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Abstract: An analyst is given a training set consisting of regression data-
sets Dj of different sizes, which are distributed according to some Gj , j =
1, . . . ,J , where the distributions Gj are assumed to form a random sample
generated by some common source. In particular, the Dj ’s have a common
set of covariates and they are all labeled. The training set is used by the
analyst for selection of subsets of covariates denoted by P∗(n), whose role
is described next.

The multi-task problem we consider is as follows: given a number of
random labeled datasets (which may be in the training set or not) DJk

of size nk, k = 1, . . . ,K, estimate separately for each dataset the regres-
sion coefficients on the subset of covariates P∗(nk) and then predict future
dependent variables given their covariates.

Naturally, a large sample size nk of DJk
allows a larger subset of covari-

ates, and the dependence of the size of the selected covariate subsets on nk

is needed in order to achieve good prediction and avoid overfitting. Sub-
set selection is notoriously difficult and computationally demanding, and
requires large samples; using all the regression datasets in the training set
together amounts to borrowing strength toward better selection under suit-
able assumptions. Furthermore, using common subsets for all regressions
having a given sample size standardizes and simplifies the data collection
and avoids having to select and use a different subset for each prediction
task. Our approach is efficient when the relevant covariates for prediction
are common to the different regressions, while the models’ coefficients may
vary between different regressions.

Last but not least, we propose a simple and meaningful measure, GENO,
that allows comparisons of the predictive value of different subsets of co-
variates by comparing the sample size they require in order to achieve the
same prediction error.
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1. Introduction

1.1. A general description of the problem

This paper concerns data consisting of a class of regression datasets, and a
multi-task of predictions in different regressions. The emphasis is on selection of
common subsets of covariates for prediction in the different regressions, which
depend on the regression datasets’ sample sizes. As documented in the classical
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model selection literature, the size or dimension of models for prediction should
depend on the sample size, for example through a penalty function that depends
on the dimension of the model and the sample size. References and further details
will be provided following a description of our motivating problem.

In order to improve service, a hospital wants to develop a tool for predicting
the actual duration of planned visits of any particular patient to any doctor in
the hospital. Given a sample of size n of different patients’ visits to any particular
doctor (n can vary between doctors) with covariates such as the past durations
of the patients’ visits, the nature of the visits, the time scheduled etc., and a
response variable, which is the actual duration, the goal is to predict the duration
of the next visit of a given patient to the particular doctor. Our objective is to
select an optimal subset of covariates, denoted by P∗(n), to be used for the
prediction of a future visit’s duration. We shall provide a procedure that selects
the optimal set with high probability. The number of covariates in the set P∗(n)
depends naturally on n, with a large n allowing more variables in the regression,
taking account of the need to find the right balance between efficiency of models,
and the pitfall of overfitting. For any given n, we want to select a standard set
of covariates to be used for any doctor in the hospital for whom we have a
regression dataset of size n. However, we allow different regression coefficients
for different doctors since different doctors may be influenced differently by the
patient’s background. An intercept for each doctor represents her or his general
tendency for longer or shorter visits.

Standardization is desirable for more than one reason, and will be discussed
in more detail later. First, it obviously simplifies the data collection and main-
tenance. Second, performing separate model selection for each doctor may be
computationally demanding. Third, model selection is notorious for being diffi-
cult and to require much data. The idea we present is to perform model selection
on the basis of a sample of doctors as described below, and thus borrow strength
from different datasets and obtain better subset selection.

In order to perform the subset selection we assume we have a training sample
of J doctors each consisting of a dataset containing the covariates and the
response (actual duration) ofNj visits, j = 1, . . . ,J . Under certain assumptions,
we use these data to select subsets of covariates for different value of n. We then
use the selected subset for prediction for any doctor (who in general may not
be in the training sample) on the basis of a sample of visits (of some size n) as
described above. When predicting for a doctor in the sample, say doctor j, it is
natural to take n = Nj . The subset selection procedure and its properties are
the focus of this paper.

One may suggest to concatenate the whole training sample and perform a
single regression with the same coefficients for all doctors, but allowing a dif-
ferent intercept for each doctor. In certain cases this may result in good subset
selection. However, suppose, for example, that for about half of the doctors the
covariate “duration of previous visit” has a positive coefficient in the regression
and for the other half it is negative. It is easy to conceive of a justification for
each possibility. In this case, this covariate may not enter the model if the re-
gression is computed by concatenating the data into a single model. However,
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allowing different regression coefficients for different doctors, the variable may
enter the model and contribute to the prediction with a different coefficient for
different doctors. Thus, allowing the regression coefficients to vary between in-
dividual regressions adds flexibility to the model, and in particular it improves
the prediction in our dataset (verified by cross validation, see Section 6.4). Of
course an informal screening of variables is often done, either at the stage of
collecting the data, or before conducting formal variable selection and analysis.
In particular, researchers may decide to avoid certain variables or interaction
terms in order to keep the selection process feasible.

The classical theory of model selection in regression deals with the selection of
a subset of covariates (or features) that are useful for prediction based on a single
regression dataset. Numerous model selection methods have been suggested;
AIC (Akaike [1]), Mallows Cp (Mallows [15]), and FIC (Claeskens and Hjort [8])
are prominent examples. These methods apply to a single regression dataset of
a given size, for which a model is to be selected and then used for prediction.
For a well-known Bayesian approach to model selection, see Schwarz [23]. A
large body of literature emerged following these articles. In the setup of a single
dataset, serious issues of optimality arise; see, e.g., Yang [29].

Breiman’s celebrated paper [4] starts with a similar training set of regres-
sion datasets with similar assumptions, however, both the subset of covariates
and the regression coefficients used for prediction are common to all regres-
sions. A very closely related setup appears in Obozinski, Taskar and Jordan
[16] which “addresses the problem of recovering a common set of covariates
that are relevant simultaneously to several classification problems.” The paper
focuses on classification or discrimination problems, but regression is also men-
tioned. References cited in this paper, which deal with the same problem, are
referred to as “transfer learning” or “multi-task learning” in the machine learn-
ing literature. They demonstrate that learning multiple related tasks from data
simultaneously can be advantageous in terms of predictive performance relative
to learning these tasks independently. In Obozinski, Taskar and Jordan [16] the
goal is to decide which variables are “relevant to the overall class of prediction
problems without making a commitment to a specific value of a parameter,”
that is, allowing different parameters for the different prediction tasks, and to
“borrow strength across multiple estimation problems in order to support a de-
cision that a covariate is to be selected.” A large number of papers and review
articles on multi-task learning have appeared, mostly in the past decade. For a
recent survey containing numerous applications and references, see, for exam-
ple, Zhang [31]. In the latter paper transfer learning refers (in our setup) to
predicting for a single target file that may not be in the training sample, while
multi-task learning refers to predicting for every dataset in the training sample.
Here we consider both possibilities.

