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Abstract: We consider the problem of estimating the parameters a Gaus-
sian Mixture Model with K components of known weights, all with an
identity covariance matrix. We make two contributions. First, at the pop-
ulation level, we present a sharper analysis of the local convergence of EM
and gradient EM, compared to previous works. Assuming a separation of
Ω(

√
logK), we prove convergence of both methods to the global optima

from an initialization region larger than those of previous works. Specif-
ically, the initial guess of each component can be as far as (almost) half
its distance to the nearest Gaussian. This is essentially the largest possi-
ble contraction region. Our second contribution are improved sample size
requirements for accurate estimation by EM and gradient EM. In previous
works, the required number of samples had a quadratic dependence on the
maximal separation between the K components, and the resulting error es-
timate increased linearly with this maximal separation. In this manuscript
we show that both quantities depend only logarithmically on the maximal
separation.
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1. Introduction

Gaussian mixture models (GMMs) are a widely used statistical model going
back to Pearson [15]. In a GMM each sample x ∈ R

d is drawn from one of

K components according to mixing weights π1, . . . , πK > 0 with
∑K

i=1 πi =
1. Each component follows a Gaussian distribution with mean μ∗

i ∈ R
d and

covariance Σi ∈ R
d×d. In this work, we focus on the important special case of

K spherical Gaussians with identity covariance matrix, with a corresponding
density function

fX(x) =

K∑
i=1

πi

(2π)
d
2

e−
‖x−μ∗

i ‖2
2 . (1)
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For simplicity, as in [22, 23], we assume the weights πi are known.
Given n i.i.d. samples from the distribution (1), a fundamental problem is to

estimate the vectors μ∗
i of theK components. Beyond the number of components

K and the dimension d, the difficulty of this problem is characterized by the
following key quantities: The smallest and largest separation between the cluster
centers,

Rmin = min
i �=j

‖μ∗
i − μ∗

j‖, Rmax = max
i �=j

‖μ∗
i − μ∗

j‖, (2)

the minimal and maximal weights and their ratio,

πmin = min
i∈[K]

πi, πmax = max
i∈[K]

πi, θ =
πmax

πmin
. (3)

In principle, one could estimate μ∗
i by maximizing the likelihood of the ob-

served data. However, as the log-likelihood is non-concave, this problem is com-
putationally challenging. A popular alternative approach is based on the EM
algorithm [7], and variants thereof, such as gradient EM. These iterative meth-
ods require an initial guess (μ1, . . . , μK) of theK cluster centers. Classical results
show that regardless of the initial guess, the values of the likelihood function
after each EM iteration are non decreasing. Furthermore, under fairly general
conditions, the EM algorithm converges to a stationary point or a local op-
tima [21, 19]. The success of these methods to converge to an accurate solution
depend critically on the accuracy of the initial guess [10].

In this work we study the ability of the popular EM and gradient EM algo-
rithms to accurately estimate the parameters of the GMM in (1). Two quantities
of particular interest are: (i) the size of the initialization region and the minimal
separation that guarantee convergence to the global optima. Namely, how small
can Rmin be and how large can ‖μi − μ∗

i ‖, and still have convergence of EM to
the global optima in the population setting; and (ii) the required sample size,
and its dependence on the problem parameters, that guarantees EM to find
accurate solutions, with high probability.

We make the following contributions: First, we present an improved analysis
of the local convergence of EM and gradient EM, at the population level, as-
suming an infinite number of samples. In Theorems 3.1 and 3.2 we prove their
convergence under the largest possible initialization region, while requiring a
separation Rmin = Ω

(√
logK

)
. For example, consider the case of equal weights

πi = 1/K, and an initial guess that satisfies ‖μi − μ∗
i ‖ ≤ λminj �=i ‖μ∗

j − μ∗
i ‖ for

all i, with λ < 1/2. Then, a separation Rmin ≥ C(λ)
√
logK, with an explicit

C(λ), suffices to ensure that the population EM and gradient EM algorithms
converge to the true means at a linear rate.

Let us compare our results to several recent works that derived convergence
guarantees for EM and gradient EM. [23] and [22] proved local convergence to
the global optima under a much larger minimal separation of
Rmin ≥ C

√
min(d,K) logK. In addition, the requirement on the initial esti-

mates had a dependence on the maximal separation, ‖μi − μ∗
i ‖ ≤ 1

2Rmin −
C1

√
min(d,K) logmax(Rmax,K3) for a universal constant C1. These results
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were significantly improved by [13], who proved the local convergence of the
EM algorithm for the more general case of spherical Gaussians with unknown
weights and variances. They required a far less restrictive minimal separation
Rmin ≥ C

√
logK, with a constant C ≥ 64, and their initialization was restricted

to λ < 1
16 . We should note that no particular effort was made to optimize these

constants. In comparison to these works, we allow the largest possible initializa-
tion region λ < 1

2 , with no dependence on Rmax. Also, for small values λ ≤ 1/16,
our resulting constant C is roughly 6 times smaller that that of [13].

Our second contribution concerns the required sample size to ensure accurate
estimation by the EM and gradient EM algorithms. Recently, [13] proved that
with a number of samples n = Ω̃(d/πmin), a sample splitting variant of EM is sta-
tistically optimal. In this variant, the n samples are split into B distinct batches,
with each EM iteration using a separate batch. In contrast, for the standard EM
and gradient EM algorithms, weaker results have been established so far. Cur-
rently, the best known sample requirements for EM are n = Ω̃(K3dR2

max/R
2
min),

whereas for gradient EM, n = Ω̃(K6dR6
max/R

2
min). In addition, the bounds for

the resulting errors increase linearly with Rmax, see [22, 23]. Note that in these
two results, the required number of samples increases at least quadratically with
the maximal separation between clusters, even though increasing Rmax should
make the problem easier. In Theorems 3.3 and 3.4, we prove that for an initial-
ization region with parameter λ strictly smaller than half, the EM and gradient
EM algorithms yield accurate estimates with sample size Ω̃(K3d). In particular,
both our sample size requirements and the bounds on the error of the EM and
gradient EM have only a logarithmic dependence on Rmax.

Our results on the initialization region and minimal separation stem from
a careful analysis of the weights in the EM update and their effect on the
estimated cluster centers. Similarly to [13], we upper bound the expectation of
the i-th weight when the data is drawn from a different component j �= i and
show that it is exponentially small in the distance between the centers of the i
and j components. We make use of the fact that all Gaussians have the same
covariance to reduce the expectation to one dimension and directly upper bound
the one dimensional integral. This allows us to derive a sharper bound compared
to [13] from which we obtain a larger contraction region for the population EM
and gradient EM algorithms. Our analysis of the finite sample behavior of EM
and gradient EM follows the general strategy of [23]. Our improved results rely
on tighter bounds on the sub-Gaussian norm of the weights in the EM update
which do not depend on the distance between the clusters.

1.1. Previous work

Over the past decades, several approaches to estimate the parameters of Gaus-
sian mixture models were proposed. In addition, many works derived theoreti-
cal guarantees for these methods as well as information-theoretic lower bounds
on the number of samples required for accurate estimation. Significant efforts
were made in understanding whether GMMs can be learned efficiently both
from a computational perspective, namely in polynomial run time, and from a
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statistical view, namely with a number of samples polynomial in the problem
parameters.

Method of moments approaches [11, 14, 8] can accurately estimate the pa-
rameters of general GMMs with Rmin arbitrarily small, at the cost of sample
complexity, and thus also run time, that is exponential in the number of clusters.
[9] showed that a method of moments type algorithm can recover the param-
eters of spherical GMMs with arbitrarily close cluster centers in polynomial
time, under the additional assumption that the components centers are affinely
independent. This assumption implies that d ≥ K.

Methods based on dimensionality reduction [4, 1, 2, 12, 17] can accurately
estimate the parameters of a GMM in polynomial time in the dimension and
number of clusters, under conditions on the separation of the clusters’ centers.
In particular, [17] proved that accurate recovery is possible with a minimal

separation of Rmin = Ω(min(K, d)
1
4 ).

In general, it is not possible to learn the parameters of a GMM with number
of samples that is polynomial in the number of clusters, see [14] for an explicit
example. [16] showed that for any function γ(K) = o(

√
logK) one can find

two spherical GMMs, both with Rmin = γ(K) such that no algorithm with
polynomial sample complexity can distinguish between them. [16] also presented
a variant of the EM algorithm that provably learns the parameters of a GMM
with separation Ω(

√
logK), with polynomial sample complexity, but run time

exponential in the number of components.
More closely related to our manuscript, are several works that studied the

ability of EM and variants thereof to accurately estimate the parameters of a
GMM. [5] showed that with a separation of Ω(d

1
4 ), a two-round variant of EM

produces accurate estimates of the cluster centers. A significant advance was
made by [3], who developed new techniques to analyze the local convergence of
EM for rather general latent variable models. In particular, for a GMMwithK =
2 components of equal weights, they proved that the EM algorithm converges
locally at a linear rate provided that the distance between the components is
at least some universal constant. These results were extended in [20] and [6]
where a full description of the initialization region for which the population EM
algorithm learns a mixture of any two equally weighted Gaussians was given.
As already mentioned above, the three works that are directly related to our
work, and to which we compare in detail in Section 3 are [22], [23] and [13].

2. Problem setup and notations

2.1. Notations

We write X ∼ GMM(μ∗, π) for a random variable with density given by Eq.
(1). The distance between cluster means is denoted by Rij = ‖μ∗

i −μ∗
j‖. We set

Ri = minj �=i Rij . Expectation of a function f(X) with respect to X is denoted
by EX [f(X)], or when clear from context simply by E[f(X)]. For simplicity
of notation, we shall write Ei[f(X)] = EX∼N (μ∗

i ,Id)
[f(X)]. For a vector v we
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denote by ‖v‖ its Euclidean norm. For a matrix A, we denote its operator norm
by ‖A‖op = max‖x‖=1 ‖Ax‖. Finally, we denote by μ = (μ�

1 , . . . , μ
�
K)� ∈ R

Kd

the concatenation of μ1, . . . , μK ∈ R
d.

As in previous works, we consider the following error measure for the quality
of an estimate μ of the true means,

E(μ) = max
i∈[K]

‖μi − μ∗
i ‖.

