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Abstract: We generalize Catoni’s M-estimator, put forward in [3] by Ca-
toni under finite variance assumption, to the case in which distributions
can have finite α-th moment with α ∈ (1, 2). Our approach, inspired by the
Taylor-like expansion developed in [4], is via slightly modifying the influence
function ϕ in [3]. A deviation bound is established for this generalized
estimator, and coincides with that in [3] as α ↑ 2. Experiment shows that
our M-estimator performs better than the empirical mean, the smaller the
α is, the better the performance will be. As an application, we study an �1
regression considered by Zhang et al. [19], who assumed that samples have
finite variance, under finite α-th moment assumption with α ∈ (1, 2).
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1. Introduction

LetX1, · · · , Xn be a sequence of samples drawn from a distribution, its empirical
mean estimator is defined by

X̄ =
X1 + · · ·+Xn

n
.

The empirical mean X̄ has an optimal minimax mean square error among all
mean estimators, but its deviation is suboptimal for heavy tail distribution [3].

Catoni put forward in his seminal paper [3] a new M-estimator for heavy-
tailed samples with finite variances, by solving the following equation about
θ:

n∑
i=1

ϕ (β(Xi − θ)) = 0

with

− log

(
1− x+

|x|2
2

)
≤ ϕ(x) ≤ log

(
1 + x+

|x|2
2

)
,

where β > 0 is a parameter to be tuned and ϕ is non-decreasing and called
influence function. The deviation performance of this estimator is much better
than X̄. Catoni’s idea has been broadly applied to many research problems, see
for instance [1, 15, 5, 6, 7, 11, 12, 17]. The finite variance assumption plays
an important role in Catoni’s analysis, but it rules out many interesting distri-
butions such as Pareto law [10, 16, 4, 8], which describes the distributions of
wealth and social networks.

We generalize Catoni’s M-estimator to the case in which samples can have
finite α-th moment with α ∈ (1, 2). Our approach is by replacing Catoni’s
influence function with the one satisfying

− log

(
1− x+

|x|α
α

)
≤ ϕ(x) ≤ log

(
1 + x+

|x|α
α

)
.

The choice of the new ϕ is inspired by the Taylor-like expansion developed in
[4]. By an argument very similar to Catnoi’s, we obtain a deviation upper bound
which coincides with that in [3] as α ↑ 2 (see Theorem 2.1 and Remark 2.1 be-
low). Experiment shows that our generalized M-estimator performs better than
the empirical mean estimator, the smaller the α is, the better the performance
will be.

Catoni’s argument for establishing the M-estimator in [3] can be divided into
two steps. The one is to find two deterministic values θ− and θ+, both depending
on a parameter β to be tuned later, such that the M-estimator θ̂ falls between
θ− and θ+ with high probability. The θ− and θ+ were obtained explicitly by
solving two quadratic algebraic equations B−(θ) = 0 and B+(θ) = 0 respec-
tively, whereas in our setting the corresponding equations are not quadratic
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and the solutions do not have explicit forms. Alternatively, we first prove that
B−(θ) = 0 has a largest solution, while B+(θ) = 0 has a smallest one, and then
use them as a replacement of θ− and θ+ in our analysis. The other is to show
that as one chooses β > 0 sufficiently small, the difference between θ− and θ+
can be as small as we wish, whence the estimator can be localized in a small
interval with high probability. As in [3], we also need to choose a sufficiently
small β (depending on α) to make our estimator fall in a small interval whose
two end points are the above special solutions. As α ↑ 2, our result coincides
with that in [3].

As an application of our generalized estimator, we consider the �1- regression
with heavy-tailed samples studied by Zhang et al. [19] who assumed the samples
have finite variance. The linear regression considered in [19] aims to find the
minimizer θ∗ of the optimization problem as follows:

min
θ∈Θ

R�1(θ) with R�1(θ) = E(x,y)∼Π

[
|xT θ − y|

]
,

where Π is a probability distribution, and Θ ⊆ R
d is the set in which θ∗

is located. In practice, Π is not known, one usually draws a data set T =
(x1, y1), · · · , (xn, yn) from Π and considers the following empirical optimiza-
tion problem:

min
θ∈Θ

R̂�1(θ) with R̂�1(θ) =
1

n

n∑
i=1

|xT
i θ − yi|.

The theoretical guarantees for bounded or sub-Gaussian distributed Π have
been discussed in many papers, see for instance [2, 9, 18].

Inspired by Catoni’s work, Zhang et al. considered the case that Π is heavy-
tailed with finite variance and proposed a new minimization problem

min
θ∈Θ

R̂ϕ,�1(θ) with R̂ϕ,�1(θ) =
1

nβ

n∑
i=1

ϕ
(
β|yi − xT

i θ|
)
,

where ϕ is the same as that in [3] and β > 0 is a parameter to be tuned. A new
estimator was established from this minimization problem and an error bound
was obtained. When the sample size n tends to infinity, this error bound tends
to zero.

