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Abstract: Recursive max-linear vectors model causal dependence between
node variables by a structural equation model, expressing each node vari-
able as a max-linear function of its parental nodes in a directed acyclic
graph (DAG) and some exogenous innovation. For such a model, there ex-
ists a unique minimum DAG, represented by the Kleene star matrix of its
edge weight matrix, which identifies the model and can be estimated. For
a more realistic statistical modeling we introduce some random observa-
tional noise. A probabilistic analysis of this new noisy model reveals that
the unique minimum DAG representing the distribution of the non-noisy
model remains unchanged and identifiable. Moreover, the distribution of
the minimum ratio estimators of the model parameters at their left limits
are completely determined by the distribution of the noise variables up to a
positive constant. Under a regular variation condition on the noise variables
we prove that the estimated Kleene star matrix converges to a matrix of
independent Weibull entries after proper centering and scaling.
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1. Introduction

Graphical modeling has shown to be a powerful tool for understanding causal
dependencies in a multivariate random vector. However, most models are linear
and limited to discrete or Gaussian distributions (see e.g. [25] and [27]). Such
models lead to severe underestimation of large risks and, therefore, are not
suitable in the context of extreme risk assessment. First examples combining
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extreme value methods with graphical models include flooding in river networks
([12]), financial risk ([10], [23]), and nutrients ([23]).

We consider the class of recursive max-linear (ML) models, which has been
defined in [14]. A recursive ML model is defined by a structural equation model
(SEM) of the form

Xi =
∨

j∈pa(i)

cjiXj ∨ Zi, i = 1, . . . , d (1.1)

where the dependence structure between random variables is represented by a
DAG D := (V,E) with node set V := {1, . . . , d} and edge set E = E(D) ⊆
V × V , and each variable Xi for i ∈ V has a representation in terms of ML
functions of its parental nodes pa(i) = {j ∈ V : (j, i) ∈ E} and an independent
innovation Zi.

Both, SEMs (e.g. [5], [31]) and directed graphical models (e.g. [25], [27], [35])
are well-established models and widely used to understand causality.

ML models similar to (1.1) have been proposed and studied in a time series
context (e.g. [9]), in terms of moving maxima processes (e.g. [16]), or as tropi-
cal models in algebra (e.g. [21], [30]) with applications to various optimization
problems (e.g. [2], [6], [36]).

As shown in [24], recursive ML models respect the basic Markov properties
associated with DAGs (e.g. [28], [29]). Moreover, the equation system (1.1) has
the solution

Xi =
∨

j∈pa(i)

bjiZj , i = 1, . . . , d, (1.2)

with ML coefficient matrix (in tropical algebra called the Kleene star matrix)
B := (bij)d×d, see [6], Corollary 1.6.16. Unlike the edge weight matrix C =
(cij)d×d, B is identifiable and completely determines the distribution of X :=
(X1, . . . , Xd) (see [15], Theorem 1). Also, B is idempotent with respect to the
tropical matrix multiplication defined in (2.4) below, and defines a graphical
model on a DAG with node set V and an edge j → i whenever there is a path
from j to i in D. Furthermore, [15] proposes a minimum ratio estimator for B,
which itself is idempotent, and is a generalized maximum likelihood estimator
in the sense of [22].

The model (1.1) states that an extreme node observation Xi in the DAG is
either the result of a large external innovation Zi, or the weighted maximum
of observations from the parent nodes of i in D. As we see from the solution
(1.2), all past innovations drive this observation. Our aim is to generalise this
rather restricted recursive structure as to allow for certain observation errors,
independent of this model.

More precisely, we extend the original model (1.1) by allowing for multiplica-
tive observation errors and define

Ui =
( ∨

j∈pa(i)

cjiUj ∨ Zi

)
εi, i = 1, . . . , d, (1.3)

with εi ≥ 1 and iid for i = 1, . . . , d. By taking advantage of tropical algebra, we
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present in Theorem 3.2 a solution of (1.3) which represents each node variable Ui

in terms of a ML function of its ancestral nodes and an independent innovation
Zi given by

Ui =
∨

j∈an(i)∪{i}
b̄jiZj , i = 1, . . . , d,

where an(i) denotes the ancestors of i and b̄ji are random variables involving
the edge weights and the noise variables.

It comes as no surprise that the true DAG and edge weights for a recursive
ML model with propagating noise inherit the non-identifiability property from
the non-noisy model. However, as we will prove in Section 4, the ML coefficient
matrix B = (bij)d×d remains identifiable in spite of the observational noise and
even if we do not know the underlying DAG.

To link up our new model (1.3) with existing literature, observe that a log-
transformation of (1.3) yields

Ũi =
∨

j∈pa(i)

(c̃ji + Ũj) ∨ Z̃i + ε̃i, i = 1, . . . , d (1.4)

with ε̃i ≥ 0. However, due to the maximum operator, the class of max-linear
models is highly non-smooth such that most standard methods do not apply.
For every j ∈ pa(i), the difference Ũi − Ũj is lower-bounded by c̃ji and

P(Ũi − Ũj ≤ c̃ji + x | Ũi = c̃ji + Ũj + ε̃i) = P(ε̃i ≤ x).

Example 1.2.2 of [6] might then serve as motivating example for model (1.4).
Assume that i is a priority flight and there are several feeder flights to i. Assume
that the departure of a feeder flight j is delayed by Xj , and there are passengers,
who have to catch flight i. Moreover, let cji be the departure time of flight i
minus arrival time of flight j minus transit time according to schedule. There
may be a further delay Zi of flight i caused by non-connecting passengers.
Assuming that flight i also waits for such non-connecting passengers, the delay
of flight i is given by Ũi =

∨
j∈pa(i)(c̃ji + Ũj) ∨ Z̃i. Some other delays are

independent of possible passenger like bad weather conditions, delayed start
clearance etc. Then we find exactly model (1.4), the max-linear model with
positive noise.

The estimation of (linear) functions with one-sided errors has been consid-
ered in the literature before. For instance, in [17] and [20] observations are given
by Yj = f(Xj)+ εj for j = 1, . . . , n with observation errors εj > 0, with density
given conditionally or unconditionally on Xj = x, and f describes some frontier
or boundary curve, which has to be estimated. To present an archetypical exam-
ple, consider the linear regression problem stated in [33] and [34] as Yi = β + εi
for i = 1, . . . , n and observation errors, which have density g(x) ∼ αcxα−1 as
x ↓ 0 for α, c > 0. In these papers, the focus is on the non-regular case, when
α < 2. Then β can be estimated by the sample minimum Y1,n which has a
Weibull limit law:

lim
n→∞

P
(
(nc)−1/α(Y1,n − β0) ≤ x

)
= 1− exp(−x−α), 0 < x < ∞. (1.5)
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The work in [33] has been used in [8] to estimate the coefficient φ of a first order
autoregressive time series with positive innovations. They propose the minimum
ratio estimator φ̂ =

∧n
j=1 Xj/Xj−1 and show in their Corollary 2.4 that it also

has a Weibull limit law similar to (1.5).
In our model (1.3) we find two interpretations for the noise variables. Firstly,

in the log-transformed version (1.4) we consider a ML model as baseline model,
which is observed with some additive noise. A second representation is given in
Corollary 3.3 below, where the edge and path weights become noisy by the noise
variables. This gives rise to the interpretation that we observe the model param-
eters with noise similarly as in the regression examples above. As a consequence,
a path from j to i realizing the ML coefficient bji is no longer deterministic but
depends on the individual realizations of the noise variables. However, in The-
orem 3.12 we show that at the left limit of support the distribution of the ratio
of two model components is determined by all noise variables along the path
between the two nodes. Assuming noise variables with regularly varying distri-
bution in their left limit of support, we propose a minimum ratio estimator and
show in Theorem 5.2 that the estimated ML coefficient matrix converges to a
matrix of independent Weibull entries after proper centering and rescaling.

The paper is organized as follows. In Section 2, we summarize the properties
of recursive ML models as defined in (1.1) and state the most important results
relevant for our paper. In Section 3 we consider the extension of the recursive ML
model given in (1.3), which we coin the max-linear model with propagating noise
and present its solution and the main properties of this new model. In Section 4
we address the identifiability of the ML model with propagating noise. Similarly
as in (1.5) we suggest minimum ratio estimators for the model parameters B.
In Section 5 we assume regular variation of the noise variables. Under this
assumption, we show that the minimum ratios are asymptotically independent
and Weibull distributed. Finally, in Section 6, we provide a data example and
apply the theory that we have derived in the previous sections. All proofs are
postponed to an Appendix.

Throughout we use the following notation. R+ = (0,∞) and R+ = [0,∞),
x ∧ y = min{x, y} and x ∨ y = max{x, y} with

∧
i∈∅ xi = ∞ and

∨
i∈∅ xi = 0

for xi ∈ R+. Bold letters denote vectors and matrices, e.g. Id denotes the d× d
identity matrix. Moreover, all vectors are row vectors unless stated otherwise.
For two functions f, g we write f(x) ∼ g(x) as x ↓ c if limx↓c f(x)/g(x) = 1
and 1 denotes the indicator function. For a random variable Y with distribution
function FY , the symbol F←

Y denotes its quantile function.

2. Preliminaries — recursive max-linear models

2.1. Graph terminology

We use the same graph notation as in [14]. A directed graph is a pair (V,E) of a
node set V = {1, . . . , d} and an edge set E = {j → i : i, j ∈ V, i �= j}. A node j is
called a parent of i if j → i ∈ E and write (j, i) ∈ E. A (directed) path from j to
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i is a sequence of distinct nodes [j = k0, k1, . . . , kn = i] such that kr−1 → kr for
each r ∈ {1, . . . , n}, and a directed cycle is a path where j = i. A node j is called
an ancestor of i, if there exists a path from j to i, then i is called a descendant
of j. The node sets pa(i), an(i) and de(i) denote the parents, ancestors, and the
descendants of node i, respectively, and we abbreviate An(i) := an(i) ∪ {i}.

Finally, for a path p = [k0, k1, . . . , kn] we define the node set on the path
(excluding the initial node) by Sp := {k1, . . . , kn} and its path length by |Sp|.

Throughout this paper D = (V,E) is a directed acyclic graph (DAG), and
we recall that a complete DAG is a complete graph with directed edges.

A matrix C ∈ R
d×d

+ defines a weighted directed graph, where j → i ∈ D if
and only if its edge weight cji is positive. The path weight of a path in D is then
the product of its edge weights.

For a DAG D on V with edge weight matrix C, its reachability DAG is
defined as a DAG on V having edge j → i if and only if D has a path from
j → i; moreover, B represents the edge weight matrix of the reachability DAG.
We call B the ML coefficient matrix and remark that it is a weighted reachability
matrix for D.

2.2. Recursive max-linear models

We first formally introduce the class of recursive ML models and state their
most important results for this paper. Let D = (V,E) be a DAG. Then a
random vector X := (X1, . . . , Xd) is a recursive max-linear vector or follows a
max-linear Bayesian network on D if

Xi :=
∨

k∈pa(i)

ckiXk ∨ Zi, i ∈ 1, . . . , d, (2.1)

with positive edge weights cki for i ∈ V and k ∈ pa(i), and independent positive
random variables Z1, . . . , Zd with support R+ and atom-free distributions. We
shall refer to Z := (Z1, . . . , Zd) as the vector of innovations.

For a path p = [j = k0 → k1 → . . . → kn = i] from j to i we define the path
weight

dji(p) :=

n−1∏
l=0

cklkl+1
. (2.2)

Denoting the set of all paths from j to i by Pji, we define the ML coefficient
matrix B = (bij)d×d of X with entries

bij :=
∨

p∈Pij

dij(p) for i ∈ an(j), bii = 1, and bij = 0 for i ∈ V \An(j).

The components of X can also be expressed as ML functions of their ancestral
innovations and an independent one; the corresponding ML coefficients are the
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entries of B:

Xi =
∨

k∈An(i)

bkiZk, i ∈ 1, . . . , d, (2.3)

which can be shown by a path analysis as in Theorem 2.2 in [14] or by tropical
algebra as in (2.6) below, and as we explain now.

For two non-negative matrices F and G, where the number of columns in
F is equal to the number of rows in G, we define the matrix product � :

R
m×n

+ × R
n×p

+ → R
m×p

+ by

(F = (fij)m×n,G = (gij)n×p) �→ F �G :=
( n∨

k=1

fikgkj

)
m×p

. (2.4)

The triple (R+,∨, ·), is an idempotent semiring with 0 as 0-element and 1 as
1-element and the operation � is therefore a matrix product over this semiring;
see for example [6]. Denoting by M all d× d matrices with non-negative entries
and by ∨ the componentwise maximum between two matrices, (M,∨,�) is also
a semiring with the null matrix as 0-element and the d × d identity matrix Id

as 1-element.

The matrix product � allows us to represent the ML coefficient matrix B of
X in terms of the edge weight matrix C := (cij1pa(j)(i))d×d of D, since (2.1)
can be rewritten as

X = (X �C) ∨Z (2.5)

with unique solution (equivalent to (2.3)) given by

B = (Id ∨C)	(d−1) =

d−1∨
k=0

C	k, X = Z �B, (2.6)

where B is the Kleene star matrix and A	0 = Id and A	k = A	(k−1) �A for

A ∈ R
d×d

+ and k ∈ N; see Proposition 1.6.15 of [6] as well as Theorem 2.4 and
Corollary 2.5 of [14]. For more information on the max-times (tropical) algebra
in ML models, see Section 2.2 in [1].

We have seen that a recursive ML vector X has two representations, one
in terms of parental nodes Xj and edge weights cji and another in terms of
innovations Zj and ML coefficients bji. However, while the ML coefficient matrix
B of X is identifiable from the distribution of X, the edge weight matrix C
is generally not, see Theorem 5.4(b) in [14]. Theorem 5.3 in that paper and
Theorem 2 in [15] show that an edge with edge weight cji is identifiable from B
if and only if it is the unique path from j to i with dji(p) = bji.

For a recursive ML vectorX on a DAG D = (V,E) and ML coefficient matrix
B this result leads to the following definition.
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Definition 2.1. Let X ∈ R
d
+ be a recursive ML vector on the DAG D = (V,E)

with ML coefficient matrix B. We define the minimum ML DAG of X as

DB = (V,EB) :=
(
V,
{
(j, i) ∈ E : bji >

∨
k∈de(j)∩pa(i)

bjkbki
bkk

})
.

Moreover, it has been shown that the support of a ratio of components of a
recursive ML vector X satisfies

supp(Xi/Xj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[bji,∞) for j ∈ an(i),

[0, 1/bij ] for i ∈ an(j),

{1} for i = j,

R+ otherwise,

(2.7)

with P(Xi/Xj = bji) > 0 for all j ∈ an(i); see Lemma 1 of [15]. Hence, for a

given iid sample X1, . . . ,Xn from X define a minimum ratio estimator B̂ of
B by b̂ij :=

∧n
k=1(X

k
i /X

k
j ) for i, j ∈ V . Moreover, when the DAG D is known,

we define B0 by

B0 = (B0(i, j))d×d :=
( n∧

k=1

Xk
j

Xk
i

1pa(j)(i)
)
d×d

and set B̂ = (Id ∨B0)
	(d−1).

Theorem 4 of [15] ensures that B̂ is a generalized maximum likelihood estimate
(GMLE) in the sense of [22].