We will see that in the population case we can restrict our analysis to the
space spanned by the K true cluster means and the K cluster estimates. It will
therefore be convenient to define d0 = min(d, 2K). For any 0 < λ < 1

2 we define
the region

Uλ =
{
μ ∈ R

Kd : ‖μi − μ∗
i ‖ ≤ λRi ∀i ∈ [K]

}
. (4)

For future use we define the following function which will play a key role in our
analysis,

c(λ) =
1

8

(
1− 2λ

1 + 2λ

)2

. (5)

2.2. Population and sample EM

Given an estimate (μ1, . . . , μK) of the K centers, for any x ∈ R
d and i ∈ [K] let

wi(x, μ) =
πie

− ‖x−μi‖2
2∑K

j=1 πje−
‖x−μj‖2

2

. (6)

The population EM update, denoted by μ+ = (μ+
1 , . . . , μ

+
K) is given by

μ+
i =

EX [wi(X,μ)X]

EX [wi(X,μ)]
, ∀i ∈ [K]. (7)

The population gradient EM update with a step size s > 0 is defined by

μ+
i = μi + sEX [wi(X,μ)(X − μi)] , ∀i ∈ [K]. (8)

Given an observed set of n samples X1, . . . , Xn ∼ X, the sample EM and
sample gradient EM updates follow by replacing the expectations in (7) and (8)
with their empirical counterparts. For the EM, the update is

μ+
i =

∑n
�=1 wi(X�, μ)X�∑n
�=1 wi(X�, μ)

, ∀i ∈ [K] (9)

and for the gradient EM

μ+
i = μi + s

1

n

n∑
�=1

wi(X�, μ)(X� − μi), ∀i ∈ [K]. (10)

In this work, we study the convergence of EM and gradient EM, both in the
population setting and with a finite number of samples. In particular we are
interested in sufficient conditions on the initialization and on the separation of
the GMM components that ensure convergence to accurate solutions.
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3. Local convergence of EM and gradient EM

3.1. Population EM

As in previous works, we first study the convergence of EM in the population
case and then build upon this analysis to study the finite sample setting. In-
formally, our main result in this section is that for any fixed λ ∈ (0, 1

2 ) and an
initial estimate μ ∈ Uλ, there exists a constant C(λ) such that for any mixture

with Rmin � C(λ)
√
log 1

πmin
the estimation error of a single population EM up-

date (7) decreases by a multiplicative factor strictly less than 1. This, in turn,
implies convergence of the population EM to the global optimal solution μ∗.
Formally, our result is stated in the following theorem.

Theorem 3.1. Set λ ∈ (0, 1
2 ). Let X ∼ GMM(μ∗, π) with

Rmin ≥

√
4

c (λ)
log

32 (K − 1)
√

14 (1 + θ)

3πminc(λ)
(11)

where c(λ) and θ are as defined in (5) and (3), respectively. Then for any μ ∈ Uλ

it holds that E(μt) ≤ 1
2tE(μ) where μt is the t-th iterate of the population EM

update (7) initialized at μ.

We derive a similar result for gradient EM.

Theorem 3.2. Set λ ∈ (0, 1
2 ). Let X ∼ GMM(μ∗, π) with Rmin satisfying (11).

Then for any s ∈
(
0, 1

πmin

)
and any μ ∈ Uλ it holds that E(μt) ≤ γtE(μ) where

μt is the t-th iterate of the population gradient EM update (8) with step size s
and γ = 1− 3

8sπmin.

The proof of Theorem 3.1 appears in Section 4 with the technical details
deferred to the appendix. The proof of Theorem 3.2 is similar and appears in
full in the appendix.

It is interesting to compare Theorems 3.1 and 3.2 to several recent works, in
terms of both the size of the initialization region, and the requirements on the
minimal separation. [22] and [23] assumed a separation Rmin = Ω(

√
d0 logK)

and proved local convergence of the gradient EM and of the EM algorithm, for
an initialization region of the following form, with C1 a universal constant,

max
i∈[K]

‖μi − μ∗
i ‖ ≤ 1

2
Rmin − C1

√
d0 logmax(Rmax,K3).

Recently, [13] significantly improved these works, proving convergence of popu-
lation EM with a much smaller separation Rmin ≥ 64

√
log(θK). Moreover, they

considered the more general and challenging case where the Gaussians may have
different variances and the EM algorithm estimates not only the Gaussian cen-
ters, but also their weights and variances. However, they proved convergence
only for an initialization region Uλ with λ ≤ 1

16 .



4516 N. Segol and B. Nadler

Our results improve upon these works in several aspects. First, in compar-
ison to the contraction region of [22], our theorem allows the largest possible
initialization region ‖μi−μ∗

i ‖ < 1
2Ri, with no dependence on the other problem

parameters d0,K and Rmax. This initialization region is optimal as there exists
GMMs and initializations μ with ‖μi−μ∗

i ‖ = 1
2Ri such that the EM algorithm,

even at the population level, will not converge to values that are close to the
true parameters.

Second, in comparison to the result of [13], we allow λ to be as large as 1
2 .

Also, for λ < 1
16 , our requirement on Rmin is nearly one order of magnitude

smaller. For example, for a balanced mixture with πmin = 1
K , the right hand

side of (11) reads √√√√ 4

c (λ)

(
log (K2) + log

32
√
28

3c(λ)

)
.

An initialization region ‖μi − μ∗
i ‖ ≤ 1

16Ri leads to a separation requirement

Rmin ≥ 10.3
√
log(K) + 6.6, which is much smaller than 64

√
logK.

We remark on the necessity of our assumptions on the separation and initial-
ization in Theorems 3.1 and 3.2. In general, given only a polynomial number of
samples, a separation of Rmin = Ω(

√
logK) is necessary to accurately estimate

the parameters of a GMM regardless of the estimation method [16]. With in-
finitely many samples and sufficiently close initial estimates, the EM algorithm
may still converge to the global optimum even with Ω(1) separation. However,
to the best of our knowledge, a precise characterization of the attraction region
to the true parameters is still an open problem. Next, the separation require-
ment (11) in our theorems depends inversely on c(λ). Therefore, as λ → 1

2 the
requirement on Rmin becomes more restrictive. Simulation results, see Figure
1b in Section 6, suggest that this dependence of the separation requirement
on the initialization may be significantly relaxed. We conjecture that the EM

and gradient EM algorithms converge when Rmin ≥ C
√
log K

πmin
for a universal

constant C and ‖μi − μ∗
i ‖ < 1

2Ri.

3.2. Sample EM

We now present our results on the EM and gradient EM algorithms for the finite
sample case.

Theorem 3.3. Set λ ∈ (0, 1
2 ), δ ∈ (0, 1). Let X1, . . . , Xn

i.i.d.∼ GMM(μ∗, π) with
Rmin satisfying (11). Suppose that n is sufficiently large so that

n

logn
> C

Kd log
(

C̃
δ

)
πmin

max

(
1,

1

(1− 2λ)2λ2πminR2
min

)
. (12)

where C is a universal constant and C̃ = 100K2Rmax(
√
d + 2Rmax)

2. Assume
an initial estimate μ ∈ Uλ and let μt be the t-th iterate of the sample EM update
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(9). Then with probability at least 1− δ, for all iterations t, μt ∈ Uλ and

‖μt
i − μ∗

i ‖ ≤ 1

2t
E(μ) +

C1

(1− 2λ)πi

√
Kd log C̃n

δ

n
(13)

for a suitable absolute constant C1.

Theorem 3.4. Set λ ∈ (0, 1
2 ), δ ∈ (0, 1). Let X1, . . . , Xn

i.i.d.∼ GMM(μ∗, π) with

Rmin satisfying (11). Set s ∈
(
0, 1

πmin

)
and suppose that n is sufficiently large

so that

n

logn
>

CKd log C̃
δ

π2
min

max
i∈[K]

max
(
λ2R2

i ,
1

(1−2λ)2

)
λ2R2

i

(14)

where C is a universal constant and C̃ = 36K2Rmax(
√
d+2Rmax)

2. Assume an
initial estimate μ ∈ Uλ and let μt be the t-th iterate of the sample gradient EM
update (10) with step size s. Then with probability at least 1− δ, μt ∈ Uλ for all
t, and

‖μt
i − μ∗

i ‖ ≤ γtE(μ) +
C1

πi
max

(
1

1− 2λ
, λRi

)√√√√Kd log
(

C̃n
δ

)
n

(15)

where γ = 1− 3
8sπmin and C1 is a suitable absolute constant.

The main idea in the proofs of Theorems 3.3 and 3.4 is to show the uniform
convergence, inside the initialization region Uλ, of the sample update to the
population update. The sample size requirements (12) and (14) are such that
the resulting error of a single update of the EM and gradient EM algorithms is
sufficiently small to ensure that the updated means are in the contraction region
Uλ. This, combined with the convergence of the population update, yields the
required result. We outline the main steps of the proof in Section 5 with more
technical details deferred to the appendix.

Let us compare Theorems 3.3 and 3.4 to previous results, in terms of required
sample size and bounds on the estimation error. The strongest result to date,
due to [13], considered a variant of the EM algorithm, whereby the samples are
split into B separate batches, and at each iteration t (with 1 ≤ t ≤ B), the
sample EM algorithm is run only using the data of the t-th batch. They showed
that to achieve an error E(μB) ≤ ε, the required sample size is Ω̃( d

πminε2
).

The best known bounds without sample splitting were derived by [22] and by
[23]. The error guarantee for gradient EM is Õ(n−1/2 max(K3R3

max

√
d,Rmaxd)),

whereas for EM it is Õ(n−1/2Rmax

√
Kd/πmin). The sample size requirements

for gradient EM are n
logn = Ω̃(max(K3R3

max

√
d,Rmaxd)

2/R2
min) and n

logn =

Ω̃( Kd
π2
min

max(1, R2
max/R

2
min)) for EM. Note that these bounds have a dependence

on the maximal separation Rmax. In particular, even though intuitively, as Rmax

increases the problem should become easier, these error bounds increase linearly
with Rmax and the required sample size increases quadratically with Rmax. In
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contrast, in our two theorems above there is a dependence on 1/(1−2λ), which is
strictly smaller than Rmax by the separation condition (11). Thus, for λ bounded
away from 1/2, there is only a logarithmic dependence on Rmax. We believe that
with further effort, the dependence on Rmax can be fully eliminated.

We note that both the minimal sample size requirement in Equations (12)
and (14) and the bounds on the error in Equations (13) and (15) could probably
be improved. Indeed, [13] proved that the sample splitting variant of the EM
algorithm yields accurate estimates with only Ω̃(Kd) samples. Numerical results,
see Section 6, suggest that the error of the classical EM algorithm depends only
on

√
Kd.

4. Proof for the population EM

Our strategy is similar to [22] and [23]: We bound the error of a single update,
‖μ+

i −μ∗
i ‖ in terms of EX [wj(X,μ)] and EX [∇μwj(X,μ)(X−μj)], which in turn

depend on their expectations with respect to individual Gaussian components.
Our key result on the latter expectation is the following Proposition, whose
proof appears in the appendix.

Proposition 4.1. Set 0 < λ < 1
2 . Let X ∼ GMM(μ∗, π) with

Rmin >

√
2

1− 2λ
log θ (16)

where θ is defined in (3). Then for any μ ∈ Uλ and all j �= i, with c(λ) defined
in (5),

Ei[wj(X,μ)] ≤
(
1 +

πj

πi

)
e−c(λ)R2

ij . (17)

This proposition shows that Ei[wj(X,μ)] is exponentially small in the sep-
aration Rij and is key to proving contraction of the EM and gradient EM
updates. A similar result was proven in [13]. The main differences are that
they assumed a smaller region with λ < 1

16 and obtained a looser exponential
bound exp(−R2

ij/64). However, they considered a more challenging case where
the weights πi and variances of the K Gaussian components are unknown and
are also estimated by the EM procedure.