Our paper differs from Obozinski, Taskar and Jordan [16] and more generally
from the multi-task literature in several ways: first, our focus is not on algorithms
but rather on asymptotic consistency and optimality type results; in particular,
in the spirit of Mallows Cp or Akaike’s AIC we start with a well-defined target
function which we estimate and use for model selection, rather than with an
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algorithm. Second, our emphasis is on regression. Third, unlike [16] we constraint
all regression tasks having the same sample size to predict by a common set of
covariates. In the spirit of model selection, the sizes of the resulting common
subsets depend on the sample sizes of the different regression prediction tasks,
with the goal of avoiding underfitting and overfitting. Our approach allows us to
select subsets of covariates also for future tasks that are not among the original
set of tasks, and may have new sample sizes. It also leads to “common set of
covariates that are relevant simultaneously to several problems” as suggested in
[16], whose method does not necessarily lead to such common subsets. Finally,
the common sets constraint translates to borrowing strength between different
datasets.

1.2. A formal setup

Our setup is formalized as follows. We assume we have a training sample T of
regression datasets all having the same set of covariates. Thus T = {Dj : j =
1, . . . ,J } with Dj = {(Xij , Yij)}, i = 1, . . . , Nj , j = 1, . . . ,J , where Xij ∈
Rd is a column vector of d random covariate values of the ith subject in the
jth dataset, and Yij ∈ R is a response variable. For each j, the Nj vectors
(Xij , Yij) are iid from some distribution Gj ∈ G, where G is a set (population)
of distributions of size |G| = K. We assume that J ≤ K ≤ ∞, and that {Gj}Jj=1

is a random sample from G. Now consider a new regression dataset of some size
n, DJ = {(XiJ , YiJ)}ni=1 distributed according to GJ , a random element of G,
which may but need not be in the training set T . If DJ is in T then it is natural
to assume that n = NJ .

We consider the following task: for (X, Y ) ∼ GJ independent of the above
datasets, we want to predict Y from a given X using the sample DJ . It is natural
to be interested in the multi-task of prediction for many random DJ ’s; however,
it suffices to study the prediction error for one such DJ . Since GJ is random, we
clearly need to consider different possible values of n, and random covariates.
Our treatment of random covariates is based on a generalization of Mallows Cp

to random covariates that was inspired by notes generously given to us by Larry
Brown (see [5]).

As usual, the prediction model involves two components, the subset of vari-
ables to be used, and their regression coefficients. The regression coefficients will
be estimated by standard least squares based on the sample DJ , and thus will
vary between DJ ’s. For the subset selection, a task that is known to require
large samples, we shall pool the whole training set. Such pooling can be efficient
if the set of distributions G, which may be finite or generated by a probability
model (superpopulation model), is sufficiently homogeneous (to be discussed
in Section 3) in a way that justifies a common model selection. Besides some
technical conditions for such homogeneity, a user would have to apply common
sense to decide if one can borrow strength and learn the subset selection from
the pooled sample T rather than from the individual dataset DJ . As mentioned
before, numerous examples appear in Zhang [31] and the references therein. Our
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goal is to select for each possible value of n, a subset of covariates based on the
pooled training sample T and use it for prediction, using least squares estimates,
computed for each regression dataset DJ separately. Thus, we select subsets for
prediction that are common to all regressions having the same sample size, but
we allow different parameters for the regressions.

Given a distribution Gj ∈ G, letmj(Xij) := EGj (Yij | Xij) be the conditional
expectation under Gj . We do not assume a linear model or any particular model
for mj when we analyze our procedures, but for the sake of prediction we shall
approximate mj(Xij) by a linear function X′

ijβj , where βj is the vector of
projection coefficients under Gj . We shall require minimal assumptions on Gj

such as moment conditions, to be specified later.
When mj(Xij) is not linear then Xij is not ancillary, and its marginal dis-

tribution matters; see, e.g, Buja et al. [6]. In this case, conditioning on X or
considering it as nonrandom leads to loss of information. For a recent discus-
sion on fixed versus random X in the context of model selection see Rosset and
Tibshirani [20]. When mj(Xij) = X′

ijβj , allowing linear models with different
coefficients in different regressions is called heterogeneous regression ANCOVA;
see, e.g., Rutherford [21], Chapter 8, and the references therein. Related models
appear under titles such as repeated measure regression (see, e.g., Vonesh and
Chinchilli [26]), often with mixed effects.

Given datasets {Xij , Yij} from Gj , consider the subset of covariates P of

size p ≤ d. We may sometimes refer to P as a model. Let X
(P)
ij denote the

subvector of Xij consisting of the covariates in P . Let β
(P)
j denote the linear

projection coefficient vector and let β̂
(P)
j,n be its least squares estimator based on

n observations, where we assume that n > p. In Section 2.4 we discuss the case
of discrete covariates in which exact (or perfect) multicollinearity may occur
with a positive probability, and the least squares estimators are not unique.

For now we focus on the case that J = K, that is we observe all datasets in G.
(In Section 3.3 we consider prediction of an out of (the training) sample dataset,
in the spirit of transfer learning.) Consider prediction for a regression dataset of
some size n, often referred to as the task size, which will be taken to equal Nj for
the task of predicting for the dataset Dj in the multi-task problem of prediction
for datasets in the training sample. The linear prediction of a response Y , based
on n observations from a random GJ ∈ G, and when the subset P is used is

given by (X(P))′ β̂
(P)
J,n. In order to select a subset for regression tasks of size n

we make the counterfactual assumption that all datasets in the training sample
are of size n. Then the corresponding expected prediction error or risk is given
by

R(n, P ) :=
1

J

J∑
j=1

Rj(n, P ) :=
1

J

J∑
j=1

EGj

(
Y − (X(P))′ β̂

(P)
j,n

)2
, (1.1)

where (X, Y ) ∼ Gj independently of β̂
(P)
j,n, and the expectation on the right-hand

side of (1.1) applies to both (X, Y ) and β̂
(P)
j,n. This expression has the alternative
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interpretation where instead of predicting for a random DJ we predict for all
Dj , j = 1, . . . ,J , assuming that there is a common sample size n, and now
R(n, P ) represents the average prediction error. With either interpretation, our
goal is to estimate R(n, P ) and related quantities, in order to select (with high
probability) an optimal common subsets P∗(n) for prediction for any dataset in
the training set (taking n = Nj) and also for out of sample datasets when we
later consider the case that J < K, on the basis of n observations, where the
subset selection is based on the pooled training set T .

