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Abstract: Medical imaging helps to detect and monitor internal irregu-
larities in the human body. We leverage a block median filtering technique
to model pixel-to-pixel differences between two images to develop auto-
mated detection of abnormalities in noisy medical images. We propose two
robust detection methods, with the test statistic being the conventional
maxima and the scale-invariant ratio of the medians from partitioned im-
age grids. Theoretically, we investigate the asymptotic behaviors of two
proposed tests. Numerically, we carry out simulation studies to investigate
the type I error rate and the power of two tests. In addition, a real appli-
cation in medical images with gastrointestinal bleeding demonstrates the
outperformance and efficiency of the ratio test method. Besides, the devel-
oped tests can also be applied to problems in other scientific fields, e.g., air
pollution detection using collected remote sensing hyperspectral images.
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1. Introduction

Medical imaging, collected using imaging technology such as radiology (e.g.
ultrasound, CT, X-ray and MRI), nuclear medicine (e.g. PET and SPECT) and
optical imaging (e.g. OCT), etc., helps to monitor disorders in the human body.
For example, nuclear medicine can diagnose the severity of various diseases
such as heart disease, gastrointestinal, endocrine, or neurological disorders, and
cancer. Gastrointestinal bleeding is a major cause of death in the United States,
with mortality rates ranging from 10% to 30% [18, 14].

Fig. 1 plots a sample of medical images of gastrointestinal bleeding originating
from a branch of the superior mesenteric artery. Note that these figures are
from Figure 4 of [14]. It can be seen in Fig. 1 that (a) these images, taken in
chronological order, are noise-contaminated, (b) the bleeding starts in the 6th
image and appears more severe after that (7th-11th images). Fig. 2 shows their
histograms of the pixel-to-pixel differences of two consecutive images exhibited
in Fig. 1. The histograms in subplots from Hist-1 to Hist-4 appear symmetric
about zero, while the histograms in other subplots exhibit asymmetry. The
asymmetric histograms correspond to instances in which the two consecutive
images are different.

We can vastly improve the patient’s prognosis if we can detect the bleed-
ing by the 6th image in Fig. 1. The problem is how to detect abnormality in
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Fi1G 1. Eleven images with the same dimension 210 X 250 are taken from Figure 4 in [14]
with removal of the 1st, 3rd, 8th, and 11th images that have additional marks not belonging
to the original images. They were published in J. Nucl. Med. (2016), 57, 252-259, © by the
Society of Nuclear Medicine and Molecular Imaging, Inc.
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Fic 2. Histograms of 10 pizel-to-pizel differences of consecutive images with medians being
0, 0, 0, 0, 0, 0, 0, -0.004, -0.004 and 0.004, respectively. The two vertical lines in each plot
correspond to £3 sample standard deviations. We used Normal, t, and Laplace distributions
to fit the data.

noisy images timely and accurately. To tackle the problem as above, we leverage
advanced statistical techniques to develop a fast and efficient robust detection
method to test whether there is a statistical difference between two consecutive
images. We propose to consider the pixel-to-pixel differences between the two
images. Under such a framework, abnormality detection is equivalent to test-
ing the symmetry/asymmetry about zero of the distribution for pixel-to-pixel
differences. One should note that the images that we study herein do not have
systematic change along the time. For example, the image that will change pe-
riodically based on the heart rate in ultrasound imaging and brain fMRI is not
considered in this study.

As is shown in Fig. 2, the images are fairly noisy, and thus, Normal, ¢, or
Laplace distribution may not be appropriate for modeling the pixel values. A
possible way to the problem is to apply the censored weighted likelihood to
down-weight the effect of observations with large variances [8, 2]. However, it
might be difficult to obtain the true likelihood of the observations since a com-
mon error distribution, say, Normal, ¢ or Laplace, can not be assumed. One can
alternatively consider nonparametric approaches. Two classical nonparametric
methods, i.e., the sign test [13] and the Wald-Wolfowitz runs test (also known
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simply as the runs test) [21], are designed to test for symmetry of a distribution
about zero. However, the type I error rates for both tests will not be small if the
dataset contains a high level of noise. There exists a vast body of other nonpara-
metric methods to test the hypothesis of symmetry of distribution, such as the
bootstrap tests [10, 20, 26, 31, 25|, the distribution-free tests [11, 22, 28], the
kernel-based nonparametric testing methods [15], and also some other methods
[9, 2, 4, 5]. For nonparametric tests, some recent literature also establishes the
minimax property of the power [19, 30].

Besides the above nonparametric test methods, some researchers have applied
a block median filtering technique to avoid specifying the noise distribution. This
technique may be suitable for data analysis with positive/negative light /heavy-
tailed distributed noise, likely due to sharp and sudden jumps in the image
signals. For example, [6] first divided the observations into small bins and took
the median values of data in each bin to form a new dataset, and then fit a
Gaussian distribution to the new dataset. In light of [6], we propose a new test
for testing whether the distribution of pixel values is symmetric about zero using
maxima statistic. Beyond that, we propose another test using a ratio statistic,
which is shown to have satisfactory performance in both simulation and a real
example.

The major contributions of this study are as follows. Firstly, we leverage the
block median filtering technique to model the pixel-to-pixel differences between
two consecutive images. To the best of our knowledge, this technique is initially
introduced into the problem of image abnormality detection. Secondly, we in-
vestigate the consistency of the proposed tests under mild conditions. Besides,
The finite sample properties of the tests are enhanced via simulations, including
the type I error rate and the power of the test. Finally, although this study
is motivated by and developed for Gastrointestinal bleeding detection, it can
also be potentially used to problems in quality control, satellite fire and smoke
detection, and others.

The remaining paper is organized as follows. In Section 2, we introduce the
median filtering method to address this abnormality detection problem and the
model setup. In Section 3, we propose two nonparametric tests and the detection
procedure. In Section 4, we approximate the p-value of the proposed tests and
investigate their powers under mild conditions. In Section 5, we investigate the
proposed tests by simulations and real data analysis. Section 6 concludes this

paper.

2. Problem and model setup
2.1. Problem description

An image can be represented as a three-way tensor (R, G, B) € R%1*42X3 where
R,G, B € R"*% are two-dimensional pixel matrices. For simplity, we consider
grayscale images, the pixel values of which are expressed as a matrix X €
R% %4> The elements of X can be accessed using two indices as in Zi, iy, VArying
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i; from one to d;, j = 1,2. Suppose that there are two images X" and X(?),

and let x(ll)m and xf)m denote the respective pixel values in the grid location

K3
{i1,42} of these two images. Define y;, ;, = xglz)m — xgll)w i; € {1,...,d;} for
j = 1,2. After the proper alignment, we consider that the differences y;, ;, are

independently distributed with the same distribution. We write y;, ;, as
Yiriz = Miyio T €iyins (1)

where p;, i, are the means, and ¢;, ;, are independently identically distributed
(i.i.d.) random errors with median zero and standard deviation o that may
potentially be large due to limitations in current imaging technology; see As-
sumption Al in Section 4. Under this assumption, the distribution of y;, 4, is
symmetric about zero if y;, ;, is 0, otherwise skewed to the right or left if y;, ;,
is either positive or negative, respectively.