The key idea in proving Proposition 4.1 is that forX ∼ N (μ∗
i , Id) it suffices to

analyze the random variable wj(X,μ) on the one dimensional space spanned by
μi−μj . Thus, the expectation over a d dimensional random vector is reduced to
the expectation of some explicit function over a univariate standard Gaussian.
An immediate corollary is that under the same conditions as in Proposition 4.1,
the following lower bound holds for the expectation Ei[wi(X,μ)].

Corollary 4.1.1. Set 0 < λ < 1
2 and suppose that Rmin satisfies (16). Then

∀μ ∈ Uλ

Ei[wi(X,μ)] ≥ 1− (K − 1)(1 + θ)e−c(λ)R2
i . (18)
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Next, note that for X ∼ GMM(μ∗, π), it holds that EX [wi(X,μ∗)] = πi.
Thus, for center estimates μ close to μ∗ we expect that EX [wi(X,μ)] > 3

4πi.
This intuition is made precise in the following lemma which follows readily from
Corollary 4.1.1.

Lemma 4.2. Fix 0 < λ < 1
2 . Let X ∼ GMM(μ∗, π) and suppose that

Rmin ≥
√

c(λ)−1 log(15(K − 1)(1 + θ)). (19)

Then for any i ∈ [K] and any μ ∈ Uλ,

EX [wi(X,μ)] ≥ 3

4
πi. (20)

Next, we turn to the term EX [∇μwi(X,μ)(X − μi)]. By definition, ∇μwi ∈
R

Kd has the following K components, each a vector in R
d,

∂wi(X,μ)

∂μi
= −wi(X,μ)(1− wi(X,μ))(μi −X) (21)

and for j �= i
∂wi(X,μ)

∂μj
= wi(X,μ)wj(X,μ)(μj −X). (22)

For future use we introduce the following quantities related to EX [∇μwi(X,μ)×
(X − μi)]. For any μ, v ∈ R

Kd, define

Vi,j(μ, v) = ‖EX [wi(X,μ)wj(X,μ)(X − vi)(X − μj)
�]‖op, (23)

Vi,i(μ, v) = ‖EX [wi(X,μ)(1− wi(X,μ))(X − vi)(X − μi)
�]‖op. (24)

The following lemma, proved in the appendix, provides a bound on these quan-
tities.

Lemma 4.3. Fix 0 < λ < 1
2 . Let X ∼ GMM(μ∗, π) with Rmin satisfying Eq.

(16). Assume μ ∈ Uλ and v = μ or v = μ∗. Then, for any i, j ∈ [K] with i �= j

Vi,i(μ, v) ≤
√
C(K − 1) (1 + θ)max

(
d0, R

2
i

)
e−

c(λ)
2 R2

i , (25)

Vi,j(μ, v) ≤
√
C (1 + θ)max

(
d0,max(Ri, Rj)

2
)
e−

c(λ)
2 max(Ri,Rj)

2

, (26)

where C is a universal constant, for example we can take C = 14.

Expressions related to Vi,i and Vi,j were also studied by [22]. They required a
much larger separation,Rmin ≥ C

√
d0 logK, and their resulting bounds involved

also Rmax.

Remark 4.1. In proving the convergence of EM, the quantities of interest
are Vi,j(μ, μ

∗) and Vi,i(μ, μ
∗), whereas for the gradient EM algorithm the rele-

vant quantities are Vi,j(μ, μ), Vi,i(μ, μ). The reason for the effective dimension
d0 = min(d, 2K) is that for d > 2K, in the population setting, the EM up-
date of μ always remains in the subspace spanned by the 2K vectors {μi}Ki=1

and {μ∗
i }Ki=1. In the case of gradient EM, one may define a potentially smaller

effective dimension d0 = min(d,K).
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Last but not least, the following auxiliary lemma shows that μ∗ is a fixed
point of the population EM update.

Lemma 4.4. Let X ∼ GMM(μ∗, π). Then ∀i ∈ [K], EX [wi(X,μ∗)(X−μ∗
i )] = 0.

With all the pieces in place, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider a single EM update, as given by Eq. (7),

‖μ+
i − μ∗

i ‖ =
1

EX [wi(X,μ)]
· ‖EX [wi(X,μ)(X − μ∗

i )]‖ , ∀i ∈ [K]

Using Lemma 4.4, we may write the numerator above as follows,

EX [wi(X,μ)(X − μ∗
i )] = EX [(wi(X,μ)− wi(X,μ∗))(X − μ∗

i )]. (27)

By the mean value theorem there exists μτ on the line connecting μ and μ∗ such
that

wi(X,μ)− wi(X,μ∗) = ∇μwi(X,μτ )�(μ− μ∗). (28)

Inserting the expressions (21) and (22) for the gradient of wi into Eq. (28) gives

wi(X,μ)− wi(X,μ∗) = wi(X,μτ )(1− wi(X,μτ ))(X − μτ
i )

�(μi − μ∗
i )

−
∑
j �=i

wi(X,μτ )wj(X,μτ )(X − μτ
j )

�(μj − μ∗
j ).

Taking expectations, and using the definitions of Vii and Vij , Eqs. (23) and (24),
gives

‖E[(wi(X,μ)− wi(X,μ∗))(X − μ∗
i )]‖ ≤

k∑
j=1

Vij(μ
τ , μ∗)‖μj − μ∗

j‖. (29)

Since μτ ∈ Uλ, we may apply Lemma 4.3 to bound the terms on the right
hand side above. Furthermore, given that x2e−tx2

is monotonic decreasing for
all x >

√
1/t and Ri ≥

√
2/c(λ), we may replace all Ri, Rj in the bounds of

Lemma 4.3 by Rmin. Defining U =
16(K−1)

√
C(1+θ)

3πmin
, we thus have

‖EX [(wi(X,μ)− wi(X,μ∗))(X − μ∗
i )]‖ ≤ 3πmin

8
U · e

−c(λ)
2 R2

minE(μ).

Next, note that condition (11) on Rmin implies that it also satisfies the weaker
condition (19) of Lemma 4.2. Invoking this lemma yields that EX [wi(X,μ)] ≥
3πmin

4 . Thus,

‖μ+
i − μ∗

i ‖ ≤ U max
(
d0, R

2
min

)
e

−c(λ)
2 R2

min · E(μ)

2
.

If d0 ≥ R2
min, then for E(μ+) ≤ 1

2E(μ) to hold the minimal separation must
satisfy

c(λ)

2
R2

min ≥ log(d0U). (30)
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In contrast, if R2
min ≥ d0 we obtain the following inequality for w = c(λ)

2 R2
min,

we−w ≤ c(λ)

2U
. (31)

Note that for w > 1, the function we−w is monotonic decreasing. Also, consider
the value w∗ = 2 log(2U/c(λ)) which is larger than 1, given the definitions of U
and of c(λ). It is easy to show that w∗ exp(−w∗) ≤ c(λ)/2U . Hence a sufficient
condition for (31) to hold is that w > w∗, namely

c(λ)

2
R2

min ≥ 2 log
2U

c(λ)
. (32)

It is easy to verify that logU + log(4/c(λ)) > log d0 and thus the bound of (32)
is more restrictive than (30). Inserting the expression for U into Eq. (32) yields
the condition of the theorem, Eq. (11). Finally, to complete the proof we need
to show that for all i, ‖μ+

i − μ∗
i ‖ ≤ λRi. This part is proven in auxiliary lemma

A.5 in the appendix.

5. Proof for the sample EM

In this section we prove our results on the sample EM and gradient EM algo-
rithms. The main idea is to show concentration results for both the denominator
and the numerator of the EM update. Our strategy is similar to [23] but with
several improvements. First, our result on the concentration of the denominator
of the EM update, Lemma 5.1, only considers samples from the i-th cluster.
Thus, in Lemma 5.2, we obtain a uniform lower bound for the weight wi with
n = Ω̃(Kd/πmin) compared to the larger n = Ω̃(Kd/π2

min) in [23]. Second, while
[23] bounded the sub-Gaussian norm of the numerator of the EM update by
CRmax, we derive in Lemma 5.3 a tighter bound, which does not depend on
Rmax. This in turn, yields a tighter concentration for the numerator of the EM
update in Lemma 5.4.

Lemma 5.1. Fix δ ∈ (0, 1), λ ∈ (0, 1
2 ) and let X1, . . . , Xni

i.i.d.∼ N (μ∗
i , Id). Then

with probability at least 1− δ,

sup
μ∈Uλ

∣∣∣∣∣ 1ni

ni∑
�=1

wi(X�, μ)− Ei[wi(X,μ)]

∣∣∣∣∣ ≤
√√√√

c̃
Kd log

(
C̃ni

δ

)
ni

(33)

where C̃ = 18K(
√
d+ 2Rmax)Rmax and c̃ is a suitable universal constant.

As we saw in Lemma 4.2, the denominator in the population EM update for
the i-th mean is lower bounded by 3

4πi. We use Lemma 5.1 to show that this
lower bound holds also for the finite sample case. We remark that a version of
the following lemma appeared in [23], but with a larger sample size requirement
of n = Ω̃(Kd/π2

min).
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Lemma 5.2. Fix δ ∈ (0, 1), λ ∈ (0, 1
2 ). Let X1, . . . , Xn

i.i.d.∼ GMM(μ∗, π), with
Rmin that satisfies (19). Assume a sufficiently large sample size n such that

n

logn
> C

Kd log C̃
δ

πmin
(34)

where C̃ = 100K2πmax(
√
d + 2Rmax)Rmax and C is a universal constant. For

any i ∈ [K], define the event

Di =

{
inf

μ∈Uλ

1

n

n∑
�=1

wi(X�, μ) ≥
3πi

4

}
. (35)

Then, the event Di occurs with probability at least 1− δ
2K .

Next, we analyze the sub-Gaussian norm of wi(X,μ)(X − μ∗
i ). [23] bounded

this quantity by CRmax. We present an improved bound which does not depend
on Rmax. For the definition of the sub-Gaussian norm ‖ · ‖ψ2 , see the Appendix.

Lemma 5.3. Fix λ ∈ (0, 1
2 ). Let X ∼ GMM(μ∗, π) with

Rmin ≥
√

max

(
4

1− 2λ
log

(
4 log( 32 )θ

2
1− 2λ

c(λ)

)
,

4

c(λ)
log 2

)
. (36)

Suppose that μ ∈ Uλ. Then for any i ∈ [K],

‖wi (X,μ) (X − μ∗
i ) ‖ψ2 ≤ 16

1− 2λ
(37)

and

‖wi (X,μ) (X − μi) ‖ψ2 ≤ 24max

(
1

1− 2λ
, λRi

)
. (38)

Using Lemma 5.3 we upper bound the concentration of the numerator in the
expression for the error in the sample EM update, Eq. (9).