2.3. Minimum domain of attraction and regular variation

Introducing propagating noise into the recursive ML model will smooth out
the atoms in (2.7). The minimum ratio estimators will still estimate the left
endpoints B = (bji) and we will be able to provide distributional limit re-
sults. These will be based on minimum domain of attraction results and regular
variation. Extreme value theory is more focused nowadays on running max-
imima (e.g. [11]), but results for running minima are obtained by noting that∧n

i=1 Yi = −
∨n

i=1(−Yi). From this we obtain that the family of Weibull distri-
butions are limit distributions of running minima of i.i.d. random variables, see
equation (2.9).

Definition 2.2. A positive random variable Ψα is Weibull distributed with
left endpoint xL > −∞, shape α > 0 and scale s > 0 and we write Y ∼
Weibull(α, xL, s) if the distribution function of Y is given by

Ψα,xL,s(x) = 1− exp

(
−
(
x− xL

s

)α)
, x ≥ xL.

Random variables, whose running minima have such a Weibull limit satisfy
certain conditions. Here the following definition is essential and we refer to [4]
for details.
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Definition 2.3. Let Y be a random variable with distribution function F and
left endpoint xL. Then we call Y or F regularly varying at xL with exponent
α > 0, if

lim
t↓0

F (xL + tx)

F (xL + t)
= xα, x > 0. (2.8)

We abbreviate this by Y ∈ RV xL
α or F ∈ RV xL

α , respectively. We also note that
Y ∈ RV xL

α is equivalent to Y − xL ∈ RV 0
α.

Then, adapting Theorem 3.3.12 of [11] to the minimum of i.i.d. random vari-
ables X1, . . . , Xd with distribution function F , we obtain

∃(an > 0) s.t.
1

an

( n∧
i=1

Xi − xL

)
d→ Ψα, n → ∞

⇐⇒ xL > −∞, F (xL + ·) ∈ RV 0
α . (2.9)

Let ε be a random variable with left endpoint xL = 1, and ε̃ := ln(ε). Then
for x > 0,

lim
t↓0

P (ln(ε) ≤ tx)

P (ln(ε) ≤ t)
= lim

t↓0

P (ε ≤ etx)

P (ε ≤ et)
= lim

t↓0

P (ε− 1 ≤ tx(1 + o(1))

P (ε− 1 ≤ t(1 + o(1))

= lim
t↓0

P (ε− 1 ≤ tx)

P (ε− 1 ≤ t)
, (2.10)

such that ε ∈ RV 1
α if and only if ε̃ ∈ RV 0

α . Two relevant families of distribution
functions are given in the next example.

Example 2.4. (a) [Weibull distribution] Let ε̃ have distribution function as
in Definition 2.2 with xL = 0. Then by a l’Hospital argument,

lim
t↓0

Ψα,s(tx)

Ψα,s(t)
= xα,

which implies that ε̃ ∈ RV 0
α and ε ∈ RV 1

α .

(b) [Gamma distribution] Let ε̃ have density g(x) = λαe−λxxα−1/Γ(α) for
x > 0 and parameters λ > 0, α > 0. Then by a l’Hospital argument,

lim
t↓0

G(tx)

G(t)
= lim

t↓0

e−λtxtα−1xα

e−λttα−1
= xα, x > 0,

which implies that ε̃ ∈ RV 0
α and ε ∈ RV 1

α . �
We provide here also some preliminary results.

Proposition 2.5 (Karamata’s Tauberian Theorem 1.7.1, [4]). Let U be a non-
decreasing function on R with U(x) = 0 for all x < 0, and Laplace-Stieltjes
transform Û(s) =

∫
[0,∞)

e−sx
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dU(x) < ∞ for all large s. For l ∈ RV ∞
0 and c ≥ 0, ρ ≥ 0, the following are

equivalent

U(x) ∼ cxρl(1/x)/Γ(1 + p), x ↓ 0

Û(s) ∼ cs−ρl(s), s → ∞. (2.11)

From this, we obtain the following corollary.

Corollary 2.6. a) Let X ∈ RV 0
α1
, Y ∈ RV 0

α2
be independent, then X + Y ∈

RV 0
α1+α2

,

b) Let X,Y ≥ 1 be independent and such that X̃ = ln(X) ∈ RV 0
α1
, Ỹ =

ln(Y ) ∈ RV 0
α2
. Then (XY − 1) ∈ RV 0

α1+α2
.

Proof of Corollary 2.6 (a) We use Proposition 2.5 a) for U being FX or
FY , the distribution function of X or Y , respectively. Since the Laplace-Stieltjes
transforms F̂X(s) =

∫
[0,∞)

e−sxdFX(x) ≤ 1 and F̂Y (s) =
∫
[0,∞)

e−sxdFY (x) ≤ 1

for all s ≥ 0, by Proposition 2.5, they are both regularly varying at ∞ in the
sense of (2.11); i.e., F̂X ∈ RV ∞

α1
, F̂Y ∈ RV ∞

α2
. By independence, the convolution

theorem for Laplace-Stieltjes transforms gives F̂X+Y (s) = F̂X(s)F̂Y (s) and,
therefore, F̂X+Y ∈ RV ∞

α1+α2
. Applying again Proposition 2.5 we find that X1 +

X2 ∈ RV 0
α1+α2

.
(b) This follows from a Taylor expansion. �

3. Recursive ML model with propagating noise

In this section we define the recursive ML model with propagating noise, present
structural results, investigate which properties of the non-noisy model prevail,
and derive distributional results for component ratios of the model in prepara-
tion for the structure learning results to follow.

3.1. Definitions and representations

Definition 3.1. A vector U ∈ R
d
+ is a recursive ML vector with propagating

noise on a DAG D = (V,E), if

Ui :=
( ∨

k∈pa(i)

ckiUk ∨ Zi

)
εi, i ∈ 1, . . . , d, (3.1)

with edge weight matrix C := (cij1pa(j)(i))d×d. The noise variables ε1, . . . , εd are
iid and atom-free random variables with εi ≥ 1 and unbounded above for all i ∈
V , and independent of the innovations vector Z := (Z1, . . . , Zd). For simplicity,
we denote by ε a generic noise variable and by Z a generic innovation.

Although the noise variables act on the observations, formally we can view
them as random scalings of edge weights. More precisely, for a path p = [j =
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k0 → k1 → . . . → kn = i] from j to i we define the random path weight d̄ji
similarly to the definition of dji in (2.2) as

d̄ji(p) := εj

n−1∏
l=0

cklkl+1
εkl+1

= dji(p)εj

n−1∏
l=0

εkl+1
. (3.2)

If we define the random edge weight matrix

C̄ = (c̄ij)d×d := (cijεj1pa(j)(i))d×d (3.3)

we can rewrite (3.2) as

d̄ji(p) := εj

n−1∏
l=0

c̄klkl+1

for every path p = [j = k0 → k1 → . . . → kn = i] from j to i. Hence, we can
view the noise variables as random scalings for the edge weights cji. Since ε ≥ 1,
the edge weights cji of the non-noisy model are lower bounds for the random
edge-weights c̄ji of the propagating noise model.

Again denoting the set of all paths from j to i by Pji, we define the random
ML coefficient matrix B̄ = (b̄ij)d×d of U with entries

b̄ji :=
∨

p∈Pji

d̄ji(p) for j ∈ an(i), b̄jj = εj , and b̄ji = 0 for j ∈ V \An(i).

(3.4)

We next show that there exists a solution of (3.1) in terms of the ancestral
innovations Z and B̄. All proofs of this section are postponed to Appendix A.

Theorem 3.2. Let U ∈ R
d
+ be a recursive ML vector with propagating noise

on a DAG D as in (3.1). Define (Ed)d×d as the diagonal matrix given by

Ed(i, i) = εi for i ∈ V and Ed(i, j) = 0 for i, j ∈ V and i �= j.

We rewrite (3.1) in matrix form by means of the matrix multiplication (2.4) as

U =
(
U �C ∨Z

)
�Ed.

Then U has a unique solution in terms of the tropical matrix multiplication with
random matrix B̄ given by

B̄ = Ed � (Id ∨ C̄)	(d−1), U = Z � B̄, (3.5)

with C̄ as defined in (3.3).

Since b̄ji = 0 whenever j �∈ An(i), the representation (3.5) can be rewritten
as follows.
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Corollary 3.3. Let U be as in Theorem 3.2 and b̄ji be the random ML coeffi-
cients defined in (3.4). Then (3.5) is equivalent to

Ui =
∨

j∈An(i)

b̄jiZj , i ∈ 1, . . . , d. (3.6)

Note that the definition in (3.1) is equivalent to

Ui = Ũi εi with Ũi :=
∨

k∈pa(i)

ckiUk ∨ Zi, i ∈ 1, . . . , d. (3.7)

Since B is idempotent, the solution of X as in (2.6) can also be written as
X = X � B. This is no longer the case for the solution U in (3.5). However,
from the above result we can compute the following representation, which is
used in Definition 3.5(e) below.

Corollary 3.4. Let U and b̄ji be as in Corollary 3.3. Then (3.6) is equivalent
to

Ui =
∨

j∈An(i)

b̄jiŨj , i = 1, . . . , d, (3.8)

with Ũj as in (3.7).

3.2. Paths classification and graph reduction in the noisy model

We define critical and generic paths which play an essential role for the distri-
butional properties of the model. Similarly as shown for the non-noisy model in
Section 5 of [14], the vector U may also be a recursive ML model on a subgraph
of D. This subgraph depends on the ML coefficients, which are now random.
Hence, we start by comparing the ML coefficient matrices B and B̄ of the
non-noisy and noisy models.

Definition 3.5. Let D be a DAG with edge weight matrix C and let B be the
corresponding ML coefficient matrix (i.e., the Kleene star of C). Let p be a path
from j to i with node set Sp.

(a) p is called a (non-random) critical path if dji(p) = bji.
(b) p is called a generic path if it is the only path satisfying dji(p) = bji.
(c) We call C generic, if two nodes are connected by at most one critical path.
(d) For a fixed ω ∈ Ω, we call p a random critical path if d̄ji(p) = b̄ji.
(e) p is called a possible critical path realization, if Ui = Ujdji(p)

∏
k∈Sp

εk =

Ũj d̄ji(p) happens with positive probability.

Remark 3.6. We have defined a non-random critical path and a random critical
path. We want to emphasize, however, that while the first path property is simply
inherited from C via B, the second one is inherited from C and the noise
variables. We also note that by continuity of the innovations and the noise
variables, any random critical path between a pair of nodes must be a.s. unique,
although it may vary with the realizations of the noise variables.
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We explain the model and the notions of Definition 3.5 in an example.

Example 3.7. Consider the DAG:

1 2 3

Then, C is generic if and only if c13 �= c12c23. Moreover, we have

U3 = (c̄13 ∨ c̄12c̄23)ε1Z1 ∨ c̄23ε2Z2 ∨ ε3Z3,

with c̄ji = cjiεi as defined in (3.3).
Now assume that c13 > c12c23. In that case, [1 → 3] is the critical path,

while the path [1 → 2 → 3] is not critical. However, P(c̄13 < c̄12c̄23) = P(ε2 >
c13/(c12c23)) > 0. If P(c̄13 < c̄12c̄23), then the edge 1 → 3 is random critical,
otherwise 1 → 2 → 3 is random critical. Since both paths can be random critical
with positive probability, all paths in D can be possible critical path realizations.

In contrast, if c13 < c12c23 we have P(c̄13 > c̄12c̄23) = P(ε2 < c13/(c12c23)) =
0. In this case, the path [1 → 3] can be random critical only on a null set and
therefore [1 → 3] is not a possible critical path realization.

This illustrates that a path p from j to i with path weight dji(p) < bji may
as well contribute to the distribution of Ui. However, an edge p = [j → i] with
dji(p) < bji is still not identifiable and does not change the distribution of U .

Recall from (2.6) and (3.5) that

X = Z �B and U = Z � B̄.

We present some useful properties of B and B̄ providing a link between
the noisy and non-noisy model as defined in (2.1) and (3.1), respectively. Such
properties have been shown for B in [13, 14, 15], and we investigate here which
of them remain valid for B̄.

Lemma 3.8. Let U ∈ R
d
+ be a recursive ML vector with propagating noise on a

DAG D as defined in (3.1) with B and B̄ defined in (2.6) and (3.5), respectively.
Then the following assertions hold:

a) b̄ji =
∨
k∈V

b̄jk b̄ki
b̄kk

≥
∨

k∈de(j)∩an(i)

b̄jk b̄ki
b̄kk

, where the inequality is strict, when-

ever the random critical path from j to i is the edge j → i, or j = i.
b) There exists some path p := [j → . . . → k → . . . → i] from j to i that

passes through k such that

d̄ji(p) = b̄ji if and only if b̄ji =
b̄jk b̄ki
b̄kk

.

c)
Ui

Uj
≥ b̄ji

b̄jj
≥ bji with bji = 0 for j /∈ An(i)
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d) supp(Ui/Uj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[bji,∞) for j ∈ an(i),

[0, 1/bij ] for i ∈ an(j),

{1} for i = j,

R+ otherwise.

Moreover, for j �= i, neither the distribution of Ui/Uj nor the distribution
of Uj/Ui have any atoms.

e) If bji =
∨

k∈de(j)∩an(i)

bjkbki

bkk
, then b̄ji =

∨
k∈de(j)∩an(i)

b̄jk b̄ki

b̄kk
.

f) If bji >
∨

k∈de(j)∩an(i)

bjkbki

bkk
and de(j) ∩ an(i) �= ∅, then

P

(
b̄ji >

∨
k∈de(j)∩an(i)

b̄jk b̄ki
b̄kk

)
> 0 and P

(
b̄ji =

∨
k∈de(j)∩an(i)

b̄jk b̄ki
b̄kk

)
> 0.

Definition 5.1 of [14] presents the smallest subgraph of D such that X is a
recursive ML model on this DAG as

DB = (V,E) :=

⎛⎝V,

{
(j, i) ∈ E : bji >

∨
k∈de(j)∩pa(i)

bjkbki
bkk

}⎞⎠ .

This means that DB contains an edge j → i of D if and only if this edge is the
only critical path from j → i in D.

Lemma 3.8 b) and f) motivate the following definition as the random analog
of DB .

Definition 3.9. Let U ∈ R
d
+ be a recursive ML vector with propagating noise

on the DAG D = (V,E) as defined in (3.1). Then we define the minimum ML
DAG D̄B as

D̄B = (V, Ē) :=

⎛⎝V,

{
(j, i) ∈ E : P

(
b̄ji >

∨
k∈de(j)∩pa(i)

b̄jk b̄ki
b̄kk

)
> 0

}⎞⎠ .

This means that D̄B contains an edge j → i of D if and only if this edge is a
possible critical path realization from j → i in D.

In addition, applying first Lemma 3.8 e) and f), and in the second part
Lemma 3.8 b) yields the following result.

Corollary 3.10. Let X ∈ R
d
+ be a recursive ML vector on a DAG D = (V,E)

as defined in (2.1) and U ∈ R
d
+ be a recursive ML vector with propagating noise

as defined in (3.1) on the same DAG D with the same edge weight matrix C.
Then

DB = D̄B ,

which is the smallest DAG that preserves the distributions of X and of U .
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We will henceforth only use the term DB .

The next lemma summarizes properties of possible critical path realizations
from Definition 3.5(e).