Let Gg,q € {1,...,7} be disjoint sets representing signals of abnormalities,
and d4,¢ € {1,...,7} be their respectively unknown nonzero constants. Then
Wirip 7 0 1f (i1,12) € G for ¢ € {1,...,r}, implying the existence of abnor-
malities at region {(i1,i2) € G,,q € {1,...,7}} in the second image X ). This
model describes the phenomenon that some abnormal parts are hidden in the
pixel-to-pixel image differences. The problem is to identify the existence of these
abnormalities.

Remark 1. The medical images taken within a short period may be considered
aligned. Hence, the differences in pizel values of the two images could be assumed
to be i.i.d. under the null hypothesis. For example, the images of the artificial
flower in [29] are aligned well since the wind has a rare impact on the camera
and the artificial flower. In some cases, the images may be spatially localized.
For example, if the artificial flower is replaced by a real one, its location in all
taken images can no longer be considered fized. Such a problem may also arise
in the medical images. Ignoring these types of problems may presumably lead to
a loss of power of the test. To ensure that the two images are properly aligned,
we may rotate or relocate the two images by minimizing the sum of the two
images’ absolute differences.

Remark 2. Note that one may consider grayscale images (single channel: two-
way tensor) or color images (multichannel: three-way tensor). One can also
consider a p-way tensor, X € RU*>do yhere d; is the dimension of mode-j of
X,j=1,...,p. It is thus an extension of the one-dimensional case presented in
[6] to a p-dimensional one. However, for simple presentation, we only consider
the grayscale images in this paper.

2.2. Block median filtering

The major problem is that the distribution of noise is hard to specify. To tackle
such a problem, we plan to use the block median filtering technique. Let n be
the number of pixel values of the image, that is, n = d; X ds. Suppose that the
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image pixels can be equally divided by k, disjoint partitions, which we label
by A, € R™M>*™m2_ ¢ =12 ... K,. Denote the number of pixels in A; by m,,

ie., |4¢ = m, = mimgy for £ = 1,2,...,k,. Then, compute a sequence of
minimizers xy, £ = 1,2, ..., kn, satisfying that,
Ty = arg m,yin Z p(yi17i2 - 7)7 (2)
(i1,i2)EA,

where p is a given positive and symmetric loss function. Hereafter we suppress
the subscript n in both &, and m,, for simplicity of notation.

Note that if p in (2) is the absolute value function, z, is a median of the
partition Ay, i.e.,

xp = median{y,, 4,, (i1,42) € A}, =1,2,... K. (3)

The block median transformations have been applied in the analysis of microar-
ray data for data normalization in [27, 6]. In this study, we employ the median
filtering as it is robust against a large collection of error distributions, including
heavy-tailed, which is not unusual in literature.

Remark 3. By changing p, x¢ can turn into the mean, minimum, and max-
imum of {yi, iy, (11,12) € Ae}, all of which have different use in image filter-
ing. Respectively, (a) the mean filter can be used to remove light-tailed noise;
(b) the minimum filter that can remove positive impulses (white spots); (c) the
mazximum filter can effectively remove highly negative pizel values (black spots);
additionally, (d) the median filter, applied in (3), can be used to remove not only
the positive impulses and the highly negative pizel values, but also heavy-tailed
noise (e.g. salt and pepper noise) caused by sharp and sudden disturbances in
the image signals.

2.3. Model setup

In light of [6], the sequence of block medians, {x1,zs,..., 2.}, is modelled as
Tp=0p+n,0=1,... K, (4)

where 1y = median{e;, ;,, (i1,42) € A¢}, 6 = 64 # 0 if there exists a ¢ such that
Ay C Gg, otherwise 0, = 0; € [—maxgy(|0q|), maxy(|og|)] for G4, ¢ € {1,...,7},
being disjoint sets of image pixels with convention that 6, = 0 if r = 0. One
should note that d; is another unknown constant that may differ from ¢, for
ge{l,...,r}

Denote U = {G1,...,G,}. Our aim is to test

Holu:@ V.S leu;é@, (5)

i.e., to test if there exists one or more disjoint sets of image pixels G;, ¢ =
1,2,...,r,(r > 1), such that 6, = §, # 0 for A, C G,, against 6, = 0 for all
¢ e {l,...,k}. We remark that our proposed two tests will be more powerful
for large r.
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3. Nonparametric hypothesis tests

As displayed in the first four histograms (where there are no abnormalities) in
Fig. 2, the null distribution of {y;, ,, } appears to be symmetric about 0. Further
examinations reveal that when there exists an abnormality, the corresponding
histogram is skewed. These observations lead us to test whether or not the null
distribution of {y;, s, } is symmetric about zero to detect images with abnormal-
ities. Since such images are usually fairly noisy, we consider the medians {x,}
and thus propose tests based on the maxima and ratio statistics.

3.1. Maxima test

As explained above, in light of [6], we propose the following maxima as the test
statistic for testing Hy against Hj,

M, = max. lze| /G, (6)

where x, is defined in (3) and ¢ is an estimate of the median absolute deviation
(MAD), i.e.,

6 = median; <¢<,{|z;, — mediany <x<,{xx }|}/0.6745.

We reject Hy when M, is larger than the corresponding critical value under a
given significant level «. For convenience, we hereafter refer to this test as the
“maxima test”.

It is noted that there exists a nuisance parameter, &, in the maxima statistic.
One can use the sample standard deviation in place of MAD for & in (6). An
inappropriate choice of the nuisance parameter may result in poor performance,
say, a higher type I error rate or lower power of the test. This motivates us to
consider another ratio statistic that does not involve the estimation of a nuisance
parameter.

3.2. Ratio test

The estimate of the nuisance parameter in the maxima test may negatively
affect the performance of the test, which may explain less optimal results in
empirical examples. With the purpose of the practical applicability of the test,
we may restrict our attention to a closed interval of block medians denoted as
[a,b], in view that the null distribution is assumed to be symmetric about zero.
Assume that the observed pixel values of images are between 0 and 1. Under
Hy, the interval may satisfy that |a| = |b|, with @ < 0,5 > 0. In contrast, under
Hy, the interval may satisfy that |a| # [b] with a < 0,b > 0. Next, we will show
that how to construct the ratio-type statistic.