Lemma 5.4. Fix δ ∈ (0, 1), λ ∈ (0, 1
2 ). Let X1, . . . , Xn

i.i.d.∼ GMM(μ∗, π) with
Rmin satisfying (36). For i ∈ [K] define Si =

1
n

∑n
�=1 wi(X�, μ)(X� − μ∗

i ) and
the event

Ni =

⎧⎨
⎩ sup

μ∈Uλ

‖Si − EX [wi(X,μ)(X − μ∗
i )]‖ ≤ C

1− 2λ

√
Kd log C̃n

δ

n

⎫⎬
⎭ (39)

Then, with C̃ = 36K2Rmax(
√
d + 2Rmax)

2 and with a suitable choice of a uni-
versal constant C, the event Ni occurs with probability at least 1− δ

2K .

With all the pieces in place, we are now ready to prove Theorem 3.3.



Improved convergence guarantees for EM 4523

Proof of Theorem 3.3. Consider the error of a single the update of the from (9)
of the sample EM algorithm,

‖μ+
i − μ∗

i ‖ =
‖ 1
n

∑n
�=1 wi(X�, μ)(X� − μ∗

i )‖
1
n

∑n
�=1 wi(X�, μ)

.

Note that the requirement (11) on Rmin is more restrictive than (19). Also, the
sample size requirement (12) is more restrictive than (34). Thus, we may invoke
Lemma 5.2 and get that with probability at least 1 − δ

2K , that event Di (35)
occurs. Hence,

‖μ+
i − μ∗

i ‖ ≤ 4

3πi
‖Si − EX [wi(X,μ)(X − μ∗

i )]‖+
4

3πi
‖EX [wi(X,μ)(X − μ∗

i )]‖

It follows from Theorem 3.1 that for Rmin satisfying (11), the second term above
is upper bounded by 1

2 min(E(μ), λRi). We thus continue by bounding the first
term above. Note that our requirements on the minimal separation (11) is more
restrictive than the requirement in (36). Thus, we may invoke Lemma 5.4 and
obtain with probability at least 1− δ

2K , that the event Ni (39) occurs. Therefore,

‖μ+
i − μ∗

i ‖ ≤ 1

2
min(E(μ), λRi) +

C

(1− 2λ)πi

√
Kd log C̃n

δ

n
(40)

where C is a universal constant and C̃ = 36K2Rmax(
√
d + 2Rmax)

2. For n

sufficiently large so that (12) is satisfied, it holds that C 1
(1−2λ)πi

√
Kd log C̃n

δ

n ≤
1
2λRi and therefore ‖μ+

i − μ∗
i ‖ ≤ λRi. By a union bound over all i ∈ [K], with

probability at least 1− δ, μ+ ∈ Uλ. This allows us to iteratively apply (40) and
obtain Eq. (13).

6. Simulations

We present numerical simulations with the EM algorithm and compare them
to our theoretical results. The ability of the EM and gradient EM algorithms
to learn Gaussian mixture models has been extensively demonstrated in simu-
lations by various authors, see [23, 22] and references therein. Our simulations
focus on several quantities that appear in Theorem 3.1. First, we demonstrate
that even in a setting with a moderately high dimension and with a large num-
ber of components, a relatively low separation suffices for the EM algorithm to
yield accurate estimates. Unlike [23], which presented numerical results for a 5
component GMM in R

10, we consider a 64 component GMM with centers on the
unit simplex in R

64. We generate 5 · 105 samples from this GMM and consider
several initializations where each initial estimate μi is sampled uniformly from
a sphere of radius 0.45Ri around μ∗

i . In Figure 1a we plot the error E(μ) as a
function of the number of iterations for 12 random initializations. We see that
the EM algorithm yields accurate estimates in this setting, even though the
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Fig 1. Top left: Convergence of EM for a GMM with 64 components in R
64. Each line is

the error starting from a different random initialization. Top right: Convergence of EM with
initial estimates ‖μi − μ∗

i ‖ = λRi and λ slightly smaller and than 1
2

for a 5 component
10 dimensional GMM. Bottom left: The error as a functions of the number of components
for 1 dimensional GMMs averaged over 25 runs. The error behaves like a constant C times√

K logK
n

. Bottom right: The error as a functions of the dimension for 5 component GMMs

with averaged over 25 runs. The error behaves like a constant C times
√

d
n
.

separation between the different Gaussians is small relative to the dimension
and to number of components.

Next, we explore the effect of the constant λ such that the initial estimates
satisfy ‖μi − μ∗

i ‖ ≤ λRi for values of λ slightly smaller than 1
2 . We consider a 5

components GMM with centers on the unit simplex in R
10. We generate 5 · 105

samples and run the EM algorithm. The initial values μ1 and μ2 are chosen on
the line connecting μ∗

1 and μ∗
2. The other 3 initial value μ3, μ4, μ5 are sampled

uniformly from a unit sphere of radius λRi and center μ∗
i . As can be seen in

Figure 1b, the EM algorithm yields accurate estimates for all considered values
of λ smaller than 1

2 , even when λ = 1
2 − 10−5.

Finally, we consider the accuracy of EM for GMMs as we increase either
the number of components or the dimension. Specifically, we considered a 1
dimensional GMM with K equally spaced components with Rmin = 10 and
varying values of K. We generate 5 · 105 samples from each GMM and run the
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EM algorithm for 20 iterations. Fig. 1c shows the error, averaged over 25 runs as
a function ofK. As seen in the plot the error behaves like

√
K log(K)/n, which is

also the expected parametric error if all samples were labeled, which means that
on average we had n/K samples from each component. These results suggest

that the upper bound of Eq. (13) which depends on
√
K3 may be improved.

Next, we considered a sequence of GMMs in increasing dimension R
d where

d ∈ [20, 130]. Each GMM had 5 components with centers Rei for 1 ≤ i ≤ 5,
where R = 10 and ei is the standard Euclidean basis vector in R

d. We generate
5 · 105 samples from each GMM and run the EM algorithm for 20 iterations.
We plot the error averaged over 25 runs as a function of the square root of the
dimension d. In accordance to Eq. (13), the empirical error seems to increase
like

√
d.

Appendix A: Proofs for Section 4

A.1. Proof of Proposition 4.1

Before proving Proposition 4.1 we state several auxiliary lemmas.

Lemma A.1. Let g(A,B) be the following function of two variables,

g(A,B) =

∫
1√
2π

1

1 + αeAt+B
e−t2/2dt

where α > 0 is a fixed constant. Then: (i) For any fixed A, g(A,B) is monotonic
decreasing in B; and (ii) If in addition α > e−B and A > 0, then for any fixed
B, g(A,B) is monotonic increasing in A.

Proof. Since the function inside the integral is monotonically decreasing in B,
part (i) directly follows. To prove part (ii), we take the derivative with respect
to A,

∂

∂A
g(A,B) =

∫ −αteAt+B

(1 + αeAt+B)2
e−t2/2

√
2π

dt.

Denote the function inside the integral by f(t). Note that f(t) > 0 when t < 0
and f(t) < 0 when t > 0. To show that the integral is positive it suffices to show
that for all t > 0 it holds that −f(t) < f(−t). This condition reads as

e−At

(1 + αe−At+B)
2 >

eAt

(1 + αeAt+B)
2 .

Some algebraic manipulations give that this condition is equivalent to(
eAt − e−At

) (
α2e2B − 1

)
> 0

which is indeed satisfied for A, t > 0 and α > e−B .
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Lemma A.2. Fix any two distinct vectors μ∗
i , μ

∗
j ∈ R

d and λ ∈ (0, 1/2). Denote

the ball of radius r about the origin in R
d by Bd(0, r) and define

Ω = Bd(0, λ‖μ∗
i − μ∗

j‖)×Bd(0, λ‖μ∗
i − μ∗

j‖) ⊂ R
d × R

d.

Consider the two functions A,B : Ω → R

A(ξi, ξj) = ‖μ∗
i − ξi − μ∗

j + ξj‖ (41)

B(ξi, ξj) =
1

2
‖μ∗

i − μ∗
j + ξj‖2 −

1

2
‖ξi‖2. (42)

Then for any (ξi, ξj) ∈ Ω,

A(ξi, ξj) ≤ (1 + 2λ)‖μ∗
i − μ∗

j‖ = A∗ (43)

B(ξi, ξj) ≥
1− 2λ

2
‖μ∗

i − μ∗
j‖2 = B∗. (44)

Proof. We first prove the upper bound on A. By the triangle inequality

A(ξi, ξj) ≤ ‖ξi‖+ ‖ξj‖+ ‖μ∗
i − μ∗

j‖ ≤ (1 + 2λ)‖μ∗
i − μ∗

j‖

As for the lower bound on B, clearly it is obtained when ‖ξi‖ is maximal, i.e.
‖ξi‖ = λ‖μ∗

i −μ∗
j‖. Finally, the vector ξj = λ(μ∗

i −μ∗
j ) minimizes (42) regardless

of the value of ξi. This yields the lower bound of (44) for B.

Proof of Proposition 4.1. Recall the definition of the weight wj(X,μ) in Eq (6).
Since all the terms in the denominator are positive, we may upper bound wj by
taking into account only the two terms with indices k = i and k = j. Hence,

wj(X,μ) ≤ πje
− ‖X−μj‖2

2

πje−
‖X−μj‖2

2 + πie−
‖X−μi‖2

2

=
1

1 + πi

πj
e

‖X−μj‖2
2 − ‖X−μi‖2

2

. (45)

Next, since X ∼ N (μ∗
i , Id) we may write X = μ∗

i + η = μi + η + ξi where
η ∼ N (0, Id) and ξi = μ∗

i − μi. Therefore,

‖X − μj‖2 − ‖X − μi‖2 = 2η� (μi − μj) + ‖μ∗
i − μ∗

j + ξj‖2 − ‖ξi‖2. (46)

Note that by definition η�(μi−μj) is a univariate Gaussian random variable with
mean zero and variance ‖μi−μj‖2. Hence, we may write η�(μi−μj) = ‖μi−μj‖ν
where ν ∼ N (0, 1). Defining w̃(A,B, ν) = 1/(1 + πi

πj
eAν+B), we therefore have

Ei[wj(X,μ)] ≤ Eν [w̃(A,B, ν)] =
1√
2π

∫
w̃(A,B, t)e−

t2

2 dt = g(A,B) (47)

with A = A(ξi, ξj) and B = B(ξi, ξj) as defined in (41) and (42), respectively.
Since ‖ξi‖, ‖ξj‖ ≤ λ‖μ∗

i − μ∗
j‖, then A ≥ (1 − 2λ)‖μ∗

i − μ∗
j‖. Therefore, A > 0

for λ < 1
2 . By Lemma A.2, B ≥ B∗ with B∗ given in (44). The condition

(16) implies that πi

πj
> e−B∗ ≥ e−B. Hence, the conditions of Lemma A.1 are
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satisfied and we can upper bound g(A,B) in (47), by g(A∗, B∗) with A∗ and
B∗ respectively, as given in Equations (43) and (44) of Lemma A.2. Therefore,

Ei[wj(X,μ)] ≤ 1√
2π

∫
w̃(A∗, B∗, t)e−

t2

2 dt = I.

