can be defined as

Hν(Rd) = {f ∈ L2(R
d) : |F(f)(·)|(1 + ‖ · ‖22)ν/2 ∈ L2(R

d)},

equipped with an inner product

〈f, g〉Hν(Rd) = (2π)−d/2

∫
Rd

F(f)(ω)F(g)(ω)(1 + ‖ω‖22)νdω.
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It can be shown thatHν(Rd) coincides with the reproducing kernel Hilbert space
NΨ(R

d), if Ψ satisfies Condition 2.1 ([64], Corollary 10.13, also see Lemma C.3).
This equivalence allows us to evaluate whether a predictor in a reproducing
kernel Hilbert space is optimal; see Section 4 for more details.

Reproducing kernel Hilbert spaces can also be defined on a suitable subset
(for example, convex and compact) Ω ⊂ R

d, denoted by NΨ(Ω), with norm

‖f‖NΨ(Ω) = inf{‖fE‖NΨ(Rd) : fE ∈ NΨ(R
d), fE |Ω = f},

where fE |Ω denotes the restriction of fE to Ω. Sobolev spaces on Ω can be
defined in a similar way.

If f ∈ NΨ(Ω), there is a simple error bound ([64], Theorem 11.4):

|f(x)− IΨ,Xf(x)| ≤ PΨ,X(x)‖f‖NΨ(Ω), (2.20)

for each x ∈ Ω, where PΨ,X is a function independent of f . The square of PΨ,X

is called the power function, given by

P 2
Ψ,X(x) = 1− r(x)TR−1r(x)

for each x ∈ Ω, where r(x) and R are as in (2.4). In addition, we define

PΨ,X := sup
x∈Ω

PΨ,X(x). (2.21)

Note that the power function PΨ,X and its supremum PΨ,X only depend on X,
Ω and Ψ, and does not depend on the observations.

2.5. Problem settings and summary of results

In this work, we consider the inference of misspecified Gaussian process mod-
els. Specifically, we consider prediction and uncertainty quantification when ap-
plying Gaussian process modeling to a fixed function f ∈ NΨ(Ω), under the
following misspecified model assumption.

Assumption∗ 2.1 (Misspecified model assumption). The function f is a real-
ization of a Gaussian process with mean zero and covariance function σ2Ψ with
a finite σ > 0.

We use an asterisk “∗” to denote that Assumption∗ 2.1 is a misspecified
assumption, and is not true. After the earliest version of this work was sub-
mitted, Assumption∗ 2.1 was also considered by [31]. Under Assumption∗ 2.1,
we incorrectly assume f is a realization of Z ∼ GP (0, σ2Ψ) for f ∈ NΨ(Ω).
Assumption∗ 2.1 is a misspecified model assumption because if Z ∼ GP (0, σ2Ψ),
then P(Z ∈ NΨ(Ω)) = 0 since Ψ satisfies Condition 2.1 and Ω is convex and
compact with positive Lebesgue measure [16]. In fact, the smoothness of the
sample paths are at least d/2 different from the smoothness of the correlation
function, if ν in Condition 2.1 is larger than d [52]. The different assumptions of
f ∈ NΨ(Ω) and f is a realization of Z ∼ GP (0, σ2Ψ) yield the same predictor,
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but the prediction error analysis methodologies are completely different. For
discussion of these two different assumptions, see [47].

Under the misspecified model assumption Assumption∗ 2.1, one can use max-
imum likelihood estimation to “estimate” the unknown parameters and impose
confidence intervals. Of course, this is questionable, but it is widely used in prac-
tice as stated in Section 1, and also in numerical examples showing in research
papers. In these synthetic numerical examples, the test function is typically cho-
sen to be a fixed function with closed form (and usually infinitely differentiable),
which naturally satisfies the condition f ∈ NΨ(Ω). Under Assumption∗ 2.1, we
show the following results:

(i) If the observations are not corrupted by noise, then the confidence interval
is not Lp-weakly-reliable for p ∈ (2,∞], and is not L2-strongly-reliable.

(ii) If the observations are corrupted by noise, then the confidence interval
is not L2-strongly-reliable, or the predictor is not optimal, in the sense
that the predictor does not achieve the optimal convergence rate under
L2 metric.

In the rest of this work, we will use the following definitions. For two posi-
tive sequences an and bn, we write an � bn if, for some constants C,C ′ > 0,
C ≤ an/bn ≤ C ′. Similarly, we write an � bn and bn � an if an ≥ Cbn for
some constant C > 0. For notational simplicity, we will use C,C ′, C1, C2, ... and
η, η0, η1, ... to denote the constants, of which the values can change from line to
line.

3. When the observations are noiseless

In this section, we consider the case that the observations have no noise. We call
this case deterministic case, because several measurements at the same location
will always lead to the same response.

3.1. The unreliability of the confidence interval

We focus on the Matérn correlation function, defined in (2.2). Since φ and ν̃ are
known, we can let φ = 1/(2

√
ν̃), because otherwise we can stretch the region

Ω to adjust the scale parameter φ. After a proper reparametrization, we can
rewrite (2.2) as

ΨM (h) =
1

Γ(ν − d/2)2ν−d/2−1
‖h‖ν−d/2

2 Kν−d/2(‖h‖2) (3.1)

for h ∈ R
d, where ν > d/2. We set Ψ = ΨM in this section.

Recall that in the deterministic case, σ2
ε = 0, thus εk = 0, k = 1, ..., n, μ = 0

and μ̂n = 0. The predictor f̂n(x) in (2.10) becomes a kriging interpolant (2.19),
i.e.,

f̂n(x) = IΨ,Xf(x) = r(x)TR−1Y (3.2)
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for any point x ∈ Ω, where r(x) and R are as in (2.4), and Y = (y1, ..., yn)
T .

Because the observations are not corrupted by noise, we have yk = f(xk), for
k = 1, ..., n. Note that in (3.2), the variance is not present and there is no
estimated or imposed parameter.

As stated in Section 2.3, for β ∈ (0, 1), an imposed confidence interval with
estimated variance at point x ∈ Ω can be constructed by plugging μ̂n = 0 in
(2.11). The confidence interval is given by

ĈIn,β(x) = [f̂n(x)− ĉn,β(x), f̂n(x) + ĉn,β(x)], (3.3)

where

ĉn,β(x) =q1−β/2

√
σ̂2(1− r(x)TR−1r(x)), (3.4)

and σ̂2 =Y TR−1Y/n.

Since the underlying function f is fixed and f ∈ NΨ(Ω), we can apply (2.20) to

derive an upper bound on the prediction error |f(x)− f̂n(x)| for x ∈ Ω. By (3.3),

at point x, if f(x) ∈ ĈIn,β(x), we have |f(x)− f̂n(x)| ≤ ĉn,β(x). Comparing this
inequality with (2.20), and noting that ĉn,β(x) � σ̂PΨ,X(x), if the confidence
interval is reliable, intuitively, it can be expected that σ̂2 should be close to
‖f‖2NΨ(Ω). However, this is not true. From the identity [64]

‖f − IΨ,Xf‖2NΨ(Ω) + ‖IΨ,Xf‖2NΨ(Ω) = ‖f‖2NΨ(Ω), (3.5)

it can be seen that σ̂2 = ‖IΨ,Xf‖2NΨ(Ω)/n ≤ ‖f‖2NΨ(Ω)/n = O(n−1), which is

not close to ‖f‖2NΨ(Ω) as n becomes larger. This indicates that ĉn,β is too small
to be used in constructing confidence intervals. Following this intuition, we show
that the confidence interval is not reliable, as stated in Theorem 3.1. We need
the following condition. Recall that we suppress the dependency of X on n for
notational simplification.

Condition 3.1. Let X = {x1, ..., xn}, thus n = card(X). The fill distance of
X, defined as

hX,Ω := sup
x∈Ω

inf
xj∈X

‖x− xj‖2,

satisfies hX,Ω � n−1/d, for all X ∈ X , where X is a sampling scheme.

Condition 3.1 can be easily fulfilled. For example, sampling schemes with
grid points satisfy Condition 3.1. In fact, any quasi-uniform sampling scheme
satisfies Condition 3.1, as shown in the following proposition.

Proposition 3.1 (Proposition 14.1 of [64]). Let X be a sampling scheme. Sup-
pose there exists a constant C > 0 such that for all X ∈ X , hX,Ω ≤ Cqn,
where

qn := min
xj ,xk∈X,1≤j 
=k≤n

‖xj − xk‖2/2.

Then we have hX,Ω � n−1/d. Such sequence X is said quasi-uniform.
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By the definition of fill distance, it can be seen that

Ω ⊂
n⋃

k=1

B(xk, hX,Ω),

where B(xk, hX,Ω) denotes the Euclidean ball centered at xk with radius hX,Ω.
Therefore, a comparison of volumes yields

Vol(Ω) ≤ nVol(B(0, hX,Ω)) = nhd
X,Ω

πd/2

Γ(d/2 + 1)
.

Hence, for any set of measurement locationsX with card(X) = n, hX,Ω � n−1/d.
By (2.20), (2.21) and Lemma C.2 in Appendix C, a set of measurement locations
with small fill distance is desired, because we want the measurement locations
to be spread in Ω as much as possible. Because quasi-uniform sampling schemes
achieve the optimal rate of fill distance, they are widely used in computer exper-
iments. Thus we believe Condition 3.1 is satisfied in many practical situations.

The following proposition provides an upper bound on |ĈIn,β(x)|, which im-

plies limn→∞ supx∈Ω |ĈIn,β(x)| = 0. Proposition 3.2 is a direct result of Lemma
C.2 and the relationship σ̂2 ≤ ‖f‖2NΨ(Ω)/n, thus the proof is omitted.

Proposition 3.2. For any fixed sampling scheme X satisfying Condition 3.1,
we have that |ĈIn,β(x)| ≤ Cn− ν

d .

Under Condition 3.1, we have the following theorem. Note that f ∈ NΨ(Ω)
and Ψ is a Matérn correlation function defined in (3.1) with ν > d/2 imply
f ∈ Hν(Ω); thus f ∈ L∞(Ω).

Theorem 3.1. Suppose 2 < p ≤ ∞, β ∈ (0, 1) are fixed, and σε = 0. For any
fixed sampling scheme X satisfying Condition 3.1, we have that

sup
‖f‖NΨ(Ω)≤1

‖(f − f̂n)/|ĈIn,β |‖Lp(Ω) ≥ Cn1/2−1/p (3.6)

holds for all n. For any increasing sequence {an}n≥0 satisfying limn→∞ an = ∞,
we have that

sup
‖f‖NΨ(Ω)≤an

‖(f − f̂n)/|ĈIn,β |‖L2(Ω) ≥ C ′an (3.7)

holds for all n. In (3.6) and (3.7), f̂n is as in (3.2), ĈIn,β is as in (3.3), C
and C ′ are positive constants depending on p, β, Ω, Ψ and the constants in
Condition 3.1, and do not depend on n.

Remark 3.1. After the earliest version of this work was submitted, a related
result has appeared as Theorem 3.2 of [31], which showed that for any function

f ∈ NΨ(Ω), ‖(f − f̂n)/|ĈIn,β |‖L∞(Ω) ≤ Cn1/2.

Theorem 3.1 states that if one uses the estimated variance σ̂2 derived by
maximum likelihood estimation to construct a pointwise confidence interval, the
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confidence interval can be unreliable. The confidence interval is not Lp-weakly-
reliable for 2 < p ≤ ∞ as in (3.6), i.e., for anyM > 0 and sufficient large n, there

exists a function f in the unit ball of NΨ(Ω) such that ‖(f−f̂n)/|ĈIn,β |‖Lp(Ω) ≥
M . Furthermore, the confidence interval is not L2-strongly-reliable as in (3.7),
i.e., forM > 0 and sufficient large n, there exists a function f ∈ NΨ(Ω) such that

‖(f − f̂n)/|ĈIn,β |‖L2(Ω) ≥ M . Therefore, it may not be appropriate to quantify
the uncertainties by using the confidence interval derived by Gaussian process
modeling for a deterministic function lying in the corresponding reproducing
kernel Hilbert space if there is no noise.