It is noted that the only information we have about the common error dis-
tribution is whether or not its probability density function is symmetric about
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zero in our problem. We assume that the common distribution of €;, ;,, F, is
continuous and has median 0, i.e., F(0) = 1/2. Denote its probability density
function by f. Let mg = (m — 1)/2. It is easy to show that the common density
function of the block medians z1,...,z, under Hy (which we denote by g(x))
satisfies
g(x) oc F™(z)[1 = F(2)]™ f ().

Fig. 2 visually shows that the histograms from Hist-1 and Hist-4 appear to
be symmetric about zero, while others exhibit some asymmetry. Thus, we con-
sider the following null and alternative hypotheses for testing symmetry of the
distribution function F":

Hy: a=—ag, b=ag with ag > 0 vs Hy : a=a1 <0, b=as > 0 with la1| # |az].

The proposed test statistic described in (7) makes use of a first-order approxi-
mation of F(z) or f(z).

Lemma 1. Given the first-order approzimation to the density function f(x)
over the interval [a, b], the following statistic

T(r) — T(1)
max{x(,{), —.23(1)}

(7)

18 proportional to the likelihood ratio statistic for testing H, against ﬁl, where
T = max{zy, £ =1,...,5} and x() = min{z,, £ = 1,...,k}. The smaller
the test statistic (7), the more evidence we have that supports the rejection of
Hy.

The proof of Lemma 1 is given in Appendix A.1. Note that z(,) — z(1) can
be expressed as max{z (), —2(1)} + min{x(,), —z(1)} and hence
Ty — @y o min{re), —re)}
max{ (., —(1)} max{x(.), —T(1)}

It can be seen that the smaller the likelihood ratio, the smaller the value
of min{x (), —x(1)}/max{z(.), —z@1)}, or equivalently the larger the value of
max{z ., —(1)}/min{x.), =2y} which, from above, has been shown to be
equal to (z(.) — z(1))/min{z (), =2y} — 1. It is obvious then that the smaller
the test statistic (7), the larger the following statistic:

T(k) — Z(1)
T, = — . 8
" min{z (), =)} (8)

Therefore, we reject the null hypothesis Hy for large values of T. For conve-
nience, we call the test based on T, the “ratio test”. The ratio statistic takes
advantage of the median of block medians, which can be decomposed into the
sum of a Gaussian random variable and a random error with median zero under
some mild assumptions made in [6]. It is noted that the numerator of T, in (8)
captures the range of the data, while the denominator of T is neutral to the
impact of the largest (unsigned) data point. In addition, T} is scale-invariant.
Therefore, T}, is the desired test statistic for testing Hy against Hj.
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Remark 4. One can easily show that T}, > 2 as follows,

m(n);$(1)7 if 20 >~ w if 2y > —20)
B B
Te=1 20 s 92(1) : = | 2w +($2r»> :
Tv if Ty < —2() T’ if T(n) < —2(1)
> 2, )

T,. is expected to be close to 2 under Hy, but to be far away from 2 under Hy. For
demonstration purpose, one can see the following example. Suppose that we have
block medians {x1,xa, 23,24} = {—1,1,—2,2}. Then, it is plausible that Hy is

true, as the value of T}, is % =2. If {z1, 20, 23,24} = {—1,1,2,4}, it
4—(=1)

1s plausible that Hy holds as opposed to Hy since the value of T is (L —CD]
5, which is much larger than 2. If {x1,x2, 23,24} = {—1,1,—2, -4}, it is still
plausible that Hy holds. The value of T), here is ﬁ =5 (again, larger
than 2). These results are in line with our expectations.

3.3. Detection procedure

The above two proposed tests can detect abnormalities of medical images under
the following detection procedures. Suppose that we have a sequence of medical
images, say, X, ..., X(K)(K > 2), and the abnormal images with significant
differences are X®) s € D where DO is a subset of {1,...,K}. Let D be
an estimate of D(®). We present the following detection procedure to obtain D.
Set a = 0.05.

Step 1. Set initial values: k =2, s = 1, and D = 0.

Step 2. Compare the images X(*) and X () If the approximate p-value of the
maxima test or the ratio test is less than «, then keep the kth image, i.e.,
s = k; otherwise, drop the kth image and s = s. And D = D U {s}.

Step 3. If k = K, stop. Otherwise, let k = k + 1 and return to Step 2.

Users can choose their preferred significant level a. The approximate p-values
can be computed via Eq.(11) or Eq.(14) in Section 4. The proposed detection
procedure is not intended to replace medical experts. Instead, the detection
procedure aims to serve as an initial screening technique and alert medical
experts timely when an abnormality occurs. Generally, the detection procedure
can be applied in the following scenarios.

Remark 5. The detection procedure can determine whether the most recent
mmage s abnormal or not. For example, suppose that there is a patient who is
seeing a doctor. A medical image of the patient shows that nothing is wrong.
However, the patient continues to complain of discomfort. Thus, the doctor is
likely to monitor the patient’s condition and thus request more (say K — 1 with
K > 2) images to be taken at scheduled times. Images are analyzed as they come
in until perhaps, a significant difference is identified. Under such a scenario, the
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first image should be removed from D, that is, D = D/{1}. If the purpose of
the detection is to alert medical experts timely, we can stop the procedure when

|D| =1.

Remark 6. The detection method enables us to keep significantly different im-
ages for further examination. For example, suppose that a person has a history
of a specific disease in his/her family, currently showing no signs of the inherited
disease; however, he/she may develop the disease during some period of his/her
life at high risk. Suppose that radiological imaging can be applied to diagnose
the disease. A doctor would ask him/her to take several radiological images, say
K, in a certain period. In this scenario, the detection procedure can be used to
perform an initial screening of the images and delete these images that are not
statistically different from ones taken just before them.

Intuitively, an ideal estimate should contain important information, and ex-
clude these informationless ones, i.e., D) C D and the size of D (denoted as
|ﬁ|) is smallest. Thus, in order to measure the estimation efficiency, we define
the criteria w, i.e.,

w=a|/DY/ D|+ (1 —a)|D/ DV, (10)

where S;/ S denotes the intersection of S; and the complement of S, and
0 < a < 1. The smaller the value of w, the better the estimation. [D©/ D| >0
means that some important images are deleted, while |ﬁ/ DO)| > 0 implies
that some informationless images are kept. Since |D(®)/ ﬁ| > 0 is more serious
than |D/ D©] > 0, we thus assign a large weight on |[D(©/ DI, say, a = 0.95.