Thanks to the analysis of Section 2 below, we extend the results in [19] to
the case in which samples can have finite α-th moment with α ∈ (1, 2), our
approach is by replacing the original ϕ with the one in Section 2 and solving
the corresponding minimization problem. We establish a similar error bound for
our estimator and prove that it tends to zero as n → ∞.

The paper is organized as follows. In Section 2, we give the deviation analysis
for the generalized M-estimator and show that the M-estimator has a perfor-
mance better than the empirical mean. In Section 3, we state the upper bounds
and the corresponding lower bounds on the empirical mean. In the last sec-
tion, under finite α-th moment assumption with α ∈ (1, 2), we discuss the
�1-regression of heavy-tailed distributions.
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2. A generalized Catoni’s M-estimator and its deviation analysis

Let (Xi)
n
i=1 be a sequence of i.i.d. samples drawn from some unknown proba-

bility distribution Π on R. We assume that there exists some α ∈ (1, 2) such
that

E|X1|α < ∞.

Further denote

m = E[X1], v = E|X1 −m|α.

Inspired by Catoni’s idea in [3] and the Taylor-like expansion develop in [4],
we consider a non-decreasing function ϕ : R → R such that

− log

(
1− x+

|x|α
α

)
≤ ϕ(x) ≤ log

(
1 + x+

|x|α
α

)
, ∀x ∈ R. (2.1)

We claim that such ϕ exists. Indeed, to prove the existence, it suffices to show

− log

(
1− x+

|x|α
α

)
≤ log

(
1 + x+

|x|α
α

)
, ∀x ∈ R. (2.2)

To prove (2.2), we only need to show

log

[(
1 +

|x|α
α

+ x

)(
1 +

|x|α
α

− x

)]
≥ 0.

By symmetry, we can restrict to x ≥ 0. When x ∈ [0, 1], since α ∈ (1, 2), we
have(

1 +
|x|α
α

)2

− x2 = 1 +
2|x|α
α

+
|x|2α
α2

− x2 ≥ 1 +
2

α

(
|x|α − |x|2

)
≥ 1,

which implies

log

[(
1 +

|x|α
α

+ x

)(
1 +

|x|α
α

− x

)]
= log

[(
1 +

|x|α
α

)2

− x2

]
≥ 0.

When x ≥ 1, since the functions

x 
→ 1 + x+
xα

α
and x 
→ 1− x+

xα

α

are both increasing and strictly positive, so that their product is also increasing
and (1 + x + xα

α )(1 − x + xα

α ) ≥ 2
α + 1

α2 > 1 for all x ≥ 1. Thus, we know the
inequality (2.2) holds.

The widest possible choice of ϕ (see Figure 1) compatible with these inequal-
ities is

ϕ(x) =

{
log
(
1 + x+ xα

α

)
, x ≥ 0,

− log
(
1− x+ |x|α

α

)
, x < 0.
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Fig 1. widest possible choice of ϕ

Let β be some strictly positive real parameter that will be chosen later and
denote the estimator of the mean m by θ̂, which is the solution to the equation

n∑
i=1

ϕ
(
β
(
Xi − θ̂

))
= 0.

For further use, we denote

r(θ) =
1

βn

n∑
i=1

ϕ (β (Xi − θ)) , θ ∈ R. (2.3)

It is easy to see r(θ) is a non-increasing random variable since ϕ is non-decreasing.

Let us briefly explain the way in which we look for the estimator θ̂ as the
following. We firstly find two deterministic values θ− and θ+, both depending on
β, such that r(θ−) > 0 > r(θ+) with high probability, from the non-decreasing

property of r, we know that θ− < θ̂ < θ+ holds with high probability. Secondly,
we show that as we choose β > 0 sufficiently small, the difference between θ−
and θ+ can be as small as we wish, whence the estimator can be localized in a
small interval with high probability.

Lemma 2.1. Keep the same notation and assumptions as above. Then, for any
θ ∈ R and 1 < p, q < ∞ such that 1

p + 1
q = 1, we have

E [exp (βnr(θ))] ≤ exp

(
nβ(m− θ) +

nβα

α

(
pα−1v + qα−1|m− θ|α

))
(2.4)

and
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E [exp (−βnr(θ))] ≤ exp

(
−nβ(m− θ) +

nβα

α

(
pα−1v + qα−1|m− θ|α

))
.

(2.5)

Proof. Notice that α > 1, for any x > 0, the function x 
→ xα is convex. Then,
for any a, b > 0, we have

(a+ b)α ≤ pα−1aα + qα−1bα. (2.6)

Then, noting that Xi, i = 1, · · · , n are i.i.d., by (2.1), we have

E [exp (βnr(θ))] =E

[
exp

[
n∑

i=1

ϕ (β(Xi − θ))

]]
=(E [exp [ϕ (β(X1 − θ))]])

n

≤
(
E

[
1 + β(X1 − θ) +

βα

α
|X1 − θ|α

])n

,

and noting that α ∈ (1, 2), by (2.6), we further have

E [exp (βnr(θ))] ≤
[
1 + β(m− θ) +

βα

α
E|X1 −m+m− θ|α

]n
≤
[
1 + β(m− θ) +

βα

α

(
pα−1v + qα−1|m− θ|α

)]n
≤ exp

(
nβ(m− θ) +

nβα

α

(
pα−1v + qα−1|m− θ|α

))
,

where the last inequality is by the inequality 1 + x ≤ ex for any x ∈ R, (2.4)
is proved and the inequality (2.5) can be proved in the same way. The proof is
complete.