3.2. Some reliable confidence intervals under Assumption∗ 2.1

We adopt a reviewer’s suggestion and consider two other approaches to imposing
σ̂2: (1) setting it equal to a constant; and (2) removing the 1/n factor from the
maximum likelihood estimate. Note that in both cases, Lemma C.2 and Condi-
tion 3.1 imply that |ĈIn,β(x)| ≤ Cn−ν/d+1/2; thus limn→∞ supx∈Ω |ĈIn,β(x)| =
0. If we set σ̂2 to be a positive constant, the corresponding confidence interval
is L∞-weakly-reliable (thus is Lp-weakly-reliable for 2 ≤ p < ∞) but not L∞-
strongly-reliable, as stated in the following theorem.

Theorem 3.2. Suppose β ∈ (0, 1) is fixed, and σε = 0. Let Ψ = ΨM , where ΨM

is as in (3.1). Let ĈIn,β be as in (3.3) but with σ̂2 = 1. For any fixed sampling
scheme X satisfying Condition 3.1, we have that

sup
‖f‖NΨ(Ω)≤1

‖(f − f̂n)/|ĈIn,β |‖L∞(Ω) ≤ 1/(2q1−β/2) (3.8)

holds for all n. For any increasing sequence {an}n≥0 satisfying limn→∞ an = ∞,
we have that

sup
‖f‖NΨ(Ω)≤an

‖(f − f̂n)/|ĈIn,β |‖L∞(Ω) ≥ Can (3.9)

holds for all n. The constant C is positive and depends on p, β, Ω, Ψ and the
constants in Condition 3.1, but does not depend on n.

Next we discuss the second approach, removing the 1/n factor from the max-
imum likelihood estimate. By this approach, the constructed confidence interval
ĈIn,β is as in (3.3) with σ̂2 = Y TR−1Y = ‖IΨ,Xf‖2NΨ(Ω). From the identity

(3.5), it can be seen that if ‖f −IΨ,Xf‖2NΨ(Ω) converges to zero, Y TR−1Y con-

verges to ‖f‖2NΨ(Ω). However, in general ‖f−IΨ,Xf‖2NΨ(Ω) is not o(1) [18]. There-

fore, we need to impose a stronger condition on f such that ‖f − IΨ,Xf‖2NΨ(Ω)

converges to zero and the corresponding confidence interval is reliable. Define
an integral operator T : L2(Ω) → L2(Ω) by

Tv(x) =

∫
Ω

Ψ(x− y)v(y)dy, v ∈ L2(Ω), x ∈ Ω,
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and

T (L2(Ω)) = {f |f = Tv, v ∈ L2(Ω)}.

If f ∈ T (L2(Ω)), the following lemma states that ‖f − IΨ,Xf‖NΨ(Ω) � PΨ,X .
Note that by Lemma C.2, PΨ,X = o(1); thus ‖f − IΨ,Xf‖2NΨ(Ω) = o(1).

Lemma 3.1. Suppose f ∈ T (L2(Ω)). Then we have

‖f − IΨ,Xf‖NΨ(Ω) ≤ CPΨ,X‖T−1f‖L2(Ω),

where PΨ,X is as in (2.21), and C only depends on Ω.

Lemma 3.1 can be derived directly by the proof of Theorem 11.23 in [64]
and the fact PΨ,X ≤ 1; thus the proof is omitted here. We have the following
theorem, which states that the confidence interval constructed by the second
approach is asymptotically reliable for a fixed function f .

Theorem 3.3. Suppose β ∈ (0, 1) and f ∈ T (L2(Ω)) are fixed, and σε = 0.

Let Ψ = ΨM , where ΨM is as in (3.1). Let ĈIn,β be as in (3.3) but with
σ̂2 = Y TR−1Y . For any fixed sampling scheme X satisfying Condition 3.1,
there exists N > 0 depending on Ψ, Ω, f and the constants in Condition 3.1,
such that for all n ≥ N ,

‖(f − f̂n)/|ĈIn,β |‖L∞(Ω) ≤ C,

where C is a positive constant only depending on f , Ψ, Ω, and β.

Although Theorem 3.3 does not imply that the confidence interval is L∞-
strongly-reliable because the sample size N depends on f , it can provide a
guideline for practitioners to construct confidence intervals for deterministic
functions. Whether the confidence interval with σ̂2 = Y TR−1Y is L∞-strongly-
reliable and the confidence interval with constant σ̂2 is Lp-strongly-reliable (p <
∞) will be pursued in future works.

4. When the observations are noisy

In this section, we consider the case that the observations are corrupted by noise.
We call it stochastic case, because multiple evaluations of the function on the
same measurement location may have different observations. The observations
yk’s are given by (2.1). In the stochastic case, the variance of noise σ2

ε > 0. In
this section, we still assume f ∈ NΨ(Ω) in (2.1) is a fixed function. Under the

misspecified assumption Assumption∗ 2.1, we use f̂n(x) defined by

f̂n(x) = r(x)T (R+ μ̂nIn)
−1Y (4.1)

to predict f(x) on a point x ∈ Ω, where r(x) and R are as in (2.4), and
Y = (y1, ..., yn)

T . Through this section, we assume that the measurement loca-
tions x1, ..., xn are drawn uniformly from the input space Ω, and μ̂n � nα with
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α ∈ R. It is obvious that α should be less than one in order to make meaningful
predictions. In particular, if α = 0, then μ̂n is at a constant rate, which is widely
used in computer experiments [8, 14]. If replicates on the same measurement
location are available, then [3] sets μ̂n to be the sample variance of these repli-
cates, which also converges to a constant as the number of replicates on each
measurement location goes to infinity. It is well-known that if α = d/(2ν+d), f̂n
achieves the optimal convergence rate n− ν

2ν+d under L2 metric [53, 58]. In the
following theorem, we show that if α �= d/(2ν+d), the optimal convergence rate
is not achieved. Recall that we use C,C ′, C1, C2, ... and η, η0, η1, ... to denote the
constants, of which the values can change from line to line, and xk’s are drawn
uniformly from Ω.

Theorem 4.1. Suppose μ̂n � nα with α < 1, and the correlation function Ψ
satisfies Condition 2.1. Let f̂n be given by (4.1). Let X = {x1, ..., xn}, where
x1, ..., xn are uniformly distributed on Ω ⊂ R

d. Under the stochastic case (σε >
0), the following statements are true for all n.
(i) Suppose 1 > α > d

2ν+d . With probability at least 1− C1 exp(−C2n
η1),

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤1

‖f − f̂n‖2L2(Ω) ≥ C3n
−(1−2η) 2ν

2ν+d , (4.2)

where η =
(

(α−1)(2ν+d)
2ν + 1

)
/4 ∈ (0, 1/4). In particular, with probability at least

1− C4 exp(−C5n
η2),

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤1

Eε‖f − f̂n‖2L2(Ω) ≥ C6n
−(1−2η) 2ν

2ν+d . (4.3)

(ii) Suppose α < d
2ν+d . With probability at least 1− C7 exp(−C8n

η3),

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤1

Eε‖f − f̂n‖2L2(Ω) ≥ C9n
η4 , (4.4)

where η4 = min
(
−1

2 , (1− α) d
2ν − 1

)
> − 2ν

2ν+d . In (i) and (ii), the constants

Ci’s and η1, η2, η3 are positive and depending on Ψ, Ω and σ2
ε but not depending

on n, and the expectation is taken with respect to εk’s. The probability of (4.2)
is with respect to X and εk’s, and the probabilities of (4.3) and (4.4) are with
respect to X.

Theorem 4.1 provides non-asymptotic lower bounds on the mean squared
prediction error under different choices of the regularization parameter value. In
particular, it shows that if α �= d/(2ν+ d), the optimal convergence rate cannot
be achieved with high probability, as summarized in the following corollary.

Corollary 4.1. Suppose μ̂n � nα, the correlation function Ψ satisfies Condition
2.1, and α ∈ (−∞, d/(2ν+d))∪ (d/(2ν+d), 1). Let f̂n be given by (4.1). Under
the stochastic case (σε > 0), we have that

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤1

E

(
‖f − f̂n‖2L2(Ω)

)
≥ Cnη
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holds for all n, where η > − 2ν
2ν+d and C > 0 are constants depending on Ψ, Ω,

and σ2
ε .

Corollary 4.1 states that with the uniformly distributed measurement loca-
tions, the value of α other than d/(2ν+d) cannot lead to the optimal predictor.
This is intuitively true because the regularization parameter μ̂n determines the
trade-off between the bias and variance. It is well-known in the literature that
by choosing α = d/(2ν + d), we can achieve the best trade-off between the bias
and variance. If α > d/(2ν + d), the bias becomes large, and the variance is
small. On the other hand, if α < d/(2ν + d), the variance is large, and the
bias is small. In both cases, we cannot achieve the best trade-off between the
bias and variance, and have a slower convergence rate of the prediction error.
To the best of our knowledge, it has not been presented in the literature that

by choosing the regularization parameter value other than the rate n
d

2ν+d , the
optimal rate cannot be achieved.

Next, we consider the uncertainty quantification for f̂n. Recall that for β ∈
(0, 1), at point x ∈ Ω, the confidence interval constructed by Gaussian process
modeling is given by

ĈIn,β(x) = [f̂n(x)− c̃n,β(x; μ̂n), f̂n(x) + c̃n,β(x; μ̂n)],

where

c̃n,β(x; μ̂n) =q1−β/2

√
σ̂2(1− r(x)T (R+ μ̂nIn)−1r(x)), (4.5)

and σ̂2 =Y T (R+ μ̂nIn)
−1Y/n.

The following proposition states that |ĈIn,β(x)| = 2c̃n,β(x; μ̂n) converges to
zero with 0 ≤ α < 1.

Proposition 4.1. Under the conditions of Theorem 4.1 and 0 ≤ α < 1, it holds

that with probability at least 1 − C1 exp(−C2n
η), cn,β(x; μ̂n)

2 ≤ C3n
− 2ν+(α−1)d

2ν

for all n, where C1, C2, C3 and η are positive constants depending on Ψ,Ω, and
σ2
ε .

Proposition 4.1 is a direct result of Lemmas F.6 and F.8 in Appendix F, and
implies limn→∞ supx∈Ω |ĈIn,β(x)| = 0 if 0 ≤ α < 1. Intuitively, when α is large,
the bias is large. Therefore, the confidence interval, which is a reflection of the
variance, is not wide enough to capture the bias. As a consequence, the confi-
dence interval ĈIn,β is not reliable. On the other hand, a smaller regularization
parameter value lets the variance dominate. Therefore, the variance dominates
the confidence interval; thus the confidence interval should be reliable. The re-
sults related to the reliability of the confidence interval ĈIn,β are presented in
the following theorem. In Theorem 4.2, recall that x1, ..., xn are drawn uniformly
from Ω, and |ĈIn,β(x)| = 2c̃n,β(x; μ̂n).

Theorem 4.2. Suppose μ̂n � nα with α < 1, and the correlation function Ψ
satisfies Condition 2.1. Fix β ∈ (0, 1). Under the stochastic case (σε > 0), the
following statements are true for all n.
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(i) Suppose α > d
2ν+d . With probability at least 1− C1 exp(−C2n

η1),

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤1

Eε‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω) ≥ Cnη2 . (4.6)

(ii) Suppose 0 ≤ α < d
2ν+d . With probability at least 1− C3 exp(−C4n

η3),

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤

√
logn

Eε‖f − f̂n‖2L2(Ω) ≤ C ′
Eε‖c̃n,β(·; μ̂n)‖2L2(Ω). (4.7)

Suppose α = d
2ν+d . Then for any increasing positive sequence {an}n≥0 satisfying

limn→∞ an = ∞,

sup
f∈NΨ(Ω),‖f‖2

NΨ(Ω)
≤an

Eε‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω) ≥ C ′′an. (4.8)

(iii) Suppose α < 0. With probability at least 1− C5 exp(−C6n
η5),

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤logn

Eε‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω) ≤ C ′′′. (4.9)

In (4.6)-(4.9), f̂n is as in (4.1) and c̃n,β(·; μ̂n) is as in (4.5). In all state-
ments, the expectation is taken with respect to ε = (ε1, ..., εn)

T , and the con-
stants C ′, C ′′, C ′′′, Ci’s and ηj’s are positive, and depend on Ψ, Ω, β and σ2

ε

but not depending on n. The probabilities are with respect to X.