4. Asymptotic properties of the proposed tests

Before proceeding, we make the following assumptions.

Assumption A1l. {e;, ;,} are i.i.d. continuous random errors with the com-
mon distribution F' symmetric about zero and its density function f satisfying
f(0) > 0 and |f(w) — £(0)] < cw? in an open neighborhood of zero, where c is
an unknown constant that may vary with situation.

Assumption A2. m — oo, k/(mlogm) — oo, and klogk/m> — 0, as
n — 00.

As described in [6], Assumption Al is satisfied by the Cauchy distribution,
the Laplace distribution, the t-distribution, the Normal distribution, and other
distributions. Under this assumption, we can approximate the distribution of
the median of errors as Normal. Assumption A2 describes how m grows relative
to k. Simulation studies suggest that m = 100 would allow for a satisfactory
Normal approximation.

4.1. Asymptotic properties of the mazxima test

We have the following result on the approximation of the p-value of the maxima
test.
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Theorem 4.1.. Suppose that Hy with r = 0 given in (5) holds true. Under the
Assumptions A1-A2, for any v € (—o0,00), we have

Mﬁ* K
pr <ba > 11) — 1 —exp{—2exp(—v)}, asn— oo (11)
where My, is given in (6), a, = v/2log k — [loglog k + log(4m)]/[2v/2]1og k], and
b, = 1/v/21log k.

The following Proposition is needed for proving Theorem 4.1. (see Lemma 1
in [6]).

Proposition 1. Under the Assumption A1, ne defined in (4) can be written as
1 . 1

N = spre=20 + —=

2f(0)ym =~ /m

where zy are i.i.d. N(0,1), (s are independently distributed random variables

which can be decomposed into s = Cs1+C(s.2 such that E((s,1) = 0, all moments

of |€s.1]/m are finite and pr((s,2 # 0) < ¢1 exp(—mes) for some constants c; > 0
and ¢y > 0.

Ces (12)

The proof of Theorem 4.1. is given in the Appendix A.2. Assume that « is
the significant level of the hypothesis test. Theorem 4.1. implies that the type I
error rate goes to a under mild conditions.

Besides the type I error rate, we will also show that the maxima test is
powerful. Before proceeding, we make an additional assumption.

Assumption A3. Under Hy, S = (), where S = {s:As C G, for some G,,q €
{1,...,r},s € {1,...,k}}. In addition, there is a constant ¢ > 0 such that
minge (i, {|8q[} > o

The Assumption A3 implies that there exists at least one set G, such that it
includes A,.

Theorem 4.2.. Suppose that Hy given in (5) holds true. Under the Assump-
tions A1-A3, we have M, /logk — oo in probability as n — oo, where M, is
given in (6). Furthermore, for any v € (—o0, 00), we have that

MK* K
pr(Ta >v> —1,n — co. (13)

The proof of Theorem 4.2. is provided in the Appendix A.3. This theorem
guarantees that the power of the maxima test converges to one as the number
of pixels goes to infinity.

4.2. Asymptotic properties of the ratio test

We have the following result on the approximation of the p-value of the ratio
test.
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Theorem 4.3.. Suppose that Hy with r = 0 defined in (5) holds true. Under
the Assumptions A1-A2, for v > 2, as n — 0o, we have that

0
pr(Ty > V)—1+2/ kp(x){[®((1—v)x) =0 (2)]" ' —[1-2®(2)]" " }dz| — 0,

- (14)

where T,; is given in (8), ®(z) and ¢(x) denote respectively the standard normal
distribution and its density function.

We ask the readers to turn to Appendix A.4 for details on the proof. Similar
to Theorem 4.1., Theorem 4.3. also controls the type I error rate of the ratio
test. Next, we consider the power of the ratio test. Since the main purpose of
this paper is to detect abnormalities in medical images, all 64,9 € {1,...,7}
should have the same sign if there are abnormalities in such images. Thus, we
make the following assumption.

Assumption A4. dy,...,0, with » > 1 are either all greater than zero or all
less than zero.

Then, we have the following theorem.

Theorem 4.4.. Suppose that Hy given in (5) holds true. Under the Assump-
tions A1-A/, we have T,, — oo in probability as n — oo, where Ty, is given in
(8). Furthermore, for v > 2, we have that pr(T,, > v) — 1.

One can refer to Appendix A.5 for the proof of Theorem 4.4.. Theorem 4.4.
implies that the power of the ratio test converges to one under mild conditions.

5. Numerical studies
5.1. Simulations

In the following, we present simulation studies to examine the performance of
the proposed tests.

5.1.1. Example 1: K =2 andr =1

As in (1)-(2), set p = 2, dy = dy = /n, k& = 2500, and m = (55)2 for j =
1,2,...,8, n = mk, and {€;, 4, },i1,i2 = 1,...,4/n, are generated from the
following distributions:

e Case 1. N(0,0.16), where N(u,0?) denotes the Normal distribution with
mean u and variance o?;

e Case 2. 0.4¢(10), where X ~ 0.4¢(10) if and only if X/0.4 ~ ¢(10), and
t(7) denotes the t distribution with the degrees of freedom ~;

e Case 3. Laplace(0,0.3), where Laplace(a,b) denotes the Laplace distribu-
tion with location a and scale b;
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e Case4.0.5N(0,0.09)+0.5N(0,0.25), where aN (0, 02)+(1—a)N(0,02) de-
notes a contaminated-normal distribution with random errors being gener-
ated from N (0,0%) with probability o and from N (0, 03) with probability
1—-o.

e Case 5. 0.2N(—0.01,0.09) + 0.6N(0,0.25) 4+ 0.2N(0.01, 0.09), a contami-
nated-normal distribution that is similar to aN(0,02) + (1 — a)N(0,

2
03).

The simulated type I errors for the proposed two tests are reported based on
10,000 repetitions with the p-value approximated via Theorem 4.1. or Theorem
4.3. (depending on the test). We set o« = 0.05. It can be seen from Table 1 that
both tests perform well with the normal distributed random errors (Case 1),
reflected by the type I errors abound 0.05 for the whole candidate m. When
the random errors are distributed with the Laplace (Case 3) or contaminated-
normal (Cases 4-5) distribution, the type I errors tends to be stable around 0.05
as m > 10%. A special case one can see is Case 2, where the type I errors are
larger than 0.05, and the values obtained via the ratio test are smaller than
those via the maxima test, but their values decrease as m increases. Overall,
both the proposed methods perform well in most cases in terms of type I errors
as the partition size m is larger than a threshold, say, 102.