Lemma 3.11. Let U ∈ R
d
+ be a recursive ML vector with propagating noise on

a DAG D as defined in (3.1). Then the following assertions hold:

a) A path p = [j = k0 → . . . → kn = i] in D is a possible critical path
realization from j to i if and only if all edges of p belong to the minimum
ML DAG DB.

b) Let p1 and p2 be two possible critical path realizations from j to i and from
l to m, respectively. Then{

Ui = Ujdji(p1)
∏

k∈Sp1

εk, Um = Uldlm(p2)
∏

k∈Sp2

εk

}
(3.9)

has positive probability if and only if Sp1 ∩ Sp2 = ∅, or for every r ∈
Sp1 ∩Sp2 the sub-path of p1 from j to r is a sub-path of p2 or the sub-path
of p2 from l to r is a sub-path of p1.

We illustrate part b) with Figure 1 and Figure 2.

Fig 1. Both dashed paths p1 := [j → k5 → k6 → i] and p2 := [l → k4 → j → k5 → k6 → m]
can be possible critical path realizations from the same realized noise variables along the nodes.

3.3. Distributions of component ratios of the noisy model

The next result is important as it not only helps us to understand the model
better, but is also an important step for learning the model.

Theorem 3.12. Let U ∈ R
d
+ be a recursive ML vector with propagating noise

on a DAG D as defined in (3.1). Suppose that pmax := [j = k0 → · · · → kn = i]
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is generic. Let Spmax = {k1, . . . , kn} be the set of nodes on pmax. Then

P

(
Ui

Uj
≤ bjix

)
∼ P

( ∏
k∈Spmax

εk ≤ x,
Ui

Uj
= bji

∏
k∈Spmax

εk

)
∼ cP

( ∏
k∈Spmax

εk ≤ x

)
, x ↓ 1,

for some constant c ∈ (0, 1).

Remark 3.13. If the distributions of the noise variables and the innovations
as well as the path weights of the underlying DAG D are given, the constant c
in Theorem 3.12 can be calculated explicitly.

Fig 2. Both dashed paths p1 := [j → k5 → k6 → i] and p2 := [l → k5 → k6 → m] can only
on a null-set be possible critical path realizations from the same realized noise variables along
the nodes.

Theorem 3.12 also shows that, while a path p from j to i with dji(p) < bji
can contribute to the distribution of U (as we have seen in Example 3.7), they
influence the distribution of Ui/Uj at their left limit of support only by the
constant c ∈ (0, 1).

We now extend the result to situations with several critical paths.

Corollary 3.14. Let U be as in Theorem 3.12. Suppose that exactly the paths
p1, . . . , pn from j to i are critical; i.e., dji(p1) = . . . = dji(pn) = bji. Then

P

(Ui

Uj
≤ bjix

)
∼ cP

( ⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x
})

, x ↓ 1,

for some constant c ∈ (0, 1).

For simplicity, we assume from now on that C is generic in the sense of
Definition 3.5. However, we want to remark that all such results can be extended
to the case of several non-random critical paths between two nodes. The proofs
of such results work similarly as the proof of Corollary 3.14.

We continue with another consequence of Theorem 3.12.
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Corollary 3.15. Let U be as in Theorem 3.12 and suppose that p := [j = k0 →
· · · → kn = i] is generic. Let U1, . . . ,Un for n ∈ N be an iid sample from U .
Then, for the same constant c ∈ (0, 1) as in Theorem 3.12, we have

P

( n∧
k=0

Uk
i

Uk
j

≤ bjix
)
∼ c nP

( n∏
i=1

εki ≤ x

)
, x ↓ 1.

We conclude this section by extending Theorem 3.12 to multivariate distri-
butions, which is an important structural result of the new model. We only
formulate and prove the bivariate case, the general case is then obvious. Re-
call that in Lemma 3.11 we gave a necessary and sufficient condition for (3.10)
below.

Theorem 3.16. Let U ∈ R
d
+ be a recursive ML vector with propagating noise

on a DAG D as defined in (3.1). Suppose generic paths p1 from j to i and p2
from l to m. Assume that

P

(
Ui = Ujbji

∏
k∈Sp1

εk, Um = Ulblm
∏

k∈Sp2

εk

)
> 0. (3.10)

Then

P

(
Ui

Uj
≤ bjix1,

Um

Ul
≤ blmx2

)
∼ cP

( ∏
k∈Sp1

εk ≤ x1,
∏

k∈Sp2

εk ≤ x2

)
∼P

( ∏
k∈Sp1

εk ≤ x1,
∏

k∈Sp2

εk ≤ x2,
Ui

Uj
= bji

∏
k∈Sp1

εk,
Um

Ul
= blm

∏
k∈Sp2

εk

)
,

for x1, x2 ↓ 1 and some constant c ∈ (0, 1).

4. Identification and estimation

We first address the question of identifiability ofB from the distribution ofU . In
particular, we are going to show that even though innovations and noise variables
are generally not identifiable, B remains identifiable also in the propagating
noise model.

We discuss three settings (1)-(3) below. For each setting, we propose an
appropriate minimum ratio estimator forB. Afterwards, we will show the almost
sure convergence of each of the estimators.

4.1. Identifiability of the model

In this section we discuss the question of identifiability of the DAG D and the
edge weights C of a ML model with recursive noise from the distribution of U .
As we have already seen in Example 3.7, the true DAG D and the edge weight
matrix C underlying U in representation (3.1) are generally not identifiable
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from the distribution of U . The smallest DAG with a chance to be identified
from the distribution of U is the minimum ML DAG D̄B of Definition 3.9, which
in turn can be identified from B by Corollary 3.10.

By the equivalence of DB and D̄B , Theorem 2 in [15] also holds for the
propagating noise model defined in (3.1), i.e., the theorem defines the class
of DAGs that preserve the distribution of U . As by Lemma 3.8 d) the ML
coefficients are limits of supports of component ratios of U , the following is
immediate.

Corollary 4.1. Let U ∈ R
d
+ be a recursive ML model with propagating noise on

a DAG D as defined in (3.1). Then the ML coefficient matrix B is identifiable
from the distribution of U .

Since we can identify B from the distribution of U , we can also identify the
minimum ML DAG DB from Definition 2.1 (which by Definition 3.9 and Corol-
lary 3.10 is the minimum DAG preserving the distribution of U). Therefore,
since ε ≥ 1, Theorem 2 of [15] also holds for the propagating noise model as
defined in (3.1). Therefore, as exemplified in Example 3.7, we can identify the
class of all DAGs and edge weights that could have generated U .

However, unlike for the non-noisy model, we can generally not identify in-
novations or noise variables. To see this assume a source node Ui in a DAG D
such that an(i) = ∅. If U follows a recursive ML model with propagating noise,
then Ui := Ziεi. In particular, we can not identify Zi or εi.

When estimating a recursive ML model with propagating noise, we distin-
guish between three settings. We point out that all algorithms below work
equally, if the data is generated from a noise-free max-linear model as defined
in (2.1).

(1) All ancestral relations are known; i.e., we know the set of edges E, hence
the DAG. This might be the case when modeling networks that contain
natural information about edges. The problem then reduces to finding
appropriate estimates b̂ji for j ∈ an(i).

(2) The ancestral relations are unknown; however, we know a topological order
of the nodes. Then, in contrast to setting 1, we need to decide if a path
from j to i with j < i exists.

(3) Neither the underlying DAG nor a topological order of the nodes is known.
Then we need to find a topological order of the nodes and proceed then
as in setting 2.

We next want to estimate B for each of the three settings (1)-(3).

4.2. Known DAG structure with unknown edge weights

Given an iid sample U1, . . . ,Un from a recursive ML model with propagating
noise on a known DAG D as defined in (3.1) and knowing all ancestral relations
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of D, we could choose the simple estimate

B̌ := (b̌ij)d×d =
( n∧

k=1

Uk
j

Uk
i

1An(j)(i)
)
d×d

. (4.1)

However, as in the non-noisy model, the estimate (4.1) may not define any
recursive ML model on the given DAG D, cf. Example 3 of [15].

We use instead

B0 = (B0(i, j))d×d :=
( n∧

k=1

Uk
j

Uk
i

1pa(j)(i)
)
d×d

and set B̂ = (Id ∨B0)
	(d−1).

(4.2)

Applying Lemma 2 in [15] to B0, the estimator B̂ yields a valid estimate of the

given DAG in the sense that B̂ defines a recursive ML model and for any pair
(j, i) �∈ E(D) we have b̂ji =

∨
k∈{1,...,d}\{j,i} b̂jk b̂ki. Moreover, by the idempo-

tency of B̂ and Lemma 3.8 c), similarly to the non-noisy model, it also holds
that

bji ≤ b̂ji ≤ b̌ji, j ∈ an(i). (4.3)

4.3. Known topological order

Given an iid sample U1, . . . ,Un ∈ R
d
+ from a recursive ML model with prop-

agating noise without knowing D, but knowing the topological order of nodes,
we adapt the estimator (4.1) to this situation and define

B̂ := (b̂ij)d×d =
( n∧

k=1

Uk
j

Uk
i

1(i<j)

)
d×d

. (4.4)

4.4. Unknown DAG and unknown topological order

Given an iid sample U1, . . . ,Un ∈ R
d
+ from a recursive ML model with prop-

agating noise without knowing D or the topological order, we will recover a
topological order first and then proceed as in Section 4.3.

Estimating the topological order of an underlying DAG is often done by
learning algorithms that successively identify source nodes and succeeding gen-
erations. For additive models, usually regression techniques are applied (see e.g.
[7] or [32]). In the recursive ML model, the noise is not additive and the model is
highly non-linear. Hence, such regression methods cannot be applied. However,
under the condition of multivariate regular variation, the paper [23] suggests a
learning algorithm for the model without noise as given in (1.1). We propose a
different approach, which to the best of our knowledge has not been considered
in the literature before. It applies to the propagating noise model without any
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distributional assumptions on the innovations and noise variables and learns
the DAG by using minimum ratios. We first consider the matrix of all minimum
ratios given by

B̌ := (b̌ij)d×d =
( n∧

k=1

Uk
j

Uk
i

)
d×d

. (4.5)

Let Π denote the set of all topological orders of V . Furthermore, denote an
equivalence class of topological orders induced by the underlying (unknown)
DAG D = (V,E) by

RD := {π ∈ Π : π(j) < π(i) for all (j, i) ∈ E}. (4.6)

By Lemma 3.8 d), b̌ji is lower bounded by bji for j ∈ an(i) and b̌ji → 0 a.s.
as n → ∞ for j �∈ An(i). This is a direct result from Lemma 3.8 c) and the
fact that the minimum is non-increasing. Hence, for any π ∈ RD it holds that
b̌ji → 0 a.s. as n → ∞ whenever π(j) > π(i). Therefore, also

max
(j,i)∈V×V :
π(j)>π(i)

b̌ji → 0 a.s. for n → ∞. (4.7)

In contrast, for any π �∈ RD, there is a pair of nodes (j, i) such that bji > 0
although π(j) > π(i). For this reason,

max
(j,i)∈V×V :
π(j)>π(i)

b̌ji → cπ > 0 a.s. for n → ∞. (4.8)

As a consequence, for a given topological order π, by (4.7) and (4.8), the
maximum converges almost surely to zero if and only if π ∈ RD. Hence we
propose a topological order that minimizes this expression, i.e.,

argmin
π∈Π

max
(j,i)∈V×V :
π(j)>π(i)

b̌ji. (4.9)

A topological order found by (4.9) generally is not unique. Algorithm 1 re-
turns a unique topological order for any fixed estimated matrix B̌.

Proposition 4.2. Algorithm 1 solves the optimization problem in equation (4.9).

Proof. Let π be the topological order from Algorithm 1 and denote by S(π)
the objective function in (4.9). Algorithm 1 sorts all pairs (j, i) by the size of
b̌ji and draws an edge from j to i whenever there is no path from i to j. Now
consider the first pair (j, i) in the algorithm where we do not draw an edge since
i ∈ an(j). Consider a permutation π′ that is obtained by exchanging the order
of nodes i and j in π. Since there exists already a path from i to j, it follows
that S(π) ≤ S(π′).
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Algorithm 1 Estimating a topological order

Input: A matrix of minimum ratios B̌ as in (4.5)
Output: An estimated topological order π̂
1: Set Ď = (V,E) with V = {1, . . . , d} and E = ∅.
2: Set S := {(j, i) ∈ V × V : j �= i} and sort the elements (j, i) of S by the size of b̌ji from

large to small.
3: for (j, i) in S do
4: if i �∈ an(j) in Ď then
5: E = E ∪ (j, i)
6: end if
7: end for
8: return the topological order π̂ of the DAG Ď

The DAG Ď constructed in Algorithm 1 works as an auxiliary instrument
to infer a topological order. Observe that Ď is a complete DAG, with directed
edges between every node pair in V and, hence, there is a unique topological
order representing Ď. Moreover, since we sort the weights by size, the algorithm
solves (4.9) in an optimal way for given B̌. At first sight the algorithm bears
some similarity to Kruskal’s classical algorithm for finding a minimum spanning
tree; see [26]. However, Algorithm 1 works with directed edges and, of course,
the optimization problem itself is very different.

Adding an edge and checking the presence of a path between any pair of
nodes both can be implemented in O(d) amortized complexity (see [18]). Hence,
since S as computed in line 2 of Algorithm 1 contains d(d − 1) pairs of nodes,
we have an overall amortized complexity of O(d3). After Algorithm 1 we can
again use the minimum ratio estimator

B̂ := (b̂ij)d×d =
( n∧

k=1

Uk
j

Uk
i

1(π̂(i)<π̂(j))

)
d×d

. (4.10)

4.5. Strong consistence of B̂ and learning the minimum ML DAG
DB

We first want to formally state the a.s. convergence of the proposed estimators
for the ML coefficient matrix B. Afterwards, we discuss how to learn the mini-
mum ML DAG DB . The proofs of Proposition 4.3 and Lemma 4.4 can be found
in Appendix B.

Proposition 4.3. Let U ∈ R
d
+ be a recursive ML vector with propagating noise

as defined in (3.1) and let U1, . . . ,Un ∈ R
d
+ be an iid sample from U . Then the

estimates (4.2), (4.4) and (4.10) of B are strongly consistent, i.e., it holds a.s.
for n → ∞ that

b̂ji −→ bji for j ∈ an(i), b̂ii = 1, and b̂ji −→ 0 for j ∈ V \An(i).

In Sections 4.2-4.4 we have been discussing how to estimate B under the
settings (1)-(3). However, as we know from Corollary 3.10, only critical edges
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of D contribute to the distribution of U . Asymptotically, we can almost surely
identify DB since there is an edge j → i in DB if and only if bji > bjlbli for all
l ∈ de(j) ∩ an(i).

However, in real life we estimate the edges of DB for a finite data set. Since∧n
k=1(U

k
i /U

k
j ) > 0 holds for all n ∈ N and all i, j ∈ V , the estimators (4.4) or

(4.10) would result in a matrix representing a complete DAG.