As direct results of Theorem 4.2, we have the following corollary, which states
the results related to the L2-reliability of the confidence interval ĈIn,β(x).

Corollary 4.2. Suppose μ̂n � nα with α < 1, and the correlation function Ψ
satisfies Condition 2.1. Fix β ∈ (0, 1). Under the stochastic case (σε > 0), the
following statements are true for all n.
(i) Suppose α > d

2ν+d . We have

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤1

E

(
‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω)

)
≥ Cnη1 .

(ii) Suppose 0 ≤ α < d
2ν+d . We have

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤

√
logn

E‖f − f̂n‖2L2(Ω) ≤ C ′
E‖c̃n,β(·; μ̂n)‖2L2(Ω).

Suppose α = d
2ν+d . Then for any increasing positive sequence {an}n≥0 satisfying

limn→∞ an = ∞,

sup
f∈NΨ(Ω),‖f‖2

NΨ(Ω)
≤an

E

(
‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω)

)
≥ C ′′an.
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(iii) Suppose α < 0. We have

sup
f∈NΨ(Ω),‖f‖NΨ(Ω)≤logn

E

(
‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω)

)
≤ C ′′′.

In all statements, the constants C ′, C ′′, C ′′′, Ci’s and η1 are positive, and only
depend on Ψ, Ω, β and σ2

ε but not depending on n.

Note that Theorem 4.2 and Corollary 4.2 do not make any theoretical as-
sertion about L2-weak-reliability under the case 0 ≤ α ≤ d

2ν+d , and L2-strong-

reliability under the case 0 ≤ α < d
2ν+d . As (4.7) indicates, we conjecture

that the constructed confidence interval under the stochastic case is L2-weakly-
reliable if α = d

2ν+d , and is L2-strongly-reliable if 0 ≤ α < d
2ν+d . We also note

that (iii) in Corollary 4.2 does not imply the L2-strong-reliability since we do
not confirm the width of the confidence interval converges to zero when α < 0.

Combining Corollary 4.1 and Corollary 4.2 suggests that if one applies the
prediction and uncertainty quantification procedure from Gaussian process mod-
eling to a deterministic function with noisy observations, the optimality of
the predictor and the L2-strong-reliability of the confidence interval cannot be
achieved at the same time.

As a by-product of Theorem 4.1, we show that if the observations are not
corrupted by noise, and a regularization parameter is used as a counteract of
the potential numerical instability [44], then with uniformly distributed mea-
surement locations, the prediction error can be controlled.

Theorem 4.3. Suppose σε = 0, μ̂n � nα with α < 1, and the correlation
function Ψ satisfies Condition 2.1. Then for all n, with probability at least 1−
C1 exp(−C2n

η1), we have

‖f − f̂n‖2L∞(Ω) ≤ C3 max
(
n(α−1)(1− d

2ν ), n−(1− d
2ν )
)
,

where C1, C2, C3 and η1 are positive constants depending on Ψ, Ω, and f .

Theorem 4.3 is a direct result of Lemma F.8 in Appendix F. Theorem 4.3
states that f̂n defined in (4.1) converges to the true underlying function f , even
if the observations are noiseless. Note that in this theorem, it is allowed that
the regularization parameter value increases as the sample size increases.

5. A numerical example

We present a numerical example to illustrate the results in Section 3, where we
show that the confidence interval is not reliable in the deterministic case.

Recall that Theorem 3.1 states that there exists a function with smoothness
(at least) ν such that the confidence interval is not Lp-reliable. However, such a
function is generally not straightforward to find. In this section, we numerically
illustrate that there exists a function such that the confidence interval is not
Lp-reliable.
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Consider the following function [23],

f(x) = sin(4x)− 0.02t1(x; 1.57, 0.05) (5.1)

for x ∈ [0, 1], where t1(·; Jμ, Jσ) is a Cauchy density with mean Jμ and spread
Jσ. In [23], it is shown that using a Gaussian correlation function yields a poor
coverage rate. In this section we use a Matérn correlation function. The nu-
merical results suggest that with a Matérn correlation function, the Gaussian
process model does not provide an Lp-reliable confidence interval. As in Section
3, we compute

‖(f − f̂n)/|ĈIn,β |‖Lp(Ω),

where f is as in (5.1), f̂n is as in (3.2), ĈIn,β is as in (3.3), and p = 4. We use
a Matérn correlation function as in (3.1) with ν = 3.5. It can be checked that
f ∈ NΨM

([0, 1]). We consider the 95% confidence interval constructed by the
Gaussian process modeling. Thus, β = 0.05. We set the number of measurement
locations as n = 20k, k = 2, ..., 20, and the measurement locations are grid
points. We use

E =
1

500

500∑
j=1

|f(xj)− f̂n(xj)|4

|ĈIn,β(xj)|4
(5.2)

to approximate ‖(f−f̂n)/|ĈIn,β |‖4L4(Ω), where xj ’s are the first 500 points in the

Halton sequence [42]. This should give a good approximation since the points
are dense enough. We add a jitter 10−8 to stabilize the computation of the
matrix inverse in (3.2) and (3.3). The results are shown in Panel 1 of Figure 1.

We use the following approach to numerically show the rate of divergence of
the ratio of the prediction error divided by the width of the confidence interval.
By Theorem 3.1, we have

sup
‖g‖NΨ(Ω)≤1

‖(g − ĝn)/|ĈIn,β |‖4L4(Ω) ≥ Cn. (5.3)

Taking logarithm on both sides of (5.3), we have

log

(
sup

‖g‖NΨ(Ω)≤1

‖(g − ĝn)/|ĈIn,β |‖4L4(Ω)

)
≥ logn+ logC. (5.4)

We regress

log

⎛⎝ 1

500

500∑
j=1

|f(xj)− f̂n(xj)|4

|ĈIn,β(xj)|4

⎞⎠
on logn. If the regression coefficient is larger than one, it indicates that the
results in Theorem 3.1 hold. The results are shown in Panel 2 of Figure 1.
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Fig 1. Panel 1: Plot of E in (5.2) with σ̂2 = Y TR−1Y/n. Panel 2: The regression line of
log E on logn. The dashed line shows the regression line. Each point denotes log E for each
number of measurement locations. The regression coefficient is 1.548. Panel 3: Plot of log E
with σ̂2 = C. Panel 4: Plot of log E with σ̂2 = Y TR−1Y .

Next, we consider two approaches for constructing confidence intervals de-
scribed in Section 3.2. Similarly, we compute

1

500

500∑
j=1

|f(xj)− f̂n(xj)|4

|ĈIn,β(xj)|4
, (5.5)

with σ̂2 = C and σ̂2 = Y TR−1Y in ĈIn,β , respectively, where C is a constant

satisfying ‖f‖2NΨ([0,1]) ≤ C. In this example, we set C = 2Ỹ T R̃−1Ỹ , where

Ỹ = (f(x̃1), ..., f(x̃1000))
T , R̃ = (Ψ(x̃j − x̃k))jk, and x̃j ’s are 1000 grid points.

Since Ỹ T R̃−1Ỹ should be a good approximation of ‖f‖2NΨ([0,1]), C should be a

valid upper bound of ‖f‖2NΨ([0,1]). The results are shown in Panels 3 and 4 of
Figure 1.
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It can be seen from Panel 1 of Figure 1 that E in (5.2) increases as the number
of measurement locations increases. From Panel 2 of Figure 1, we can see that
the regression line fits the data relatively well. The regression coefficient is 1.548,
which is larger than one. This gives us an empirical confirmation that our results
in Theorem 3.1 are valid, and there exists a function such that the confidence
interval is not Lp-reliable. As indicated by Figure 1, we believe the results in
Theorem 3.1 can be improved. In Panel 3, although the ratio increases, the
largest value of the ratio is only about 10−4. Panels 3 and 4 indicate that the
two approaches in Section 3.2 can provide reliable confidence intervals. It can be
seen that the confidence interval derived by setting σ̂2 = C may be conservative
(the ratio is very small). Therefore, other uncertainty quantification methods
may be considered if the underlying function is known to be in some reproducing
kernel Hilbert space.

6. Conclusions and discussion

In this work, we consider the prediction and uncertainty quantification of the
Gaussian process model applied to a fixed function in the corresponding re-
producing kernel Hilbert space from a frequentist perspective. The model is
misspecified under Assumption∗ 2.1. We consider two cases, the deterministic
case, in which the observations are noiseless, and the stochastic case, where the
observations are corrupted by noise. In both cases, we assume that the variance
is estimated by maximum likelihood estimation, according to Assumption∗ 2.1.
In the deterministic case, we show that the constructed confidence interval in
the Gaussian process model is not Lp-weakly-reliable for p > 2, and is not L2-
strongly-reliable. We also present two reliable confidence intervals under some
scenarios. In the stochastic case, the regularization parameter value is assumed
to be at a certain rate. We show that the predictor derived by the Gaussian
process modeling is not optimal and/or the constructed confidence interval is
not L2-strongly-reliable. These results indicate that the optimal predictor and
L2-strong-reliability cannot be achieved at the same time if the Gaussian pro-
cess model is misspecified. As by-products, we obtain several lower bounds on
the mean squared prediction error under different choices of the regularization
parameter value.

In the Gaussian process model, it is often assumed that there are some un-
known parameters, and maximum likelihood estimation or Bayesian methods,
are used to estimate these parameters, even if the Gaussian process model is
misspecified. Prediction performance of the Gaussian process model with max-
imum likelihood estimation under misspecification has been studied by [49, 7].
In [49], they show for periodic functions, under some situations, the misspecified
Gaussian process model with maximum likelihood estimation can still work well
in terms of prediction. If the underlying truth is indeed a Gaussian process, us-
ing a misspecified correlation function and maximum likelihood estimation may
not have desired prediction performance, as suggested in [7].

In addition to prediction, uncertainty quantification is another important
problem in computer experiments. Because the Gaussian process model has a
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probabilistic structure, models based on Gaussian process modeling are usually
validated via confidence intervals. In order to test the performance of these
models, typically, several simulations are conducted. In some literature, the
test function is selected to be a deterministic function with a closed form. In
these cases, the Gaussian process model is usually misspecified, i.e., the function
may not be a sample path of the corresponding Gaussian process. However, an
imposed pointwise confidence interval is still constructed and used to quantify
the uncertainty. It has been observed that Gaussian process models often have
poor coverage of their confidence intervals [23, 30, 69]. There is no theoretical
result explaining this phenomenon from a frequentist perspective to the best
of our knowledge. Our results provide some insights on explaining the poor
coverage of the confidence interval, and a better understanding of the model
misspecification in Gaussian process modeling.

Several statistical inference methods have been studied if the confidence in-
terval is not derived directly from the Gaussian process modeling. Most of them
are from a Bayesian perspective. For example, in [48, 74], credible intervals are
constructed and analyzed for Gaussian process models (or particularly Brownian
motion). Additionally, [70, 71] derive finite sample bounds on frequentist cover-
age errors of Bayesian credible intervals for Gaussian process models. Therefore,
one can also use other inference methods besides the confidence interval in the
Gaussian process modeling.

Several problems are not considered in this work. First, we only consider
uniformly distributed measurement locations in the stochastic case, where fixed
designs are not considered. Second, we only consider the case that the regu-
larization parameter value is predetermined with a certain rate. We could not
confirm similar results if we use maximum likelihood estimation to estimate the
regularization parameter value, or select parameter values using other criteria
as in [33]. Also, we do not consider using maximum likelihood estimation to
estimate the parameters of the correlation function Ψ. Therefore, a thorough
investigation of applying maximum likelihood estimation under misspecification
is needed. Third, as discussed in Section 2.3, Definition 2.1 is a necessary con-
dition. One possible way to improve this definition is to restrict the Lp-norm of
the ratio such that it is bounded away from zero.

Appendix A: Notation

We use 〈·, ·〉n to denote the empirical inner product, which is defined by

〈f, g〉n =
1

n

n∑
k=1

f(xk)g(xk)

for two functions f and g, and let ‖g‖2n = 〈g, g〉n be the empirical norm of
function g. In particular, let

〈ε, f〉n =
1

n

n∑
k=1

εkf(xk)



5040 W. Wang

for a function f , where ε = (ε1, . . . , εn)
T . Let a ∨ b = max(a, b) for two real

numbers a, b. We use H(·,F , ‖ · ‖) and HB(·,F , ‖ · ‖) to denote the entropy
number and the bracket entropy number of class F with the (empirical) norm
‖ · ‖, respectively. Without loss of generality, we assume Vol(Ω) = 1 in the
Appendix.