TABLE 1
Type I errors of both mazxima test and ratio test

Test m=5> m=102 m=152 m=202 m=252 m=2302 m=35% m =402
Case 1 Maxima 0.050 0.048 0.048 0.049 0.046 0.045 0.043 0.046
Ratio 0.053 0.050 0.051 0.048 0.049 0.048 0.049 0.049
Case 2 Maxima 0.086 0.050 0.047 0.047 0.048 0.048 0.046 0.046
Ratio 0.061 0.054 0.048 0.046 0.051 0.053 0.050 0.054
Case 3 Maxima 0.854 0.389 0.243 0.170 0.139 0.115 0.101 0.096
Ratio 0.129 0.092 0.074 0.066 0.070 0.065 0.063 0.060
Case 4 Maxima 0.094 0.054 0.048 0.045 0.052 0.045 0.049 0.041
Ratio 0.067 0.053 0.051 0.051 0.056 0.048 0.051 0.050
Case 5 Maxima 0.092 0.056 0.053 0.046 0.045 0.047 0.044 0.047
Ratio 0.061 0.052 0.054 0.053 0.049 0.052 0.051 0.055

In addition to the type I error rates, we investigate powers of both max-
ima test and ratio test when H; holds. 10,000 simulations are carried out with
61 = —0.15 or 0.15 in the first grid. Table 2 lists the powers of both tests.
The powers of both tests are increasing with the partition size m either for
negative or positive d1, across all Cases (1-5). Specifically, when m = 252,
the minimum powers of the maxima test and ratio test increase to 0.999 and
0.994, respectively. This result agrees with the power consistency in Theo-
rems.



Powers of both mazima test and ratio test

TABLE 2

Case Test 6 =—0.15 6 =0.15

m=5> m=102 m=152 m =202 m=252|m=52 m=102 m=15> m=202 m =252

Case 1 Maxima 0.053 0.141 0.599 0.958 0.999 0.053 0.141 0.584 0.955 0.999
Ratio 0.056 0.117 0.503 0.914 0.996 0.049 0.121 0.496 0.910 0.996

Case 2 Maxima 0.091 0.137 0.551 0.939 0.999 0.086 0.128 0.551 0.943 0.999
Ratio 0.065 0.110 0.468 0.885 0.994 0.062 0.107 0.459 0.893 0.992

Case 3 Maxima 0.859 0.821 0.998 1.000 1.000 0.862 0.821 0.998 1.000 1.000
Ratio 0.126 0.429 0.977 1.000 1.000 0.131 0.429 0.977 1.000 1.000

Case 4 Maxima 0.094 0.179 0.702 0.982 1.000 0.093 0.190 0.702 0.983 1.000
Ratio 0.067 0.144 0.607 0.957 0.998 0.065 0.150 0.606 0.955 0.999

Case 5 Maxima 0.098 0.159 0.617 0.963 1.000 0.097 0.155 0.625 0.964 1.000
Ratio 0.067 0.124 0.514 0.922 0.997 0.067 0.123 0.529 0.922 0.998

96¢CS

™ s X
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5.1.2. Example 2: K =2 and r = 2

In this subsection, we compare the power of both proposed tests when there is
1 shift in the first grid and a d shift in the second grid. Let {¢;, i, } be i.i.d.
from the above five distributions given in Example 1. The critical values are
computed by using Theorem 4.1. or Theorem 4.3. with a = 0.05.

TABLE 3
Power comparison for 61 and 2

Case  Test 61 =0y = —0.15 | 61 =05 =0.15

m=5> m=102 m=15" m=20> m=252 ‘ m=52 m=102 m=15> m=202 m=252

Case 1 Maxima  0.059 0.364 0.965 1.000 1.000 0.059 0.365 0.965 1.000 1.000
Ratio 0.057 0.289 0.888 0.997 1.000 0.055 0.296 0.891 0.998 1.000
Case 2 Maxima  0.094 0.337 0.950 1.000 1.000 0.093 0.342 0.949 1.000 1.000
Ratio 0.065 0.256 0.861 0.997 1.000 0.065 0.260 0.865 0.997 1.000
Case 3 Maxima  0.874 0.995 1.000 1.000 1.000 0.869 0.995 1.000 1.000 1.000
Ratio 0.129 0.795 1.000 1.000 1.000 0.130 0.804 1.000 1.000 1.000
Case 4 Maxima  0.101 0.472 0.990 1.000 1.000 0.103 0.471 0.989 1.000 1.000
Ratio 0.071 0.362 0.945 0.999 1.000 0.066 0.362 0.943 1.000 1.000
Case 5 Maxima  0.101 0.401 0.971 1.000 1.000 0.104 0.385 0.971 1.000 1.000
Ratio 0.066 0.313 0.901 0.998 1.000 0.068 0.293 0.897 0.999 1.000

In this example, §; and J5 are of the same sign as required by assumption
A4. We carry out 10,000 simulations. The power comparisons are given in Table
3. Clearly, as m increases, the powers of both tests are increasing, which agrees
with the results in Example 1. When m is large enough, say, m > 202, both
tests show strong powers (> 0.997) for all the cases.

5.1.3. Fxample 3: K =11 andr =1

We examine the performance of both maxima test and ratio test for abnormal
images detection. Let the pixel-to-pixel differences between the ¢th and ¢ — 1th
images be generated independently from ;1 4+ 0.4¢(~y) distribution with v = £+41
for £ = 2,...,11, where §; = 0.25 for the first two grids when ¢ = 5,10, and 0
otherwise.

We carried out 10,000 simulations. Fig. 3 displays the boxplots of w (see Eq.
(10)) obtained via the maxima test (a) and the ratio test (b) under different
partition sizes. It can be seen that the performance of both tests becomes better
as the partition size increases, reflected by the decreasing trends of w. As m
increases from 102 to 202, the medians of ws drop significantly for both test
methods. This result demonstrates the efficiency of the proposed tests in terms
of abnormal image detection.

5.2. Real data example

Now we return to analyze the medical images with gastrointestinal bleeding de-
scribed in Section 1. As is displayed in Fig. 1, from the 6th image onwards, bleed-
ing intensifies gradually. And it is difficult to distinguish the images, X1,..., X5
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Fic 3. Bozplots of w obtained via the mazima test (a) and the ratio test (b) over 10,000
simulations. The red and blue lines represent the medians of w for the mazima test and the
ratio test, respectively. The z-axis denotes the partition size, while the y-axis denotes the w
value.