It is natural to choose common subsets for prediction if the different regres-
sion datasets arise from a common source; besides efficiency in subset selection
due to pooling, common subsets lead to computational efficiency. However, we
assert that in a variety of situations (but obviously not always) it is advanta-
geous to choose standard common sets of covariates to be used for prediction
even if the regression datasets do not arise from a homogeneous source. In this
case we are trying to select compromise subsets that can be used for the differ-
ent regressions (and may not be optimal for some or any of them). For example,
a large health organization with K clinics often recommends a common stan-
dard set of tests for the purpose of certain diagnoses, thereby simplifying the
instructions to participating clinics and doctors. In our notation, the set of tests
is based on a sample of size J , which is in general ≤ K. The regression coeffi-
cients used for prediction based on this common set of tests may differ between
communities or doctors, who may attach different weights to different tests.
Concerning economics models, consider the OECD, where J = K = 37 (as of
2021) since all countries are sampled and economic prediction are made in all of
them. The OECD attempts to standardize sets of common economic indicators
to be used for economic predictions (e.g., forecast of GDP growth) for its mem-
ber countries, which are to be estimated by their bureaus of statistics by the
same methodology. In general, it makes sense to assume that in different coun-
tries, economic variables may have different weights in economic predictions.
For example, oil prices must weigh differently for economic predictions between
oil importing and exporting countries.

1.3. GENO, a measure of usefulness

In order to compare the quality of different models, we introduce a new measure,
GENO, which is inspired by the measure ENO (equivalent number of observa-
tions) of Erev, Roth, Slonim, and Barron [10]. To describe ENO in the context
of experimental economics, consider an experiment where a game is played by a
sample of subjects in order to study the average behavior of players, and predict
future play. ENO is based on a comparison between the empirical statistics of
past actions of the players, and a given model for predicting players’ actions.
The more subjects who have already played the game, the better the estimate
that past play will give of the mean behavior of the subject population on this
game. ENO measures the usefulness of the prediction of a particular model by
asking how many prior observations of subjects playing the game, say m, would
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be needed to make the empirical statistics as accurate as the prediction by the
model. ENO of a model is this number m.

While ENO compares a given model to the relevant empirical model, GENO
generalizes ENO to comparing any two data-based models. Thus, let now R(n,
P ) denote the prediction error of some model P in a very general setup. For
our present purposes, one can have regression models in mind, with R(n, P )
defined above; however, the definition of GENO below is more general. Given
two models P and Q , define GENO(n; P ,Q ) to be the value of m satisfying
R(m,Q ) = R(n, P ). In words, GENO(n; P ,Q ) is the number of observations
required in order for a model based on the covariates in Q to predict equally
well as a model based on the covariates in P , when the parameters of the latter
model are estimated on the basis of n observations. In Section 4 we shall use
an approximation to R(n, P ) to formally define and estimate GENO. Such a
measure allows us to decide between a set of covariates that may be good for
prediction but costly to obtain, and another set of more accessible covariates
that we may consider using, even if their predictive value is lower and therefore
may require more observations. See the recent paper – Andrade et al. [2] and
the references therein for a formal Bayesian approach to minimizing cost of
classification in the presence of costly covariates. A comparison in terms of the
sample size required by one model (for prediction, testing or estimation) to be
as good as another with a given sample size is closely akin to the notion of
Pitman efficiency; see, e.g., Zacks [30]. Our approach to quantifying the value
of a model is close in spirit, but not in detail, to the work of Lindsay and Liu
[14] who define a “model credibility index” as the sample size N∗, where data
from the model and from the true generating process are indistinguishable in
the sense that for a given goodness of fit test of the model with N∗ observations,
the probability of rejection under the model is, say, 50%.

A different approach to measuring the usefulness of a model is by Akaike
weights, which are defined by the likelihood function of each model evaluated at
the MLE, standardized by their sum; see Anderson and Burnham [3] (Page 75),
where these weights are referred to informally as “the weight of evidence in favor
of model.” The AIC weights are sometimes [e.g., 27] interpreted as probabilities
of a model to be the best in terms of the AIC criterion. With a uniform prior
on the set of models this interpretation could be meaningful if we believe that
one of the models is true. Otherwise, the weights are still informative, but their
interpretation is less clear. GENO, on the other hand, is measured in units of
number of observations, which are easy to grasp. Another advantage of GENO
is that it accounts for the number of observations in the data to which the model
is applied. This makes sense as the usefulness of a model for a given dataset is
also a function of the size of the data.

In Section 2 we restate the problem and provide some basic results and no-
tation for a single regression dataset, as a preliminary to the main part, Section
3, where we consider the multi-task problem of model selection for several re-
gression datasets. In Section 4 we discuss the GENO measure of the relative
quality of models. In Section 5 we demonstrate the results by simulations, and
in Section 6 we discuss an application to a medical management problem of
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predicting service times, that is, visit durations of patients in hospital. Section
7 is an appendix containing the proofs. Appendix B summarizes the notation
used in the paper.

2. Prediction error with random covariates: a single dataset

We start with |G| = J = 1, that is, with selection of a model for prediction given
a training set consisting of a single regression dataset. This case is treated in the
standard model selection literature. Although our real interest is in results for
large J , we consider J = 1 as a starting point which simplifies the notation while
allowing us to present some of the ideas used in the general case. For now our
training set T consists of a single dataset D1 = {(Xi, Yi)}N1 of N := N1 iid pairs
from some distribution G := G1. The distinction between N and n may seem
artificial in this case, but we shall make it and consider prediction based on any
sample size n for later purposes. We use D1 for selecting a subset of covariates
for linear prediction of a future Y from X distributed by G, with parameters
that will be estimated using a dataset D = {(Xi, Yi)}n1 of n observations from
G.