To upper bound the integral I we split it into two parts based on the sign of
A∗t+B∗.

I =
1√
2π

−B∗/A∗∫
−∞

w̃(A∗, B∗, t)e−
t2

2 dt+
1√
2π

∞∫
−B∗/A∗

w̃(A∗, B∗, t)e−
t2

2 dt = I1+I2.

For I1, where A∗t + B∗ < 0, we upper bound w̃(A∗, B∗, t) ≤ 1. Since both A∗

and B∗ are positive, we have that −B∗

A∗ < 0. We can therefore use Chernoff’s
bound to get

I1 ≤
−B∗/A∗∫
−∞

1√
2π

e−
t2

2 dt ≤ e−
1
2 (

B∗
A∗ )

2

. (48)

For I2, where A
∗t+B∗ > 0 we upper bound the integral by ignoring the constant

1 in the denominator. Completing the square and changing variables by z =
t+A∗ we get

I2 ≤
∞∫

−B∗/A∗

1√
2π

πj

πi
e−

t2

2 −A∗t−B∗
dt

= e
A∗2
2 −B∗

∞∫
−B∗/A∗

1√
2π

πj

πi
e−

(t+A∗)2

2 dt = e
A∗2
2 −B∗

∞∫
A∗−B∗/A∗

1√
2π

πj

πi
e−

z2

2 dz.

Using the definitions of A∗ and B∗ in (43) and (44) we note that for λ > 0,

A∗ − B∗

A∗ =
2 (1 + 2λ)

2 − (1− 2λ)

2(1 + 2λ)
‖μ∗

i − μ∗
j‖ > 0.

We can therefore apply Chernoff’s bound on the above and obtain

I2 ≤ πj

πi
e

A∗2
2 −B∗− 1

2 (A
∗−B∗

A∗ )
2

=
πj

πi
e−

1
2 (

B∗
A∗ )

2

. (49)

Combining the two bounds (48) and (49) yields Eq (17).

Proof of Corollary 4.1.1. By definition, the sum of all weights is one. Thus,

wi(X,μ) = 1−
∑
j �=i

wj(X,μ).

By Proposition 4.1 and the linearity of expectation

Ei[wi(X,μ)] ≥ 1−
∑
j �=i

(
1 +

πj

πi

)
e−c(λ)R2

ij ≥ 1− (K − 1)(1 + θ)e−c(λ)R2
i .
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A.2. Proof of Lemma 4.2

Proof. Since X is distributed as a GMM with K components and wi(X,μ) > 0,
the expected value is greater than if we consider only the i-th component of the
GMM.

E[wi(X,μ)] =

K∑
j=1

πjEj [wi(X,μ)] ≥ πiEi[wi(X,μ)].

Since the requirement (19) on Rmin implies (16), it follows from Corollary 4.1.1
that

EX [wi(X,μ)] ≥ πi

(
1− (K − 1)(1 + θ))e−c(λ)R2

i

)
.

Furthermore, Eq. (19) implies that (K − 1)(1 + θ)e−c(λ)R2
i ≤ 1

4 .

A.3. Proof of Lemma 4.3

The proof consists of several steps. First, in Lemma A.3 we reduce the dimension
to d0 = min(d, 2K). Next, in Lemma A.4 we bound ‖Ek[(X − vi)(X − μj)

�]‖op
in terms of d0, Ri, Rj and Rij. We then present the proof of the Lemma.

We first introduce notations. For μ, v ∈ R
Kd and i, j, k ∈ [K] with i �= j we

define,

V k
ij(μ, v) = ‖Ek[wi(X,μ)wj(X,μ)(X − vi)(x− μj)

�]‖op (50)

V k
ii (μ, v) = ‖Ek[wi(X,μ)(1− wi(X,μ))(X − vi)(x− μi)

�]‖op. (51)

Suppose that X ∼ N (μ∗
k, Id). Let Γ be a rotation matrix such that (Γμi)

� =

(μi
�, 0�[d−d0]+

) and (Γvi)
�

= (vi
�, 0�[d−d0]+

), for all i ∈ [K]. Write X
d0

for the

first d0 coordinates of ΓX and X
d−d0

for the remaining coordinates. We define

V
k

ij(μ, v) = ‖Ek[wi(X
d0
, μ)(wj(X

d0
, μ))(X

d0 − vi)(X
d0 − μj)

�]‖op (52)

V
k

ii(μ, v) = ‖Ek[wi(X
d0
, μ)(1− wi(X

d0
, μ))(X

d0 − vi)(X
d0 − μi)

�]‖op. (53)

Lemma A.3. For any i, j, k ∈ [K] with i �= j,

V k
ij ≤ max

(
V

k

ij ,Ek[wi(X,μ)wj(X,μ)]
)
,

V k
i,j ≤ max

(
V

k

i,j ,Ek[wi(X,μ)(1− wi(X,μ))]
)

The proof is similar to the one in [22]. We include it for our paper to be self
contained.
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Proof. We prove only the first inequality. The proof of the second inequality is
similar. Note that (X − vi) (X − μj)

�
is equal to

Γ�

⎡
⎢⎣
(
X

d0 − vi

)(
X

d0 − μj

)� (
X

d0 − vi

)(
X

[d−d0]+
)�

X
[d−d0]+

(
X

d0 − μj

)�
X

[d−d0]+
(
X

[d−d0]+
)�

⎤
⎥⎦Γ.

Now, since Γ is a rotation matrix and the last [d−d0]+ coordinates of Γμi are 0 we

get that wi(X,μ) = wi(X
d0
, μ). Therefore wi(X,μ),

(
X

d0 − vi

)
,
(
X

d0 − μj

)
are independent of X

[d−d0]+ . Thus,

V k
ij ≤

∥∥∥∥∥ V
ij

k 0

0 Cij
k

∥∥∥∥∥
op

≤ max
(
V

k

ij(μ, v), ‖Cij
k ‖op

)

where V ij
k and V

ij

k are defined in (50) and (52), respectively and

Cij
k = Ek

[
wi

(
X

d0
, μ
)
wj

(
X

d0
, μ
)
X

[d−d0]+
(
X

[d−d0]+
)�]

= E
X

d0

[
wi

(
X

d0
, μ
)
wj

(
X

d0
, μ
)]

E
X

[d−d0]+

[
X

[d−d0]+
(
X

[d−d0]+
)�]

= E
X

d0

[
wi

(
X

d0
, μ
)
wj

(
X

d0
, μ
)]

I[d−d0]+

Since wi(X,μ) = wi(X
d0
, μ), we may return to the original variables and write

‖Cij
k ‖op = Ek [wi (X,μ)wj (X,μ)] .

Hence, the lemma follows.

Lemma A.4. fix λ ∈ (0, 1
2 ). Let (μ

∗
1, . . . , μ

∗
K) be the centers of a K component

GMM. Let X ∼ N (μ∗
k, Id) for some k ∈ [K]. Then, for any i, j ∈ [K] and any

μ, v ∈ Uλ,

Ek[‖(X − vi)(X − μj)
�‖2op] ≤ C0

⎧⎪⎪⎨
⎪⎪⎩
max

(
d2, R4

i

)
i = j = k

max
(
d2, R2

ikR
2
jk

)
k �= i, k �= j

max
(
d2, R4

ij

)
k = i, k �= j

(54)

where C0 is a universal constant, for example we can take C0 = 14.

Proof. First, for any rank 1 matrix uv� it holds that ‖uvT ‖op = ‖u‖·‖v‖. Thus,

Ek

[
‖(X − vi)(X − μj)

�‖2op
]
= Ek

[
‖X − vi‖2 · ‖X − μj‖2

]
.

Next, since X ∼ N (μ∗
k, Id) we may write X = μ∗

k+η, where η ∼ N (0, Id). Thus,

‖X − vi‖2 · ‖X − μj‖2 = ‖μ∗
k − vi + η‖2 · ‖μ∗

k − μj + η‖2.
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Let Γ be a rotation matrix such that

Γ (μ∗
k − vi) = R∗

ike1, Γ (μ∗
k − μj) = R∗

kj cos (α) e1 +R∗
kj sin (α) e2

where R∗
ik = ‖μ∗

k − vi‖, R∗
kj = ‖μ∗

k − μj‖ and α is the angle between e1 and
Γ(μ∗

k − μj). Then by applying Γ to and using the rotation invariance of the
Gaussian distribution,

‖X − vi‖2 = (R∗
ik + η1)

2 + η22 +
∑
q>2

η2q

and
‖X − μj‖2 = (R∗

kj cosα+ η1)
2 + (R∗

kj sinα+ η2)
2 +

∑
q>2

η2q .

It is easy to show that the expectation of the above expression is maximal when
α = 0. In this case, we can write the expectation as follows

E[‖X − vi‖2 · ‖X − μj‖2] ≤ E[(A+ C) · (B + C)]

where A = (R∗
ik + η1)

2 follows a non-central χ2 distribution with one degree of
freedom and non-centrality parameter (R∗

ik)
2, C =

∑
q≥2 η

2
q follows a central χ2

distribution with d− 1 degrees of freedom, and B = (R∗
kj + η1)

2. Using known

results on the moments of central and non-central χ2 random variables,

E[AB] = E[((R∗
ik)

2 + 2R∗
ikη1 + η21)((R

∗
kj)

2 + 2R∗
kjη1 + η21)]

= (R∗
ikR

∗
kj)

2 + (R∗
ik)

2 + (R∗
kj)

2 + 4R∗
ikR

∗
kj + 3.

and

E[(A+ C) · (B + C)] = E[AB] + (E[A] + E[B])E[C] + E[C2]

= E[AB] + [(R∗
ik)

2 + (R∗
kj)

2 + 2](d− 1) + d2 − 1.

Since μ, v ∈ Uλ it holds that R∗
ik ≤ Rik + 1

2Ri, R
∗
kj ≤ Rkj +

1
2Rj .

Now we consider several different cases. First, for i = j = k we have Rik =
Rjk = 0 and Ri = Rj . Hence

Ei[‖(X − vi)(X − μi)
T ‖2op] ≤ C0 max(d2, R4

i ).

Next, if k is distinct from both i and j, then Ri ≤ Rik and Rj ≤ Rkj . Hence,

Ek[‖(X − vi)(X − μj)
�‖2op] ≤ C0 max(d2, R2

ikR
2
kj).

Finally, we consider the case where j �= i but k is not distinct from both i and
j, without loss of generality k = i. Then Rik = 0, Rkj = Rij . By definition,
Rj ≤ Rij and Ri ≤ Rij . Thus,

Ei[‖(X − vi)(X − μj)
�‖2op] ≤ C0 max(d2, R4

ij).
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We are now ready to prove the lemma. For clarity we present in two separate
parts the proof of Eq. (26) and of Eq. (25).