Since small estimated values b̂ji may well be 0 in the true model, we use a

threshold δ1 > 0 with the aim to set an estimator b̂ji < δ1 equal to 0. How-

ever, setting single values b̂ji := 0 may destroy the idempotency of B̂ since
idempotency requires for any triple of nodes (j, l, i),

b̂jlb̂li =

n∧
k=1

Uk
l

Uk
j

n∧
k=1

Uk
i

Uk
l

≤
n∧

k=1

Uk
l

Un
j

Uk
i

Uk
l

= b̂ji. (4.11)

For the estimates however, it might be possible that b̂ji < δ1, while b̂jl > δ1
and b̂li > δ1. In this case, setting b̂ji = 0 would result in b̂ji < b̂jlb̂li violating

(4.11). To preserve the idempotency of B̂ while setting some small values to 0,
we propose a simple adapted thresholding algorithm.

Algorithm 2 Thresholding while maintaining idempotency

Input: A (known or estimated) topological order π : 1, . . . , d and an idempotent estimate B̂
as in (4.4) or (4.10) and a threshold value δ1 > 0

Output: An idempotent estimate B̂
1: E := {(j, i) ∈ V × V : sgn(b̂ji) = 1 and i �= j}
2: D := (V,E)

3: S := {(j, i) ∈ E : 0 < b̂ji < δ1}
4: Sort the pairs (j, i) in S by the distance i− j from low to high
5: for (j, i) in S do
6: if (j − i) == 1 then

7: b̂ji = 0
8: end if
9: if for every l with j < l < i: (j, l) or (l, i) ∈ S then

10: b̂ji = 0
11: else
12: S = S \ {(j, i)}
13: end if
14: end for
15: return B̂

Lemma 4.4. Algorithm 2 with threshold δ1 > 0 outputs an idempotent matrix,
i.e., B̂� B̂ = B̂ and there is no other idempotent matrix B′ such that b′ji = b̂ji

whenever b̂ji > δ1 that contains more zero entries than B̂.

Remark 4.5. If we choose δ1 ≤ min{b̌ji : j < i} no entry is set to 0, and if
δ1 > max{b̌ji : j < i} all entries are set to 0 except for the diagonal. So in the
first case, we obtain the complete DAG and in the second case the DAG consists
of isolated nodes only.
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In order to estimate the minimum ML DAG DB it is not sufficient to decide
if a path from j to i exists, i.e., if bji > 0. We need in particular to decide if the
edge j → i belongs to DB . By continuity of the noise variables we may observe
for the estimated path weights

b̂ji > b̂jlb̂li

even if bji = bjlbli. However, by Proposition 4.3, in this situation the difference

(b̂ji− b̂jlb̂li) → 0 a.s. as n → ∞. Therefore, we introduce another threshold δ2 >
0 enforcing an edge in DB if this difference is greater than δ2. In Theorem 3.12
we have seen that the distribution of the ratio P(Ui/Uj ≤ bjix) is asymptotically
determined by P(

∏
k∈Sp

εk − 1 ≤ x) for x ↓ 0. Hence, the rate of convergence of

(b̂ji− b̂jlb̂li) depends crucially on the path length m = |Sp|. Ideally, we therefore
choose δ2 = δ2(n,m) depending not only on the sample size n, but also on the
path length m.

More precisely, since F←∑
k∈Sp

ε̃k
(1/n) ∼ F←∏

k∈Sp
εk−1(1/n) (see Theorem 5.2

and its proof below), and assuming that C is generic, we find that Algorithm 3
asymptotically identifies DB , if

F←∑
k∈Sp

ε̃k
(1/n) = o(δ2(n,m)) for n → ∞.

In real life we do not know the number of critical edges in either of the three
settings. We distinguish between setting (1) and settings (2)-(3) and propose
Algorithm 3 with δ2(m) := δ2(n,m), i.e., for a fixed sample size n we focus on
the path length m. For setting (1) we do know the underlying unweighted DAG

D. Therefore, we do not need to decide whether some small value b̂ji corresponds
to a path from j to i. However, we do not know the minimum ML DAG DB

such that we would apply Algorithm 3 to estimate DB . For settings (2) and (3)
we would apply first Algorithm 2 and afterwards Algorithm 3.

To further illustrate this, observe the diagram below. In setting 3, we start
with B̌, while in setting 2 with B̂ and for setting 1, we start with B̃.

B̌
Alg. 1−−−−→ π̂

(4.10)−−−−→ B̂; (π̂, B̂)
Alg. 2−−−−→ B̃; (π̂, B̃)

Alg. 3−−−−→ DB̃

In the next section we derive the asymptotic distribution of the estimators.

5. Asymptotic distribution of the minimum ratio estimators

With the goal of proving asymptotic distributional properties of the minimum
ratio estimators for the different settings (1)-(3), we require regular variation
of the noise variable ε in its left endpoint. Under this condition we first prove
that also the minimum ratio estimators

∧n
k=1(U

k
i /U

k
j ) are regularly varying.

Moreover, we show that their joint limit distribution is the product of Weibull
distributions. In this section we assumeC is generic in the sense of Definition 3.5.
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Algorithm 3 Approximating max-weighted paths
Input: Threshold sequences δ2(1), . . . , δ2(d) and settings

(1): a known underlying DAG D := (V,E) and an estimate B̂ as in (4.2), or

(2-3): a (known or estimated) topological order π : 1, . . . , d and a thresholded matrix B̂
obtained from Algorithm 2.

Output: An estimated minimum DAG DB̂ = (V,EB̂)

EB̂ := ∅ and DB̂ := (V,EB̂)
(1): S := {(j, i) ∈ V × V : j ∈ pa(i)} and infer a topological order π : 1, . . . , d from D
(2)-(3): S := {(j, i) ∈ V × V : j < i}
Sort pairs (j, i) in S by their distance (i− j) according to the topological order from low to
high
for (j, i) in S do

if ∃ path p from j to i in DB̂ then

Set m as the maximum path length in DB̂

Set l := argmax
l∈V \{j,i}

(
b̌jlb̌li

)
if (b̌ji − b̌jlb̌li) > δ2(m) then

EB̂ := EB̂ ∪ {(j, i)}
end if

else
if b̌ji > 0 then

EB̂ := EB̂ ∪ {(j, i)}
end if

end if
end for
return DB̂ = (V,EB̂)

The results can be extended to a non-generic model by similar methods as used
in Corollary 3.14.

In what follows we assume that the random variables ε̃i := ln(εi) > 0 for
i = 1, . . . , d are iid regularly varying at zero with exponent α > 0 and recall
from Corollary 2.6(b) that this is equivalent to (ε− 1) ∈ RV 0

α or ε ∈ RV 1
α .

We first prove that ln(Ui/Uj)− ln(bji) is regularly varying at zero which will
be a consequence of Theorem 3.12. In this auxiliary result as well as in the
theorems below we need that C is generic. Further, for a path p we denote by
ζ(p) = |Sp| its path length.

Lemma 5.1. Let U ∈ R
d
+ be a recursive ML vector with propagating noise on

a DAG D as defined in (3.1) and assume that the path p := [j → . . . → i] from
j to i is generic. If ln(ε) ∈ RV 0

α , then ln(Ui/Uj)− ln(bji) ∈ RV 0
ζ(p)α.

The following is the main result of this section and describes the asymptotic
distribution of the minimum ratio estimator B̂ from (4.10). In particular, it
shows that its entries are asymptotically independent.

Theorem 5.2. Let U ∈ R
d
+ be a recursive ML vector with propagating noise

as defined in (3.1). Assume that C is generic and that ε̃ = ln(ε) ∈ RV 0
α . For

every path pji from j to i and node set Spji choose a
(ji)
n ∼ F←∑

k∈Spji
ε̃k
(1/n) as

n → ∞. If U1, . . . ,Un is an iid sample from U , then
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lim
n→∞

P

(
1

a
(ji)
n bji

( n∧
k=1

Uk
i

Uk
j

− bji

)
≤ xji ∀(j, i) ∈ V × V with bji > 0

)
=

∏
(j,i)∈V×V :

bji>0

Ψ
ζ(pji)α,(c(ji))

1/(ζ(pji)α) (xji) , xji > 0,

where c(ji) ∈ (0, 1) is defined as in Theorem 3.12.

If we know the minimum ML DAG DB = (V,E(DB)), it is preferable to
estimate bji as in (4.2). Then Theorem 5.2 reduces as follows.

Corollary 5.3. Let the assumptions of Theorem 5.2 hold and assume that the
minimum ML DAG DB(V,E(DB)) is known. Then

lim
n→∞

P

(
1

ajin bji

( n∧
k=1

Uk
i

Uk
j

− bji

)
≤ xji ∀(j, i) ∈ E(DB)

)
=

∏
(j,i)∈E(DB)

Ψα,(c(ji))1/α (xji) , xji > 0.

6. Data analysis and simulation study

We want to apply the methods that we have developed over the past sections and
consider a data example. For a quality assessment we also perform a simulation
study.

6.1. Data example

We consider dietary supplement data of n = 8327 independent interviews taken
from the NHANES report for the year 2015-2016, which is available at
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT I.XPT. They have
been part of a questionnaire as to “What We Eat in America”, which recorded
the food and beverage consumed by all participants during the 24 hours period
prior to the interview. The data contains 168 food components with the object
of estimating the total intake of calories, macro and micro nutrients from foods
and beverages. More details can be found on the website.

In [19], the data set has been considered in terms of an adapted k-means
clustering algorithm for extremal observations. Moreover, assuming a recursive
ML model and standardising the marginal data to regular variation at ∞ with
α = 2, [23] investigated the causal relationship between four nutrients using a
different estimation method based on scalings.

In our data example we consider the same four nutrients, namely vitamin
A (DR1TVARA), α-carotene (DR1TACAR), β-carotene (DR1TBCAR) and
lutein+zeaxanthin (DR1TLZ) as in [23]. We abbreviate them by VA, AC, BC
and LZ. In order to make results comparable to those of [23], we also use the
empirical integral transform to standardize the data to Fréchet(2) margins (see
e.g. [3], p. 381) by setting for i = 1, 2, 3, 4,

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT_I.XPT
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Uli :=
(
− log

( 1

n+ 1

n∑
j=1

1{Ūji≤Ūli}

))−1/2

, l = 1, . . . , n = 8327,

where multiple ranks are uniformly randomly ordered.
We first consider the full matrix of minimum ratios B̌ = (b̌ij)d×d with b̌ij =∧n

t=1(X
t
j/X

t
i ) given by

VA AC BC LZ⎛⎜⎝
⎞⎟⎠

1 0.014 0.011 0.007 V A
0.146 1 0.177 0.019 AC
0.321 0.010 1 0.025 BC
0.132 0.007 0.168 1 LZ

We next apply Algorithm 1 to obtain an estimated topological order π̂ :=
(AC,LZ,BC, V A). First we want to assess the quality of the estimated topo-
logical order π̂, which also supports or contradicts the model assumption of a
Bayesian network. Motivated by the coefficient R2 of determination in regression
we define the following.

Definition 6.1. For a given topological order π and an estimator B̌ of the ML
coefficient matrix we define the ML coefficient of determination

Rmax(π) =

∑
(j,i)∈V×V :
π(j)<π(i)

b̌ji

∑
(j,i)∈V×V :

j 
=i

b̌ji
.

The coefficientRmax(π) can take any value in the interval [0, 1]. LargeRmax(π)
supports the hypothesis that the underlying graph is a DAG and the estimated
topological order lies in the equivalence class of topological orders defined in
(4.6).

In our data example, we have Rmax(π̂) = 0.929, strongly supporting the hy-
pothesis of a recursive ML model. Now using the estimator (4.10), and applying
Algorithms 2 and 3 with δ1 = 0.02 and δ2(k) = 0.02 for k ∈ {1, 2, 3}, we get

the estimated minimum ML DAG DB̂ and ML coefficient matrix B̂, where we
sorted the matrix according to π̂. These are shown in Figure 3.

AC

LZBC

VA

B̂ =

AC LZ BC VA⎛⎜⎝
⎞⎟⎠

1 0 0.177 0.146 AC
0 1 0.168 0.132 LZ
0 0 1 0.321 BC
0 0 0 1 VA

(6.1)

Fig 3. Estimated minimum ML DAG DB̂ with estimated ML coefficient matrix B̂.



Recursive max-linear models with propagating noise 4795

Observe that, since we estimate the edge from AC to LZ to be absent, there
are two possible topological orders.

From the estimates we observe that both, α-carotene and β-carotene lead
to high amounts of vitamin A. This is in line with our expectation since β-
carotene is a precursor to vitamin A and can be converted by β-carotene 15,15’-
monoxygenase by many animals including humans. Similarly, also α-carotene
can be converted to vitamin A. However, it is only half as active as β-carotene
which explains that the edge weight from α-carotene to vitamin A is approxi-
mately half compared to the edge weight from β-carotene to vitamin A (0.146
compared to 0.321). Moreover, we can see that high amounts of lutein+
zeaxanthin also lead to high amounts of β-carotene and high amounts of α-
carotene also lead to high amounts of β-carotene. However, we did not find a
significant connection between α-carotene and lutein+zeaxanthin. Observe that
[23] inferred the same topological order, yet with one additional edge from α-
carotene to lutein+zeaxanthin. However, it is also the edge with the smallest
estimated edge weight. Similarly as in [23], we plot bivariate extremes in Fig-
ure 4 to underline our finding. The first 5 plots in Figure 4 look rather similar.
For every large value of the substance on the vertical axis, we can see a large
value of the substance on the horizontal axis. Moreover, these observations are
shaped closely to a line. In contrast, a large value of the substance on the hor-
izontal axis might as well coincide with a small value of the substance on the
vertical axis. Therefore, e.g. a high amount of α-carotene leads to a high amount
of vitamin A but a high amount of vitamin A does not necessarily lead to a high
amount of α-carotene. This also supports that the dependence is not mutual and
hence we can model it by a DAG. The same can be seen for any pair given in
the plots 1-5. Moreover, since parts of the observations are shaped closely along
a line, which we would expect for a recursive ML model, we can conclude that
the recursive ML model fits the data very well.

The sixth plot is different from the other 5 plots, since for most large ob-
servations of α-carotene the level of lutein+zeaxanthin is not increased as most
large observations in lutein+zeaxanthin do also not result in a high level of α-
carotene. Therefore, the two substances do not seem to affect each other and
we rightly concluded that there is no edge.

6.2. Simulation study

We want to illustrate the effect of observational noise in the ML model. We
simulate recursive ML vectors with propagating noise, where the innovations
Z1, . . . , Z4 are Fréchet(2) distributed and we use the estimated B̂ from (6.1)
from the data analysis above for the ML coefficient matrix B. Moreover, we
simulate three different scenarios. In the first scenario, we assume the non-noisy
model as given in (1.1), while for the second scenario we choose the propagat-
ing noise model with a medium sized noise and in the third setting we choose
a noise variable which is stochastically larger. The scenarios are given as fol-
lows:
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Fig 4. The empirical bivariate extremes (25 largest observations).

(1) No noise
(2) ln(εi) ∼ Gamma(λ = 1, α = 2) for i ∈ {1, 2, 3, 4}, which corresponds to

E(εi) = 2
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Table 1

Empirical success probability for estimated topolgical order being in the equivalence class of
topological orders for (1) No noise, (2): Gamma(1,2), (3); Gamma(2,2).