Appendix B: Proof of Proposition 2.1

By (2.7) and (2.5), it can be seen that |CIn,β(x)| = 2q1−β/2

√
Var[Z(x)|Z] for

a point x. By Fubini’s theorem,

E‖(Z − I
(1)
X Z)/|CIn,β |‖pLp(Ω) =

∫
x∈Ω

E(Z(x)− I
(1)
X Z(x))p

C1(
√
Var[Z(x)|Z])p

dx

=

∫
x∈Ω

2p/2Γ(p+1
2 )√

π

(
√

Var[Z(x)|Z])p

C1(
√

Var[Z(x)|Z])p
dx

= C2,

where the second equality can be derived by the calculation of pth moment of
normal distribution. See [60].

Appendix C: Proof of Theorem 3.1

The proof of Theorem 3.1 relies on approximation numbers. The nth approxi-
mation number of the embedding id : Hν(Ω) → Lp(Ω), denoted by bn, is defined
by

bn = inf{‖id− L‖, L ∈ L(Hν(Ω), Lp(Ω)), rank(L) < n}, (C.1)

where L(Hν(Ω), Lp(Ω)) is the family of all bounded linear mappings Hν(Ω) →
Lp(Ω), ‖ · ‖ is the operator norm, and rank(L) is the dimension of the range of
L. In (C.1), we define rank(L) = 0 if L(f) = 0 for all f ∈ Hν(Ω). Therefore,
it can be seen that ‖id‖ = b1 ≥ b2 ≥ ... > 0. Lemma C.1 states a property of
approximation numbers [18].

Lemma C.1. Suppose p ≥ 2. The approximation number bn defined in (C.1)
satisfies that for all n ∈ N,

c1n
− ν

d+ 1
2− 1

p ≤ bn ≤ c2n
− ν

d+ 1
2− 1

p , (C.2)

where c1 and c2 are two positive constants depending on Ω, ν and p.

Lemma C.2 is a direct result of Theorem 5.14 of [66], which provides an upper
bound on PΨM ,X defined in (2.21).

Lemma C.2. Let Ω be compact and convex with a positive Lebesgue measure;
ΨM be a Matérn correlation function given by (3.1). Suppose Condition 3.1
holds for a sampling scheme X . Then there exist constants c, c1 depending only
on Ω, X , and ν in (3.1), such that PΨM ,X ≤ cn− ν

d+ 1
2 provided that n− ν

d+ 1
2 ≤ c1

and X ∈ X .
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Lemma C.3 is a direct result of Corollary 10.13 in [64] and the extension the-
orem [15]. Lemma C.3 states that the reproducing kernel Hilbert space NΨ(Ω)
coincides with the Sobolev space with smoothness ν Hν(Ω), for correlation func-
tions satisfying Condition 2.1.

Lemma C.3. Suppose Condition 2.1 is satisfied. We have the following.

1. The reproducing kernel Hilbert space NΨ(R
d) coincides with the Sobolev

space with smoothness ν Hν(Rd), and the norms ‖·‖NΨ(Rd) and ‖·‖Hν(Rd)

are equivalent.
2. Suppose Ω is compact and convex. Then the reproducing kernel Hilbert

space NΨ(Ω) coincides with the Sobolev space with smoothness ν Hν(Ω),
and the norms ‖ · ‖NΨ(Ω) and ‖ · ‖Hν(Ω) are equivalent.

Now we are ready to prove Theorem 3.1.

By Lemma C.1, there exists a function φn ∈ Hν(Ω) satisfying ‖φn‖Hν(Ω) = 1
such that

c1n
− 2ν

d +1− 2
p ≤ ‖φn − IΨ,Xφn‖2Lp(Ω),

since IΨ,X is a rank n linear operator. By Lemma C.2, (3.5), and Lemma C.3,

we have for sufficiently large N such that N− ν
d+ 1

2 ≤ c1 and for all n ≥ N ,

ĉn,β(x)
2 =

C1

n
Y TR−1Y (1− r(x)TR−1r(x)) ≤ C1

n
Y TR−1Y P2

ΨM ,X

≤ C2

n
‖φn‖2NΨ(Ω)n

− 2ν
d +1 ≤ C3

n
‖φn‖2Hν(Ω)n

− 2ν
d +1 = C3n

− 2ν
d

for any x ∈ Ω, where Y = (φn(x1), ..., φn(xn))
T . Let f in (3.6) be equal to φn.

Therefore, we have

‖(f − f̂n)/ĉn,β‖2Lp(Ω) ≥ C4‖f − f̂n‖2Lp(Ω)n
2ν
d ≥ C5n

1− 2
p ,

which finishes the proof of (3.6).

The case p = 2 can be proved similarly. The only difference is that we let
f = anφn such that ‖anφn‖Hν(Ω) = an.

Appendix D: Proof of Theorem 3.2

We first show that (3.8) holds. Plugging ĉn,β(x) = q1−β/2PΨ,X(x), it suffices to
show ∣∣∣∣∣f(x)− f̂n(x)

PΨ,X(x)

∣∣∣∣∣ ≤ 1

holds for all f with ‖f‖NΨ(Ω) ≤ 1 and x ∈ Ω. This is a direct result of (2.20).
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The second inequality (3.9) can be shown by a similar approach as in the
proof of Theorem 3.1. By Lemma C.1, there exists a function φn ∈ Hν(Ω)
satisfying ‖φn‖Hν(Ω) = 1 such that

c1n
− 2ν

d +1 ≤ ‖φn − IΨ,Xφn‖2L∞(Ω).

By Lemma C.2, we have

ĉn,β(x)
2 ≤ C1‖φn‖2NΨ(Ω)n

− 2ν
d +1 ≤ C2‖φn‖2Hν(Ω)n

− 2ν
d +1 = C2n

− 2ν
d +1

for any x ∈ Ω and sufficiently large n such that n− ν
d+ 1

2 ≤ c1. Letting f = anφn,
we have

‖(f − f̂n)/ĉn,β‖2L∞(Ω) ≥ C3an,

which finishes the proof.

Appendix E: Proof of Theorem 3.3

By plugging ĉn,β(x) = q1−β/2

√
Y TR−1Y PΨ,X(x), it suffices to show that there

exists N > 0 such that for all n > N ,∣∣∣∣∣ f(x)− f̂n(x)√
Y TR−1Y PΨ,X(x)

∣∣∣∣∣ ≤ C.

By (2.20) and Lemma 3.1, for sufficiently large n, it can be seen that∣∣∣∣∣ f(x)− f̂n(x)√
Y TR−1Y PΨ,X(x)

∣∣∣∣∣
2

≤
‖f‖2NΨ(Ω)

Y TR−1Y
=

‖f‖2NΨ(Ω)

‖f‖2NΨ(Ω) − ‖f − IΨ,Xf‖2NΨ(Ω)

≤
‖f‖2NΨ(Ω)

‖f‖2NΨ(Ω) − C2P 2
Ψ,X‖T−1f‖2L2(Ω)

≤
‖f‖2NΨ(Ω)

‖f‖2NΨ(Ω) − C1n− 2ν
d +1‖T−1f‖2L2(Ω)

≤ 1

2
,

where the first inequality is by (3.5), and the last inequality follows from n− 2ν
d +1

converges to 0. Then we finish the proof.

Appendix F: Proof of Theorem 4.1

Recall that in the stochastic case, we assume x1, ..., xn are drawn uniformly
from Ω. Before we show the proof of Theorem 4.1, we first present some lemmas
used in this section. Note that the proof of Lemma F.1 is based on Lemma 8.4
of [58]; thus it is omitted here. Lemmas F.2 and F.3 are Theorem 10.2 of [58]
and Theorem 2.1 of [59], respectively.
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Lemma F.1. Suppose ε1, ..., εn are independent and identically normally dis-
tributed variables. Then for all t > C, with probability at least 1−C1 exp(−C2t

2),

sup
g∈NΨ(Ω)

|〈ε, g〉n|
‖g‖1−

d
2ν

n ‖g‖
d
2ν

NΨ(Ω)

≤ tn− 1
2 .

Lemma F.2. Suppose f ∈ Hν(Ω) and μ̂−1
n = OP (n

− d
2ν+d ). Then we have

‖f − f̂n‖n = OP (μ̂
1
2
nn

− 1
2 ∨ n

d−2ν
4ν μ̂

− d
4ν

n ),

‖f̂n‖NΨ(Ω) = OP (1 ∨ n
d
4ν μ̂

− 2ν+d
4ν

n ),

where f̂n is defined as in (4.1).

Lemma F.3. Let R := supf∈F ‖f‖L2(Ω),K := supf∈F ‖f‖L∞(Ω), where F is a
function class. Then for all t > 0, with probability at least 1− exp(−t),

sup
f∈F

∣∣∣∣‖f‖2n − ‖f‖2L2(Ω)

∣∣∣∣ ≤ C1

(
2RJ∞(K,F) +RK

√
t√

n
+

4J2
∞(K,F) +K2t

n

)
,

where C1 is a constant, and

J2
∞(z,F) = C2

2 inf
δ>0

E

[
z

∫ 1

δ

√
H(uz/2,F , ‖ · ‖L∞(Ω))du+

√
nzδ

]2
, (F.1)

with C2 another constant.

The following lemma is a Bernstein-type inequality for a single function g.
See, for example, [38].

Lemma F.4. Suppose Xi, i = 1, . . . , n are uniformly distributed on Ω. Let
Zi = (‖g‖2L2(Ω)/Vol(Ω)− g(Xi)

2)/‖g‖2NΨ(Ω) for a function g ∈ NΨ(Ω). Suppose

|Zi| ≤ b for some constant b > 0. For all t > 0, we have

P

(
1

n

n∑
i=1

Zi ≥ t

)
≤ exp

[
− nt2/2

E(Z2
1 ) + bt/3

]
,

which is the same as

P

(‖g‖2L2(Ω)/Vol(Ω)

‖g‖2NΨ(Ω)

− ‖g‖2n
‖g‖2NΨ(Ω)

≥ t

)
≤ exp

[
− nt2/2

E(Z2
1 ) + bt/3

]
.

Lemma F.5. Assume for class G, supg∈G ‖g‖L∞(Ω) ≤ K < 1, and the bracket

entropy HB(δn/Vol(Ω),G, ‖ · ‖L∞(Ω)) ≤ nδ2n
1200Vol(Ω)K2 , and nδ2n → ∞, where

Vol(Ω) denotes the volume of Ω and 0 < δn < 1. Then we have

P

(
inf

‖g‖L2(Ω)≥2δn,g∈G

‖g‖2n
‖g‖2L2(Ω)

< η1

)
≤ C1 exp(−C2nδ

2
n/K

2),
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and

P

(
sup

‖g‖L2(Ω)≥2δn,g∈G

‖g‖2n
‖g‖2L2(Ω)

> η2

)
≤ C3 exp(−C4nδ

2
n/K

2),

for some constants η1, η2 > 0 and Ci’s only depending on Ω.

Lemma F.6. For any μ � nα with 0 ≤ α < 1, with probability at least 1 −
C exp(−nη),

μ

n
Y T (R+ μIn)

−1Y � σ2
ε ,

where Y = (y1, ..., yn)
T with yk defined in (2.1), and R is as in (2.4). Further-

more, if μ−1 = OP (n
− d

2ν+d ), then

μ

n
Y T (R+ μIn)

−1Y → σ2
ε

in probability.

Lemma F.7. Suppose A,B and C ∈ R
n×n are positive definite matrices. We

have

tr((A+B)(A+B + C)−1) ≥ tr(A(A+ C)−1),

and

tr((A+B)2(A+B + C)−2) ≥ tr(A2(A+ C)−2).