TABLE 4
The p-values and D for abnormality detection of the medical image with gastrointestinal
bleeding.
(=2 (=3 (=4 (=5 (=6 (=7 (=8 (=9 (=10 (=11 D
o2 Maxima <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 {2...11}
Ratio 04240 02731 04657 05664 < 0.001 0.0051 0.0066 0.3801 0.1878  0.8169 {6,7.8}
g Maxima <0001 <0001 <0001 <0001 <0001 <000l <0001 <0001 <0001 <0001 {2...11}

Ratio 0.2687  0.0267  0.2433 0.0943 0.0000 0.0328 0.1204 0.1515 0.0885  0.0162 {3,6,7,11}
Maxima  0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 {2,...,11}
Ratio 0.0037  0.2515 0.7473 0.1130 0.0000 0.0182 0.9378 0.0328 0.0000 0.0822 {2,6,7.9,10})

m = 10%

(before bleeding) and Xs,..., X1 (after bleeding) by eyeballing. This study
aims to detect the initial point when the bleeding begins and the timepoints
when the bleeding gets worse than that at the initial time. We consider the
pixel-to-pixel differences between images by applying the detection procedure
provided in Section 3.3 to solve this problem. The size of each partition is given
equally, such as m = 22,52 102. We report the p-values for the /-th image
(¢ =2,...,11) and the final D obtained via both tests in Table 4.

Unfortunately, the maxima test fails to detect the abnormalities in these
medical images. It can be seen from Table 4 that D via the maxima test contains
all the images for different m; that is, there exists a significant difference between
any two images. These results are contrary to the fact that the initial bleeding
starts from the 6th image. The failure of the maxima test in real data may
result from the poor estimate of § in Eq. (6). When it comes to the ratio
test, however, it outperforms the maxima test. An interesting finding is that
the size of D is increasing as the partition size m increases from 2% to 102,
resulting in the increased power of the test, which is consistent with the Theorem
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4.4.. Specifically, the intersection of D is {6,7} for different m. The ratio test
accurately detects the initial time point when it starts bleeding since {6} C
D for different m. Intuitively, there exists a slight difference between the 6th
and 7th images. The results of {7} C D for different m also demonstrate the
outperformance of the ratio test in detecting a slight difference between two
abnormal images.

6. Conclusion and discussion

This paper proposes two robust detection methods, the maxima test and the
ratio test, by leveraging the block median technique. Theoretically, we show
that the p-values for both tests can be approximated with satisfactory accu-
racy, and the consistency of both tests under mild assumptions. We develop the
detection procedure and discuss its applications in detecting abnormalities in
noisy medical images under two scenarios. Numerically, simulation studies and
real data analysis are performed to examine the performance of the proposed
tests. The maxima test performs well in simulations but falls short in the real
data application. This phenomenon may be due to the presence of the nuisance
parameter, i.e., the standard deviation of the median. Although the MAD esti-
mator in (6) to improve the performance of the maxima test, the resultant test
still does not perform satisfactorily in the real data application. However, the
ratio test exhibits satisfactory performance and is generally powerful in both
simulations and real data applications.

Our detection methods can figure out whether the most recent image is abnor-
mal and enables us to keep significantly different images for further examination
while removing large but informationless images regularly to save image storage
space. In addition to detecting abnormal medical images, the methods may be
used in air pollution detection. For example, some wildfires are human-caused
due to open fire in the permitted parks. We could collect remote sensing images,
especially hyperspectral images, acquired from Earth-orbiting satellites, which
hold great promise in monitoring and categorizing wildfires. Hyperspectral im-
ages are characterized by having multiple layers or image planes at a specific
wavelength or range of wavelengths. We may focus on some layers with fixed
ranges of wavelengths that are sensitive to wildfires. The detection procedure
can be applied for monitoring some special areas which may have a high risk of
fires.

Although the proposed detection methods have wide applications, they have
some limitations. The proposed pixel-based image comparison methods might
not be reasonable when there is a systematic change along the time. For example,
the image will change periodically based on the heart rate in ultrasound imaging
and brain fMRI. Honestly, this limitation would hinder the application of the
proposed methods in some medical imaging data sets.
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Appendix
A.1. Proof of Lemma 1

We will need the Taylor series expansions of F(z) and f(z) about zero. The
leading-term approximations of them are

Q

F(z) = F(0)=1/2, f(z)= f(0).

Recall that g(z) denotes the common density function of the medians 1, ...,z
under Hy. A truncated approximated density function of g(z) in the interval
[a, b] has the following form

1/(b—a), ifa<axz<b,

glxz;-1<a<0,0<b<1)= ;
0, otherwise.

The likelihood functions under Hy and H; respectively given by

1/(2a0)®, if 21,...,2 € [—ao, ao,
Lo(—ao,a0|l‘17...,$n> _ /( aO) 1 T . T [ ag aO}
0, ortherwise,
and
1 — kooifxy, ..., S s ,
Li(ay, as|zy, ..., 20) = /(az —ay) 1 xy . Ty € [a1, az]
0, ortherwise.

Hence, a likelihood ratio statistic is

sup,, {Lo(—ao, aolT1, ..., 2x),a0 > 0}
SUP,, a1 L1(a1,a2lz1,. .., 74),a1 < 0,a2 > 0}

Az, ... x) =

_ { T(x) — T(1) ]
max{x (., —T(1)}
A.2. Proof of Theorem 4.1.

Let uy = a, + bev. Since M,, = maxi<¢<x |2¢|/0 (see (6)), for any £ > 0, we
have
pr(My > ) = pr(max x|/ > ux, max |¢| < &)

% >
+ pr(gggﬁ |zel /6 > w, nax el > €), (15)

where ¢, is defined in Proposition 1. Let &€ = x2/2/m3/2 and € = 2f(0)¢. By
Proposition 1, for some positive constant c,

5 > < >
pr(lrgggn |zel /6 > s, max Cel > &) < pr(ggggﬁ ICel =€)
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< pr(max |Ge1| 2 €/2) + pr(max |G| > £/2)
< cexp{log(k) — £2m?/8 — log(ém)} + c1 exp(—cam), (16)
where (y1 and (po are defined in Proposition 1. Thus, by Assumption A2,

exp(—cam) — 0. As log(x) — log(¢ém) = log(k/m) — log(§) and —log(§) =
—2log(k) + 2 log(m), by Assumption A2, we have

exp{log(k) — €2m?/8 —log(ém)} — 0.

Hence,

pr(max [(e[ > &) = 0. (17)

We now find the limit of pr(maxi <<, |2¢| > ux), where 2z, 1 < £ < k, defined
in Proposition 1, are i.i.d. N(0,1).