Sample Size Correct Runs(1) Correct Runs(2) Correct Runs(3)

50 555 946 998
200 995 1000 1000
500 1000 1000 1000
1000 1000 1000 1000

(3) ln(εi) ∼ Gamma(λ = 2, α = 2) for i ∈ {1, 2, 3, 4}, which corresponds to
E(εi) = 4

We assume to have no information on the underlying DAG and we only con-
sider the quality of the estimator b̌ji given in (4.5). We choose the sample sizes
n ∈ {50, 200, 500, 1000} and 1000 simulation runs for each sample size. We
first assess the success probabilities for Algorithm 1. Table 1 shows that the
topological order can be correctly estimated even for small sample sizes. More-
over, the number of correct runs increases for larger noise variables. This is
expected since the noise variables are one-sided. Therefore, for a path p from
j to i the ratio Ui/Uj ≥ dji(p)

∏
k∈Sp

εk increases, while the ratio Uj/Ui ≤
1/(dji(p)

∏
k∈Sp

εk) decreases. Therefore, it is easier to identify the paths in D
for larger noise.

Next, we want to assess the quality of the estimated ML coefficient matrix
B̌. To do so, for every pair (j, i) with bji > 0 and every simulation run k ∈
{1, . . . , 1000}, we denote the minimum ratio estimator given in (4.5) by b̌kji.

We consider the empirical RMSE, standard deviation and bias for each bji > 0
in each model (1)-(3). In what follows we compare the three classical quantities

bias(b̌ji) :=
1

1000

1000∑
k=1

b̌kji − bji, (6.2)

SD(b̌ji) :=

√√√√ 1

1000

1000∑
k=1

(b̌kji − b̌ji)2 with b̌ji =
1

1000

1000∑
k=1

b̌kji, (6.3)

RMSE(b̌ji) :=

√√√√ 1

1000

1000∑
k=1

(b̌kji − bji)2, (6.4)

All three quantities are comparatively small even for small sample sizes and
decrease whenever the sample size increases. Moreover, they are larger in the
propagating noise model and larger noise terms also increase the three quan-
tities. This is in line with what we can expect from the model as noise terms
increase the ratios Ui/Uj and hence also increase the minimum ratio estimator.
On the other hand, recall from above that with increasing noise the estimation
of the DAG improves.
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Table 2

Empirical Bias (6.2) for (1): No noise, (2): Gamma(1,2), (3): Gamma(2,2)

Sample Size Edge Edge Weight Bias(1) Bias(2) Bias(3)

50 AC → BC 0.177 0.012 0.020 0.046
50 AC → V A 0.146 0.028 0.029 0.063
50 LZ → BC 0.168 0.013 0.020 0.045
50 LZ → V A 0.132 0.027 0.029 0.064
50 BC → V A 0.321 0 0.014 0.053
200 AC → BC 0.177 0 0.005 0.019
200 AC → V A 0.146 0 0.007 0.026
200 LZ → BC 0.168 0 0.005 0.020
200 LZ → V A 0.132 0.001 0.007 0.026
200 BC → V A 0.321 0 0.004 0.023
500 AC → BC 0.177 0 0.002 0.012
500 AC → V A 0.146 0 0.003 0.016
500 LZ → BC 0.168 0 0.002 0.012
500 LZ → V A 0.132 0 0.003 0.016
500 BC → V A 0.321 0 0.001 0.015
1000 AC → BC 0.177 0 0.001 0.008
1000 AC → V A 0.146 0 0.001 0.011
1000 LZ → BC 0.168 0 0.001 0.008
1000 LZ → V A 0.132 0 0.001 0.010
1000 BC → V A 0.321 0 0.001 0.010

Table 3

Empirical Standard Deviation (6.3) for (1): No noise, (2): Gamma(1,2), (3): Gamma(2,2)

Sample Size Edge Edge Weight Std(1) Std(2) Std(3)

50 AC → BC 0.177 0.031 0.023 0.031
50 AC → V A 0.146 0.046 0.033 0.041
50 LZ → BC 0.168 0.031 0.022 0.031
50 LZ → V A 0.132 0.046 0.033 0.043
50 BC → V A 0.321 0.006 0.015 0.031
200 AC → BC 0.177 0.001 0.005 0.011
200 AC → V A 0.146 0.002 0.006 0.015
200 LZ → BC 0.168 0.002 0.005 0.012
200 LZ → V A 0.132 0.005 0.008 0.017
200 BC → V A 0.321 0 0.004 0.013
500 AC → BC 0.177 0 0.002 0.007
500 AC → V A 0.146 0 0.003 0.009
500 LZ → BC 0.168 0 0.002 0.007
500 LZ → V A 0.132 0.001 0.003 0.009
500 BC → V A 0.321 0 0.001 0.008
1000 AC → BC 0.177 0 0.001 0.004
1000 AC → V A 0.146 0 0.001 0.006
1000 LZ → BC 0.168 0 0.001 0.004
1000 LZ → V A 0.132 0 0.001 0.006
1000 BC → V A 0.321 0 0.001 0.005

Appendix A: Proofs of Section 3

Proof of Theorem 3.2 Rewrite (3.1) in matrix form by means of the tropical
matrix multiplication (2.4) as

U =
(
U �C ∨Z

)
�Ed.
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Table 4

Empirical RMSE (6.4) for (1): No noise, (2): Gamma(1,2), (3): Gamma(2,2)

Sample Size Edge Edge Weight RMSE(1) RMSE(2) RMSE(3)

50 AC → BC 0.177 0.033 0.030 0.056
50 AC → V A 0.146 0.054 0.044 0.075
50 LZ → BC 0.168 0.033 0.029 0.054
50 LZ → V A 0.132 0.053 0.044 0.077
50 BC → V A 0.321 0.006 0.021 0.061
200 AC → BC 0.177 0.001 0.007 0.023
200 AC → V A 0.146 0.002 0.009 0.030
200 LZ → BC 0.168 0.002 0.007 0.023
200 LZ → V A 0.132 0.006 0.011 0.031
200 BC → V A 0.321 0 0.005 0.027
500 AC → BC 0.177 0 0.003 0.014
500 AC → V A 0.146 0 0.004 0.018
500 LZ → BC 0.168 0 0.003 0.014
500 LZ → V A 0.132 0.001 0.004 0.018
500 BC → V A 0.321 0 0.002 0.017
1000 AC → BC 0.177 0 0.001 0.090
1000 AC → V A 0.146 0 0.002 0.120
1000 LZ → BC 0.168 0 0.001 0.090
1000 LZ → V A 0.132 0 0.002 0.012
1000 BC → V A 0.321 0 0.001 0.011

The associative law implies

U = (U �C �Ed) ∨ (Z �Ed) ⇔ U = (U � C̄) ∨ Z̄, (A.1)

with C̄ = C�Ed, which is identical to (3.3), and Z̄ = Z�Ed. The right-most
equation in (A.1) is of the same form as the non-noisy model in (2.5), so that
analogously to its solution given in (2.6), we get the solution

B∗ = (Id ∨ C̄)	(d−1), U = Z̄ �B∗ = Z �Ed �B∗,

where B∗ is the Kleene star matrix of C̄. Therefore, defining B̄ = Ed � B∗

yields the result. �

Proof of Corollary 3.4 From (3.6) and the continuity of Z and ε we
have

Ui =
∨

j∈An(i)

b̄jiZj = b̄kiZk (A.2)

for some unique k ∈ An(i). We want to show that this implies Ui = b̄kiŨk, i.e.,
Ũk = Zk. Applying first (3.7), then (3.6) and finally (3.4), we obtain

Ũk =
Uk

εk
=

∨
l∈An(k) b̄lkZl

εk
≥ b̄kkZk

εk
= Zk.

Now assume that Ũk > Zk. Then there exists an l ∈ an(k) ⊂ An(i) with
b̄lkZl > εkZk. Note also that the maximum random path weight from l to i



4800 J. Buck and C. Klüppelberg

must be greater or equal than the maximum random path weight from l to i
passing through node k. These two facts lead to

Ui =
∨

j∈An(i)

b̄jiZj ≥ b̄liZl ≥
b̄lk b̄ki
εk

Zl > b̄kiZk,

The above inequality, however, contradicts (A.2). Therefore, since k ∈ An(i),
we have

Ui ≤
∨

j∈An(i)

b̄jiŨj .

Now assume that Ui < ∨j∈An(i)b̄jiŨj . Then, with the same arguments as above,
Ui < ∨j∈An(i)b̄jiZj which is a contradiction. �

Proof of Lemma 3.8 (a) We first assume that j = i. Since D is a DAG,
de(i) ∩ pa(i) = ∅ and b̄ik b̄ki = 0 for all k �= i. Therefore, the equality holds and
the inequality is equivalent to b̄ii ≥ 0 which obviously holds.

Next, assume j �= i and j �∈ an(i). Then by (3.4) b̄ji = 0 and there is no
path from j to i. Therefore, de(j)∩ pa(i) = ∅. Hence, the right-hand side of the
inequality equals zero. Moreover, the equality holds as well, otherwise b̄jk > 0
and b̄ki > 0 for some k ∈ V and therefore, by (3.4) there would be a path from
j to k and from k to i which contradicts j �∈ an(i).

For j ∈ pa(i) with de(j)∩pa(i) = ∅, the critical path must be the edge j → i

since it is the only path from j to i. Furthermore, the equality b̄ji =
b̄jk b̄ki

b̄kk

holds for k = i and k = j while for all k �∈ {i, j} it must hold that
b̄jk b̄ki

b̄kk
= 0.

Therefore, the equality holds. Moreover, the right-hand side of the inequality
again equals zero and we have strict inequality.

Now assume j ∈ an(i) and de(j) ∩ pa(i) �= ∅. Then for every path p = [j =
k0 → k1 → . . . → kn = i] with n ≥ 2 from j to i and every km ∈ {k1, . . . , kn−1},
by (3.2),

d̄ji(p) = εj

n−1∏
l=0

cklkl+1
εkl+1

=
εj
∏m−1

l=0 cklkl+1
εkl+1

· εkm

∏n−1
l=m cklkl+1

εkl+1

εkm

=
d̄jkm(p1)d̄kmi(p2)

b̄kmkm

, (A.3)

with p1 = [j = k0 → k1 → . . . → km] and p2 = [km → . . . → kn = i], where in
the last step we have used that εkm = b̄kmkm . Therefore, for the random critical
path p with b̄ji = d̄ji(p) it holds that every sub-path of this path is itself critical,
otherwise we could find a path of larger random path weight by replacing the
sub-path by a path of larger random weight. It follows that

b̄ji ≥
∨

k∈de(j)∩an(i)

b̄jk b̄ki
b̄kk
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with equality whenever the critical path p from j to i contains a node k ∈
de(j) ∩ an(i). Since for k = i or k = j we have b̄ji =

b̄jk b̄ki

b̄kk
and for k ∈

V \
(
(an(i) ∩ de(j)) ∪ {j, i}

)
we have

b̄jk b̄ki

b̄kk
= 0, the equality holds as well.

(b) First assume that there is a path p := [j → . . . → k → . . . → i] with

d̄ji(p) = b̄ji. Then by (A.3) we have b̄ji =
d̄jk(p1)d̄ki(p2)

b̄kk
. Now every sub-path of

a random critical path must be itself critical, as explained in the proof of part

a). Hence, b̄jk = d̄jk(p1) and b̄ki = d̄ki(p2) and for this reason b̄ji =
b̄jk b̄ki

b̄kk
.

In contrast, let d̄ji(p) < b̄ji for all p ∈ Pjki, where Pjki denotes all paths from
j to i that pass through k. Now choose p1 = [j → . . . → k] and p2 = [k → . . . →
i] such that d̄jk(p1) = b̄jk and d̄ki(p2) = b̄ki. Then, for the path p ∈ Pjki that
results from concatenation of p1 and p2 we have by (3.4)

b̄ji > d̄ji(p) =
b̄jk b̄ki
b̄kk

,

which proves the reverse direction.

(c) For j = i the inequality obviously holds, since bii = 1. If j �∈ An(i), then by
definition b̄ji = bji = 0 and b̄jj = εj ≥ 1. Therefore, the inequality is equivalent
to Ui/Uj ≥ 0, which is true. Now let j ∈ an(i). Then by (3.2) and (3.4) the
center ratio can be written as

b̄ji
b̄jj

:=
∨

p∈Pji

d̄ji(p)

b̄jj
=
∨

p∈Pji

dji(p)
n−1∏
l=0

εkl+1
≥
∨

p∈Pji

dji(p) = bji, (A.4)

since b̄jj = εj and εi ≥ 1. Now we use (3.8) and obtain by (A.4)

Ui

Uj
=

∨
k∈An(i) b̄kiŨk

Uj
≥ b̄jiŨj

Uj
=

b̄jiUj

εjUj
=

b̄ji
b̄jj

≥ bji.

(d) We first prove by contradiction that there is no lower bound for Ui/Uj of
larger value than the one given in part (c). Assume j ∈ an(i) and there is a
lower bound c > bji. Since Z1, . . . , Zd are iid, every innovation Zl can realize
the maximum with positive probability, such that for every l ∈ An(j),

P

({
Uj =

∨
k∈An(j)

b̄kjZk = b̄ljZl

}
∩
{
Ui =

∨
k∈An(i)

b̄kiZk = b̄liZl

})
> 0. (A.5)

Hence, without loss of generality we assume that this holds for l = j. Denote
the random critical path p := [j = k0 → . . . → kn = i] such that d̄ji(p) = b̄ji.
Then, it follows on the event in (A.5) with l = j from (3.2) that

P

(
Ui

Uj
< c

)
= P

(
b̄ji
b̄jj

< c

)
= P

(
εjdji(p)

∏n−1
l=0 εkl+1

εj
< c

)
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= P

(
dji(p)

n−1∏
l=0

εkl+1
< c

)
> 0,

since dji(p) ≤ bji < c and ε ≥ 1. Hence, c is no lower bound and together with
part c) this entails the support for j ∈ an(i).

Now assume j �∈ An(i) such that bji = 0. Assume that Ui/Uj is lower bounded
by some c > 0. Then by (3.6),

Ui

Uj
≥ c ⇔

∨
k∈An(i)

b̄kiZk ≥ c
∨

k∈An(j)

b̄kjZk,

which is equivalent to∨
k∈An(i)

b̄kiZk ≥ c
( ∨

k∈An(i)∩An(j)

b̄kjZk ∨
∨

k∈An(j)\An(i)

b̄kjZk

)
.

Therefore, it holds in particular, that∨
k∈An(i)

b̄kiZk ≥ c b̄ljZl (A.6)

for every l ∈ An(j) \ An(i). This set is non-empty since j �∈ An(i), so it con-
tains at least j. However, since the innovation and the noise variables are all
independent and unbounded above, we have for every l ∈ An(j) \An(i)

P

(
Zl ≥

∨
k∈An(i) b̄kiZk

c b̄lj

)
> 0,

contradicting (A.6) and, hence, the assumption of a lower positive bound c for
Ui/Uj .

The upper interval limits of Ui/Uj for j ∈ an(i) and and j �∈ An(i) follow from
changing the roles of i and j. For j �= i, the ratio Ui/Uj always contains εi or
εj and both random variables are atom-free and independent of all innovations
Z1, . . . , Zd and εk for k �= i and k �= j. Therefore, the ratio inherits the continuity
of the noise variables and part d) follows.

(e) For j = i we have bji = 1 �= 0 =
∨

k∈de(j)∩an(i)
bjkbki

bkk
. If j �∈ An(i) we have

bji = b̄ji = 0 by (3.4).