Lemma F.8. Suppose f ∈ NΨ(Ω) and 0 ≤ α < 1. With probability at least
1− C1 exp(−C2n

η1), we have

(f(x)− r(x)T (R+ μ̂nIn)
−1f(X))2 ≤ (1− r(x)T (R+ μ̂nIn)

−1r(x))‖f‖2NΨ(Ω),

and

1− r(x)T (R+ μ̂nIn)
−1r(x) � n(α−1)(1− d

2ν ),

where r(x) and R are as in (2.4), μ̂n � nα, and f(X) = (f(x1), ..., f(xn))
T .

We first state the intuition behind the proof. Direct calculation shows that

Eε‖f − f̂n‖2L2(Ω)

=Eε

∫
Ω

(f(x)− r(x)T (K + μ̂nIn)
−1f(X)− r(x)T (K + μ̂nIn)

−1ε)2dx

=σ2
ε

∫
Ω

r(x)T (K + μ̂nIn)
−2r(x)dx︸ ︷︷ ︸

variance

+

∫
Ω

(f(x)− r(x)T (K + μ̂nIn)
−1f(X))2dx︸ ︷︷ ︸

bias

.
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If μ̂n is large (α > d
2ν+d ), the bias dominates. Therefore, to obtain a lower

bound of the mean-squared prediction error for the case α > d
2ν+d , we only

need to obtain a lower bound of the bias term. On the other hand, if μ̂n is small
(α < d

2ν+d ), we only need to obtain a lower bound for the variance term.

Now we present the proof of Theorem 4.1. We first consider the case α > d
2ν+d .

By the proof of Lemma F.6, it can be seen that

f̂n = argmin
g∈NΨ(Ω)

(
1

n

n∑
i=1

(yi − g(xi))
2 +

μ̂n

n
‖g‖2NΨ(Ω)

)
. (F.2)

In the rest of proof we will write f̂n as f̂ for simplification. Plugging (2.1) into
the objective function of (F.2), we have

1

n

n∑
i=1

(yi − f̂(xi))
2 +

μ̂n

n
‖f̂‖2NΨ(Ω)

=‖f − f̂‖2n + 2〈ε, f − f̂〉n +
1

n

n∑
i=1

ε2i +
μ̂n

n
‖f̂‖2NΨ(Ω). (F.3)

By Lemma F.1,

|〈ε, f − f̂〉n| ≤ tn− 1
2 ‖f − f̂‖1−

d
2ν

n ‖f − f̂‖
d
2ν

NΨ(Ω),

with probability at least 1 − C1 exp(−C2t
2). By Lemma F.2 and the triangle

inequality,
‖f − f̂‖NΨ(Ω) ≤ ‖f‖NΨ(Ω) + ‖f̂‖NΨ(Ω) ≤ C3.

Therefore, (F.3) can be lower bounded by

1

n

n∑
i=1

(yi − f̂(xi))
2 +

μ̂n

n
‖f̂‖2NΨ(Ω)

≥‖f − f̂‖2n +
1

n

n∑
i=1

ε2i +
μ̂n

n
‖f̂‖2NΨ(Ω) − 2C3tn

− 1
2 ‖f − f̂‖1−

d
2ν

n . (F.4)

By Lemma F.2 and the interpolation inequality, we have ‖f̂‖NΨ(Ω) ≤ C4, and

‖f̂‖L∞(Ω) ≤ c‖f̂‖1−
d
2ν

L2(Ω)‖f̂‖
d
2ν

Hν(Ω) ≤ c1‖f̂‖NΨ(Ω) ≤ (c1 ∨ 1)C4 ≤ C5.

Let F = Hν(C5), where H
ν(C5) denotes the ball in the Sobolev space Hν(Ω)

with radius C5. Thus, the bracket entropy number can be bounded by [1]

HB(δn,F , ‖ · ‖L∞(Ω)) ≤ C6

(
1

δn

)d/ν

,

and f̂ ∈ F . Hence, J2
∞(C5,F) in (F.1) can be bounded by

J2
∞(C5,F) = C2

7 inf
δ>0

E

[
C5

∫ 1

δ

√
H(uC5/2,F , ‖ · ‖L∞(Ω))du+

√
nzδ

]2
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≤ C2
8

[
C5

∫ 1

0

(
1

uC5

)d/(2ν)

du

]2
= C2

9C
2
5

(
1

C5

)d/ν

≤ C10. (F.5)

By Lemma F.3, for all t > 0, with probability at least 1− exp(−t),

sup
f∈F

∣∣∣∣‖f‖2n − ‖f‖2L2(Ω)

∣∣∣∣ ≤ C11

(
2R

√
C10 +RC5

√
t√

n
+

4C10 + C2
5 t

n

)
,

where R = supf∈F ‖f‖L2(Ω). Choosing t = nη, where η =
(

(α−1)(2ν+d)
2ν + 1

)
/4,

for sufficient large n, we have that the right-hand side of (F.4) can be lower
bounded by

‖f − f̂‖2n +
μ̂n

n
‖f̂‖2NΨ(Ω) − 2C3n

ηn− 1
2 ‖f − f̂‖1−

d
2ν

n +
1

n

n∑
i=1

ε2i

≥‖f − f̂‖2L2(Ω) +
μ̂n

n
‖f̂‖2NΨ(Ω)

− C12n
(η−1)/2R− C12n

η−1 − C13n
ηn− 1

2 ‖f − f̂‖1−
d
2ν

L2(Ω)

− C13n
ηn− 1

2n(η−1)
(
1− d

2ν

)
/4R

(
1− d

2ν

)
− C13n

ηn− 1
2n(η−1)

(
1− d

2ν

)
/2 +

1

n

n∑
i=1

ε2i ,

(F.6)

where we also apply Jensen’s inequality.

Case 1: If 2C3n
ηn− 1

2 ‖f− f̂‖1−
d
2ν

L2(Ω) ≤ ‖f− f̂‖2L2(Ω), then we have ‖f− f̂‖L2(Ω) �
n(2η−1) ν

2ν+d .

Case 2: If 2C3n
ηn− 1

2 ‖f − f̂‖1−
d
2ν

L2(Ω) > ‖f − f̂‖2L2(Ω), we have ‖f − f̂‖L2(Ω) <

C14n
(2η−1) ν

2ν+d . Consider function class G = {g : ‖g‖L2(Ω) ≤ C14n
(2η−1) ν

2ν+d } ∩
F , we have f − f̂ ∈ G and RG = supg∈G ‖g‖L2(Ω) ≤ C14n

(2η−1) ν
2ν+d . By (F.6),

we have for sufficient large n,

‖f − f̂‖2n +
μ̂n

n
‖f̂‖2NΨ(Ω) − 2C3n

ηn− 1
2 ‖f − f̂‖1−

d
2ν

n

≥‖f − f̂‖2L2(Ω) +
μ̂n

n
‖f̂‖2NΨ(Ω) − C12n

(η−1)/2RG − C12n
η−1 − C13n

ηn− 1
2R

1− d
2ν

G

− C13n
ηn− 1

2n(η−1)
(
1− d

2ν

)
/4R

(
1− d

2ν

)
G − C13n

ηn− 1
2n(η−1)

(
1− d

2ν

)
/2

≥‖f − f̂‖2L2(Ω) +
μ̂n

n
‖f̂‖2NΨ(Ω) − C15n

ηn− 1
2n(2η−1) ν

2ν+d (1− d
2ν ). (F.7)

Let

f1 = argmin
g∈NΨ(Ω)

‖f − g‖2L2(Ω) +
μ̂n

2n
‖g‖2NΨ(Ω). (F.8)
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Therefore, by (F.2), we have

‖f − f̂‖2n + 2〈ε, f − f̂〉n +
μ̂n

n
‖f̂‖2NΨ(Ω)

≤‖f − f1‖2n + 2〈ε, f − f1〉n +
μ̂n

n
‖f1‖2NΨ(Ω),

which, together with (F.4) and Lemma F.1, implies

‖f − f̂‖2n +
μ̂n

n
‖f̂‖2NΨ(Ω) − 2C3n

ηn− 1
2 ‖f − f̂‖1−

d
2ν

n

≤‖f − f1‖2n + 2C16n
ηn− 1

2 ‖f − f1‖
1− d

2ν
n +

μ̂n

n
‖f1‖2NΨ(Ω). (F.9)

By (F.7) and (F.9), we have

‖f − f̂‖2L2(Ω) +
μ̂n

n
‖f̂‖2NΨ(Ω) − C15n

ηn− 1
2n(2η−1) ν

2ν+d (1− d
2ν )

≤‖f − f1‖2n + 2C16n
ηn− 1

2 ‖f − f1‖
1− d

2ν
n +

μ̂n

n
‖f1‖2NΨ(Ω), (F.10)

By (F.8), we have

‖f − f1‖2L2(Ω) +
μ̂n

2n
‖f1‖2NΨ(Ω) ≤

μ̂n

2n
‖f‖2NΨ(Ω) ≤ C17

μ̂n

n
. (F.11)

By Lemma F.4, it can be shown that with probability at least 1−exp(−C18n
η),

‖f − f1‖2n + 2C16n
η1n− 1

2 ‖f − f1‖
1− d

2ν
n +

μ̂n

n
‖f1‖2NΨ(Ω)

≤‖f − f1‖2L2(Ω) +
μ̂n

n
‖f1‖2NΨ(Ω)

+ C17n
ηn− 1

2 ‖f − f1‖
1− d

2ν

L2(Ω) + C17n
ηn− 1

2n(η−1)
(
1− d

2ν

)
/2 + C17n

η−1

≤‖f − f1‖2L2(Ω) +
μ̂n

n
‖f1‖2NΨ(Ω)

+ C17n
ηn− 1

2 ‖f − f1‖
1− d

2ν

L2(Ω) + 2C17n
ηn− 1

2n(η−1)
(
1− d

2ν

)
/2. (F.12)

Combining (F.10) and (F.12) yields

‖f − f̂‖2L2(Ω) +
μ̂n

n
‖f̂‖2NΨ(Ω) − C15n

ηn− 1
2n(2η−1) ν

2ν+d (1− d
2ν )

≤‖f − f1‖2L2(Ω) +
μ̂n

n
‖f1‖2NΨ(Ω)

+ C17n
ηn− 1

2 ‖f − f1‖
1− d

2ν

L2(Ω) + 2C17n
ηn− 1

2n(η−1)
(
1− d

2ν

)
/2. (F.13)

By (F.8), we have

‖f − f1‖2L2(Ω) +
μ̂n

2n
‖f1‖2NΨ(Ω) ≤ ‖f − f̂‖2L2(Ω) +

μ̂n

2n
‖f̂‖2NΨ(Ω),
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which implies

2‖f − f1‖2L2(Ω) +
μ̂n

n
‖f1‖2NΨ(Ω) ≤ 2‖f − f̂‖2L2(Ω) +

μ̂n

n
‖f̂‖2NΨ(Ω). (F.14)

Combining (F.11), (F.13) and (F.14), we have for sufficient large n,

‖f − f̂‖2L2(Ω) ≥‖f − f1‖2L2(Ω) − C15n
ηn− 1

2n(2η−1) ν
2ν+d (1−

d
2ν )

− C17n
ηn− 1

2 ‖f − f1‖
1− d

2ν

L2(Ω) − 2C17n
ηn− 1

2n(η−1)
(
1− d

2ν

)
/2

≥‖f − f1‖2L2(Ω) − C15n
ηn− 1

2n(2η−1) ν
2ν+d (1− d

2ν )

− C17n
ηn− 1

2n

(
1− d

2ν

)
(α−1)/2 − 2C17n

ηn− 1
2n(η−1)

(
1− d

2ν

)
/2

≥‖f − f1‖2L2(Ω) − 4C15n
ηn− 1

2n(2η−1) ν
2ν+d (1− d

2ν ), (F.15)

where the last inequality is because (2η − 1) 2ν
2ν+d > α− 1. Let

f̃ = argmin
g∈NΨ(Rd)

‖f − g‖2L2(Rd) +
μ̂n

C18n
‖g‖2NΨ(Rd), (F.16)

where C18 is a constant determined later. By (F.8) and the definition of ‖·‖2NΨ(Ω),
we have

‖f − f1‖2L2(Ω) +
μ̂n

2n
‖f1‖2NΨ(Ω) ≤ ‖f − f̃‖2L2(Ω) +

μ̂n

2n
‖f̃‖2NΨ(Ω)

≤ ‖f − f̃‖2L2(Rd) +
μ̂n

2n
‖f̃‖2NΨ(Rd). (F.17)