For given b, and a, as in (11), by Davison [7, eq. 6.35], m{l — ®(a, +
b,v)} — exp(—v). Since z1, ..., 2, are i.i.d. N(0,1), by Davison [7, eq. 6.32], it
follows that pr{b; ! (maxi<s<, 2¢ —a,) > v} — 1 —exp{— exp(—v)}. Therefore,
m{l — ®(a, +bv) + ®(—a, —bv)} = 2m{l — ®(a, + bv) = 2exp(—v), and

-1
pr{max |z > u.) = prib; (max |z| - ax) > v} =1 — exp{-2exp(-v)}.

(18)
By Assumption A2, it can be shown that & = o(1/+/1ogk), 2f(0)y/mé — 1 =
op(1/3/m) = o0,(1/logk), which, jointly with u, = O(y/logk), yield that
2f(0)y/mou,, — 2f(0)€ — u, = 0,(1/v/1og k). Hence, by Slutsky’s theorem and
(18), it follows that
pr(max |ze|/G > ux, max G| < &) —pr(max |z¢| > uy)
< pr(lrgeagz)(ﬁ |ze| > 2f(0)v/méu, —2f(0)¢) — pr(lréléaugxN |ze| > ui) = 0. (19)
Combining (15)-(19), we obtain that
li_im pr(M, > u,) <1 —exp{—2exp(—v)}. (20)
We now show that lim, ,  pr(M, > u,) > 1 —exp{—2exp(—v)}. By (15)
S .
pr(M, > uy) > pr(lrg%)(n |xe| /6 > g, max ICe| < &)
S .
> pr(max |ze| > 2/(0)vmoux + 2f(0)¢, max |G| <)
= plr(lrgeau<xN |ze| > 2f(0)v/méu, + 2f(0)€)

- ; > £).
pr(ma [e4] > 2£(0)/mows + 2/0)6, max (Gl 2. (2)
Similar to (19), we can obtain that

pr(lréléagx’1 |ze] > 2f(0)v/méu, + 2f(0)€) — pr(lrél&xn |ze| > uy) — 0. (22)
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It is easy to see that
pr(lrgéagm |ze] > 2f(0)v/m&u, + 2f(0)¢, max el > €) < pr(max Cel > €),
which, jointly with (17), implies that
pr(max |z > 2f(0)vmé&u, + 2f(0)¢, max |G| > £) = 0. (23)

Hence, by (21)-(23) and (18), we have lim, . pr(M, > wu,) > 1 —
exp{—2exp(—v)}, which, jointly with (20), concludes the theorem.

A.3. Proof of Theorem 4.2.

Our aim is to show that the lower bound of M, diverges to infinity in probability.
It is easy to see that

M, > 1r£n£1£1ﬁi |E(z¢)|/6 — 11%1%}(’{ |xe — E(x¢)|/6. (24)
By Assumption A3, minj<y<, |E(z¢)| > ¢ > 0, which, jointly with the fact that

2f(0)y/mdé — 1 in probability, yields that

nin |E(x¢)|/6 — 0o, in probability (25)

In light of Theorem 4.1., it can be shown that
max [z — E(z0)|/(6v/1og ) = O,(1). (26)

By Assumption A2, it is easy to see that /m/logx — oo, which, jointly with
(24)-(26), concludes the theorem.

A.4. Proof of Theorem 4.3.

Write € = k'/2/m3/? and £ = 2f(0)¢. Recall the random variables (; and zy
defined in Proposition 1 in which zp, 1 < ¢ < k, are i.i.d. N(0,1). Recall that
2y = max{ze, £ =1,...,k}, and 2y = min{z,, £ =1,...,x}. We have

o { T T,
min{x ., —x(1)}

T(p) — T
ZPT[ () 20 }ZV, 1@?3(,{‘4[' <& 2m) > VE — 2 > \/g]

min{x(,{), —,T(l)

T(w) —T(1)
> > < _ <
+pr [min{x(n),—x(l)} Z Vv fgeagxn |Ce| > & or Z(r) S & or z1) < \/E]

=Wy + Ws. (27)
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It is obvious that

W, < pr ( max |C| > 5) + pr (z(,{) < \/E) + pr (—z(l) < \/E) .

1<(<r

Note that it has been shown in (17) that pr(maxi<e< || > &) — 0. By As-
sumption A2, £ — 0 and x — oo, which yield that pr(z) <€) = ®"(v£) = 0
and pr(—z() < V€) = ®*(\/€) — 0. Thus, as n — oo,

We now find the limit of Wj. By (4) and (12), it is easy to see that if
maxj</<x |<g| < f, then Z(k) — f < 2f(0)\/ﬁl’(,£) < Z(k) +§ and —Z(1) — f <
—2f(0)yv/mzny < —21) + €. Further, if Zwy > V€ and —z(1) > /€, it can be
shown that /& — £ < min{2(.), —2(1)} —-f< 2f(0)y/mmin{z (., —xn)}. By
Assumption A2, it follows that /& — & > 0 and £/,/€ — 0. Write

TR
min{z(,ﬁ), 72(1)}

Thus, we have,

Z(k) — 2 —|—2§~
Wi <pr =) = > v, max [(] <&, 2 > NG —2(1) > \/E]

| min{z(, —2y} =& 1stsk

(2+v)¢
< WV > VE —2a) >
=pt _zl’ v mln{Z(K), —2(1)} ) \/g “n \/g

(2+v)¢
<Pr |z >V — ——=—, 24 >0, 21) <0},
VE (k) (1)
) -
=pr [Z(H) > 0,2(1) < 0] —DPr|z1,s <V-— ﬂ,Z(H) > O,Z(l) <0f.
V&
(29)
Since zg, 1 < £ < k, are i.i.d. N(0,1), it is obvious that as n — oo,
pr [Z(H) >0, zq) < O] — 1. (30)

We now show that

(2+ u)é
VE

pr [217K <v-— y Z(k) > 0, zZ1) < 0

has the same limit as

pr [zlﬁ <y, 2z >0, 20y < 0] ,
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or equivalently, as n — oo,

5 -
pr [V — ﬂ <z1, <V 2 >0, 2) < 0] — 0. (31)

Ve

Let v > 1. Then we have

[, e+ni

<21k <V, (k) > 0, Z1) < 0]

2+ )€
=pr [y — % < Zik <V, Z(k) > 'y(—z(l)), Z(k) > 0, Z(1) < (;|
- ) 5
+pr|v— ﬂ < zZ1e <V, —21) > Y(2w)) Z) >0, 21) <0
Ve
[ 24+ )€
+pr|v— ﬁ <2z <V, —21) < Zr) < ’y(fZ(l)), 2() >0, 2(1) <0
Ve
24w
+pr|v— (\/g)f <z1e <V 2R < —Z1) < ’y(Z(R)), Z(r) >0, z(1) < O‘|

=11 (v) + I2(7) + () + a().