We derive some results that will be needed for the general case J > 1, to be
discussed in Section 3. Subsets of the covariates are denoted by letters like P , Q ,
etc., and their sizes by p and q, etc. We refer to the associated linear model as
model P . For now we fix P and suppress it in most of our notation and instead
of X(P) we write X and assume it is in Rp. The same holds for other vectors and
matrices. Later we shall assume that X ∈ Rd, and consider different subsets of
covariates.

2.1. Preliminaries

Consider a dataset D = {(Xi, Yi)}n1 of iid pairs from some distribution G, where
Xi is a column vector in Rp, i = 1, . . . , n. Let (X, Y ) without indexes denote
one such “generic” observation, distributed independently of the dataset D as
any (Xi, Yi) according to G. The first entry of each Xi may be 1, so that the
models may include an intercept term.

Set Q := E(XX′) and let Yn ∈ Rn denote the n-column vector of the
Yi’s, and set m(X) := E(Y |X) for some function m. Assuming that both X
and Y have finite second moments and that Q is invertible, the best linear
approximation of m(X) is X′β, where

β := arg min
b∈Rp

E(m(X)−X′b)2 = Q−1E(XY ). (2.1)

The same projection coefficient vector β also satisfies β = argminb E(Y−X′b)2;
hence X′β is the best linear predictor of Y . Our assumptions imply that the
minimizer β is unique. Set ei := Yi − X′

iβ, with β defined in (2.1). By (2.25)
in Hansen [12], where most of our notation and the standard results we use can
be found, we have E(Xe) = 0, where again X and e are “generic” Xi and ei.
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Define Xn to be the n×p matrix whose n rows are the row vectors X′
i. In this

common notation the standard linear model will be written as Xnβ, whereas
each of its rows as X′

iβ, and X′
nXn =

∑n
i=1 XiX

′
i. Under standard assumptions,

the least squares estimator is

β̂n := arg min
b∈Rp

||Yn − Xnb||2 = (X′
nXn)

−1X′
nYn. (2.2)

The assumption that (X′
nXn)

−1 exists (with probability 1) holds if we assume
that X has a continuous distribution. For the existence of certain moments re-
quired later we shall assume that the distribution of X is a mixture of normals.
See Hansen [12], pp. 102–3, for a discussion of the existence of (X′

nXn)
−1 and its

moments. Without assuming continuity, the assumption that Q is invertible im-
plies that (X′

nXn)
−1 exists with probability converging to 1 as n → ∞; however,

for discrete distributions this probability is smaller than one, and thus β̂n may
not exist, and has no finite moments, a “conundrum” in the words of Hansen.
In Section 2.4 we extend our discussion to discrete covariates by conditioning on
the existence of a bounded inverse, and showing that under simple conditions
this amounts to neglecting a set having an exponentially small probability, thus
providing some solution to the above conundrum.

We now assume that (X′
nXn)

−1 exists and has sufficiently many moments
so that expressions like (2.4) below are finite. If X and Y have finite fourth
moments, then by Theorem 7.3 in Hansen [12]

√
n(β̂n − β)

D−→ N(0,Q−1WQ−1), (2.3)

where W := E(XX′e2), a p × p matrix assumed to be positive definite. For a
single distribution G and a dataset D as above, the prediction error incurred by
a model P based on all p covariates with linear regression coefficients computed
from a sample of size n is

R(n, P ) = EG

(
Y −X′ β̂n

)2
. (2.4)

Later we assume that X ∈ Rd and set X(P) ∈ Rp to be the vector consisting of
the covariates of X in the subset of covariates P of size p. When we consider

several models, we set, for example, X(P)
n to be the n×p matrix whose n rows are

the row vectors X
′ (P)
i , β̂

(P)
n := (X′ (P)

n X(P)
n )−1X′ (P)

n Yn, W(P) := E(X(P)X(P)′e2),
and likewise for Q, etc. We then have

R(n, P ) = EG

(
Y −X′ (P) β̂

(P)
n

)2
. (2.5)

2.2. Equally good sequences of models

When selecting the best model for a given n, that is, the subset of covariates that
minimizes R(n, P ), we should take into account that different samples yield dif-

ferent estimators β̂n, leading to different prediction errors; thus, there is no gain
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in optimizing more precisely than the difference between such errors. Consider
the prediction error conditioned on the estimated regression coefficients

R
(
n, P ; β̂n

)
:= E

[(
Y −X′ β̂n

)2∣∣∣β̂n

]
.

Note that R(n, P ) = E{R(n, P ; β̂n)}. By using the relation
(
Y − X′ β̂n

)2
=(

Y −X′ β+X′ β−X′ β̂n

)2
, expanding the latter term, and taking conditional

expectation noting that E[(Y −X′β)X′|β̂n] = E[eX′] = 0, we obtain

R
(
n, P ; β̂n

)
= E (Y −X′ β)

2
+ E

{[
X′ (β̂n − β)

]2∣∣∣β̂n

}
. (2.6)

The first term in (2.6) is a constant and the second equals (β̂n −β)′Q(β̂n −β),

which is of order Op(1/n) since
√
n(β̂n−β) = Op(1); see (2.3). This means that

R
(
n, P ; β̂n

)
varies between different β̂n by a quantity of order Op(1/n). Hence,

if two sequences of models P (n) and Q (n) satisfy

|R(n, P (n))−R(n,Q (n))| = o(1/n), i.e, lim
n→∞

n|R(n, P (n))−R(n,Q (n))| = 0,

we consider them to be equally good. If P (n) is best in the sense of minimizing
R(n, P (n)) and Q (n) is equally good, we say that Q (n) is adequate, and rather
than choose “best models” we settle for adequate models. See, e.g., Nevo and
Ritov [17] for a related approach.

2.3. Versions of Mallows Cp for random covariates

Given a dataset D1 = {(Xi, Yi)} of size N (which constitutes the training set
when J = 1), we first estimate the prediction error (2.4) incurred if prediction
is to be based on n observations. We shall consider two types of asymptotics:
one when n is considered to be large, and the other when n is fixed, and N is
large. For now J = 1; asymptotics in J will be considered later.