Proof of Eq. (26) in Lemma 4.3. The first step is to separate the expectation
over the GMM to its K components. By the triangle inequality,

Vij(μ, v) ≤
∑
k

πkV
k
ij(μ, v) (55)

with V k
ij as defined in (50). By Lemma A.3, for each k,

V k
ij(μ, v) ≤ max(V

k

ij(μ, v),Ek[wi(X,μ)wj(X,μ)]) (56)

with V
k

ij as defined in Eq. (52). We now separately analyze each of the two terms
on the right hand size of (56). We start with the second term. When k = i, by
Proposition 4.1

Ei [wi(X,μ)wj(X,μ)] ≤ Ei [wj(X,μ)] ≤ (1 + θ) e−c(λ)R2
ij .

By symmetry, the same bound holds also for k = j.

Next we bound V
k

ij and we shall later see that it is the largest of the two
quantities in (56). Note that by the Cauchy-Schwarz inequality

V
k

ij ≤
√

Ek

[
(wi(X,μ)wj(X,μ))

2
]√

Ek

[∥∥∥(Xd0 − vi)(X
d0 − μj)�

∥∥∥2
op

]
.

By Lemma A.4 there exists a universal constant C such that Eq (54) holds with
dimension d0. Thus, for the first term in Eq. (55), with k = i,

V
i

ij(μ, v) ≤
√

Ei[(wi(X,μ)wj(X,μ))
2
]
√
Cmax(d0, R

2
ij)

≤
√

Ei[wj(X,μ)]
√
Cmax(d0, R

2
ij)

and by Proposition 4.1

V
i

ij(μ, v) ≤
√

C (1 + θ)e−
c(λ)
2 R2

ij max
(
d0, R

2
ij

)
. (57)

Similarly, for k = j,

V
j

ij(μ, v) ≤
√

C (1 + θ)e−
c(λ)
2 R2

ij max
(
d0, R

2
ij

)
. (58)

Hence, in these two cases indeed V
ij

k is the dominant term.
Finally we consider the case k �= i, j. Again by Proposition 4.1

Ek [wi(X,μ)wj(X,μ)] ≤ (1 + θ) e−c(λ)max(Rik,Rjk)
2

.
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As for the first term,

V
k

ij ≤
√

Ek

[
(wi(X,μ)wj(X,μ))

2
]√

Cmax (d0, RikRjk)

≤
√

C(1 + θ)e−
c(λ)
2 max(Rik,Rjk)

2

max(d0,max(Rik, Rjk)
2). (59)

Inserting (57), (58) and (59) into (55) and summing over the components gives

Vi,j(μ, v) ≤
√
C
√
1 + θ

[
(πi + πj)max(d0, R

2
ij)e

− c(λ)
2 R2

ij

+
∑
k �=i,j

πk max(d0,max(Rik, Rjk)
2)e−

c(λ)
2 max(Rik,Rjk)

2
]
.

Since the function x2e−tx2

is monotonic decreasing for x >
√

1/t, and Rmin >√
2/c(λ) we may replace Rij by max(Ri, Rj) in the first term. Similarly, we

may replace Rik by Ri and Rjk by Rj in the second sum above. This yields Eq.
(26).

Proof of Eq. (25) in Lemma 4.3. The first step is to separate the expectation
over the GMM to its K components. By the triangle inequality,

Vii(μ, v) ≤
K∑

k=1

πkV
k
ii (μ, v) (60)

with V k
ii as defined in (51). We now bound each V k

ii separately. First, by Lemma
A.3,

V k
ii ≤ max(V

k

ii,Ek[(1− wi(X,μ))wi(X,μ)]) (61)

with V
k

ii as defined in (53). We now analyze each component separately. We

first bound V
k

ii and we shall later see that it is the largest of the two quantities
in (61). By the Cauchy-Schwarz inequality,

V
k

ii(μ, v)
2 ≤ Ek

[
(wi(X,μ)(1− wi(X,μ)))

2
]
· Ek

[∥∥∥(Xd0 − vi)(X
d0 − μi)

�
∥∥∥2
op

]
.

By Lemma A.4, there exists a universal constant C such that Eq. (54) holds
with dimension d0. Thus for k = i,

V
i

ii(μ, v) ≤
√

Ei

[
(wi(X,μ)(1− wi(X,μ)))

2
]√

Cmax
(
d0, R

2
i

)
≤
√

Ei [1− wi(X,μ)]
√
Cmax

(
d0, R

2
i

)
and by Corollary 4.1.1,

V
i

ii(μ, v) ≤
√

C(K − 1)(1 + θ)e−
c(λ)
2 R2

i max
(
d0, R

2
i

)
. (62)
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Similarly, we upper bound the second quantity on the right hand side of (61)
as follows,

Ei [wi(X,μ)(1− wi(X,μ))] ≤ (K − 1)(1 + θ)e−c(λ)R2
ij .

Thus V
k

ij(μ, v) is the dominant term in the maximum in (61).
Now, for k �= i,

V
k

ij(μ, v) ≤
√
Ek

[
(wi(X,μ)(1− wi(X,μ)))

2
]√

Cmax
(
d0, R

2
ik

)
≤

√
1 + θe−

c(λ)R2
ik

2

√
Cmax

(
d0, R

2
ik

)
The function x2e−tx2

is monotonic decreasing for x>
√
t−1. SinceRi≥

√
4c(λ)−1,

so does Rik, and we may replace it in the equation above by Ri. Namely,

V
k

ij(μ, v) ≤
√
1 + θ

√
Cmax(d0, R

2
i )e

−c(λ)R2
i /2 (63)

Inserting (62) and (63) into (60), and summing over all components yields Eq.
(25).

A.4. Completing the Proof of Theorem 3.1

The following lemma completes the proof of the Theorem.

Lemma A.5. Let X ∼ GMM(μ∗, π) with Rmin satisfying (11). Let μ+ be the
population EM update (7). Then for every i ∈ [K] it holds that ‖μ+

i −μ∗
i ‖ ≤ λRi.

Proof. Our starting point is Eq. (29),

‖EX [(wi(X,μ)− wi(X,μ∗))(X − μ∗
i )]‖ ≤

K∑
j=1

sup
μ∈Uλ

Vi,j(μ, μ
∗)‖μj − μ∗

j‖.

We insert the bounds (25) and (26) on Vi,i and Vi,j , respectively, to the above.
Since μ ∈ Uλ we may replace all ‖μk − μ∗

k‖ in the expressions above by λRk.

Since x3e−tx2

is monotonic decreasing for all x >
√

3/2t, we may replace all

Ri, Rj above by Rmin. Defining U =
16(K−1)

√
C(1+θ)

3πmin
, this gives

‖EX [(wi(X,μ)− wi(X,μ∗))(X − μ∗
i )]‖

≤λRmin · 3πmin

8
U max

(
d0, R

2
min

)
e−

c(λ)R2
min

2 .

By Eqs. (27) and (20), it follows that

‖μ+
i − μ∗

i ‖ ≤ λRmin · e−
c(λ)
2 R2

min
1

2
U max(d0, R

2
min)

The separation condition (11) suffices to ensure that ‖μ+
i − μ∗

i ‖ ≤ λRmin.
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Appendix B: Proofs for Section 5

B.1. Preliminaries

We recall basic definitions and results on sub-Gaussian random variables. See
e.g. [18].

Definition B.1. 1. A random variable X is called sub-Gaussian if there

exists t > 0 such that E

[
e

X2

t2

]
≤ 2. Its norm is defined as ‖X‖ψ2 =

inft>0 E

[
e

X2

t2

]
≤ 2.

2. A random vector X ∈ R
d is called sub-Gaussian if supv∈Sd−1 ‖X�v‖ψ2 <

∞. Its sub-Gaussian norm is defined as supv∈Sd−1 ‖X�v‖ψ2 .

Lemma B.1. Let X ∈ R
d be a sub-Gaussian random vector with sub-Gaussian

norm at most R. Let X1, . . . , Xn be n i.i.d. copies of X. Define Sn = 1
n

∑n
�=1 X�.

Then, there exists a universal constant c such that for any t>0, Pr (‖Sn−E[X]‖>
t) ≤ e−

cnt2

R2 +d log 3.

Proof. Let N 1
2
be a 1

2 -net of Sd−1 and fix v ∈ N 1
2
. By definition X�v is sub-

Gaussian with ‖X�v‖ψ2 ≤ R. Write Xv,n = 1
n

∑n
�=1(X� − E[X])�v. Then by

Hoeffding’s inequality there exists a universal constant c such that,

Pr (|Xv,n| > t) ≤ e
− cnt2

‖X�v‖2
ψ2 ≤ e−

cnt2

R2 .

Next, we note that for any x ∈ R
d it holds that ‖x‖ ≤ 2 supv∈N 1

2

v�x. As is well

known, the size of an ε-net is bounded by |N 1
2
| ≤ ed log 3 [18, Corollary 4.2.13].

The lemma therefore follows from a union bound.

The following lemma is key for proving uniform convergence. A version of
this lemma appears in [23].

Lemma B.2. Fix 0 < δ < 1. Let B1, . . . , BK ⊂ R
d be Euclidean balls of radii

r1, . . . , rK ≥ 1. Define B = ⊗K
k=1Bk ⊂ R

Kd and r = maxk∈[K] rk. Let X be a

random vector in R
d and W : Rd ×B → R

k where k ≤ d. Assume the following
hold:

1. There exists a constant L ≥ 1 such that for any μ ∈ B, ε > 0, and με ∈ B
which satisfies maxi∈[K] ‖μi−με

i‖≤ε, then EX

[
supμ∈B ‖W (X,μ)−W (X,με)‖

]
≤

Lε.
2. There exists a constant R such that for any μ ∈ B, ‖W (X,μ)‖ψ2 ≤ R.
Let X1, . . . , Xn be i.i.d. random vectors with the same distribution as X.

Then there exists a universal constant c̃ such that with probability at least 1− δ,

sup
μ∈B

∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ)− EX [W (X,μ)]

∥∥∥∥∥ ≤ R

√
c̃
Kd log

(
18nLr

δ

)
n

. (64)
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Proof. For any ε > 0, let Ni be an ε-net of Bi and define Nε = ⊗Ni. Then,∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ)− E [W (X,μ)]

∥∥∥∥∥ ≤ ‖E [W (X,μ)]− E [W (X,με)]‖

+

∥∥∥∥∥ 1n
n∑

�=1

(W (X�, μ)−W (X�, μ
ε))

∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ
ε)− E [W (X,με)]

∥∥∥∥∥ .
Therefore for any t > 0,

Pr

(
sup
μ∈B

∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ)− E [W (X,μ)]

∥∥∥∥∥ > t

)
≤ Pr (A) + Pr (B) + Pr (C)

where the three events A,B,C are given by

A =

{
sup
μ∈B

∥∥∥∥∥
n∑

�=1

1

n
W (X�, μ)−

n∑
�=1

1

n
W (X�, μ

ε)

∥∥∥∥∥ >
t

3

}

B =

{
sup
μ∈B

‖E [W (X,μ)]− E [W (X,με)]‖ >
t

3

}

C =

{
sup

με∈Nε

∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ
ε)− E [W (X,με)]

∥∥∥∥∥ >
t

3

}
.