By Davison [7, eq. 6.35], (2() —ax)/bx converges to a Gumbel random variable,
which, jointly with the fact that b, — 0, and a, — oo, yields that z(,) — ax
converges to zero in probability. Hence, we obtain that for any v > 1, as n — oo,

Hl(”y) < pr [Z(,Q) > ’y(*Z(l)),Z(K) >0, z(1) < 0] — 0.

Similarly, it can be shown that II3(y) — 0, as n — oo. Note that —z(1) < z(,) <
Y(=21))s 2 >0, 2y <0 imply that

(k) — <
21,5:—() &) Sl—'—’}/

—F)
Choose a 7 such that 1 <+ < v — 1 and denote it by 7. Since by Assumption
A2, £/\/€ — 0 as n — oo, it follows that

(2+v)¢

II3(y) <pr|v——="=<14+7]| =0, asn— .
Ve
In a similar way, we can show that II4(yo) — 0, as n — oo. Thus, (31) is proved.
Since z¢, 1 < ¢ < k, are i.i.d. N(0, 1), it is obvious that
pr [zm <v,z4) < 0or Z(1) 2 O] — 0, asn— oo.

Note that v > 2, 2(,,) > 0, and 2(1) < 0, and hence {2(,) —z(1)}/ min{z (), —z(1) }
< v means that z(,) < (1 —v)zqn) if 2,) > —2(), otherwise (1 — v)z(,) <
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y=Q1-v)x

F1G 4. Illustration of the integration domain with v = 3 of (32).

2(1)- As zg, 1 < £ < K, are ii.d. N(0,1), the joint density of z(;) and 2
is k(k — 1)[®(y) — ®(2)]"2¢(x)¢(y) with z < y. By the integration domain
illustrated in Figure 4, we have

SV Zk) > 0, z1) < 0]
2e) < (L=1)21)s 2() > 0, 201) <0, 2(x) > —2(1)]
—pr [(1=v)2() < 20, 2 > 0, 20) <0, 2(0) < —2(1)]

0 (1-v)z
1 / dx / Rk — D[@(y) — B(x)]"2(x)d(y)dy

-/ Sy / U k(e - (@) — (@) 2g(x)b(y)da (32)
0 (

1-v)y

=1- / kd(@){[@((1 = v)z) — @(2)]" 7" — [®(—2) — O(2)]" " }dx

n / T kb)) — B(—y) — [B() — B((1L - v)y)* Yy,
Thus,
- 0
B {0 - 14 [ so@ie( - v - o)
[ B(—x) — ()] + / " ko) {[@) — B(—y))r!
[ B(y) - B((1 - ) dy} <0, (33)
We want to find out if we have

0
lim {prm >v) -1+ / k(@) {[@((1 - v)a) — Da)]*"

n— 00 —00
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~ [B() — B+ [ woly) {[9() - ()

0
@@><MuwwV1}@}zo. (34)

Similar to the proof of Theorem 4.1., we have

) = 21) — 26

W1>pr = > v, max <&, zZ) > , —Z(1) >
1=Pp _min{zmy —2(1)} +&T 0 Ikx el <€ () \/g M \/g‘|
= >v+—rr—r-r— —
PE1Z1e =V min{z(x), —2(1)}’ %'M <&z > VE —zay > VE

=pr ggg{l@l <&z > VE—2) > \/E]

2+ v)¢ max [(e| < &, z(x) > VE, —2(1) > \/4

- r < —
pr lzl, v+ mln{z(n), —2(1)} max

(2+v)¢
VE

>pr [%g{d(d <& z(r) > VE, —z(1) > \/E] —pr [21,5 <v+

(35)

By the fact that pr (max<s<, [¢e| > &) — 0, pr (2(s) < V&) — 0, and pr( —z)
< \/E) — 0 as n — o0, it follows that

pr {max |Cel <&, 2(n) > \/E, —2(1) > \/4 —1 asn— . (36)

1<é<nk

Similar to the proof of (31), we obtain that as n — oo,

(2+v)¢
VE

—prizi. <v]—0. (37)

pr lzl,ﬁ S v+

Since

pr(z1,. <V
=pr [zLH <z > 0,201 < 0] + pr [zl,ﬁ <y, 25 S0o0r 21y > O] ,
pr [zl,ﬁ <24y S 0or 2y > 0] — 0,
and

L=pr (21,0 < ¥, 25 > 0,21) < 0]

0
—1- [ wof(@((1 - v)o) - B - [b(-0) - Ba)) s

— 00

+AMW@MMw—¢PM*“%W@—MO—WM*@@,

by (35)-(37), it follows that (34) holds true, which, jointly with (33), concludes
the theorem.
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A.5. Proof of Theorem 4.4.

We first assume that J,s are all less than —p < 0 by Assumptions Al and
A4. We compare —x(1)/6 and (/6. Since x; = 0, + 1, with E(z,) = 6, and
maxi<y<x(—0¢) = maxy<y<x(—0¢) > o,

—37(1)/& = — 1211(125(94/5' + ’174/6)
= — g — 5) > _ A ~
max (=0p/6 —ne/6) 2 ax (—=0;)/6 — max |nel/6, (38)
and
T(e)/6 = max (8¢/5 +1e/6) < max |ne/5. (39)

Since 2f(0)4/mdé — 1 in probability, by (26) and Assumption 2, we have

1/6 > max |z¢ — E(x¢)|/d in probability, (40)

where A, > B, means A/B goes to infinity when x — oco. Thus, by (38)-(40),
we obtain that

—x(1)/6 > x(,)/6 in probability,
which implies that in probability,

_Tw—re o max{zg, —ru)}
min{x(,@),fac(l)} min{x(n),fx(l)}

_ g e /0 e /oYy Trw/e
mln{l’(,i)/d,fl'(l)/d} x(,@)/a

We now assume that d,4s are all larger than ¢ > 0 by Assumptions Al and
A4. Similar to the derivations of (38)-(39), it can be shown that

—w()/6 = — min (0,/6 +ne/8) = ~00/6 —e/6) < 5
/6 =~ min (6¢/5 +1¢/6) = max (=6¢/6 —ne/6) < max |mel/5,

and
. R . . R
T(x)/G 121?3’2(94/ G+ne/6) > nax 0c/6 max 1el/ 5,

which, jointly with (40), yield that x(.)/6 > —x(1)/d in probability. Thus,

B T(x) /0 . .
T, =14+ ———— — oo in probability.

—1‘(1) /5’
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