We use the following notation: set Q̂N := 1
NX′

NXN , and let YN denote
the N -vector of the Yi’s. Recalling the notation ei = Yi − X′

iβ, let eN denote

the N -vector having components ei. Set ŴN := 1
N

∑N
i=1 XiX

′
iê

2
i with êi =

Yi −X′
iβ̂N , where β̂N is given by (2.2) upon replacing n by N . Thus in (2.8)

below, 1
N ||YN − XN β̂N ||2 = 1

N

∑N
i=1 ê

2
i . Let V := WQ−1, and V̂N := ŴN Q̂−1

N .

In addition we define UN := 1√
N
X′

NeN = 1√
N

∑N
i=1 Xiei. Note that UN is

not a statistic and that E(UNU′
N ) = W since E(Xe) = 0 implies that the

expectations of mixed terms vanish. In all the vectors and matrices above and
below the index P was suppressed unless otherwise indicated.

Akin to (2.4), we define the approximate prediction error to be

AR(n, P ) := E
(
Y −X′β

)2
+

1

n
tr(V), (2.7)
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where tr denotes trace, and equation (2.9) of Theorem 2.1 below shows that it

is an approximation to the quantity R(n, P ) of (2.4). Clearly E
(
Y −X′ β̂n

)2 ≥
E
(
Y −X′β

)2
and the trace is an approximation of the difference with precision

of order O(1/n3/2); see (2.9). Next we define the statistic C(P)(n,N) as an
estimator of AR(n, P ) by

C(P)(n,N) :=
1

N
||YN − XN β̂N ||2 + tr(V̂N )

(
1

n
+

1

N

)
. (2.8)

The new term 1
N tr(V̂N ) is an approximately (up to op(1/N)) unbiased estimator

of 1
N ||YN − XN β̂N ||2 − E

(
Y − X′β

)2
, as shown in (7.6) and (7.7). The fact

that tr(V̂N ) is a biased estimator of tr(V) entails a bias of order 1/n for the
estimator C(P)(n,N) as an estimator of AR(n, P ). We shall study the latter
estimator, and when we use it, we shall apply a standard jackknife correction for
its bias; see Efron [9], Equation (2.8). We denote the bias-corrected C(P)(n,N)

by C(P)(n,N). It suffices to bias-correct only tr(V̂N ) in (2.8) as explained in the
fourth paragraph after Theorem 2.1.

The superscript P in the statistic C(P) refers to the set of covariates in P and

for now we have X
(P)
i = Xi ∈ Rp and the subset P is fixed and suppressed. The

statistic C(P)(n,N) is a counterpart of Mallows Cp, but here we consider random
covariates. Furthermore, we distinguish between the number N of observations
used for the choice of the model and the sample size n of observations used for
estimating the model’s parameters. The classic Mallows Cp concerns nonrandom
covariates, where n = N , and the true model is assumed to be linear. To see
the relation to Mallows Cp, assuming a homoskedastic linear model, we have
that ei = Yi − X′

iβ is uncorrelated with the covariates, with variance σ2, and

W = σ2Q, and therefore V̂N = ŴN

(
Q̂N

)−1
will converge to σ2Ip and tr(V̂N ) to

σ2p. If we use σ2p as an approximation of tr(V̂N ) (and therefore we only have
to estimate σ2 rather than a trace), then C(P) in the case N = n coincides with
Mallows Cp.

The following theorem provides the rate of approximation of AR(n, P ) to
R(n, P ), and then analyzes C(P) as an estimator of AR(n, P ); some of its condi-
tions and implications are discussed below. All proofs are in the Appendix. Our
proof shows that Assumption (i) below can be replaced by the assumption that
X and Y have 24 finite moments, and a careful inspection of the proof shows
that this number can be somewhat reduced.

Theorem 2.1. Assume that
(i) The coordinates of X and Y have finite moments of all orders.
(ii) The entries of (X′

nXn/n)
−1 have third moments that are bounded uniformly

in n. Then
|R(n, P )−AR(n, P )| = O(1/n3/2), (2.9)

and

AR(n, P )− C(P)(n,N) = EN +
1

n

{
tr(V)− tr(V̂N )

}
+ op(1/N), (2.10)
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where

EN = E(Y −X′β)2 − 1

N
||YN −XNβ||2 + 1

N
{tr(UNU′

NQ−1)− tr(V)}. (2.11)

Furthermore,

(a) EN = Op(1/
√
N), (b) tr(V)− tr(V̂N ) = Op(1/

√
N), (2.12)

and √
N
(
C(P)(n,N)−AR(P , p)

) D−→ N(0, τ2) (2.13)

for some asymptotic variance τ2 as N → ∞, and n is fixed.

Since there is only a finite number of models, the above terms O, Op, and
op do not depend on the subset of covariates P . For example, we could replace
(2.9) by |R(n, P )−AR(n, P )| ≤ B/n3/2 for all n and P , where B is a constant.
Moreover, the term op(1/N) in (2.10) does not depend on n.

Condition (i) of Theorem of 2.1 is standard, and Lemma 2.2 below shows
that Condition (ii) is satisfied if X is distributed as a mixture of normals; see
Sampson [22]. Such mixtures form a dense family of distributions with respect
to weak convergence in the space of distribution on Rp. As the distribution of
X is never known exactly, it makes sense to assume, as an approximation, that
the data satisfy such a condition. The case where X has discrete components is
discussed in Section 2.4.

We shall later compare models consisting of different subsets of covariates.
Equation (2.9) suggests that choosing a model by minimizing a good estimate
of AR(n, P ) with respect to P can lead to a model for which R(n, P ) is within
o(1/n) of the best model, and thus P is an adequate model in the sense of
Section 2.2. This is stated formally in Proposition 2.4.

In view of (2.10) we use C(P)(n,N) of (2.8) as an estimator of the approxi-
mate prediction error AR(n, P ) and hence of the prediction error R(n, P ). This
is formalized in Propositions 2.5 and 2.6 below. We now briefly discuss Equa-
tions (2.10) and (2.11). First consider the bias of C(P)(n,N) as an estimator

of AR(n, P ). It is easy to see that EEN = 0. By (2.12) (b), tr(V) − tr(V̂N ) =
Op(1/

√
N), and after dividing the latter term by n as in (2.10), it is of a smaller

order than the term tr(V̂N )
(
1
n + 1

N

)
appearing in C(P)(n,N). This shows that

the latter term contributes to reducing the bias of C(P)(n,N) as an estimator
of AR(n, P ).