We first bound Pr(A). By Markov’s inequality and the first condition of the
lemma,

Pr (A) ≤ 3

t
E

[
sup
μ∈B

∥∥∥∥∥
n∑

�=1

1

n
W (X�, μ)−

n∑
�=1

1

n
W (X�, μ

ε)

∥∥∥∥∥
]

≤ 3

t
E

[
sup
μ∈B

‖W (X,μ)−W (X,με)‖
]
≤ 3εL

t
.

Thus, for 3εL
t ≤ δ

2 we have that Pr(A) < δ
2 . Note also that for t satisfying

3εL
t ≤ δ

2 ,

sup
μ∈B

‖E [W (X,μ)]− E [W (X,με)]‖ ≤ E

[
sup
μ∈B

‖W (X,μ)−W (X,με)‖
]
≤ t

3

and hence Pr(B) = 0.
Finally, we bound the probability of C. Here we use the second condition of

the lemma, that ‖W (X,μ)‖ψ2 ≤ R. It follows from Lemma B.1, that for any
fixed με,

Pr

(∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ
ε)− E [W (X,με)]

∥∥∥∥∥ >
t

3

)
≤ 2ek log 3− cnt2

R2 ≤ 2ed log 3− cnt2

R2
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where c is a universal constant. Since all the balls B1, . . . , BK ⊂ R
d are of radius

at most r, it holds that |Nε| ≤ elog(
3r
ε )Kd. Hence, taking a union bound,

Pr

(
sup

με∈Nε

∥∥∥∥∥ 1n
n∑

�=1

W (X�, μ
ε)− E [W (X,με)]

∥∥∥∥∥ >
t

3

)
≤ 2eKd log 3r

ε +d log 3− cnt2

R2 .

The requirement that the right hand side of the above is smaller than δ
2 implies

t ≥ R

√
Kd log 3r

ε + d log 3 + log 4
δ

cn
.

Setting ε = δ
6Ln , the condition Pr(A) ≤ δ

2 implies t > 1
n , which holds if t satisfies

the inequality above. Hence, for t > R

√
c̃
Kd log( 18nLr

δ )
n with a suitable universal

constant c̃ it holds that Pr(A) + Pr(B) + Pr(C) ≤ δ.

B.2. Proof of Lemma 5.1

Proof. The lemma will follow from Lemma B.2 by setting X ∼ N(μ∗
i , Id),

B = Uλ and W = wi(X,μ). To this end we show that the conditions of Lemma
B.2 hold: (i) There exists L > 1 such that for any ε > 0, Ei

[
supμ |wi(X,μ) −

wi(X,με)|] ≤ Lε for all με ∈ Uλ with maxi∈[K] ‖μi − με
i‖ ≤ ε. (ii) The sub-

Gaussian norm of wi(X,μ) for X ∼ N (μ∗
i , Id) is bounded by a constant. The

latter is clear as wi is bounded. For the former we use the mean value theorem.
There exists a point μ̃ such that

|wi(X,μ)− wi(X,με)| = |∇wi(X, μ̃)�(μ− με)|
Using the expressions (21) and (22) for the gradient of wi with respect to μ,

|wi(X,μ)− wi(X,με)| ≤ sup
μ̃∈Uλ

‖wi(X, μ̃)(1− wi(X, μ̃))(X − μ̃i)‖ε

+
∑
j �=i

sup
μ̃∈Uλ

‖wi(X, μ̃)wj(X, μ̃)(X − μ̃j)‖ε

Since 0 ≤ wi(X,μ) ≤ 1 we get

Ei

[
sup
μ∈Uλ

|wi(X,μ)− wi(X,με)|
]
≤ ε

K∑
j=1

Ei

[
sup
μ∈Uλ

‖X − μj‖
]
.

Since X ∼ N (μ∗
i , Id), we may write X = η+μ∗

i where X ∼ N (0, Id). Therefore,

Ei

[
sup
μ∈Uλ

‖X − μj‖
]
≤ E‖η‖+ sup

μ∈Uλ

‖μ∗
i − μj‖ ≤

√
d+ 2Rmax.

It follows that

Ei

[
sup
μ∈Uλ

|wi(X,μ)− wi(X,με)|
]
≤ K(

√
d+ 2Rmax)ε.

The lemma follows by plugging L=K(
√
d+2Rmax) and r=Rmax into (64).
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B.3. Proof of Lemma 5.2

Proof. We denote the set of all samples X� generated from the i-th component
by Ii, ni = |Ii| and π̃i = ni/n. Since wi(X,μ) ≥ 0 for any X,μ we can lower
bound the sum in the event Di by considering only the terms wi(X�, μ) with
X� ∈ Ii,

1

n

n∑
�=1

wi(X�, μ) ≥
1

n

∑
X�∈Ii

wi(X�, μ) = π̃i
1

ni

∑
X�∈Ii

wi(X�, μ).

With a suitably large constant C, the sample size requirement (34) implies that

n > 300
log 8K

δ

πmin
. By the multiplicative form of the Chernoff bound for Bernoulli

random variables, see e.g. [18, Exercise 2.3.5], we have for any δ ∈ (0, 1) that
|π̃i − πi| ≤ 1

10πi. Therefore, π̃i ≥ 9
10πi and thus

1

n

n∑
�=1

wi(X�, μ) ≥
9πi

10

1

ni

∑
X�∈Ii

wi(X�, μ).

Now, defining di = supμ∈Uλ

(
1
ni

∑
X�∈Ii

wi(X�, μ)− Ei [wi(X,μ)]
)
we have

inf
μ∈Uλ

1

ni

∑
X�∈Ii

wi(X�, μ) ≥ inf
μ∈Uλ

Ei [wi(X,μ)]− di.

Note that by Lemma 5.1, with probability at least 1− δ
4K , Eq. (33) holds. Since

ni ≥ 9
10nπi, we may replace ni in Eq. (33) by nπi, and increase the relevant

constants to c̃1 = 10
9 c̃ and C̃1 = 10

9 C. It thus follows that

inf
μ∈Uλ

1

n

n∑
�=1

wi(X,μ) ≥ 9πi

10

⎛
⎝ inf

μ∈Uλ

Ei[wi(X,μ)]−

√
c̃1

Kd log( C̃1n
δ )

nπi

⎞
⎠ .

The condition on the sample size (34) implies that

√
c̃1

Kd log(
C̃1n
δ )

nπi
≤ 1

10 and

therefore,

inf
μ∈Uλ

1

n

n∑
�=1

wi(X,μ) ≥ 9πi

10

(
inf

μ∈Uλ

Ei[wi(X,μ)]− 1

10

)
.

By Corollary 4.1.1,

inf
μ∈Uλ

1

n

n∑
�=1

wi(X,μ) ≥ 9πi

10

(
9

10
− (K − 1)(1 + θ)e−c(λ)R2

min

)
.

Under the separation requirement (19), it holds that (K−1)(1+θ)e−c(λ)R2
min ≤

1
15 . Hence, the event Di (35) occurs with probability at least 1− δ

2K .
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B.4. Proof of Lemma 5.3

Proof. Write X = η + Z where η ∼ N (0, Id) and Z ∈ {μ∗
1, . . . , μ

∗
K} has a

distribution Pr
(
Z = μ∗

j

)
= πj . First we prove (37). By the triangle inequality

‖wi (X,μ) (X − μ∗
i ) ‖ψ2 ≤ ‖wi (X,μ) η‖ψ2 + ‖wi (X,μ) (Z − μ∗

i ) ‖ψ2 .

Since wi ≤ 1 and η ∼ N (0, Id), it follows that ‖wi (X,μ) η‖ψ2 ≤ ‖η‖ψ2 [23,
Lemma B.1 part 5]. Using the explicit formula for the moment generating func-
tion of a chi-squared distribution with 1 degree of freedom, E[exp(1/t2(η�s)2)] =
(1−2/t2)−1/2. It follows that ‖η‖ψ2 ≤ 8 and hence ‖wi(X,μ)η‖ψ2 ≤ 8. Next, we
analyze the sub-Gaussian norm of the second term. We show that ‖wi(X,μ)(Z−
μ∗
i )‖ψ2 ≤ 8 1+2λ

1−2λ . To this end we show that for t = 8 1+2λ
1−2λ and any s ∈ Sd−1,

K∑
j=1

πjEj

[
exp

(
1

t2

(
wi (X,μ)

(
μ∗
j − μ∗

i

)�
s
)2)]

≤ 2. (65)

First, for j = i, Z − μ∗
i = 0 and thus the expectation is 1. Now, consider any

j �= i. It holds that (μ∗
j − μ∗

i )
�s ≤ Rij . Therefore,

Ej

[
exp

(
1

t2

(
wi (X,μ)

(
μ∗
j − μ∗

i

)�
s
)2)]

≤ Ej

[
exp

(
1

t2
(Rijwi (X,μ))

2

)]
.

By Equations (45) and (46), wi

(
η + μ∗

j , μ
)
≤ 1

1+
πj
πi

eAν+B
= w̃i(A,B, ν) where

ν ∼ N (0, 1), A = ‖μi − μj‖ and B = 1
2‖μ∗

j − μi‖2 − 1
2‖μj − μ∗

j‖2. This al-
lows bounding the expectation over the d-dimensional random vector η by an
expectation over a univariate random variable ν.

Ej

[
exp

(
1

t2

(
wi (X,μ)

(
μ∗
j − μ∗

i

)�
s
)2)]

≤Eν

[
exp

(
1

t2
R2

ijw̃i(A,B, ν)2
)]

=E.

Next, we split the expectation over ν to two cases as follows,

E = E

[
exp

(
1

t2
R2

ijw̃i(A,B, ν)2
) ∣∣∣ν <

−B

2A

]
Pr

(
ν <

−B

2A

)

+ E

[
exp

(
1

t2
R2

ijw̃i(A,B, ν)2
) ∣∣∣ν >

−B

2A

]
Pr

(
ν >

−B

2A

)
= E1 + E2. (66)

We now show that E1 ≤ 1
2 and E2 ≤ 3

2 , from which it follows that E ≤ 2.

First, consider the term E1 in (66). Note that Pr
(
ν < −B

2A

)
≤ e−

B2

8A2 . By

Lemma A.2, A≤(1+2λ)Rij and B≥ 1
2 (1−2λ)R2

ij . It follows that Pr
(
ν< −B

2A

)
≤

e−
1
32 (

1−2λ
1+2λ )

2
R2

ij . Since w̃i(A,B, ν) ≤ 1, we thus obtain by inserting t = 8 1+2λ
1−2λ ,

E1 ≤ e
R2

ij

t2 e−
1
32 (

1−2λ
1+2λ )

2
R2

ij = e−
1
64 (

1−2λ
1+2λ )

2
R2

ij .
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Therefore, for Rmin satisfying (36), E1 ≤ 1
2 .