According to (2.4) and (2.5), for any ε ∈ (0, 1
2 ), we denote

B+(θ) = m− θ +
βα−1

α

(
pα−1v + qα−1|m− θ|α

)
+

log
(
ε−1
)

nβ
, (2.7)

B−(θ) = m− θ − βα−1

α

(
pα−1v + qα−1|m− θ|α

)
−

log
(
ε−1
)

nβ
. (2.8)

Lemma 2.2. Keep the same notation and assumptions as above. Then, for any
θ ∈ R and 1 < p, q < ∞ such that 1

p + 1
q = 1, we have

P (r(θ) < B+(θ)) ≥ 1− ε (2.9)

and

P (r(θ) > B−(θ)) ≥ 1− ε. (2.10)

In particular, for any θ ∈ R, we have

P (B−(θ) < r(θ) < B+(θ)) ≥ 1− 2ε. (2.11)
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Proof. By Markov inequality and (2.4), we have

P (r(θ) ≥ B+(θ))

=P (exp (nβr(θ)) ≥ exp (nβB+(θ)))

≤ E [exp (nβr(θ))]

exp
(
nβ
(
m− θ + βα−1

α (pα−1v + qα−1|m− θ|α) + log(ε−1)
nβ

))
≤

exp
(
nβ(m− θ) + nβα

α

(
pα−1v + qα−1|m− θ|α

))
exp

(
nβ(m− θ) + nβα

α (pα−1v + qα−1|m− θ|α) + log (ε−1)
) = ε,

the inequality (2.9) is proved. With the help of (2.5), the inequality (2.10) can
be proved in the same way. The estimate (2.11) immediately follows from (2.9)
and (2.10).

Now, we can give the main result in this section, which can give a deviation
upper bound for the M-estimator θ̂.

Theorem 2.1. Keep the same notation and assumptions as above. For any
ε ∈

(
0, 1

2

)
and c > 1 be a constant, let us choose the positive integer n satisfying

n ≥
(

cα

α(c− 1)

) 1
α−1 αq log

(
ε−1
)

α− 1
, (2.12)

and let β =

(
α log(ε−1)

(α−1)pα−1vn

) 1
α

. Then, the inequality

∣∣∣m− θ̂
∣∣∣ ≤ v

1
α

(
αp log

(
ε−1
)

(α− 1)n

)α−1
α

⎛⎝1− 1

α

(
cqα log

(
ε−1
)

(α− 1)n

)α−1
⎞⎠−1

:= η

(2.13)

holds with probability at least 1− 2ε.

Remark 2.1. In Theorem 2.1, if we choose c = 2 and q =
√
n, when n tends

to infinity, we get that

p = (1− 1

q
)−1 = 1 +

1√
n− 1

∼ 1

and

η ∼ v
1
α

(
α log

(
ε−1
)

(α− 1)n

)α−1
α

,

while the condition on n is

√
n ≥

(
2α

α

) 1
α−1 α log

(
ε−1
)

α− 1
.
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When α = 2, our result coincides with that in [3, Proposition 2.4] up to a
constant.

Proof. The key point of the proof is to find two values θ+ and θ− such that
B+ (θ+) ≤ 0 and B− (θ−) ≥ 0. Once we find such θ+ and θ−, Lemma 2.2 and
the monotonicity of r(θ) will then give us a high probability bound.

Recall B+(θ) in Eq. (2.7), we know B+(θ) > 0 when θ ≤ m. Denote θ+ =
m+ η+, we are looking for a positive value of η+ such that

B+(θ+) = −η+ +
βα−1

α

[
pα−1v + qα−1ηα+

]
+

log
(
ε−1
)

nβ
≤ 0,

that is, a + bηα+ ≤ η+ with a = (βp)α−1

α v +
log(ε−1)

nβ and b = (βq)α−1

α . This can
also be written as

a

1− bηα−1
+

≤ η+ and bηα−1
+ < 1. (2.14)

Notice the function 1
1−bxα−1 is increasing in x when bxα−1 < 1. So we can find

a c > 0 such that bηα−1
+ < b(ca)α−1 < 1 and η+ = a

1−b(ca)α−1 . Now, to find a

positive value η+ satisfies (2.14), it suffice to find a positive value η+ satisfies

b(ca)α−1 < 1 and η+ =
a

1− b(ca)α−1
< ca. (2.15)

A simple calculation shows that the second inequality is equivalent to b(ca)α−1 <
c−1
c which implies the first inequality and c > 1. Hence, the restrictive conditions

finally transform into

η+ =
a

1− b(ca)α−1
and b(ca)α−1 <

c− 1

c
. (2.16)

Now, according to (2.15), choosing β =
(

α log(ε−1)
(α−1)pα−1nv

) 1
α

which minimizes a, we

have

a = v
1
α

(
αp log

(
ε−1
)

(α− 1)n

)α−1
α

and b =
qα−1

α

(
α log

(
ε−1
)

(α− 1)pα−1vn

)α−1
α

.