Our main interest is in the case of J > 1 regressions, and in choosing a model
that minimizes an average of J values of AR. Averaging (nearly) unbiased
estimates can result in consistency in J , which explains why we care about
correcting the bias of C(P)(n,N). In this case, a further bias correction using
the jackknife is useful (see Section 5.2). The above discussion implies that it

suffices to bias-correct the estimator tr(V̂N ), which is what we do when using
the jackknife.

Choosing a good model can be reduced to choosing between two models,
say, P and Q at a time, by approximating the difference AR(P )−AR(Q ) using
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C(P)(n,N)−C(Q )(n,N). The leading terms in the latter expression will be the
difference between the relevant values of EN for the two models, and it is easy to
see that the leading term of this difference is the difference between the values
of 1

N ||YN −XNβ||2 for the corresponding models, which is of order Op(1/
√
N)

by the central limit theorem. However, when two models having very similar
prediction values are compared by differencing their corresponding values of
C(P)(n,N), their leading terms will approximately cancel, and in this case the
second term on the right-hand side of (2.8) plays a role. This holds also for
Mallows Cp and the AIC, [1], and will be exploited formally in the Propositions
2.5 and 2.6 below.

The following lemma shows that Condition (ii) of Theorem 2.1 holds when
X is distributed as a mixture of normals.

Lemma 2.2. Let the distribution of the covariate vectors (excluding the first
coordinate in the case that it is a constant 1) be normal, or a finite mixture of
normals, or an infinite mixture of normals with covariance matrices in a set Ξ,
and infΣ∈Ξ λmin(Σ) > 0, where λmin denotes the smallest eigenvalue. Then, for
n > p+ 5, Condition (ii) of Theorem 2.1 is satisfied.

More generally, the rth moments of the entries of (X′
nXn/n)

−1 are bounded
under the conditions of Lemma 2.2 provided that n > p + 2r − 1 (see von
Rosen [19], Theorem 4.1). Note that the condition on λmin guarantees that X
is bounded away from exact multicollinearity.

2.4. Discrete covariates

When X contains discrete covariates, the probability that the matrix
(X′

nXn/n)
−1 does not exist is positive, and expressions like β̂n of (2.2) and

hence R(n, p) of (2.4) may not exist. When the components of X are bounded,
we provide the following limiting approach. Set

Hn :=
{
Xn : λmin(X′

nXn/n) ≥ λmin(Q)/2
}
, (2.14)

where λmin is the smallest eigenvalue, and R̃(n, P ) := E
[(
Y − X′ β̂n

)2 | Hn

]
.

We have

Theorem 2.3. Suppose that Y has all moments, the components of X are
bounded, and Q is invertible; then for some a ∈ (0, 1),∣∣R̃(n, P )−AR(n, P )

∣∣ = O(1/n3/2) and P (Hn) > 1− anλmin(Q).

Moreover, all quantities appearing in Theorem 2.1 are well defined on HN , and
can be defined in an arbitrary way outside of HN , and the results (2.10)–(2.13)
hold.

Thus, apart from the complement Hc
n, which has exponentially small proba-

bility, the approximation rate of AR(n, P ) to the prediction error is the same as
in (2.9) and the rest of Theorem 2.1 still holds. The result follows from Theorem
2.1 and Lemma 2.3 given in the Appendix.
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2.5. Approximations and consistency

The focus of this section is on choosing a subset of covariates for prediction of
future responses on the basis of a single dataset of size N . The linear model
parameters are estimated from a sample of size n, with the understanding that
different n’s may (and should) lead to different choices of subsets; more specif-
ically, a larger n naturally gives rise to a larger set of covariates. Asymptotic
results in n are not of major interest in this context; however, they may con-
tribute some understanding when n is not small. Such results are discussed in
this section.

In Proposition 2.5 we show that under the conditions of Theorem 2.1, choos-
ing a subset of covariates in the set argminP C(P)(n,N) guarantees that for
increasing n and N we choose the best linear model with probability converg-

ing to 1, that is, the model minimizing R(n, P ) = E
(
Y − X(P)′ β̂

(P)
n

)2
, with

notation defined after (2.4). In Proposition 2.6 we show that for fixed n, using
C(P)(n,N), we choose an adequate model in the sense defined in Section 2.2,
with probability converging to 1 as N → ∞.

Below argminP is taken over all subsets of covariates. For a given n, define
the following sets:

P∗(n) := argmin
P

R(n, P ) = argmin
P

E
(
Y −X(P)′ β̂

(P)
n

)2
,

π∗(n) := argmin
P

AR(n, P ) = argmin
P

{
E
(
Y −X(P)′β(P))2 + 1

n
tr(V(P))

}
,

P∗ := arg min
P∈M

|P |, where M := argmin
P

E
(
Y −X(P)′β(P))2 and |P | denotes

the number of covariates in the model P ,

π̂∗(n,N) := argmin
P

C(P)(n,N).

The following proposition shows that the first two sets defined above by argmin
converge to the third, which is a singleton. Note that P∗ is the best linear model
in the sense of being the most parsimonious model minimizing the expected
square of the projection error Y −X(P)′β(P). We deal with the convergence of
π̂∗(n,N) in Proposition 2.5.

Proposition 2.4. Suppose that the conditions of Theorem 2.1 hold. Then
(i) Any two sequences in π∗(n) and P∗(n) are equally good, that is, any sequence
of models in π∗(n) is adequate in the sense of Section 2.2.
(ii) The set P∗ is a singleton, and the sets π∗(n) and P∗(n) converge to the
singleton P∗ as n → ∞.

The proof shows that essentially M is a singleton; that is, besides P∗, M
may only contain models having the same covariates and regression coefficients
as those of P∗, and further covariates whose coefficients vanish. Note that since
the number of models is finite, it follows that P∗(n) = π∗(n) = P∗ for large
enough n; that is, the same model P∗ minimizes both R(n, P ) and AR(n, P ).
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The model P∗ is the minimal best linear predictive model that one would ideally
use if the projection coefficients β(P) were known.

The next proposition shows that minimizing the statistic C(P)(n,N) leads to
correct selection asymptotically, that is, to selecting the model that minimizes
the prediction error R(n, P ) with probability converging to 1.

Proposition 2.5. Under the conditions of Theorem 2.1, with both n,N → ∞,
and n/N → 0, we have P

(
π̂∗(n,N) = P∗(n)

)
→ 1.