Next assume that j ∈ an(i), and bji =
∨

k∈de(j)∩an(i)
bjkbki

bkk
�= 0. Then there

is a path p = [j = k0 → k1 → . . . → kn = i] from j to i with non-random path
weight dji(p) = bji, which is not the edge j → i.

For a contradiction, assume that b̄ji >
∨

k∈de(j)∩an(i)
b̄jk b̄ki

b̄kk
. This is equivalent

to the edge j → i being the random critical path. However, every path p ∈ Pji

has random path weight, which depends on both noise variables εi and εj , so
in particular, the non-random critical path p = [j = k0 → k1 → . . . → kn = i]
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from j to i with path weight dji(p) = bji is one of these paths. Therefore, by
(3.2) and since bji > cji, the random path weight of p is

d̄ji(p) = bjiεj

n−1∏
l=0

εkl+1
≥ bjiεjεi > cjiεjεi = b̄ji,

where we have used that ε ≥ 1. This is a contradiction and hence b̄ji =∨
k∈de(j)∩an(i)

b̄jk b̄ki

b̄kk
.

(f) The assumptions bji >
∨

k∈de(j)∩an(i)
bjkbki

bkk
and de(j)∩an(i) �= ∅ are equiv-

alent to the edge pmax = [j → i] being the only non-random critical path.
Let p′ = [j = k0 → k1 → . . . → kn = i] �= pmax be the path such that∨

p∈Pji\{pmax} d̄ji(p) = d̄ji(p
′). Then

∨
p∈Pji\{pmax}

d̄ji(p) = d̄ji(p
′) =

∨
k∈de(j)∩an(i)

b̄jk b̄ki
b̄kk

,

otherwise we can construct a path of larger random path weight from j to
i passing through k as explained in the proof of part a). First assume that

b̄ji = d̄ji(pmax). Then, b̄ji >
∨

k∈de(j)∩an(i)
b̄jk b̄ki

b̄kk
and de(j) ∩ an(i) �= ∅ is by

(3.2) and (3.4) equivalent to

b̄ji > d̄ji(p
′) = εiεjdji(p

′)
n−2∏
l=0

εkl+1
⇐⇒ bji

dji(p′)
>

n−2∏
l=0

εkl+1
. (A.7)

Since ε ≥ 1, also bji/dji(p
′) > 1. Hence, the event given by (A.7) has positive

probability which is however, strictly smaller than one, since the noise variables

do not have an upper bound. Therefore, since b̄ji ≥
∨

k∈de(j)∩an(i)
b̄jk b̄ki

b̄kk
, by part

a), the complementary event{
b̄ji =

∨
k∈de(j)∩an(i)

b̄jk b̄ki
b̄kk

}
is also having positive probability. �

Proof of Lemma 3.11 (a) Suppose there is an edge kl → kl+1 in p such
that cklkl+1

�∈ DB . Then, de(j) ∩ an(i) �= ∅ and by Lemma 3.8 e) P(b̄klkl+1
=

cklkl+1
εkl

εkl+1
) = 0, so we can replace the edge kl → kl+1 by some other path

to get a new path from j to i of larger random path weight than p. Hence, p is
not a possible critical path realization. The same argument can be used for the
reverse.

(b) First consider ¬(Sp1 ∩ Sp2 = ∅ or for every r ∈ Sp1 ∩ Sp2 the sub-path
of p1 from j to r is a sub-path of p2 or the sub-path of p2 from l to r is a
sub-path of p1). Then there exists some node r ∈ Sp1 ∩Sp2 such that p1 = [j →
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. . . → s → r → . . . → i] and p2 = [l → . . . → t → r → . . . → m] with s �= t.
Denote by p11 := [j → . . . → s] the sub-path of p1 from j to s. We want to
show by contradiction that the event (3.9) has probability zero. Therefore, we
consider the subset of Ω such that (3.9) holds and show that it is a null-set.
Since on this subset, p1 is the random critical path and passes through s, by

Lemma 3.8 b) we have b̄ji =
b̄jsb̄si
b̄ss

and Us = Uj b̄js/εj = Ujdjs(p11)
∏

k∈Sp11
εk.

With the same argument it also holds that b̄ji =
b̄jr b̄ri
b̄rr

and Ur = Uj b̄jr/εj =

Ujdjs(p11)
∏

k∈Sp11
εkcsrεr. Hence, it must holds that Ur = Uscsrεr. By the

same arguments, we also must have Ur = Utctrεr, which together leads to

Uscsr = Utctr.

This is by (3.4) and (3.6) equivalent to

csr
∨

l∈An(s)

εl
∨

p∈Pls

dls(p)
∏
k∈Sp

εkZl = ctr
∨

l∈An(t)

εl
∨

p∈Plt

dlt(p)
∏
k∈Sp

εkZl.

Now since D is acyclic, there cannot be a path from s to t and from t to s;
so without loss of generality we can assume that there is no path from t to s.
However, the right-hand side of the equation always contains εt which is not
part of the left-hand side. Since Z1, . . . , Zd as well as ε1, . . . , εi are atom-free
and independent random variables, this can only happen on a null-set.

Next consider the reverse, i.e., Sp1 ∩ Sp2 = ∅ or for every r ∈ Sp1 ∩ Sp2 the
sub-path of p1 from j to r is a sub-path of p2 or the sub-path of p2 from l to r
is a sub-path of p1.

If Sp1 ∩ Sp2 = ∅, then the probability of (3.9) is obviously positive. Without
loss of generality we now assume that for every r ∈ Sp1 ∩Sp2 the sub-path of p2
from l to r is a sub-path of p1. We now define r to be the last common node of the
two paths p1 and p2. Then, p1 and p2 induce the paths p

′ = [j → . . . → l → . . . r],
p′′ = [r → . . . → i] and p′′′ = [r → . . . → m]. Then{
Ui = Ujdji(p1)

∏
k∈Sp1

εk, Um = Uldlm(p2)
∏

k∈Sp2

εk

}
=
{
Ur = Ujdjr(p

′)
∏

k∈Sp′

εk, Ui = Urdri(p
′′)
∏

k∈Sp′′

εk, Um = Urdrm(p′′′)
∏

k∈Sp′′

εk

}
,

which has positive probability, since Sp′ ∩ Sp′′ ∩ Sp′′′ = ∅. �

Proof of Theorem 3.12 By the law of total probability we have for x ≥ 1,

I(x) := P

(Ui

Uj
≤ bjix

)
= P

(Ui

Uj
≤ bjix, Ui = Ũj b̄ji

)
+ P

(Ui

Uj
≤ bjix, Ui �= Ũj b̄ji

)
=: I1(x) + I2(x)

We denote all paths from j to i by Pji = {p1, . . . , pr, pmax}. There are two
situations, either r = 0 (where we interpret the above set of paths as {pmax}), or
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r ≥ 1. We first give a proof for r ≥ 1. We start with I1(x). Since pmax is generic,
every path p �= pmax from j to i has non-random edge weight dji(p) < bji.
Therefore, with (3.7) in the first line, (3.4) in the third and (3.2) in the last, we
have for x > 1,

I1(x) = P(Ui/(Ũjεj) ≤ bjix, Ui = Ũj b̄ji)

= P(b̄ji/εj ≤ bjix, Ui = Ũj b̄ji)

= P

( ∨
p∈Pji

d̄ji(p)/εj ≤ bjix, Ui = Ũj b̄ji

)
= P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, Ui = Ũj b̄ji

)
. (A.8)

By definition of b̄ji in (3.4), there is a path p ∈ {pmax, p1, . . . , pr} such that
d̄ji(p) = b̄ji and by continuity of ε the probability that multiple paths satisfy
the equation is equal to 0. Therefore, again applying the law of total probability,
we find

I1(x) = P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, d̄ji(pmax) = b̄ji, Ui = Ũj b̄ji

)
(A.9)

+ P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix,
∨

p∈{p1,...,pr}
d̄ji(p) = b̄ji, Ui = Ũj b̄ji

)
= P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, d̄ji(pmax) = b̄ji, Ui = Ũj b̄ji

)

+

r∑
s=1

P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, d̄ji(ps) = b̄ji, Ui = Ũj b̄ji

)
=: I11(x) + I12(x).

We first find upper and lower bounds for I11(x). We denote by Pkji all paths
from k to i which pass through j. Using the simple identity

{z1 ∨ z2 ≤ a, z1 ∨ z2 = z1} = {z1 ≤ a, z2 ≤ z1}, (A.10)

(3.4) and (3.6) imply{ ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix
}⋂{

d̄ji(pmax) = b̄ji

}⋂{
Ui = Ũj b̄ji

}
(A.11)

=
{ ∨

p∈Pji

dji(p)
∏
k∈Sp

εk ≤ d̄ji(pmax)
}⋂{

d̄ji(pmax) ≤ bjix
}⋂{

Ui = Ũj b̄ji

}
=
{ ∨

p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bji
∏

k∈Spmax

εk

}⋂{ ∏
k∈Spmax

εk ≤ x
}⋂{

Ui = Ũj b̄ji

}
=

⋂
p∈Pji\{pmax}

{ ∏
k∈Sp

εk ≤ bji
dji(p)

∏
k∈Spmax

εk

}⋂{ ∏
k∈Spmax

εk ≤ x
}⋂
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l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈Sp∪{l}

εkZl ≤ bji
∏

k∈Spmax

εk
∨

l∈An(j)

b̄ljZl

}}
.

(A.12)

Cancelling all noise variables possible, and since ε > 1, we find a lower bound

I11(x) = P

( ⋂
p∈Pji\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤ bji
dji(p)

∏
k∈Spmax\Sp

εk

}⋂
{ ∏

k∈Spmax

εk ≤ x
}⋂ ⋂

l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl

≤ bji
∏

k∈Spmax\(Sp∪{l})
εk

∨
l∈An(j)

b̄ljZl

}})
(A.13)

≥ P

( ⋂
p∈Pji\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤ bji
dji(p)

}⋂{ ∏
k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bji
∨

l∈An(j)

b̄ljZl

}})
= P

( ⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bji
∨

l∈An(j)

b̄ljZl

}}
⋂ ⋂

p∈Pji\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤ bji
dji(p)

})
P

( ∏
k∈Spmax

εk ≤ x
)

=: c1 P

( ∏
k∈Spmax

εk ≤ x
)
,

for some constant c1 ∈ [0, 1] by independence of the noise variables.
We show that c1 > 0. To do so, recall that bji/dji(p) > 1 for every p �= pmax.

Therefore, since {p ∈ Pji \ {pmax}} �= ∅ and ε > 1,

P

( ⋂
p∈Pji\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤ bji
dji(p)

})
> 0. (A.14)

Next, we want to show that also

P

( ⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bji
∨

l∈An(j)

b̄ljZl

}})
> 0.

(A.15)

For this, observe that the left-hand side of the inequality in (A.15) does not
contain Zj , since all paths from j to i pass through j. Since b̄lj and the left-
hand side of the inequality in (A.15) is independent of Zj for all l ∈ {1, . . . , d}
and Zj has unbounded support, Zj can become arbitrarily large with positive
probability such that (A.15) holds.
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The intersection of the two events has also positive probability since (A.14)
is independent of Zj . This implies that c1 > 0 and a positive lower bound for
I11(x).

To get an upper bound, observe that ε ≥ 1 and, hence, for every set Sp we
have{
εk : k ∈ Spmax and

∏
k∈Spmax

εk ≤ x
}
⊆
{
εk : k ∈ Spmax and

∏
k∈Spmax\Sp

εk ≤ x
}
.

Therefore, starting with (A.13) we find the upper bound

I11(x) ≤ P

( ⋂
p∈Pji\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤ bji
dji(p)

x
}⋂{ ∏

k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bjix
∨

l∈An(j)

b̄ljZl

}})
= P

( ⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bjix
∨

l∈An(j)

b̄ljZl

}}
⋂ ⋂

p∈Pji\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤ bji
dji(p)

x
})

P

( ∏
k∈Spmax

εk ≤ x
)

= c2(x)P
( ∏

k∈Spmax

εk ≤ x
)
. (A.16)

Since the innovations and the noise variables are atom-free, it follows that
limx↓1 c2(x) = c1 and, therefore,

I11(x) ∼ c1 P

( ∏
k∈Spmax

εk ≤ x
)
, x ↓ 1. (A.17)

We next show that I12(x) = o(I11(x)) as x ↓ 1. We have for each summand
m ∈ {1, . . . , r}, using the simple identity (A.10) to obtain the third line,

P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, d̄ji(pm) = b̄ji, Ui = Ũj b̄ji

)
≤ P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, d̄ji(pm) = b̄ji

)
= P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ d̄ji(pm), d̄ji(pm) ≤ bjix
)

= P

( ⋂
p∈Pji\{pm}

{ ∏
k∈Sp

εk ≤ dji(pm)

dji(p)

∏
k∈Spm

εk

}⋂{ ∏
k∈Spm

εk ≤ bjix

dji(pm)

})
≤ P

({ ∏
k∈Spmax

εk ≤ dji(pm)

bji

∏
k∈Spm

εk

}⋂{ ∏
k∈Spm

εk ≤ bjix

dji(pm)

})
(A.18)
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Now the first event rewrites as { bji
dji(pm)

∏
k∈Spmax

εk ≤
∏

k∈Spm
εk} ⊆ { bji

dji(pm) ≤∏
k∈Spm

εk}, since ε > 1. Moreover,

{ ∏
k∈Spmax

εk ≤ dji(pm)

bji

∏
k∈Spm

εk

}⋂{ ∏
k∈Spm

εk ≤ bjix

dji(pm)

}
⊆
{ ∏

k∈Spmax

εk ≤ x
}
.

Hence,

(A.18) ≤ P

({ ∏
k∈Spmax

εk ≤ x
}⋂{ ∏

k∈Spm

εk ∈
[

bji
dji(pm)

,
bjix

dji(pm)

]})
,

Moreover, since ε ≥ 1, we have for every subset S ⊆ Spmax that 1 ≤
∏

k∈S εk ≤ x,

whenever 1 ≤
∏

k∈Spmax
εk ≤ x. Therefore, for another node set S̃ with S∩S̃ = ∅

we have ∏
k∈S

εk
∏
k∈S̃

εk ∈ [a, b] ⇒
∏
k∈S̃

εk ∈ [a/x, b]. (A.19)

Finally, since d̄ji(pm) = b̄ji and dji(pm) < dji(pmax) we have Spm \ Spmax �= ∅.
In total, we obtain

(A.18) ≤ P

({ ∏
k∈Spmax

εk ≤ x
}⋂{ ∏

k∈Spm

εk ∈
[

bji
dji(pm)

,
bjix

dji(pm)

]})
≤ P

( ∏
k∈Spmax

εk ≤ x
)
P

( ∏
k∈Spm\Spmax

εk ∈
[

bji
xdji(pm)

,
bjix

dji(pm)

])
= P

( ∏
k∈Spmax

εk ≤ x
)
o(1), x ↓ 1,

as the interval in the second probability gets arbitrarily small and the distri-
bution of ε is atom-free. Comparing this upper bound with (A.17) we can see
that every summand of I12(x) is negligible with respect to I11(x) as x ↓ 1. Since
there are only finitely many nodes and hence finitely many paths from j to i,
we have proved that I12(x) = o(I11(x)) as x ↓ 1. Hence,

I1(x) ∼ c1 P

( ∏
k∈Spmax

εk ≤ x
)
, x ↓ 1. (A.20)

Next, we assume that r = 0, i.e., that there is only one path pmax from j to i.
Then from (A.9) we find that I1(x) = I11(x) and simplifies (A.13) to

I1(x) = P

({ ∏
k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈Sp∪{l}

εkZl ≤ bji
∏

k∈Spmax

εk
∨

l∈An(j)

b̄ljZl

}})
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≥ P

({ ∏
k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bji
∨

l∈An(j)

b̄ljZl

}})
= P

( ⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bji
∨

l∈An(j)

b̄ljZl

}})
P

( ∏
k∈Spmax

εk ≤ x
)
= c1 P

( ∏
k∈Spmax

εk ≤ x
)

for c1 > 0. On the other hand,

I1(x) ≤ P

( ⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bjix
∨

l∈An(j)

b̄ljZl

}})
P

( ∏
k∈Spmax

εk ≤ x
)
= c2(x) P

( ∏
k∈Spmax

εk ≤ x
)
,

and, since Z and ε are atom-free it again follows that limx↓1 c2(x) = c1 and
therefore (A.20) holds also for r = 0.