For c > 1, if n satisfies (2.12), we have

b(ca)α−1 =
1

α

(
αq log

(
ε−1
)

(α− 1)n

)α−1

cα−1 ≤ 1

α

α(c− 1)

cα
cα−1 =

c− 1

c
< 1,

so (2.16) is satisfied. Therefore, we have

θ+ −m = η+ =
a

1− b(ca)α−1
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=v
1
α

(
αp log

(
ε−1
)

(α− 1)n

)α−1
α

⎛⎝1− 1

α

(
cqα log

(
ε−1
)

(α− 1)n

)α−1
⎞⎠−1

.

Moreover, denote θ− = m − η−, we are looking for a positive value of η− such
that

B−(θ−) = η− − βα−1

α

(
pα−1v + qα−1ηα−

)
−

log
(
ε−1
)

nβ
≥ 0.

Then, the same argument as above implies

m− θ− = v
1
α

(
αp log

(
ε−1
)

(α− 1)n

)α−1
α

⎛⎝1− 1

α

(
cqα log

(
ε−1
)

(α− 1)n

)α−1
⎞⎠−1

.

By (2.11), we know that the following event holds with probability at least
1− 2ε:

r(θ−) > 0 and r(θ+) < 0.

Since r(θ) is a continuous function and non-increasing, r(θ) = 0 has a solution

θ̂ between θ− and θ+ such that

θ− ≤ θ̂ ≤ θ+

holds with probability at least 1− 2ε, that is, P
(
θ− ≤ θ̂ ≤ θ+

)
≥ 1− 2ε, which

implies that the inequality

∣∣∣θ̂ −m
∣∣∣ ≤ v

1
α

(
αp log

(
ε−1
)

(α− 1)n

)α−1
α

⎛⎝1− 1

α

(
cqα log

(
ε−1
)

(α− 1)n

)α−1
⎞⎠−1

holds with probability at least 1− 2ε.

The empirical mean estimator is defined by

X̄ =
1

n

n∑
i=1

Xi,

we postpone to study deviation bounds for the empirical mean X̄ in Section 3
below.

In Figures 2-5, we compare the bound on the deviations of the M-estimator
θ̂ with the deviations of the empirical mean X̄, when the sample distribution is

a Pareto distribution with shape parameter 2+α
2 and scale parameter

(
2+α
2−α

)− 1
α

(see, e.g., [10, Chapter 23]), that is,

P (X1 ≥ x) = 2−1

(
2 + α

2− α

)− 2+α
2α

x− 2+α
2 , x ≥

(
2 + α

2− α

)− 1
α

,
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Fig 2. Deviations of θ̂ from the sample mean, compared with those of empirical mean

P (X1 ≤ x) = 2−1

(
2 + α

2− α

)− 2+α
2α

(−x)−
2+α
2 , x ≤ −

(
2 + α

2− α

)− 1
α

.

By the definition, it is easy to verify that m = EX1 = 0 and v = E |X1 −m|α =

1. We can get figures for the upper bound of θ̂, the upper bound and lower
bound of X̄. It is obvious from Figures 2-5 that the θ̂ has a better performance
when ε is small enough. We can also see that the smaller the α is, the better the
performance of θ̂ will be comparing with that of X̄. The parameters for Figures
2-5 are in Table 1 and c = 2, q =

√
n, where 0.001 : 0.001 : 0.08 means the range

of ε is from 0.001 to 0.08 with step-size 0.001. The ranges of ε in Table 1 satisfy
(3.2) and the values of n in Table 1 satisfy (2.12) and (3.2).

Table 1

Parameters in Figures 2-5

α ε n
Figure 2 1.9 0.001:0.001:0.08 1000
Figure 3 1.7 0.001:0.001:0.08 2000
Figure 4 1.5 0.001:0.001:0.08 6000
Figure 5 1.3 0.001:0.001:0.08 7000

3. The deviation upper and lower bounds of the empirical mean
estimator

3.1. Upper bounds

Lemma 3.1. Let (Xi)
n
i=1 be a sequence of random variables independently

drawn from some distribution Π with mean m and α-th central moment v.
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Fig 3. Deviations of θ̂ from the sample mean, compared with those of empirical mean

Then, denote the empirical mean X̄ = 1
n

∑n
i=1 Xi, we have

P

(∣∣X̄ −m
∣∣ ≥ ( v

εnα−1

) 1
α

)
≤ 2ε.