The proof is given in the Appendix, where we also show that the condition
n/N → 0 is necessary. The case n = N (with nonrandom covariates) corresponds
to the standard Mallows Cp, which is inconsistent; more specifically, it is well

known that for n = N , the choice π̂∗(n,N) may lead to models Q that strictly
contain P∗; see, e.g., Nishii [18]. The equality π̂∗(n,N) = P∗(n), which holds for
large enough n and N with high probability, implies that π̂∗(n,N) is a singleton
(by Proposition 2.4 (ii)), and that selecting a model according to the statistic
π̂∗(n,N) yields a model that minimizes the prediction error. Furthermore, the
choice of a model by π̂∗(n,N) leads asymptotically to the choice of P∗, the
smallest model in terms of the number of covariates in M, that is, the most

parsimonious model P that minimizes E
(
Y −X(P)′β(P))2. This property is often

referred to as consistency; see, e.g., Shao [24].

In the case of fixed n, Equation (2.13) readily implies that C(P)(n,N) −
AR(n, P ) = Op(1/

√
N). Therefore, as N goes to infinity, the left-hand side

converges to zero (at a rate of 1/
√
N), implying

Proposition 2.6. Under the condition of Theorem 2.1, we have for any fixed

n, P
(
π̂∗(n,N) ⊆ π∗(n)

)
N→∞−→ 1.

In words, Proposition 2.6 says that a model that minimizes C(P) will minimize
AR(n, P ) with high probability for fixed n and a suitably large N . Proposition
2.4 (i) asserts that minimizing AR(n, P ) by π∗(n) is close to minimizing R(n, P )
by P∗(n), which is our goal.

3. Several datasets

Our main focus is on the case where several regression datasets are observed.
We first discuss the case where we observe datasets from all the regressions of
interest, and then, in Section 3.3, we consider a hierarchical situation where
the data consist of a random sample of regression datasets from a structured
collection of regression models.

3.1. Model selection observing all regressions

We consider a population of distributions G = {Gj : j = 1, . . . ,K} with
J =K < ∞, that is, the training set comprises of all regression datasets in the
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population. Thus, we observe data Dj = {(Xij , Yij) ∼ Gj , i = 1, . . . , Nj},
j = 1, . . . ,J , and Xij ∈ Rd.

For a given n, the goal is to select a common set of covariates P to be used
for prediction of the response Y from X = X(P) (the subvector with coordinates
in P ) for each individual distribution Gj from the population, or equivalently

for a random GJ , see below (3.1), where the coefficients β̂
(P)
j,n, which are allowed

to vary with j, are estimated with a sample of size n. The relevant prediction
error for this task is (3.1) below. When predicting for individual j, it may be
natural to set n = Nj . However, other values of n may be of interest in studying
the contribution of covariates as a function of the sample size. Later (in Section
3.3), we use the J datasets as a training set for choosing a model to predict
for any out-of-sample GJ on the basis of n future observations, where n is not
determined in advance since J is not in the training set. In this case we use
the chosen subset of covariates, and estimate its parameters on the basis of a
dataset of size n from GJ . The value of n may vary, being the size of the dataset
GJ .

Let X := X(P) ∈ Rp, where for now P and its size p are suppressed in the
notation. For each j and generic observation (X, Y ) from the distribution Gj ,
we define

βj := argmin
β

EGj (Y −X′β)2 = Q−1
j EGj (XY );

see (2.1), where Qj := EGj (XX′). Assuming finite fourth moments, we have for
a sample size n → ∞, for each j, as in (2.3),

√
n(β̂j,n − βj)

D−→ N(0,Q−1
j WjQ−1

j ) where β̂j,n := (X′
j,nXj,n)

−1X′
j,nYj,n,

Xj,N and Yj,N are the jth versions of XN , and YN , and Wj := EGj (XX′e2),
a p× p matrix, assumed to be positive definite. We further use the notation Vj

for the jth version of V, that is, when expectations are taken with respect to
Gj , and similar notation when N = Nj observations are used for the estimators

Q̂j,N , V̂j,N , and Ŵj,N instead of Q̂N , V̂N , and ŴN .
We consider prediction for a random individual regression dataset of size n

from the population G, based on a model, that is, a subset of covariates P . As
above we suppress P and write X and β rather than X(P) and βP , etc. The
relevant prediction error (see (1.1) and around for a discussion) is

R(n, P ) :=
1

J

J∑
j=1

Rj(n, P ) :=
1

J

J∑
j=1

EGj (Y −X′β̂j,n)
2, (3.1)

where (X, Y ) ∼ Gj independently of β̂j,n, and the expectation on the right-

hand side of (3.1) is also applied to β̂j,n. The risk R(n, P ) can be interpreted as
an expectation over GJ for a uniform choice of a single J ∈ G or equivalently,
as the risk per task average for the multi-task of predicting for all Gj ∈ G if
all datasets sizes (or task size) were n. In R(n, P ) above and similar expres-
sions below, we suppress the number of datasets J . In the case that any of the
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distributions Gj involves discrete covariates, we replace EGj (Y − X′β̂j,n)
2 by

a conditional expectation as in Section 2.4, where the conditioning is on a set
whose complement is exponentially small. In the definition given in Equation
(1.1), (3.1), and others below we use boldface letters when J > 1. Next define

AR(n, P ) :=
1

J

J∑
j=1

ARj(n, P ) :=
1

J

J∑
j=1

{
EGj (Y −X′βj)

2 +
tr(Vj)

n

}
. (3.2)

Using (2.9) we have

R(n, P ) = AR(n, P ) +O(1/n3/2). (3.3)

Set

C
(P)
j (n,Nj) :=

1

Nj
||Yj,Nj − Xj,Nj β̂j,Nj

||2 + tr(V̂j,Nj )(1/n+ 1/Nj), and

C(P)(n,N) :=
1

J

J∑
j=1

C
(P)
j (n,Nj), (3.4)

where N = (N1, . . . , NJ ). We define the jackknife bias-corrected C(P) by

CCC(P)(n,N) :=
1

J

J∑
j=1

C(P)
j (n,Nj), (3.5)

where C(P)
j (n,Nj) is the bias-corrected C

(P)
j (n,Nj); see Efron [9], Equation (2.8),

for a precise definition of the jackknife correction we use.
Theorem 3.1 below parallels Theorem 2.1 concerning the error of C(P)(n,N)

as an estimator of AR(n, P ).