We next show that I2(x) = o(I1(x)) as x ↓ 1. Since I12(x) = o(I11(x) as
x ↓ 1, we can and do assume that

b̄ji = bjiεj
∏

k∈Spmax

εk. (A.21)

Moreover, since for all paths p ∈ Plji we have l ∈ An(i) if and only if l ∈ An(j),

Ui =
∨

l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈Sp∪{l}
εkZl ∨

∨
l∈An(j)

∨
p∈Plji

dli(p)
∏

k∈Sp∪{l}
εkZl

=
∨

l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈Sp∪{l}
εkZl ∨ bji

∏
k∈Spmax

εkUj

by (A.21). If
∨

l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈Sp∪{l} εkZl > bji
∏

k∈Spmax
εkUj , then

it follows that

Ui =
∨

l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈Sp∪{l}
εkZl. (A.22)

Moreover, it holds by (3.8), (3.4) and (3.2)

Ui =
∨

k∈An(i)

b̄kiŨk ≥ b̄jiŨj ≥ bji
∏

k∈Spmax

εkUj . (A.23)

Hence, Ui/Uj ≤ bjix implies that
∏

k∈Spmax
εk ≤ x. Therefore, using (3.7),

(A.22) and (A.21) we get

I2(x) = P

(Ui

Uj
≤ bjix, Ui > Ũj b̄ji

)
= P

(
Ui ∈ (Ũj b̄ji, Ũjεjbjix]

)
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≤ P

({ ∏
k∈Spmax

εk ≤ x
}⋂

{ ∨
l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈Sp∪{l}
εkZl ∈

(
bjiŨjεj

∏
k∈Spmax

εk, bjiŨjεjx
]})

≤ P

({ ∏
k∈Spmax

εk ≤ x
}⋂

{ ∨
l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈Sp∪{l}
εkZl ∈

(
bjiŨjεj , bjiŨjεjx

]})
,

since ε ≥ 1. Using that Uj = Ũjεj and j �∈ Spmax and the same argument as in
(A.19), we get

I2(x) ≤ P

({ ∏
k∈Spmax

εk ≤ x
}⋂

{ ∨
l∈An(i)

∨
p∈Pli\Plji

dli(p)
∏

k∈(Sp∪{l})\Spmax

εkZl ∈
(
bjiŨjεj

x
, bjiŨjεjx

]})
= P

({ ∏
k∈Spmax

εk ≤ x
})

P

({ ∨
l∈An(i)

∨
p∈Pli\Plji

dli(p)

εj

∏
k∈(Sp∪{l})\Spmax

εkZl ∈
(bjiŨj

x
, bjiŨjx

]})
,

since D being acyclic implies that Ũj and εj are independent of εk for every
k ∈ Spmax . For x ↓ 1 the interval in the second probability gets arbitrarily small.
Since the distribution of the noise-variables is atom-free and the left-hand side
contains εj that is not included in Ũj , this probability tends to zero as x ↓ 1.
Comparing this upper bound with (A.20) we can see that I2(x) = o(I1(x)) as
x ↓ 1. Since I12(x) = o(I11(x)), we have

I(x) ∼ I1(x) ∼ I11(x) ∼ c1 P

( ∏
k∈Spmax

εk ≤ x
)
, x ↓ 1, (A.24)

holds, where the last asymptotic equivalence follows from (A.20). Moreover, we
have by (A.9), using (3.2),(3.4) and (3.7),

I(x) ∼ I11(x) = P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, d̄ji(pmax) = b̄ji, Ui = Ũj b̄ji

)
= P

(
d̄ji(pmax)/εj ≤ bjix, Ui = Ũj d̄ji(pmax)

)
= P

( ∏
k∈Spmax

εk ≤ x, Ui = Ujbji
∏

k∈Spmax

εk

)
, x ↓ 1, (A.25)

which, together with (A.24), proves the result. �
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Proof of Corollary 3.14. We first show the result for Pji\{p1, . . . , pn} �=
∅, i.e., there exists a path p from j to i with dji < bji. We start as in the proof
of Theorem 3.12 for x ≥ 1

I(x) = I1(x) + I2(x)

and similarly to (A.8), we again apply the law of total probability to I1(x)

I1(x) = P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix, Ui = Ũj b̄ji

)
= P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix,
∨

p∈{p1,...,pn}
d̄ji(p) = b̄ji, Ui = Ũj b̄ji

)
+ P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix,
∨

p∈Pji\{p1,...,pn}
d̄ji(p) = b̄ji, Ui = Ũj b̄ji

)
= P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix,
∨

p∈Pji\{p1,...,pn}
d̄ji(p) ≤

∨
p∈{p1,...,pn}

d̄ji(p), Ui = Ũj b̄ji

)
+ P

( ∨
p∈Pji

dji(p)
∏
k∈Sp

εk ≤ bjix,

∨
p∈Pji\{p1,...,pn}

d̄ji(p) >
∨

p∈{p1,...,pn}
d̄ji(p), Ui = Ũj b̄ji

)
=: Ĩ11(x) + Ĩ12(x).

With the same arguments as in the proof of Theorem 3.12 we find upper and
lower bounds for Ĩ11(x). Analogously to (A.12) and (A.13) we find

Ĩ11(x) = P

( ⋂
p∈Pji\{p1,...,pn}

{ ∏
k∈Sp

εk ≤ bji
dji(p)

∨
p̃∈{p1,...,pn}

∏
k∈Sp̃

εk

}⋂
⋂

p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x

}⋂ ⋂
l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈Sp∪{l}

εkZl ≤

bji
∨

p̃∈{p1,...,pn}

∏
k∈Sp̃

εk
∨

l∈An(j)

b̄ljZl

}})
≥ P

( ⋂
p∈Pji\{p1,...,pn}

{ ∏
k∈Sp\(∪n

i=1Spi
)

εk ≤ bji
dji(p)

}⋂ ⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x

}
⋂ ⋂

l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈Sp∪{l}\(∪n

i=1Spi
)

εkZl ≤ bji
∨

l∈An(j)

b̄ljZl

}})
= c1 P

( ⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x
})

and analogously to (A.16) we have

Ĩ11(x) ≤ P

( ⋂
p∈Pji\{p1,...,pn}

{ ∏
k∈Sp\(∪n

i=1Spi
)

εk ≤ bji
dji(p)

x
}⋂
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⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x

}
⋂ ⋂

l∈An(i)

{ ⋂
p∈Pli\Plji

{
dli(p)

∏
k∈Sp∪{l}\(∪n

i=1Spi
)

εkZl ≤ bjix
∨

l∈An(j)

b̄ljZl

}})
= c2(x) P

( ⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x
})

With the same arguments as in the previous proof, we can show that c1 ∈ (0, 1)
and c2(x) → c1 for x ↓ 1 and Ĩ12(x) = o(Ĩ11(x)) and I2(x) = o(I1(x)). Hence,
the result follows. If Pji \ {p1, . . . , pn} = ∅ the result follows analogously. �

Proof of Corollary 3.15 From Theorem 3.12 we have as x ↓ 1,

P

( n∧
k=0

Uk
i

Uk
j

≤ bjix
)
= 1−

(
1− P

(Ui

Uj
≤ bjix

))n
= 1−

(
1− c(1 + o(1))P

( ∏
k∈Sp

εk ≤ x
))n

= 1−
n∑

k=0

(
n

k

)(
− c(1 + o(1))P

( ∏
k∈Sp

εk ≤ x
))k

∼ c nP

( n∏
i=1

εki ≤ x

)
,

where we have used the binomial theorem and the fact that the summands for
k ≥ 2 are negligible when n is fixed. �

Proof of Theorem 3.16. We give a proof for Pji \ {p1} �= ∅ and Plm \
{p2} �= ∅, i.e., p1 and p2 are not the only paths from j to i and from l to m,
respectively. All other cases follow analogously. By the law of total probability,
we have

P

(Ui

Uj
≤ bjix1,

Um

Ul
≤ blmx2

)
= P

( ∏
k∈Sp1

εk ≤ x1,
∏

k∈Sp2

εk ≤ x2, Ui = Ujbji
∏

k∈Sp1

εk, Um = Ulblm
∏

k∈Sp2

εk

)
+ P

( ∏
k∈Sp1

εk ≤ x1,
Um

Ul
≤ blmx2, Ui = Ujbji

∏
k∈Sp1

εk, Um �= Ulblm
∏

k∈Sp2

εk

)
+ P

(Ui

Uj
≤ bjix1,

∏
k∈Sp2

εk ≤ x2, Ui �= Ujbji
∏

k∈Sp1

εk, Um = Ulblm
∏

k∈Sp2

εk

)
+ P

(Ui

Uj
≤ bjix1,

Um

Ul
≤ blmx2, Ui �= Ujbji

∏
k∈Sp1

εk, Um �= Ulblm
∏

k∈Sp2

εk

)
=: I1(x1, x2) + I2(x1, x2) + I3(x1, x2) + I4(x1, x2)
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We first consider I1(x1, x2). Observe that for I11(x) defined in (A.9) we have by
(A.25)

I11(x) = P

( ∏
k∈Spmax

εk ≤ x, Ui = Ujbji
∏

k∈Spmax

εk

)
and hence, I1(x1, x2) is the bivariate extension to I11(x). For this reason, we
can follow the proof of Theorem 3.12 at (A.11), we again find upper and lower
bounds based on the decomposition{ ∨

p∈Pji\{p1}

∏
k∈Sp

εk ≤ bji
dji(p)

∏
k∈Sp1

εk
}⋂{ ∨

p∈Plm\{p2}

∏
k∈Sp

εk ≤ blm
dlm(p)

∏
k∈Sp2

εk
}⋂

{ ∏
k∈Sp1

εk ≤ x1

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp∪{n}

εkZn ≤

bji
∏

k∈Sp1

εk
∨

n∈An(j)

b̄njZn

}}⋂{ ∏
k∈Sp2

εk ≤ x2

}⋂
⋂

n∈An(m)

{ ⋂
p∈Pnm\Pnlm

{
dnm(p)

∏
k∈Sp∪{n}

εkZn ≤ blm
∏

k∈Sp2

εk
∨

n∈An(l)

b̄nlZn

}}
.

Now for three paths p, p1 and p2 and a node i we denote

Sp+i\p1+p2
:= (Sp ∪ {i}) \ (Sp1 ∪ Sp2) and Sp\p1+p2

:= Sp \ (Sp1 ∪ Sp2).

On the set {
∏

k∈Sp1
εk ≤ x1} ∩ {

∏
k∈Sp2

εk ≤ x2} we have for x1, x2 > 1, since
ε > 1,{ ∨

p∈Pji\{p1}

∏
k∈Sp

εk ≤ bji
dji(p)

∏
k∈Sp1

εk

}
=
{ ∨

p∈Pji\{p1}

∏
k∈Sp\Sp1

εk ≤ bji
dji(p)

∏
k∈Sp1\Sp

εk

}
⊇
{ ∨

p∈Pji\{p1}

∏
k∈Sp\Sp1

εk ≤ bji
dji(p)

}
⊇
{ ∨

p∈Pji\{p1}

∏
k∈Sp\p1+p2

εk ≤ bji
dji(p)x2

}
as well as⋂

n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp∪{n}

εkZn ≤ bji
∏

k∈Sp1

εk
∨

n∈An(j)

b̄njZn

}}
=

⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈(Sp∪{n})\Sp1

εkZn ≤ bji
∏

k∈Sp1\Sp

εk

∨
n∈An(j)

b̄njZn

}}
⊇

⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈(Sp∪{n})\Sp1

εkZn ≤

bji
∨

n∈An(j)

∨
p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
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⊇
⋂

n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp+n\p1+p2

εkZn ≤

bji
x2

∨
n∈An(j)

∨
p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
.

Therefore,

I1(x1, x2) ≥ P

({ ∨
p∈Pji\{p1}

∏
k∈Sp\p1+p2

εk ≤ bji
dji(p)x2

}⋂{ ∨
p∈Plm\{p1}

∏
k∈Sp\p1+p2

εk ≤ blm
dlm(p)x1

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bji
x2

∨
n∈An(j)∨

p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}⋂ ⋂
n∈An(m)

{ ⋂
p∈Pnm\Pnlm

{
dnm(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ blm
x1

∨
n∈An(l)

∨
p̃∈Pnl

dnl(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
⋂{ ∏

k∈Sp1

εk ≤ x1

}⋂{ ∏
k∈Sp2

εk ≤ x2

})
=: c3(x1, x2) P

({ ∏
k∈Sp1

εk ≤ x1

}⋂{ ∏
k∈Sp2

εk ≤ x2

})
.

For an upper bound, observe that on {
∏

k∈Sp1
εk ≤ x1} ∩ {

∏
k∈Sp2

εk ≤ x2} we

have{ ∨
p∈Pji\{p1}

∏
k∈Sp

εk ≤ bji
dji(p)

∏
k∈Sp1

εk

}
=
{ ∨

p∈Pji\{p1}

∏
k∈Sp\Sp1

εk ≤ bji
dji(p)∏

k∈Sp1\Sp

εk

}
⊆
{ ∨

p∈Pji\{p1}

∏
k∈Sp\Sp1

εk ≤ bjix1

dji(p)

}
⊆
{ ∨

p∈Pji\{p1}

∏
k∈Sp\p1+p2

εk ≤ bjix1

dji(p)

}
as well as⋂

n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp∪{n}

εkZn ≤ bji
∏

k∈Sp1

εk
∨

n∈An(j)

b̄njZn

}}
⊆

⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈(Sp∪{n})\Sp1

εkZn ≤

bjix1x2

∨
n∈An(j)

∨
p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
⊆

⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp+n\p1+p2

εkZn ≤
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bjix1x2

∨
n∈An(j)

∨
p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
.

For this reason,

I1(x1, x2) ≤ c4(x1, x2) P
({ ∏

k∈Sp1

εk ≤ x1

}⋂{ ∏
k∈Sp2

εk ≤ x2

})
,

with

c4(x1, x2) := P

({ ∨
p∈Pji\{p1}

∏
k∈Sp\p1+p2

εk ≤ bjix1

dji(p)

}⋂{ ∨
p∈Plm\{p1}

∏
k∈Sp\p1+p2

εk ≤ blmx2

dlm(p)

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bjix1x2

∨
n∈An(j)

∨
p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}⋂ ⋂
n∈An(m)

{ ⋂
p∈Pnm\Pnlm

{
dnm(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ blmx1x2

∨
n∈An(l)

∨
p̃∈Pnl

dnl(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}})
.