Proof. Noticing that (Xi −m)
n
i=1 are i.i.d. random variables with mean zero,

by [13, Theorem 2], we have

E

∣∣∣∣∣
n∑

i=1

[Xi −m]

∣∣∣∣∣
α

≤ 2

n∑
i=1

E |Xi −m|α = 2nv,

which implies

P

(∣∣X̄ −m
∣∣ ≥ ( v

εnα−1

)α)
≤

E
∣∣X̄ −m

∣∣α
v

εnα−1

≤
1
nαE |

∑n
i=1 [Xi −m]|α

v
εnα−1

≤ 2ε,

the desired result follows.

3.2. Lower bounds

In contrast to Lemma 3.1, the following lemma gives a lower bound for the
deviations of the empirical mean for some specific distributions.

Lemma 3.2. For any value of the α-th central moment v, any deviation η > 0,
there is some distribution Π with mean zero and α-th central moment v such
that

P
(
X̄ ≥ η

)
= P

(
X̄ ≤ −η

)
≥ v

3nα−1ηα

(
1− v

nαηα

)n−1

, (3.1)
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Fig 4. Deviations of θ̂ from the sample mean, compared with those of empirical mean

where X̄ = 1
n

∑n
i=1 Xi with (Xi)

n
i=1 independently drawn from the distribution

Π. Furthermore, if

ε < (3e)−1 and n ≥ 2, (3.2)

the inequality

∣∣X̄ −m
∣∣ ≥ ( v

3nα−1ε

) 1
α

(
1− 3eε

n

)n−1
α

holds with probability at least 2ε.

Proof. Let us consider the random variable X, which has the following distri-
bution:

P(X = 0) = 1− v

nαηα
, P(X = nη) = P(X = −nη) =

v

3nαηα

and

P (X ∈ (x,∞)\{nη}) =
q

2γ
x−γ , x ∈ (p,∞)\{nη}

P (X ∈ (−∞, x)\{−nη}) =
q

2γ
|x|−γ , x ∈ (−∞,−p)\{−nη},

where γ ∈ (α, 2), p =
(

γ−α
γ

) 1
α

nη and q = γv
3

(
γ−α
γ

) γ
α

(nη)γ−α. It is easy to

check that EX = 0 and

E|X|α = (nη)α
v

3nαηα
+ (nη)

α v

3nαηα
+

q

γ − α
pα−γ =

v

3
+

v

3
+

v

3
= v.
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Fig 5. Deviations of θ̂ from the sample mean, compared with those of empirical mean

Let (Xi)
n
i=1 be i.i.d., which have the same distribution as X. Then,

P
(
X̄ ≥ η

)
= P

(
X̄ ≤ −η

)
≥ P

(
X̄ = η

)
≥ v

3nα−1ηα

(
1− v

nαηα

)n−1

,

so (3.1) is proved.

Taking η =
(

v
3nα−1ε

) 1
α
(
1− 3eε

n

)n−1
α , we have

v

3nα−1ηα

(
1− v

nαηα

)n−1

= ε

(
1− 3eε

n

)−(n−1)
(
1− 3ε

n
(
1− 3eε

n

)n−1

)n−1

.

If ε < (3e)−1, then
(
1− 3eε

x

)x−1 ≥
(
1− 1

x

)x−1
. For any x ≥ 1, we denote

f(x) =
(
1− 1

x

)x−1
, then

f ′(x) =

(
1− 1

x

)x−1
(
log

(
1− 1

x

)
+

(x− 1)

x2
(
1− 1

x

))

=

(
1− 1

x

)x−1(
log

(
1− 1

x

)
+

1

x

)
.

Noting that
(
1− 1

x

)x−1
> 0, let g(x) = log

(
1− 1

x

)
+ 1

x for x ≥ 1, then we have

g′(x) =
1

x2
(
1− 1

x

) − 1

x2
=

1

x2(x− 1)
> 0

and

lim
x→∞

g(x) = lim
x→∞

[
log

(
1− 1

x

)
+

1

x

]
= 0,
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which imply g(x) ≤ 0, so we have f ′(x) ≤ 0 for x ≥ 1. Moreover, we have

lim
x→∞

f(x) = lim
x→∞

(
1− 1

x

)x−1

= e−1,

which implies
(
1− 3eε

n

)n−1 ≥ e−1. Therefore, we have

v

3nα−1ηα

(
1− v

nαηα

)n−1

≥ ε

(
1− 3eε

n

)−(n−1)(
1− 3eε

n

)n−1

= ε.

The proof is complete.

4. �1-regression for heavy-tailed samples having finite α-th moment
with α ∈ (1, 2)

The linear regression considered in [19] aims to find the unknown minimizer θ∗

of the following minimization problem:

min
θ∈Θ

R�1(θ) with R�1(θ) = E(x,y)∼Π

[∣∣xT θ − y
∣∣] , (4.1)

where Π is the population’s distribution, and Θ ⊆ R
d is the set in which θ∗

is located. In practice, Π is not known, one usually draws a data set T =
(x1, y1), · · · , (xn, yn) from Π and consider the following empirical optimization
problem:

min
θ∈Θ

R̂�1(θ) with R̂�1(θ) =
1

n

n∑
i=1

∣∣xT
i θ − yi

∣∣ .
Inspired by Catoni’s work, Zhang et al. [19] considered the case that Π is

heavy tailed with finite variance and proposed a new minimization problem

min
θ∈Θ

R̂ϕ,�1(θ) with R̂ϕ,�1(θ) =
1

nβ

n∑
i=1

ϕ
(
β
∣∣yi − xT

i θ
∣∣) , (4.2)

where ϕ is the same as that in [3] and β > 0 is to be determined later.
Thanks to the analysis of Section 2, we extend the results in [19] to the case

in which samples can have finite α-th moment with α ∈ (1, 2), the approach is
by replacing the original ϕ with (2.1).