By (F.16) and the extension theorem (we still use f1 to denote the extension of
f1 for notational simplicity),

‖f − f̃‖2L2(Rd) +
μ̂n

C18n
‖f̃‖2NΨ(Rd)

≤‖f − f1‖2L2(Rd) +
μ̂n

C18n
‖f1‖2NΨ(Rd)

≤C19

C18
(C18‖f − f1‖2L2(Ω) +

μ̂n

n
‖f1‖2NΨ(Ω))

≤C19

C18

(
(C18 − 1)‖f − f1‖2L2(Ω) + ‖f − f̃‖2L2(Ω) +

μ̂n

n
‖f̃‖2NΨ(Rd)

)
, (F.18)

where C19 > 1 is a constant. Therefore, combining (F.17) and (F.18) yields

‖f − f1‖2L2(Ω) ≥
1

C18 − 1

(
(1− C19

C18
)‖f − f̃‖2L2(Rd) −

μ̂n(C19 − 1)

C18n
‖f̃‖2NΨ(Rd)

)
(F.19)

Next, we calculate ‖f − f̃‖2L2(Rd) and ‖f̃‖2NΨ(Rd) with respect to f .
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By Fourier transform and (F.16),

‖f − f̃‖2L2(Rd) +
μ̂n

C18n
‖f̃‖2NΨ(Rd)

=

∫
Rd

|F(f)(ω)−F(f̃)(ω)|2dω +
μ̂n

C18n

∫
Rd

|F(f̃)(ω)|2(1 + |ω|2)νdω

=

∫
Rd

|F(f)(ω)−F(f̃)(ω)|2 + μ̂n

C18n
|F(f̃)(ω)|2(1 + |ω|2)νdω

=

∫
Rd

μ̂n

C18n
(1 + |ω|2)ν

1 + μ̂n

C18n
(1 + |ω|2)ν

|F(f)(ω)|2dω,

where

F(f̃)(ω) =
F(f)(ω)

1 + μ̂n

C18n
(1 + |ω|2)ν

.

Therefore,∫
Rd

|F(f)(ω)−F(f̃)(ω)|2dω =

∫
Rd

|F(f)(ω)|2
( μ̂n

C18n
(1 + |ω|2)ν)2

(1 + μ̂n

C18n
(1 + |ω|2)ν)2

dω,

(F.20)

and

μ̂n

C18n

∫
Rd

|F(f̃)(ω)|2(1 + |ω|2)νdω =

∫
Rd

|F(f)(ω)|2
μ̂n

C18n
(1 + |ω|2)ν

(1 + μ̂n

C18n
(1 + |ω|2)ν)2

dω.

(F.21)

Let h(|ω|) = μ̂n

C18n
(1 + |ω|2)ν and C18 = C2

19. Plugging (F.20) and (F.21) into
(F.19), we have

‖f − f1‖2L2(Ω)

≥ 1

C18 − 1

∫
Rd

|F(f)(ω)|2h(|ω|)
(1 + h(|ω|))2

(
C18 − C19

C18
h(|ω|)− (C19 − 1)

)
dω

≥ 1

C19 + 1

∫
Rd

|F(f)(ω)|2h(|ω|)
(1 + h(|ω|))2 (h(|ω|)/C19 − 1)dω

=
1

C19 + 1

∫
{ω:h(|ω|)≤2C19}

|F(f)(ω)|2h(|ω|)
(1 + h(|ω|))2 (h(|ω|)/C19 − 1)dω

+
1

C19 + 1

∫
{ω:h(|ω|)>2C19}

|F(f)(ω)|2h(|ω|)
(1 + h(|ω|))2 (h(|ω|)/C19 − 1)dω

≥ 1

C19 + 1

∫
{ω:h(|ω|)≤2C19}

|F(f)(ω)|2h(|ω|)
(1 + h(|ω|))2 (h(|ω|)/C19 − 1)dω

+
1

4(C19 + 1)

∫
{ω:h(|ω|)>2C19}

|F(f)(ω)|2
2C19

dω
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≥− 1

C19 + 1

∫
{ω:h(|ω|)≤2C19}

|F(f)(ω)|2dω

+
1

4(C19 + 1)

∫
{ω:h(|ω|)>2C19}

|F(f)(ω)|2
2C19

dω. (F.22)

Now we can build our function f . Let

F(f)(ω) =

⎧⎨⎩
0 h(|ω|) ≤ 2C19 − δn,

g1(|ω|) 2C19 − δn ≤ h(|ω|) ≤ 2C19,
(1 + |ω|2)−ν/2−d/2−1 h(|ω|) > 2C19,

where g1 and δn are chosen such that f is continuous and

1

C19 + 1

∫
{ω:2C19−δn≤h(|ω|)≤2C19}

|F(f)(|ω|)|2dω

<
1

8(C19 + 1)

∫
{ω:h(|ω|)>2C19}

|F(f)(|ω|)|2
2C19

.

Then we normalize f such that ‖f‖NΨ(Rd) = 1. Therefore, by (F.22), direct
calculation shows that

‖f − f1‖2L2(Ω) ≥ C20
μ̂n

n
.

By (F.15) and (2η − 1) ν
2ν+d (1−

d
2ν ) + η − 1/2 < α− 1, we have

‖f − f̂‖2L2(Ω) ≥ C21
μ̂n

n
.

Note that (2η − 1) 2ν
2ν+d > α − 1, which leads to a contradiction of Case 2 as n

increases.
Using this constructed f , it can be seen that

Eε‖f − f̂‖2L2(Ω) ≥ C6n
−(1−2η) 2ν

2ν+d .

Therefore, we finish the proof of the case α > d
2ν+d .

Next, we prove the case α < d
2ν+d . We consider the case 0 ≤ α < d

2ν+d .
By Fubini’s theorem,

E‖f − f̂n‖2L2(Ω)

=E

∫
Ω

(f(x)− r(x)T (R+ μ̂nIn)
−1f(X)− r(x)T (R+ μ̂nIn)

−1ε)2dx

=σ2
ε

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x)dx+

∫
Ω

(f(x)− r(x)T (R+ μ̂nIn)
−1f(X))2dx

≥σ2
ε

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x)dx := σ2

ε I. (F.23)
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We consider a discrete version of I. Let I1 = tr(R2(R + μ̂nIn)
−2). Let p =

�(n/μ̂n)
d/(2ν)�, where �·� is the floor function, and p1 = min{p, C1n

1/2}. Let
Ψ1 = 1√

n
(ϕ1(X), ..., ϕp1(X)), and Ψ2 = 1√

n
(ϕp1+1(X), ϕp1+2(X), ...), where

ϕk(X) = (ϕk(x1), ..., ϕk(xn))
T for k = 1, 2, ..., and ϕk’s are as in (L.1). Let

Λ1 = diag(nλ1, ..., nλp) and Λ2 = diag(nλp+1, ...), where λk’s are as in (L.1).
Therefore, R =

∑∞
k=1 λiϕk(X)ϕk(X)T = Ψ1Λ1Ψ

T
1 +Ψ2Λ2Ψ

T
2 .

By Lemma F.7,

I1 ≥tr((Ψ1Λ1Ψ
T
1 )

2(Ψ1Λ1Ψ
T
1 + μ̂nIn)

−2)

=

p1∑
i=1

(
λi(Ψ1Λ1Ψ

T
1 )

λi(Ψ1Λ1ΨT
1 ) + μ̂n

)2

, (F.24)

where λi(Ψ1Λ1Ψ
T
1 ) denote the i-th eigenvalue of Ψ1Λ1Ψ

T
1 . Note that the i-th

eigenvalue λi(Ψ1Λ1Ψ
T
1 ) = λi(Ψ

T
1 Ψ1Λ1) for i = 1, ..., p, because if ui is eigenvec-

tor corresponding to i-th eigenvalue of Ψ1Λ1Ψ
T
1 , then

Ψ1Λ1Ψ
T
1 ui = λiui ⇒ ΨT

1 Ψ1Λ1Ψ
T
1 ui = λiΨ

T
1 ui.

Therefore, (F.24) implies

I1 ≥tr((Λ1Ψ
T
1 Ψ1)

2(Λ1Ψ
T
1 Ψ1 + μ̂nIn)

−2)

=tr(Λ2
1(Λ1 + μ̂n(Ψ

T
1 Ψ1)

−1)−2).

By Lemma L.2, it can be shown that λmin(Ψ
T
1 Ψ1) ≥ η1 with probability at least

1−C22 exp(−C23n
η2), where the constant in the expression of p1 is chosen such

that the condition of Lemma F.5 is satisfied. Combining this with Lemma L.1,
we have I1 ≥ C24p1.

Notice that for any u = (u1, ..., un)
T ∈ R

n,

1− 2

n∑
i=1

uiΨ(x− xi) +

n∑
i=1

n∑
j=1

uiujΨ(xi − xj) + μ̂n‖u‖22 ≥ μ̂n‖u‖22.

Plugging u = (R+ μ̂nIn)
−1r(x), we have

μ̂nr(x)
T (R+ μ̂nIn)

−2r(x) ≤ 1− r(x)T (R+ μ̂nIn)
−1r(x). (F.25)

By Lemma F.8, with probability at least 1−C25 exp(−C26n
η2), 1− r(x)T (R+

μ̂nIn)
−1r(x) ≤ C27

(
μ̂n

n

) 2ν−d
2ν

.

Let H1 = {h|h(x)2 = r(x)T (R + μ̂nIn)
−2r(x),with xi ∈ Ω, i = 1, ..., n}.

Let H = H1

⋂
{‖h‖2L∞(Ω) ≤ C27

(
μ̂n

n

) 2ν−d
2ν

/μ̂n}. It can be seen from (F.25) that

with probability at least 1−C25 exp(−C26n
η3),H is true. It can be also seen that

‖h1‖2n = 1
n tr(R

2(R+ μ̂nIn)
−2) for some h1(x) = r(x)T (R+ μ̂nIn)

−2r(x) ∈ H1.
By Lemma F.3, we have with another probability at least 1−exp(−nη3) with

η3 = (1− α) 2ν−d
2d ,

sup
h∈H1

∣∣∣∣‖h‖2n − ‖h‖2L2(Ω)

∣∣∣∣ ≤ C7n
− 1

2+((α−1) 2ν−d
2ν )(2− d

2ν ),
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where J2
∞(

√
C27

(
μ̂n

n

) 2ν−d
4ν

/μ̂
1/2
n ,F) can be calculate similarly. Therefore, we

have

‖h‖2L2(Ω) ≥ ‖h‖2n − C27n
− 1

2+((α−1) 2ν−d
2ν )(2− d

2ν ). (F.26)

Note

‖h‖2n = I1/n ≥ C4p1/n ≥ C8 min{n−1+(1−α) d
2ν , n−1/2}

>n− 1
2+((α−1) 2ν−d

2ν )(2− d
2ν )

with probability at least 1−C22 exp(−C23n
η2). Therefore, combining all proba-

bilities together and by (F.26), with probability at least 1−C28 exp(−C29n
η4),

we have ‖h‖2L2(Ω) ≥ C30p1/n, which finishes the proof of the case α ∈ [0, d
2ν+d ).

If α < 0, then from (F.23) it can be seen that the error is larger than choosing
α = 0. Thus, we complete the proof.