Since all random variables are continuous, c4(x1, x2) tends to c3(x1, x2) for
x1, x2 ↓ 1, and

c3(x1, x2) ≤ c ≤ c4(x1, x2)

with

c := P

({ ∨
p∈Pji\{p1}

∏
k∈Sp\p1+p2

εk ≤ bji
dji(p)

}⋂{ ∨
p∈Plm\{p1}

∏
k∈Sp\p1+p2

εk ≤

blm
dlm(p)

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pni\Pnji

{
dni(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bji
∨

n∈An(j)

∨
p̃∈Pnj

dnj(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}⋂ ⋂
n∈An(m)

{ ⋂
p∈Pnm\Pnlm

{
dnm(p)

∏
k∈Sp+n\p1+p2

εkZn

≤ blm
∨

n∈An(l)

∨
p̃∈Pnl

dnl(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}})
.

Since i �= m we can use the same arguments as for c1 in the proof of Theo-
rem 3.12 to show that c > 0. Therefore, we only need to show that Ii(x1, x2) =
o(I1(x1, x2)) for i ∈ {2, 3, 4}. It is obvious that I2(x1, x2) = o(I1(x1, x2)) implies
the other two cases. Using the same arguments from the proof of Theorem 3.12
regarding I2(x) = o(I1(x)) and I12(x) = o(I11)(x), the result follows. �

Appendix B: Proofs of Section 4

Proof of Proposition 4.3 We first consider the convergence of the simple
minimum ratio

∧n
k=1(U

k
i /U

k
j ). For j = i the result is obvious. Moreover, for
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j ∈ an(i) we have with Lemma 3.8 d), for x > 0,

lim
n→∞

P

(∣∣∣ n∧
k=1

Uk
i

Uk
j

− bji

∣∣∣ > x
)
= lim

n→∞

(
P

(Ui

Uj
− bji > x

))n
= 0,

showing that the minimum ratio converges for n → ∞ in probability to bji.
Since

∧n
k=1 U

k
i /U

k
j is non-increasing, it converges almost surely. For j �∈ an(i)

we have bji = 0 and the same result holds. Therefore, the estimators (4.1),
(4.4) and (4.5) converge almost surely. Considering the inequality (4.3) for the
estimator (4.2), this estimator as well converges almost surely. Finally using
(4.7) and (4.8), the same also holds for the estimator (4.10). �

Proof of Lemma 4.4 Assume first that the output B̂ is not idempotent.
Then there exists an entry b̂ji in B̂ such that b̂ji < b̂jk b̂ki. Therefore, since the

input matrix B̌ is idempotent, we have b̂ji = 0 while b̂jk > 0 and b̂ki > 0. This
is a contradiction to the if-condition on line 9 in the algorithm.

Now assume that there is an idempotent matrix B′ that preserves all values
that are larger than δ1 but contains more zero entries. Then there is an entry
b′ji such that b′ji = 0 while b̂ji > 0. Since b̂ji > 0 there must be some k ∈
{j + 1, . . . , i − 1} such that b̂jk �∈ S and b̂ki �∈ S, otherwise we would have set

b̂ji equal to zero. Because we sort pairs (j, i) by distance and (j, k) and (k, i)

both have smaller distance it must also hold that both, b̂jk and b̂ki are strictly
greater than zero. In comparison, since B′ is idempotent, either b′jk or b′ki is
equal to zero.

Therefore, we have b′jk = 0 while b̂jk > 0 or b′ki = 0 while b̂ki > 0. In
both cases, the distance compared to the pair (j, i) is decreased. Repeating this
argument we can assume that (j−i) = 1. This, however, leads to a contradiction

since b̂ji is set to zero for all pairs (j, i) of distance one if b̌ji < δ1. �

Appendix C: Proofs of Section 5

Proof of Lemma 5.1 By Theorem 3.12 we get for x ↓ 1,

lim
t↓0

P(ln(Ui/Uj)− ln(bji) ≤ tx)

P(ln(Ui/Uj)− ln(bji) ≤ t)
= lim

t↓0

P(Ui/Uj ≤ bji exp(tx))

P(Ui/Uj ≤ bji exp(t))

= lim
t↓0

c P

(∏
k∈Sp

εk ≤ exp(tx)
)

c P

(∏
k∈Sp

εk ≤ exp(t)
) = lim

t↓0

P

(∑
k∈Sp

ln(εk) ≤ tx
)

P

(∑
k∈Sp

ln(εk) ≤ t
) = xζ(p)α

for ζ(p) = |Sp| by Corollary 2.6 a) and the fact that ln(εk) ∈ RV 0
α . �

For the proof of Theorem 5.2 we need the following distribution family.

Definition C.1. A positive random variable Y is Fréchet distributed with
shape α > 0 and scale s > 0 and we write Y ∼ Fréchet(α, s) if the distribution
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function of Y is given by

Φα,s(x) = exp

(
−
(x
s

)−α
)
, x > 0.

The proof of Theorem 5.2 is divided into a proof of the one-dimensional
marginal limit distributions, followed by the proof of the multidimensional re-
sult. We start with the one-dimensional limits.

Proposition C.2. Let U be a recursive ML vector with propagating noise on
a DAG D as defined in (3.1) and assume that the path p := [j → · · · → i] from
j to i is generic. Assume further that ε̃ = ln(ε) ∈ RV 0

α . For the node set Sp

choose an ∼ F←∑
k∈Sp

ε̃k
(1/n) as n → ∞. Let U1, . . . ,Un be an iid sample from

U . Then

lim
n→∞

P

(
1

anbji

( n∧
k=1

Uk
i /U

k
j − bji

)
≤ x

)
= Ψ(ζ(p)α,c1/(ζ(p)α))(x), x > 0,

for the same constant c as in Theorem 3.12, and Ψα,s denotes the Weibull
distribution from Definition 2.2 with xL = 0.

Proof. Define X := ln(Ui/Uj) − ln(bji) with distribution function FX . Then
by Lemma 5.1, X ∈ RV 0

ζ(p)α, which implies that 1/X ∈ RV ∞
ζ(p)α. Using e.g.

Theorem 3.3.7 of [11], for

a1/X(n) ∼ F←
1/X(1− 1/n) ∼ 1/F←

X (1/n) → ∞, n → ∞, (C.1)

we get

lim
n→∞

P

( n∨
k=1

( 1

X

)k
≤ a1/X(n)x

)
= lim

n→∞
P

( n∧
k=1

Xk ≥ 1

a1/X(n)x

)
= Φζ(p)α,1(x), x > 0,

which implies by the continuity of X,

lim
n→∞

P

( n∧
k=1

Xk ≤ x

a1/X(n)

)
= 1− Φζ(p)α,1(1/x), x > 0. (C.2)

Choose now

ãn ∼ F←
X (1/n) ∼ 1/a1/X(n) ↓ 0, n → ∞. (C.3)

Hence, we have with (C.2) and (C.3) by Lemma 5.1,

lim
n→∞

P

( 1

ãn

( n∧
k=1

ln(Uk
i /U

k
j )− ln(bji)

)
≤ x
)
= 1− Φζ(p)α,1(1/x), x > 0.

(C.4)
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Recall from Theorem 3.12 and the regular variation of ε̃, that for the same c as
defined in Theorem 3.12 we have

FX(x) ∼ c P

( ∑
k∈Sp

ε̃k ≤ x
)
∼ P

( ∑
k∈Sp

ε̃k ≤ xc1/(ζ(p)α)
)

= F∑
k∈Sp

ε̃k(xc
1/(ζ(p)α)), x ↓ 0,

which implies that 1/n ∼ FX(ãn) ∼ F∑
k∈Sp

ε̃k(ãnc
1/(ζ(p)α)). For the generalized

inverses this implies that

ãn ∼ F←
X (1/n) ∼ c−1/(ζ(p)α)F←∑

k∈Sp
ε̃k
(1/n) ∼ c−1/(ζ(p)α)an, n → ∞.

From this we find

P

( 1

ãn

( n∧
k=1

ln(Uk
i /U

k
j )− ln(bji)

)
≤ x
)
= P

( n∧
k=1

Uk
i /U

k
j ≤ exp(ãnx)bji

)
, x > 0.

A Taylor expansion around 0 yields exp(ãnx) = 1 + ãnx(1 + o(1)) as n → ∞,
because ãn ↓ 0. Since for x > 0,

lim
n→∞

P

( 1

ãnbji

( n∧
k=1

Uk
i /U

k
j − bji

)
≤ x
)
= lim

n→∞
P

( 1

anbji

( n∧
k=1

Uk
i /U

k
j − bji

)
≤ c1/(ζ(p)α)x

)
,

we obtain with (C.4)

lim
n→∞

P

( 1

anbji

( n∧
k=1

Uk
i /U

k
j − bji

)
≤ x
)
= 1− Φζ(p)α,c−1/(ζ(p)α)(1/x)

= Ψζ(p)α,c1/(ζ(p)α)(x),

which proves the assertion.

Now we can prove Theorem 5.2.

Proof of Theorem 5.2 As we shall find asymptotic independence of
estimates between different node pairs, it suffices to prove the bivariate result.

We first simplify notation as follows. Assume pairs of nodes (j, i) �= (l,m)
and denote the generic paths p1 = pji with node set Sp1 and p2 = plm with

node set Sp2 , respectively. Further denote a1n = a
(ji)
n and a2n = a

(lm)
n .

By Proposition C.2 we have

lim
n→∞

P

( 1

a1nbji

( n∧
k=1

Uk
i /U

k
j − bji

)
≥ x1

)
= Φ

ζ(p1)α,c
−1/(ζ(p1)α)
1

(1/x1)

= exp
(
− x

ζ(p1)α
1

c1

)
,
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for x1 > 0. Since limn→∞(1− a
n )

n = exp(−a) for a ∈ R, we get by independence
of the ratios Uk

i /U
k
j for k = 1, . . . , n as n → ∞,

P

( 1

a1nbji

(
Ui/Uj − bji

)
≤ x1

)
=

x
ζ(p1)α
1

c1n
(1 + o(1)), x1 > 0. (C.5)

With the same argument, we have

P

( 1

a2nblm

(
Um/Ul − blm

)
≤ x2

)
=

x
ζ(p2)α
2

c2n
(1 + o(1)), x2 > 0. (C.6)

Therefore, we have on the one hand

lim
n→∞

P

( 1

a1nbji

n∧
k=1

(
Uk
i /U

k
j − bji

)
≥ x1

)
P

( 1

a2nblm

n∧
k=1

(
Uk
m/Uk

l − blm

)
≥ x2

)
= exp

(
− x

ζ(p1)α
1

c1

)
exp
(
− x

ζ(p2)α
2

c2

)
= exp

(
− x

ζ(p1)α
1

c1
− x

ζ(p2)α
2

c2

)
, x1, x2 > 0,

(C.7)

whereas, on the other hand, we have by independence of the bivariate ratios
(Uk

i /U
k
j , U

k
m/Uk

l ) for k = 1, . . . , n,

lim
n→∞

P

( 1

a1nbji

n∧
k=1

(
Uk
i /U

k
j − bji

)
≥ x1,

1

a2nblm

n∧
k=1

(
Uk
m/Uk

l − blm

)
≥ x2

)
= lim

n→∞

{
P

( 1

a1nbji

(
Uk
i /U

k
j − bji

)
≥ x1,

1

a2nblm

(
Uk
m/Uk

l − blm

)
≥ x2

)}n

= lim
n→∞

{
1− P

( 1

a1nbji

(
Ui/Uj − bji

)
≤ x1

)
− P

( 1

a2nblm

(
Um/Ul − blm

)
≤ x2

)
+ P

( 1

a1nbji

(
Ui/Uj − bji

)
≤ x1,

1

a2nblm

(
Um/Ul − blm

)
≤ x2

)}n

. (C.8)

By (A.23) we have Ui ≥ bji
∏

k∈Sp1
εkUj and Um ≥ blm

∏
k∈Sp2

εkUl, which

implies

P

( 1

a1nbji

(
Ui/Uj − bji

)
≤ x1,

1

a2nblm

(
Um/Ul − blm

)
≤ x2

)
(C.9)

≤ P

( 1

a1n

( ∏
k∈Sp1

εk − 1
)
≤ x1,

1

a2n

( ∏
k∈Sp2

εk − 1
)
≤ x2

)
.

Since (j, i) �= (l,m), either Sp1 \ Sp2 �= ∅ or Sp2 \ Sp1 �= ∅ and without loss of
generality, we assume Sp2 \ Sp1 �= ∅. Since ε ≥ 1 and all εk are independent, we
get

(C.9) ≤ P

( 1

a1n

( ∏
k∈Sp1

εk − 1
)
≤ x1,

1

a2n

( ∏
k∈Sp2\Sp1

εk − 1
)
≤ x2

)
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= P

( 1

a1n

( ∏
k∈Sp1

εk − 1
)
≤ x1

)
P

( 1

a2n

( ∏
k∈Sp2\Sp1

εk − 1
)
≤ x2

)
. (C.10)

By Corollary 2.6 b) we know that (
∏

k∈Sp1
εk−1) ∈ RV 0

ζ(p1)α
. Moreover, observe

that by a Taylor expansion we have a1n ∼ F←∑
k∈Sp

ε̃k
(1/n) ∼ F←∏

k∈Sp
εk−1(1/n) as

n → ∞. Therefore, by Theorem 3.3.7 of [11] as in the proof of Proposition C.2,
similarly to (C.4), it holds that

lim
n→∞

P

( 1

a1n

( n∧
t=1

∏
k∈Sp1

εtk − 1
)
≥ x1

)
= Φζ(p1)α,1(1/x1)

= exp
(
− x

ζ(p1)α
1

)
, x1 > 0.

We proceed as in (C.5) and (C.6) to obtain as n → ∞

P

( 1

a1n

( ∏
k∈Sp1

εk − 1
)
≤ x1

)
=
(xζ(p1)α

1

n

)
(1 + o(1)), x1 > 0. (C.11)

Moreover, since Sp2 \ Sp1 �= ∅, ε is atom-free and a2n → 0 as n → ∞, we have

P

( 1

a2n

( ∏
k∈Sp2\Sp1

εk − 1
)
≤ x2

)
= o(1), x2 > 0. (C.12)

Therefore, we have by (C.10), (C.11) and (C.12)

(C.9) =
(xζ(p1)α

1

n

)
(1 + o(1))o(1), x1, x2 > 0.

Comparing this with (C.5) and (C.6), we find that the last term in (C.8) is
negligible. Hence, we obtain

lim
n→∞

P

( 1

a1nbji

n∧
k=1

(
Uk
i /U

k
j − bji

)
≥ x1,

1

a2nblm

n∧
k=1

(
Uk
m/Uk

l − blm

)
≥ x2

)
= lim

n→∞

(
1− x

ζ(p1)α
1

c1n
(1 + o(1))− x

ζ(p2)α
2

c2n
(1 + o(1))

)n
= exp

(
− x

ζ(p1)α
1

c1
− x

ζ(p2)α
2

c2

)
.

Comparing this to (C.7) yields the result. �
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