4.1. Main results of this section

Before stating the main results, we first give some definitions and assumptions.

Definition 4.1. Let (Θ, d) be a metric space, and K be a subset of Θ. Then a
subset N ⊆ K is called an δ-net of K if for every θ ∈ K, we can find a θ̃ ∈ N
such that d

(
θ, θ̃
)
≤ δ. The covering number is the minimal cardinality of the

δ-net of Θ and denoted by N (Θ, δ).
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We shall assume:
Assumption A1 (i) The domainΘ is totally bounded, that is, for any δ > 0,

there exists a finite δ-net of Θ.
(ii) The expectation of the α-th moment of x is bounded, that is,

E(x,y)∼Π [|x|α] < ∞.

(iii) The �α-risk of all θ ∈ Θ is bounded, that is,

sup
θ∈Θ

R�α(θ) = sup
θ∈Θ

E(x,y)∼Π

[
|y − xT θ|α

]
< ∞.

Then, we can state the second theorem, which will be proved in subsection
4.2.

Theorem 4.1. Let θ∗ and θ̂ be the minimizers of (4.1) and (4.2), respectively.
Under Assumption A1, for any δ > 0, for any ε ∈

(
0, 1

2

)
, with probability at

least 1− 2ε, we have

R�1

(
θ̂
)
−R�1 (θ

∗)

≤2δE|x1|+
(
2α−1δα

α
E|x1|α +

2α−1 + 1

α
sup
θ∈Θ

R�α(θ)

)
βα−1 +

1

nβ
log

N (Θ, δ)

ε2
.

Furthermore, let

β =

(
1

n
log

N (Θ, δ)

ε2

) 1
α

,

we have

R�1

(
θ̂
)
−R�1 (θ

∗)

≤
(
2α−1δα

α
E|x1|α +

2α−1 + 1

α
sup
θ∈Θ

R�α(θ) + 1

)(
1

n
log

N (Θ, δ)

ε2

)α−1
α

+ 2δE|x1|. (4.3)

In order to compute the covering number, we further assume:
Assumption A2 The domain Θ ⊆ R

d, and its radius is bounded by a
constant r, that is,

|θ| ≤ r, ∀θ ∈ Θ.

Then, we have the following corollary, which will be proved in subsection 4.2.

Corollary 4.1. Keep the same notation and assumptions in Theorem 4.1. In
addition, we suppose the Assumption A2 holds. Then, for any ε ∈

(
0, 1

2

)
, with

probability at least 1− 2ε, we have

R�1

(
θ̂
)
−R�1 (θ

∗)
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≤
(
2α−1

αnα
E|x1|α +

2α−1 + 1

α
sup
θ∈Θ

R�α(θ) + 1

)(
1

n

(
d log(6nr) + log

1

ε2

))α−1
α

+
2

n
E|x1|

=O

((
d log n

n

)α−1
α

)
.

4.2. Proof of Theorem 4.1 and Corollary 4.1

Before proving the Theorem 4.1, we first give the following auxiliary lemmas.

Lemma 4.1. Keep the same notation and assumptions as in Theorem 4.1.
Then, for any ε ∈ (0, 1), the following inequality

R̂ϕ,�1 (θ
∗)−R�1 (θ

∗) ≤ βα−1

α
R�α (θ∗) +

1

nβ
log

1

ε

holds with probability at least 1− ε.

Proof. Noticing that (xi, yi), i = 1, · · · , n, are i.i.d., by (2.1), we have

E

[
exp

(
nβR̂ϕ,�1 (θ

∗)
)]

=E

[
exp

(
n∑

i=1

ϕ
(
β
∣∣yi − xT

i θ
∗∣∣))]

=
[
E
[
exp

(
ϕ
(
β
∣∣y1 − xT

1 θ
∗∣∣))]]n

≤
[
E

[
1 + β

∣∣y1 − xT
1 θ

∗∣∣+ βα
∣∣y1 − xT

1 θ
∗∣∣α

α

]]n
,

then, by the inequality 1 + x ≤ ex for all x ∈ R, we have

E

[
exp

(
nβR̂ϕ,�1 (θ

∗)
)]

≤
[
1 + βR�1 (θ

∗) +
βα

α
R�α (θ∗)

]n
≤ exp

(
nβR�1 (θ

∗) +
nβα

α
R�α (θ∗)

)
.