Second, consider the term E2 in (66). Since ν > −B
2A , then Aν+B > B

2 . Thus,

1/w̃i(A,B, ν)2 = (1 +
πj

πi
eAν+B)2 >

π2
j

π2
i
eB . That is, w̃i(A,B, ν)2 ≤ π2

i

π2
j
e−B . By

Lemma A.2, B ≥ (1−2λ)
2 R2

ij . Hence, w̃i(A,B, ν)2 ≤ π2
i

π2
j
e−

(1−2λ)
2 R2

ij . Note that

Pr
(
ν > −B

2A

)
≤ 1, hence it follows by plugging in t = 8 1+2λ

1−2λ ,

E2 ≤ exp

(
1

64(1 + 2λ)2
(1− 2λ)2R2

ij

π2
i

π2
j

e−
(1−2λ)

2 R2
ij

)
.

The condition that the right hand side of the above is smaller than 3
2 can be

written as we−w ≤ a, where w = 1−2λ
2 R2

ij and a =
π2
j

π2
i
32 log 3

2
(1+2λ)
1−2λ

2
. Since for

w ≥ 2 log 1
a , it holds that we

−w < a, we get for our case that for Rmin satisfying
(36), E2 ≤ 3

2 .

Since E ≤ 2, Eq. (65) holds. Therefore ‖wi(X,μ)(Z −μ∗
i )‖ψ2 ≤ 8 1+2λ

1−2λ . Since
‖wi(X,μ)η‖ψ2 ≤ 8, we get Eq. (37).

The proof of Eq. (38) is similar. We analyze the sub-Gaussian norm of
‖wi (X,μ) (Z − μi)‖ψ2 . Similarly to Eq. (65), we decompose the expectation
to components. First consider the i’th component. Since ‖μ∗

i − μi‖ ≤ λRi, we
have for all s ∈ Sd−1 that (μ∗

i − μi)
�s ≤ λRi. Thus,

Ei

[
exp

(
1

t2

(
wi (X,μ) (μ∗

i − μi)
�
s
)2)]

≤ Ei

[
exp

(
1

t2
(wi (X,μ)λRi)

2

)]
.

Hence for t ≥ λRi√
log 2

, the last expression is smaller than 2. Next, for any compo-

nent j with j �= i and any s ∈ Sd−1, we have (μ∗
j − μi)

�s ≤ Rij + ‖μi − μ∗
i ‖ ≤

3
2Rij . Hence,

Ej

[
exp

(
1

t2

(
wi (X,μ)

(
μ∗
j − μi

)�
s
)2)]

≤ Ej

[
exp

(
1

t2

(
wi (X,μ)

3

2
Rij

)2
)]

.

Since for t ≥ 8 1+2λ
1−2λ , Eη∼N (0,Id)

[
exp

(
1
t2

(
wi

(
η + μ∗

j , μ
)
Rij

)2)] ≤ 2, it follows

that for t ≥ 12 1+2λ
1−2λ , the above is smaller than 2. Thus, for any s ∈ Sd−1,

t ≥ max
(
12 1+2λ

1−2λ ,
λRi√
log 2

)
= t0,

EX

[
exp

(
1

t2

(
wi (X,μ) (X − μi)

�
s
)2)]

≤ 2.

Thus, ‖wi(X,μ)(Z−μi)‖ψ2 ≤ t0. Since ‖wi(X,μ)η‖ψ2 ≤ 8, Eq. (38) follows.

B.5. Proof of Lemma 5.4

We first present the following auxiliary lemma.
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Lemma B.3. Let X ∼ GMM(μ∗, π) with Rmin satisfying (36). Fix λ ∈ (0, 1
2 ).

For each μ ∈ Uλ let με ∈ Uλ be such that maxi∈[K] ‖μi − με
i‖ < ε. Then, for

v ∈ {μ, μ∗},

EX

[
sup
μ∈Uλ

‖(wi(X,μ)− wi(X,με))(X − vi)‖
]
≤ K(

√
d+ 2Rmax)

2ε. (67)

Proof. By the mean value theorem and the expression for ∇μwi(X,μ), (21) and
(22),

EX

[
sup
μ∈Uλ

‖(wi(X,μ)− wi(X,με))(X − vi)‖
]
≤

K∑
j=1

sup
μ∈Uλ

Vij(μ, v)ε.

Since 0 ≤ wi(X,μ) ≤ 1, we get,

EX

[
sup
μ∈Uλ

‖(wi(X,μ)−wi(X,με))(X−vi)‖
]
≤

K∑
j=1

EX

[
sup
μ∈Uλ

‖X−μj‖‖X−vi‖
]
ε.

Now,

EX

[
sup
μ∈Uλ

‖X − μj‖
]
=

K∑
k=1

πkEk

[
sup
μ∈Uλ

‖X − μj‖
]
≤

√
d+ 2Rmax.

Similarly, EX

[
supμ∈Uλ

‖X − vi‖
]
≤

√
d+ 2Rmax. Eq. (67) now follows.

Proof of Lemma 5.4. The lemma will follow from Lemma B.2 with X ∼
GMM(μ∗, π), B = Uλ, W = wi(X,μ)(X − μ∗

i ) and probability δ0 = δ
2K . To

this end we need to show that the two conditions of Lemma B.2 hold: (i) For
any ε > 0, Eq. (67) holds for all με ∈ Uλ with maxi∈[K] ‖μi − με

i‖ ≤ ε. (ii) The
sub-Gaussian norm of wi(X,μ)(X − μ∗

i ) for X ∼ GMM(μ∗, π) is bounded by
16

1−2λ . The former follows from Lemma B.3. The latter follows from Lemma 5.3
for Rmin satisfying (36).

Appendix C: Proofs for the gradient EM algorithm

Proof of Theorem 3.2. Consider the error of the estimate for the i-th center
after a single gradient EM update (8). By the triangle inequality,

‖μ+
i − μ∗

i ‖ ≤ ‖μi − μ∗
i + sEX [wi(X,μ∗)(X − μi)]‖

+ s‖EX [(wi(X,μ)− wi(X,μ∗))(X − μi)]‖.

We now separately upper bound each of the two terms above. For the first term,
recall that EX [wi(X,μ∗)] = πi and by Lemma 4.4, EX [wi(X,μ∗)(X − μi)] =
πi(μ

∗
i − μi). Hence, for any step size s < 1/πi,

‖μi − μ∗
i + sEX [wi(X,μ∗)(X − μi)]‖ ≤ (1− sπi)‖μi − μ∗

i ‖.
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Next, to bound the second term we use the expressions in Eqs. (21) and (22),

‖EX [(wi(X,μ)− wi(X,μ∗))(X − μi)]‖ ≤
K∑
j=1

sup
μ∈Uλ

Vi,j(μ, μ)‖μj − μ∗
j‖ (68)

with Vi,j and Vi,i as defined in (23) and (24), respectively. The proof proceeds
similarly to that of the original EM algorithm. First, using the bounds (25) and
(26) in Lemma 4.3, for Rmin satisfying the separation condition (11), it holds
that

‖EX [(wi(X,μ)− wi(X,μ∗)) (X − μi)] ‖ ≤ 3

8
πmin.

Therefore,

‖μ+
i − μ∗

i ‖ ≤ (1− 5

8
sπi)E (μ) .

We finish by showing that μ+ ∈ Uλ. Replacing ‖μj − μ∗
j‖ by λRj in (68), and

replacing Rk by Rmin in the bounds in (25) and (26) we get

‖EX [(wi(X,μ)− wi(X,μ∗))(X − μi)]‖

≤λRmin · 3πmin

8
U max

(
d0, R

2
min

)
e−

c(λ)R2
min

2 .

with U =
16(K−1)

√
C(1+θ)

3πmin
. Under the separation condition (11), the right hand

side of the above is upper bounded by 3
8πmin. Therefore,

‖μ+
i − μ∗

i ‖ ≤ (1− sπi +
3

8
sπi)λRi < λRi.

The next lemma presents a concentration result for the sample EM update.

Lemma C.1. Fix δ ∈ (0, 1), λ ∈ (0, 1
2 ). Let X1, . . . , Xn ∼ GMM(μ∗, π) with

Rmin satisfying (36). For i ∈ [K] define Sg
i = 1

n

∑n
�=1 wi(X�, μ)(X� − μi) and

the event

Ng
i =

⎧⎨
⎩ sup

μ∈Uλ

‖Si − E[wi(X,μ)(X − μi)]‖ ≤ Cmax

(
1

1− 2λ
, λRi

)√
Kd log C̃n

δ

n

⎫⎬
⎭

(69)
where C is a suitable universal constant and C̃ = 18K2Rmax(

√
d + 2Rmax)

2.
Then Ni occurs with probability at least 1− δ

K .

Proof. The lemma will follow from Lemma B.2 by setting X ∼ GMM(μ∗, π),
B = Uλ and W = wi(X,μ)(x − μi). To this end we need to show that the two
conditions of Lemma B.2 hold: (i) For any ε > 0, Eq (67) holds for all με with
maxi∈[K] ‖μi − με

i‖ ≤ ε. (ii) The sub-Gaussian norm of wi(X,μ)(X − μi) for

X ∼ GMM(μ∗, π) is bounded by Cmax( 1
1−2λ , λRi). The former follows from

Lemma B.3. The latter follows from Lemma 5.3 for Rmin satisfying (36).

With the pieces in place we now prove Theorem 3.4.
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Proof of Theorem 3.4. Consider the error of the i-th cluster of the sample gra-
dient EM update (10),

‖μ∗
i − μ+

i ‖ ≤ ‖μi − μ∗
i − sE[wi(X,μ)(X − μi)]‖

+ s

∥∥∥∥∥E[wi(X,μ)(X − μi)]−
1

n

n∑
�=1

wi(X�, μ)(X� − μi)

∥∥∥∥∥
Theorem 3.2 implies that for Rmin satisfying (11), it holds that

‖μi − μ∗
i − sE[wi(X,μ)(X − μi)]‖ ≤ γmin(E(μ), λRi)

with γ = 1 − 5
8sπmin. We therefore bound the second term above. Since the

requirement on Rmin (11) is more restrictive than the requirement (36) we may
invoke Lemma C.1 and obtain that with probability at least 1 − δ

K , the event
Ng

i (69) occurs. Thus,

‖μ∗
i − μ+

i ‖ ≤ γmin(E(μ), λRi) + sCmax

(
1

1− 2λ
, λRi

)√√√√Kd log
(

C̃n
δ

)
n

.

(70)

The sample size condition (14), implies that Csmax
(

1
1−2λ , λRi

)√Kd log
(

C̃n
δ

)
n ≤

3
8sπminλRi ≤ λ(1 − γ)Ri. Taking a union bound over the K components,
μ+ ∈ Uλ with probability at least 1 − δ. We can therefore iteratively apply
(70) and obtain

‖μt
i − μ∗

i ‖ ≤ γtE(μ) + sC
1

1− γ
max

(
1

1− 2λ
, λRi

)√√√√Kd log
(

C̃n
δ

)
n

.

Since s
1−γ = 8

5πi
, we get Eq. (15).
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