Appendix G: Proof of Theorem 4.2

In the proof of Theorem 4.2, we hide all the probabilities with the form 1 −
C exp(−C ′n−η) for the conciseness of the proof.
Case 1: α > d

2ν+d .
By (F.23) and Lemma F.6, we have

Eε‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω) ≥ C1

Eε‖f − f̂n‖2L2(Ω)

Eε‖c̃n,β(·; μ̂n)‖2L2(Ω)

≥C2

Eε

∫
Ω
μ̂n(f(x)− r(x)T (R+ μ̂nIn)

−1f(X)− r(x)T (R+ μ̂nIn)
−1ε)2dx∫

Ω
(1− r(x)T (R+ μ̂nIn)−1r(x))dx

=C2

∫
Ω
μ̂n(r(x)

T (R+ μ̂nIn)
−2r(x) + (f(x)− r(x)T (R+ μ̂nIn)

−1f(X))2)dx∫
Ω
1− r(x)T (R+ μ̂nIn)−1r(x)dx

≥C3n
(1−α)(1− d

2ν )μ̂n

∫
Ω

(f(x)− r(x)T (R+ μ̂nIn)
−1f(X))2dx,

where r(x) and R are as in (2.4), and f(X) = (f(x1), ..., f(xn))
T . The first

inequality is true because of the Cauchy-Schwarz inequality and that f − f̂n is
normal. The last inequality follows Lemma F.8. If α > d

2ν+d , then by the proof of

Theorem 4.1, we have n(1−α)(1− d
2ν )μ̂n

∫
Ω
(f(x)−r(x)T (R+μ̂nIn)

−1f(X))2 � nβ

with β > 0 for f ∈ NΨ(Ω) constructed in the proof of Theorem 4.1, which
finishes the proof of Case 1.
Case 2: 0 ≤ α < d

2ν+d .
First, we prove (4.7). By the proof of Theorem 4.1 and Lemma F.6, it can be

shown that

μ̂nEε‖c̃n,β(·; μ̂n)‖2L2(Ω) � n(α−1)(1− d
2ν ).
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Noting that f − f̂n is normal, we have

μ̂nEε‖f − f̂n‖2L2(Ω)

≤C1μ̂n

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x) + (f(x)− r(x)T (R+ μ̂nIn)

−1f(X))2dx

≤2C1μ̂n

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x) + (f(x)− r(x)TR−1f(X))2

+ (r(x)TR−1f(X)− r(x)T (R+ μ̂nIn)
−1f(X))2dx

≤2C1μ̂n

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x) + (1− r(x)TR−1r(X)) log n

+ (r(x)TR−1f(X)− r(x)T (R+ μ̂nIn)
−1f(X))2dx

≤2C1μ̂n

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x) + (1− r(x)TR−1r(x)) log n

+ (r(x)TR−1f(X)− r(x)T (R+ C2n
d

2ν+d In)
−1f(X))2dx

≤2C1

∫
Ω

(1− r(x)T (R+ μ̂nIn)
−1r(x)) + μ̂n(1− r(x)TR−1r(x)) log n

+ μ̂n(r(x)
TR−1f(X)− r(x)T (R+ C2n

d
2ν+d In)

−1f(X))2dx, (G.1)

where the first inequality is by Fubini’s theorem, the second inequality is by
the Cauchy-Schwarz inequality, the third inequality is by (2.20) and the fact

‖f‖2NΨ(Ω) ≤ logn, the fourth inequality is by μ̂n ≤ C2n
d

2ν+d , and the fifth

inequality is by (F.25). By Lemma C.2 and Lemma F.8, (G.1) can be further
bounded by

μ̂nEε‖f − f̂n‖2L2(Ω)

≤C2n
(α−1)(1− d

2ν ) + nα− ν
d+1/2 logn

+ μ̂n

∫
Ω

(r(x)TR−1f(X)− r(x)T (R+ C2n
d

2ν+d In)
−1f(X))2dx.

Let f1(x) = (r(x)TR−1f(X) − r(x)T (R + C2n
d

2ν+d In)
−1f(X))/

√
logn. Then

‖f1‖2NΨ(Ω) ≤ 1, which implies either ‖f1‖2L2(Ω) ≤ C3n
− 2ν

2ν+d or the conditions of
Lemma F.5 are satisfied. If the later happens, by Lemma F.5, it can be shown
that

‖f1‖2L2(Ω) ≤η2‖f1‖2n
≤η2(‖r(x)TR−1f(X)− r(x)T (R+ C2n

d
2ν+d In)

−1f(X)‖2n
+ C2n

− 2ν
2ν+d ‖r(x)T (R+ C2n

d
2ν+d In)

−1f(X)‖2NΨ(Ω))

≤C4n
− 2ν

2ν+d .

By noticing that nα− ν
d+1/2 logn + n− 2ν

2ν+dnα logn ≤ C5n
(α−1)(1− d

2ν ), we finish
the proof of the first part.
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For the second part, by the standard minimax theory in nonparametric regres-

sion, there exists a function f such that Eε‖f − f̂n‖2L2(Ω) ≥ C6n
− 2ν

2ν+d ‖f‖2NΨ(Ω),
which implies

Eε‖(f − f̂n)/c̃n,β(·; μ̂n)‖2L2(Ω) ≥ C7

Eε‖f − f̂n‖2L2(Ω)

Eε‖c̃n,β(·; μ̂n)‖2L2(Ω)

≥C8n
(1−α)(1− d

2ν )μ̂nEε‖f − f̂n‖2L2(Ω)

≥C9an.

Case 3: α < 0.
By Lemma F.6, we have

Eε‖(f − f̂n)/c̃n(·, β; μ̂n)‖2L2(Ω)

≤C10μ̂n

∫
Ω

r(x)T (R+ μ̂nIn)
−2r(x) + (f(x)− r(x)T (R+ μ̂nIn)

−1f(X))2

(1− r(x)T (R+ μ̂nIn)−1r(x))
dx

≤C10 + C10μ̂n

∫
Ω

(f(x)− r(x)T (R+ μ̂nIn)
−1f(X))2

(1− r(x)T (R+ μ̂nIn)−1r(x))
dx

≤C10 + C10μ̂n logn.

The second inequality is true because of (F.25), and the third inequality is true
because of Lemma F.8. Note μ̂n logn → 0, which finishes the proof of the case
α < 0.

Appendix H: Proof of Lemma F.5

The idea of the proof is to use the bracket entropy number. By the definition of
the bracket entropy number, we can find finite functions gs’s such that the ball
with small radius centered on gs’s can cover the function class G. By showing the
results hold for these gs’s, we can show the results hold for all function g ∈ G.

Take g ∈ G, and suppose that sδn ≤ ‖g‖L2(Ω) ≤ (s+1)δn, where s ∈ {2, 3, ...}.
Let −K ≤ gL ≤ g ≤ gU ≤ K, and ‖gU − gL‖L∞(Ω) ≤ δn/Vol(Ω), for functions

gL and gU . For 0 < C ≤ 1
4Vol(Ω) , by Cauchy-Schwarz inequality, we have

g2L ≤ 2g2/C + 2C(g − gL)
2 ≤ 2g2/C + 2Cδ2n/Vol(Ω)

2,

which implies

2‖g‖2n ≥ C‖gL‖2n − 2C2δ2n/Vol(Ω)
2.

The inequality ‖g‖2n/‖g‖2L2(Ω) < η1 implies

‖gL‖2n − ‖gL‖2L2(Ω)/Vol(Ω)

≤2η1‖g‖2L2(Ω)/C − ‖gL‖22/Vol(Ω) + 2Cδ2n/Vol(Ω)
2



Inference of a deterministic function 5055

≤2η1(s+ 1)2δ2n/C − (s− 1)2δ2n/Vol(Ω) + 2Cδ2n/Vol(Ω)
2

≤2η1(s+ 1)2δ2n/C − (s− 1)2δ2n/Vol(Ω) + 2Cδ2n/Vol(Ω)
2.

By choosing appropriate C and η1 (the choice only depends on Vol(Ω)), we
obtain

‖gL‖2n − ‖gL‖2L2(Ω)/Vol(Ω) ≤ −1

2
(s− 1)2δ2n/Vol(Ω). (H.1)

Note that ∣∣∣∣‖gL‖2n − ‖gL‖2L2(Ω)/Vol(Ω)

∣∣∣∣ ≤ K2 (H.2)

and

E(g2L − ‖gL‖2L2(Ω)/Vol(Ω))
2 ≤ 4K2‖gL‖2L2(Ω)/Vol(Ω) ≤ 4K2(s+ 2)2δ2n/Vol(Ω).

(H.3)

Combining (H.1), (H.2) and (H.3) and Lemma F.4, we have

P

(
‖gL‖2L2(Ω)/Vol(Ω)− ‖gL‖2n ≥ 1

2Vol(Ω)
(s− 1)2δ2n

)
≤ exp

[
−

n 1
8Vol(Ω)2 (s− 1)4δ4n

4K2(s+ 2)2δ2n/Vol(Ω) +K2 1
6Vol(Ω) (s− 1)2δ2n

]

≤ exp

[
−

n 1
8Vol(Ω) (s− 1)4δ4n

4K2(s+ 2)2δ2n +K2 1
6 (s− 1)2δ2n

]
≤ exp

[
− 1

8Vol(Ω)

n(s− 1)2δ2n
36K2 +K2 1

6

]
≤ exp

[
− 1

8Vol(Ω)

n(s− 1)2δ2n
37K2

]
≤ exp

[
− n(s− 1)2δ2n

296Vol(Ω)K2

]
. (H.4)

Therefore, taking all g ∈ G yields

P

(
inf

‖g‖L2(Ω)≥2δn

‖g‖2n
‖g‖2L2(Ω)

< η1

)
≤

∞∑
s=2

exp

[
HB(δn/Vol(Ω),G′, ‖ · ‖L∞(Ω))−

n(s− 1)2δ2n
300Vol(Ω)K2

]
.

Since HB(δn/Vol(Ω),G′, ‖ · ‖L∞(Ω)) ≤ nδ2n
1200Vol(Ω)K2 , it can be seen that

P

(
inf

‖g‖L2(Ω)≥2δn

‖g‖2n
‖g‖2L2(Ω)

< η1

)
≤

∞∑
s=2

exp

[
− n(s− 1)2δ2n

1200Vol(Ω)K2

]
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≤ C1 exp(−C2nδ
2
n/K

2)

for some constants C1 and C2 only related to Vol(Ω), which finishes the proof
of the first part.

For C0 ≤ 1
4Vol(Ω) , it can be verified that

g2 ≤ 2g2R/C0 + 2C0(g − gR)
2 ≤ 2g2R/C0 + 2C0δ

2
n/Vol(Ω)

2,

which yields

‖g‖2n ≤ 2‖gR‖2n/C0 + 2C0δ
2
n/Vol(Ω)

2.

The inequality ‖g‖2n/‖g‖2L2(Ω) > η2 implies

‖gR‖2n − ‖gR‖2L2(Ω)/Vol(Ω) ≥
1

2
η2C0s

2δ2n − ‖gR‖2L2(Ω)/Vol(Ω)− C2
4δ

2
n/Vol(Ω)

2

≥ 1

2
η2C0s

2δ2n − (s− 1)2δ2n/Vol(Ω)− C2
0δ

2
n/Vol(Ω)

2.

By choosing appropriate C0 and η2, we have

‖gR‖2n − ‖gR‖2L2(Ω)/Vol(Ω) ≥
1

4
(s− 1)2δ2n/Vol(Ω). (H.5)

Note that ∣∣∣∣‖gR‖2n − ‖gR‖2L2(Ω)/Vol(Ω)

∣∣∣∣ ≤ K2 (H.6)

and

E(g2R − ‖gR‖2L2(Ω)/Vol(Ω))
2 ≤ 4K2‖gR‖2L2(Ω)/Vol(Ω) ≤ 4K2(s+ 2)2δ2n/Vol(Ω).

(H.7)

By combining (H.5), (H.6) and (H.7) and Lemma F.4, similar to (H.4), we obtain

P

(‖gR‖2L2(Ω)

Vol(Ω)
− ‖gR‖2n ≥ 1

4Vol(Ω)
(s− 1)2δ2n

)
≤ exp

[
− n(s− 1)2δ2n

600Vol(Ω)K2

]
.

Taking all g ∈ G leads to

P

(
inf

‖g‖L2(Ω)≥2δn

‖g‖2n
‖g‖2L2(Ω)

< η2

)
≤

∞∑
s=2

exp

[
HB(δn/Vol(Ω),G′, ‖ · ‖L∞(Ω))−

n(s− 1)2δ2n
600Vol(Ω)K2

]
.