Therefore, by Markov inequality, we have

P

(
nβR̂ϕ,�1 (θ

∗) ≥ nβR�1

(
θ̂
)
+

nβα

α
R�α (θ∗) + log

1

ε

)
=P

(
exp

(
nβR̂ϕ,�1 (θ

∗)
)
≥ exp

(
nβR�1 (θ

∗) +
nβα

α
R�α (θ∗) + log

1

ε

))

≤
E

[
exp

(
nβR̂ϕ,�1 (θ

∗)
)]

exp
(
nβR�1 (θ

∗) + nβα

α R�α (θ∗) + log 1
ε

) ≤ ε.

The proof is complete.
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Lemma 4.2. For any δ > 0, let N (Θ, δ) be an δ-net of Θ with cardinality
N (Θ, δ). Then, for any ε ∈ (0, 1), with probability at least 1 − ε, the following
inequality

− 1

nβ

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

)
≤ −R�1

(
θ̃
)
+ δE|x1|+

(2β)α−1

α
sup
θ∈Θ

R�α(θ) +
(2β)α−1δα

α
E |x1|α

+
1

nβ
log

N (Θ, δ)

ε

holds for all θ̃ ∈ N (Θ, δ).

Proof. For a fixed θ̃ ∈ N (Θ, δ), noticing that (xi, yi), i = 1, · · · , n, are i.i.d., by
(2.1), we have

E

[
exp

(
−

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

))]
=
[
E

[
exp

(
−ϕ

(
β
∣∣∣y1 − xT

1 θ̃
∣∣∣− βδ|x1|

))]]n
≤

⎡⎣E
⎡⎣1− β

∣∣∣y1 − xT
1 θ̃
∣∣∣+ βδ|x1|+

βα
∣∣∣∣∣∣y1 − xT

1 θ̃
∣∣∣− δ|x1|

∣∣∣α
α

⎤⎦⎤⎦n

=

[
1− βR�1

(
θ̃
)
+ βδE|x1|+

βα

α
E

[∣∣∣∣∣∣y1 − xT
1 θ̃
∣∣∣− δ|x1|

∣∣∣α]]n ,
then, by (2.6) with p = q = 2, and the inequality 1 + x ≤ ex for all x ∈ R, we
have

E

[
exp

(
−

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

))]

≤
[
1− βR�1

(
θ̃
)
+ βδE|x1|+

βα2α−1

α
R�α

(
θ̃
)
+

βαδα2α−1

α
E|x1|α

]n
≤ exp

[
n

(
−βR�1

(
θ̃
)
+ βδE|x1|+

βα2α−1

α
R�α

(
θ̃
)
+

βαδα2α−1

α
E|x1|α

)]
.

Therefore, by Markov inequality, we have

P

(
−

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

)
≥ log

1

ε′
+

n

(
−βR�1

(
θ̃
)
+ βδE|x1|+

βα2α−1

α
R�α

(
θ̃
)
+

βαδα2α−1

α
E|x1|α

))

≤
E

[
exp

(
−
∑n

i=1 ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

))]
exp

[
n
(
−βR�1

(
θ̃
)
+ βδE|x1|+ βα2α−1

α R�α

(
θ̃
)
+ βαδα2α−1

α E|x1|α
)
+ log 1

ε′

]
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≤ε′,

where ε′ ∈ (0, 1), which will be chosen later. Hence, for a fixed θ̃ ∈ N (Θ, δ),
with probability at most ε′, we have

− 1

nβ

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

)
≥−R�1

(
θ̃
)
+ δE|x1|+

(2β)α−1

α
R�α

(
θ̃
)
+

(2β)α−1δα

α
E|x1|α +

1

nβ
log

1

ε′
.

Therefore, since the set N (Θ, δ) has N (Θ, δ) elements, we have

P

⎛⎝ ⋂
θ̃∈N (Θ,δ)

{
− 1

nβ

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

)
≤ −R�1

(
θ̃
)
+ δE|x1|

+
(2β)α−1

α
R�α

(
θ̃
)
+

(2β)α−1δα

α
E|x1|α +

1

nβ
log

1

ε′

})
≥1−N (Θ, δ) ε′.

Finally, taking ε′ = ε
N(Θ,δ) , with probability at least 1−ε, the following inequal-

ity

− 1

nβ

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

)
≤−R�1

(
θ̃
)
+ δE|x1|+

(2β)α−1

α
R�α

(
θ̃
)

+
(2β)α−1δα

α
E|x1|α +

1

nβ
log

N (Θ, δ)

ε

≤−R�1

(
θ̃
)
+ δE|x1|+

(2β)α−1

α
sup
θ∈Θ

R�α(θ)

+
(2β)α−1δα

α
E|x1|α +

1

nβ
log

N (Θ, δ)

ε

holds for all θ̃ ∈ N (Θ, δ). The proof is complete.

Based on Lemma 4.2, we have the following lemma.

Lemma 4.3. Keep the same notation and assumptions as in Theorem 4.1.
Then, for any δ > 0, for any ε ∈ (0, 1), the following inequality

R�1

(
θ̂
)
− R̂ϕ,�1

(
θ̂
)

≤2δE|x1|+
(2β)α−1

α
sup
θ∈Θ

R�α(θ) +
(2β)α−1δα

α
E|x1|α +

1

nβ
log

N (Θ, δ)

ε

holds with probability at least 1− ε.
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Proof. Since θ̂ ∈ Θ, there exists a θ̃ ∈ N (Θ, δ) such that∣∣∣θ̂ − θ̃
∣∣∣ ≤ δ,

which implies∣∣∣yi − xT
i θ̂
∣∣∣ ≥ ∣∣∣yi − xT

i θ̃
∣∣∣− ∣∣∣xT

i (θ̃ − θ̂)
∣∣∣ ≥ ∣∣∣yi − xT

i θ̃
∣∣∣− δ|xi|. (4.4)

Then, since ϕ(·) is non-decreasing, we have

R̂ϕ,�1

(
θ̂
)
=

1

nβ

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̂
∣∣∣) ≥ 1

nβ

n∑
i=1

ϕ
(
β
∣∣∣yi − xT

i θ̃
∣∣∣− βδ|xi|

)
,

by Lemma 4.2, with probability at least 1− ε, we have

R̂ϕ,�1

(
θ̂
)
≥ R�1

(
θ̃
)
−
[
δE|x1|+

(2β)α−1

α
sup
θ∈Θ

R�α(θ)

+
(2β)α−1δα

α
E|x1|α +

1

nβ
log

N (Θ, δ)

ε

]
.

Moreover, by (4.4) and triangle inequality, we have

R�1

(
θ̂
)
−R�1

(
θ̃
)
=E

[∣∣∣xT
1 θ̂ − y1

∣∣∣− ∣∣∣xT
1 θ̃ − y1

∣∣∣] ≤ E

[∣∣∣xT
1 θ̂ − xT

1 θ̃
∣∣∣] ≤ δE|x1|,

which further implies that with probability at least 1− ε, the inequality

R̂ϕ,�1

(
θ̂
)
≥ R�1

(
θ̂
)
−
[
2δE|x1|+

(2β)α−1

α
sup
θ∈Θ

R�α(θ)

+
(2β)α−1δα

α
E|x1|α +

1

nβ
log

N (Θ, δ)

ε

]
holds. The proof is complete.

Now, we can give the proof of Theorem 4.1.
Proof of Theorem 4.1. Recall

R̂ϕ,�1(θ) =
1

nβ

n∑
i=1

ϕ
(
β
∣∣yi − xT

i θ
∣∣) ,

since θ̂ is the minimizer of (4.2), we have

R̂ϕ,�1

(
θ̂
)
− R̂ϕ,�1 (θ

∗) ≤ 0,

which implies

R�1

(
θ̂
)
−R�1 (θ

∗)
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=
(
R�1

(
θ̂
)
− R̂ϕ,�1

(
θ̂
))

+
(
R̂ϕ,�1

(
θ̂
)
− R̂ϕ,�1 (θ

∗)
)
+
(
R̂ϕ,�1 (θ

∗)−R�1 (θ
∗)
)

≤
(
R�1

(
θ̂
)
− R̂ϕ,�1

(
θ̂
))

+
(
R̂ϕ,�1 (θ

∗)−R�1 (θ
∗)
)
.

By Lemma 4.3 and Lemma 4.1, we immediately obtain the desired result.
Now we are at the position to give the proof of Corollary 4.1.
Proof of Corollary 4.1. For any δ ∈ (0, 1], by [14, Corollary 4.2.13] we

have

N (B1, δ) ≤
(
1 +

2

δ

)d

≤
(
3

δ

)d

,

where B1 =
{
x ∈ R

d : |x| ≤ 1
}
. Since Θ ⊆ Br, we have

logN (Θ, δ) ≤ logN

(
Br,

δ

2

)
≤ d log

6r

δ
. (4.5)

Therefore, by (4.3) with δ = 1
n , we have

R�1

(
θ̂
)
−R�1 (θ

∗)

≤
(
2α−1δα

α
E|x1|α +

2α−1 + 1

α
sup
θ∈Θ

R�α(θ) + 1

)(
1

n

(
d log

6r

δ
+ log

1

ε2

))α−1
α

+ 2δE|x1|

=

(
2α−1

αnα
E|x1|α +

2α−1 + 1

α
sup
θ∈Θ

R�α(θ) + 1

)(
1

n

(
d log(6nr) + log

1

ε2

))α−1
α

+
2

n
E|x1|.

The proof is complete.

Acknowledgments

LX is supported in part by NSFC grant (No. 12071499), Macao S.A.R grant
FDCT 0090/2019/A2 and University of Macau grant MYRG2018-00133-FST.
We are grateful to the referee whose numerous comments and suggestions have
helped to greatly improve the presentation of this paper.

References

[1] Bubeck, S., Cesa-Bianchi, N. and Lugosi, G. (2013). Bandits with heavy
tail. IEEE Transactions on Information Theory. [J]. 59(11), pp. 7711-7717.
MR3124669
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