Since HB(δn/Vol(Ω),G′, ‖ · ‖L∞(Ω)) ≤ nδ2n
1200Vol(Ω)K2 , we have

P

(
inf

‖g‖L2(Ω)≥2δn

‖g‖2n
‖g‖2L2(Ω)

< η2

)
≤

∞∑
s=2

exp

[
− n(s− 1)2δ2n

1200Vol(Ω)K2

]
≤ C3 exp(−C4δ

2
n/K

2)

for some constants C3 and C4 related to Vol(Ω), which finishes the proof of the
second part.
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Appendix I: Proof of Lemma F.6

Notice that

μ

n
Y T (R+ μI)−1Y = min

Ŷ

1

n

n∑
i=1

(yi − ŷi)
2 +

μ

n
Ŷ TR−1Ŷ , (I.1)

which can be verified by taking minimization of the objective function inside
the right-hand side of (I.1). Let û = R−1Ŷ . By plugging û into the right-hand
side of (I.1), we have

min
Ŷ

1

n

n∑
i=1

(yi − ŷi)
2 +

μ

n
Ŷ TR−1Ŷ = min

û

1

n
(Y −Rû)T (Y −Rû) +

μ

n
ûTRû.

(I.2)

Therefore, by the representer theorem and (2.1), the right-hand side of (I.2) is
the same as

min
f̂∈NΨ(Ω)

(
1

n

n∑
i=1

(yi − f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω)

)
. (I.3)

Notice the objective function in (I.3) can be written as

1

n

n∑
i=1

(yi − f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω)

=
1

n

n∑
i=1

(f(xi)− f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω) +

2

n

n∑
i=1

εi(f(xi)− f̂(xi)) +
1

n

n∑
i=1

ε2i .

(I.4)

If μ−1 = OP (n
− d

2ν+d ), by Lemma F.2 and the proof of Lemma F.2, it can be
shown that (I.4) converges to σ2

ε .

If μ = OP (n
d

2ν+d ), then for any f̂ , we have

1

n

n∑
i=1

(yi − f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω) ≤

1

n

n∑
i=1

(yi − f̂(xi))
2 + Cn− 2ν

2ν+d ‖f̂‖2NΨ(Ω).

Applying the results in the case of μ−1 = OP (n
− d

2ν+d ), we obtain

μ

n
Y T (R+ μI)−1Y ≤ 2σ2

ε ,

with probability at least 1−C1 exp(−C2n
η). The lower bound can be obtained

by

1

n

n∑
i=1

(yi − f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω)
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=
1

n

n∑
i=1

(f(xi)− f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω) +

2

n

n∑
i=1

εi(f(xi)− f̂(xi)) +
1

n

n∑
i=1

ε2i

≥− 1

n

n∑
i=1

(f(xi)− f̂(xi))
2 +

μ

n
‖f̂‖2NΨ(Ω) +

1

2n

n∑
i=1

ε2i

≥− 1

n

n∑
i=1

(f(xi)− f̂(xi))
2 − μ

n
‖f̂‖2NΨ(Ω) +

1

2n

n∑
i=1

ε2i ≥ σ2
ε /4,

with probability tending to one, where the first inequality is because of the
Cauchy-Schwarz inequality. The last inequality is true because ‖f − f̂‖2n and
μ
n‖f̂‖2NΨ(Ω) converge to zero [58, 24]. This completes the proof.

Appendix J: Proof of Lemma F.7

We only present the proof of the first inequality. The second inequality can be
proved similarly. By direct calculation, it can be shown that

tr((A+B)(A+B + C)−1) ≥ tr(A(A+ C)−1)

⇔tr(C(A+B + C)−1) ≤ tr(C(A+ C)−1)

⇔tr(C(A+B + C)−1B(A+ C)−1) ≥ 0,

which is true since A,B and C are positive definite.

Appendix K: Proof of Lemma F.8

Notice that at point x, for any u = (u1, ..., un)
T ∈ R

n,

(f(x)−
n∑

j=1

ujf(xj))
2

=

∣∣∣∣ 1

(2π)d

∫
Rd

( n∑
j=1

uje
−ixT

j ω − e−ixTω

)
F(f)(ω)dω

∣∣∣∣2

≤ 1

(2π)d

∫
Rd

∣∣∣∣ n∑
j=1

uje
−ixT

j ω − e−ixTω

∣∣∣∣2F(Ψ)(ω)dω
1

(2π)d

∫
Rd

|F(f)(ω)|2
F(Ψ)(ω)

dω

≤
(

1

(2π)d

∫
Rd

∣∣∣∣ n∑
j=1

uje
−ixT

j ω − e−ixTω

∣∣∣∣2F(Ψ)(ω)dω + μ̂n‖u‖22
)
‖f‖2N (Ω)

=

(
1− 2

n∑
i=1

uiΨ(x− xi) +

n∑
i=1

n∑
j=1

uiujΨ(xi − xj) + μ̂n‖u‖22
)
‖f‖2N (Ω),

where the first inequality is because of the Cauchy-Schwarz inequality. Plugging
u = (R+ μ̂nIn)

−1r(x) finishes the proof of the first part.
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Now we prove the second part of this lemma.
Consider function g(t) = Ψ(x− t). By the interpolation inequality, we have

1− r(x)T (R+ μ̂nIn)
−1r(x) ≤ ‖g(t)− r(x)T (R+ μ̂nIn)

−1r(t)‖L∞(Ω)

≤C1‖g(t)− r(x)T (R+ μ̂nIn)
−1r(t)‖1−

d
2ν

L2(Ω)

× ‖g(t)− r(x)T (R+ μ̂nIn)
−1r(t)‖

d
2ν

NΨ(Ω). (K.1)

By direct calculation, it can be seen that

‖g(t)− r(x)T (R+ μ̂nIn)
−1r(t)‖2NΨ(Ω) ≤ 1− r(x)T (R+ μ̂nIn)

−1r(x). (K.2)

Combining (K.1) and (K.2) leads to

1− r(x)T (R+ μ̂nIn)
−1r(x) ≤C2‖g(t)− r(x)T (R+ μ̂nIn)

−1r(t)‖
4ν−2d
4ν−d

L2(Ω) . (K.3)

Let f1(t) = r(x)T (R + μ̂nIn)
−1r(t). It can be seen by the representer theorem

that

f1 = argmin
h∈NΨ(Ω)

‖g − h‖2n +
μ̂n

n
‖h‖2NΨ(Ω).

Take δn = n− 4ν−d
8ν . Direct calculation shows that if α < 1

2 , either 1− r(x)T (R+

μ̂nIn)
−1r(x) � n(α−1)(1− d

2ν ), or the conditions of Lemma F.5 hold. If α ≥ 1
2 ,

then either ‖g − f1‖22 ≥ C3n
2(α−1) for some constant C3, which implies the

conditions of Lemma F.5 hold, or

1− r(x)T (R+ μ̂nIn)
−1r(x) ≤C2‖g(t)− r(x)T (R+ μ̂nIn)

−1r(t)‖
4ν−2d
4ν−d

2

≤C4n
(α−1) 4ν−2d

4ν−d � n(α−1)(1− d
2ν ).

Thus, combining these two cases, either the conditions of Lemma F.5 hold, or
1 − r(x)T (R + μ̂nIn)

−1r(x) � n(α−1)(1− d
2ν ). If the conditions of Lemma F.5

holds, then with probability at least 1− C7 exp(−C8n
η1),

‖g − f1‖2L2(Ω)

≤η2‖g − f1‖2n

=η2(‖g − f1‖2n +
μ̂n

n
‖f1‖2NΨ(Ω) −

μ̂n

n
‖f1‖2NΨ(Ω))

≤η2
μ̂n

n
(1− r(x)T (R+ μ̂nIn)

−1R(R+ μ̂nIn)
−1r(x))

=η2
μ̂n

n
(1− r(x)T (R+ μ̂nIn)

−1r(x)

+ r(x)T (R+ μ̂nIn)
−1r(x)− r(x)T (R+ μ̂nIn)

−1R(R+ μ̂nIn)
−1r(x))

=η2
μ̂n

n
(1− r(x)T (R+ μ̂nIn)

−1r(x) + μ̂nr(x)
T (R+ μ̂nIn)

−2r(x))
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≤2η2
μ̂n

n
(1− r(x)T (R+ μ̂nIn)

−1r(x)), (K.4)

where the last inequality is by (F.25). Plugging (K.4) into (K.3) yields

1− r(x)T (R+ μ̂nIn)
−1r(x) � n(α−1)(1− d

2ν ),

which finishes the proof.

Appendix L: Properties of eigenvalues

Lemma L.1 states the asymptotic rate of the eigenvalues of Ψ(·− ·). Lemma L.2
states the minimum eigenvalue of ΨT

1 Ψ1, where Ψ1 will be defined later.
Since Ψ(·−·) is a positive definite function, by Mercer’s theorem, there exists

a countable set of positive eigenvalues λ1 ≥ λ2 ≥ ... > 0 and an orthonormal
basis for L2(Ω) {ϕk}k∈N such that

Ψ(x− y) =

∞∑
k=1

λkϕk(x)ϕk(y), (L.1)

where the summation is uniformly and absolutely convergent.

Lemma L.1. Let λk be as in (L.1). Then, λk � k−2ν/d.

Proof. Let T be the embedding operator of NΨ(Ω) into L2(Ω), and T ∗ be the
adjoint of T . By Proposition 10.28 in [64],

T ∗v(x) =

∫
Ω

Ψ(x− y)v(y)dy, v ∈ L2(Ω), x ∈ Ω.

By Lemma C.3, Hν(Ω) coincide with NΨ(Ω). By Theorem 5.7 in [17], T and
T ∗ have the same singular values. By Theorem 5.10 in [17], for all k ∈ N,
ak(T ) = μk(T ), where ak(T ) denotes the approximation number for the embed-
ding operator (as well as the integral operator), and μk denotes the singular
value of T . By Theorem in Section 3.3.4 in [18], the embedding operator T has
approximation numbers satisfying

C3k
−ν/d ≤ ak ≤ C4k

−ν/d, ∀k ∈ N, (L.2)

where C3 and C4 are two positive numbers. By Theorem 5.7 in [17], T ∗Tϕk =
μ2
kϕk, and T ∗Tϕk = T ∗ϕk = λkϕk, we have λk = μ2

k. By (L.2), λk � k−2ν/d

holds.

Lemma L.2. Define two matrices Ψ1 = 1√
n
(ϕ1(X), ..., ϕp1(X)), and Ψ2 =

1√
n
(ϕp1+1(X), ϕp1+2(X), ...), where ϕk’s are eigenfunctions as in (L.1) and

ϕk(X) = (ϕk(x1), ..., ϕk(xn))
T for k = 1, 2, .... With probability at least 1 −

C1e
−C2n

η1
,

λmin(Ψ
T
1 Ψ1) ≥ η,

for any μ = O(
√
n), where p = �(n/μ)d/(2ν)�, p1 = min{p, C3n

1/2}, η, η1, C1, C2

are positive constants.
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Proof. Consider uTΨT
1 Ψ1u, where u = (u1, ..., up)

T ∈ R
p with ‖u‖2 = 1. Let

Q = {g : g =
∑p

i=1 uiϕi}. Since ϕi’s are orthonormal, ‖g‖L2(Ω) = 1. For

any g ∈ Q, by Lemma L.1, ‖g‖2Hν(Ω) ≤ C1

λp1
≤ C2p

2ν/d
1 . By the interpolation

inequality,

‖g‖L∞(Ω) ≤ C3‖g‖
d
2ν

Hν(Ω) = C4p
1/2
1 .

We shall use Lemma F.5 to link ‖g‖n to ‖g‖L2(Ω). First we need to check the
conditions of Lemma F.5 hold. Since ‖g‖L2(Ω) = 1, it suffices to check the

entropy condition. Let ρ = C
1/2
2 p

ν/d
1 . Consider class Q′ = {g : g = f

ρ , f ∈ Q}.
Since Q′ ⊂ Hν(Ω), there exists a constant C5 such that

HB(δn/Vol(Ω),F ′, ‖ · ‖L∞(Ω)) ≤ C5

(
1

δn

)d/ν

.

The entropy condition is satisfied if

nδ2+d/ν
n /K2 > C6, (L.3)

where δn = 1/ρ, K ≤ C4p
1/2
1 /ρ, and C6 is some constant depending on C1–C5

and Ω. By direct calculations, if p1 ≤ C7
√
n for some constant C7, (L.3) is

satisfied.
By Lemma F.5,

uTΨT
1 Ψ1u =

1

n

n∑
i=1

( p∑
j=1

ujϕj(Xi)

)2

= ‖g‖2n ≥ η, (L.4)

with probability at least 1− C8 exp(−C9n
η1) for some constant η and η1. This

finishes the proof.
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