Theorem 3.1. Suppose that the conditions of Theorem 2.1 are satisfied when
(X, Y ) ∼ Gj for each j = 1, . . . ,J . Then,

AR(n, P )−C(P)(n,N)

=
1

J

J∑
j=1

Ej,Nj +
1

nJ

J∑
j=1

{
tr(Vj)− tr(V̂j,Nj )

}
+

1

J

J∑
j=1

op

( 1

Nj

)
,

where Ej,Nj is the jth version of EN defined in (2.11), and the op terms do not
depend on n.

Moreover, assume that limN→∞ N1/Nj := aj exists for all j, where 0 < aj <
∞; then √

N1

{
AR(n, P )−C(P)(n,N)

} D−→ N(0, τ2J ),

as N → ∞, where τ2J = 1
J 2

∑J
j=1 ajτ2j and τ2j is the asymptotic variance under

Gj as in Theorem 2.1, Equation (2.13).

Notice that if τ2j and aj are bounded (in j), then the asymptotic variance of√
N1

{
AR(n, P )−C(P)(n,N)

}
decreases like 1/J , which means that the error

is decreasing in J . Theorem 3.1 and (3.3) imply properties of C(P)(n,N) as an
estimator of R(n, P ) as discussed next.
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3.2. Consistency

Analogously to the definitions in Section 2.5, where now the optimal sets of the
multi-task problem are denoted using boldface, define

PPP∗(n) := argmin
P

R(n, P ) = argmin
p

J∑
j=1

EGj (Y −X(P)′ β̂
(P)
j,n)

2,

π∗(n) := argmin
P

AR(n, P ) = argmin
P

J∑
j=1

{
EGj (Y −X(P)′β

(P)
j )2 +

tr(V(P)
j )

n

}
,

(3.6)

PPP∗ := arg min
P∈M

|P | where M := argmin
P

J∑
j=1

EGj (Y −X(P)′β
(P)
j )2,

π̂∗(n,N) := argmin
P

C(P)(n,N).

The next result is similar to Proposition 2.4, with essentially by the same proof.
The notions equally good and adequate are the same as that of Section 2.2.

Proposition 3.2. Suppose that the conditions of the first part of Theorem 3.1
hold. Then
(i) Any two sequences in π∗(n) and PPP∗(n) are equally good, that is, any sequence
of models in π∗(n) is adequate.
(ii) The set PPP∗ is a singleton and the sets PPP∗(n) and π∗(n) converge to the
singleton PPP∗ as n → ∞.

The following proposition generalizes Propositions 2.6 and 2.5 to J > 1.
Here we consider a uniform bound (3.7). Technically, the constant C provides a
measure of the notion of “sufficiently homogeneous” of Section 1.2 when referring
to the set of distributions G; informally we mean that the regression datasets
have enough in common to justify common subsets for prediction.

Proposition 3.3. 1. Assume that the conditions of the first part of Theorem
3.1 hold. Then for fixed n we have

lim
N→∞

P
(
π̂∗(n,N) ⊆ π∗(n)

)
= 1.

2. Let n/Nj be bounded for all j = 1, . . . ,J , and let C be a constant satisfying
for all j and P

n/Nj , λmax(W
(P)
j ), 1/λmin(W

(P)
j ), λmax(Q

(P)
j ) ≤ C. (3.7)

Then

lim inf
n/Nj≤C, n→∞,N→∞

P
(
π̂∗(n,N) = PPP∗(n)

)
≥ 1−KC/J ,

where KC depends only on C.
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The existence of C follows from the assumption on n/Nj since only a finite
number of bounded terms appear in (3.7) besides n/Nj .

Part 1 of the above proposition extends Propositions 2.6. Part 2 extends
Proposition 2.5; however, a stronger condition was needed before, namely that
n/N → 0, to obtain consistency. Here, we obtain approximate consistency for
large J , assuming only that n/Nj is bounded, along with the other terms in
(3.7). This is useful since in our application it is natural to consider the possi-
bility that n = Nj .

The rateKC/J in the theorem was achieved by using Chebyshev’s inequality.
Since under our assumptions all moments are bounded, a similar argument using
a bound on 2m moments leads in the same way to the rate KC,m/Jm, where
KC,m depends also on m, and with further effort, a large deviation rate (in J )
can be achieved.

3.3. A population of distributions

We now consider the situation where we have a sample of J regression datasets
from a given, finite or infinite, population of such datasets, and we are interested
in predictions for a random (possibly out-of-sample) further regression or several
regressions from the same population. In terms of the application considered in
this paper, this situation corresponds to the case that we have a training sample
of J doctors out of many more, and our goal is to select a subset of covariates
to be used to predict service durations for a random doctor from the population
who may not be in the training sample.

Formally, let (Θ,T ,P) be a probability space and let {Gθ : θ ∈ Θ} be
a family of distributions; see, e.g., Çinlar [7], Chapter VI for a formulation of
random measures. Let {θ1, . . . , θJ } be a sample where θj ∼ P, and as in Section
3.1 we observe a training set consisting of datasets Dj = {(Xij , Yij) ∼ Gj , i =
1, . . . , Nj}, j = 1, . . . ,J , where Gj stands for Gθj . Given θ ∈ Θ, we consider
D = {(Xi, Yi) ∼ Gθ, i = 1, . . . , n}. For any function f for which the conditional
expectation EGθ

f(D) of f(D) given Gθ is well defined, we assume that so is
EPEGθ

f(D) =
∫
EGθ

f(D)P(dθ), where the outer expectation is over θ ∼ P.
We now fix a set of covariates P , which is suppressed in most of the notation as

before. For any Gθ we define β̂θ,n to be the least squares estimator for the given
dataset D. If Gθ is sampled randomly from P then the population prediction
error is defined as

Rpop(n, P ) :=
∫

Rθ(n, P )P(dθ) :=

∫
EGθ

(Y −X′β̂θ,n)
2P(dθ), (3.8)

where the expectation EGθ
is over β̂θ,n and (X, Y ) ∼ Gθ that are indepen-

dent of β̂θ,n. Let βθ := argminβ EGθ
(Y − X′β)2, Qθ := EGθ

(XX′), Wθ :=

EGθ
(XX′e2), and Vθ := WθQ−1

θ . As before, Rpop(n, P ) is approximated by

ARpop(n, P ) :=
∫

ARθ(n, P )P(dθ) :=

∫ {
EGθ

(Y −X′βθ)
2 +

tr(Vθ)

n

}
P(dθ),

(3.9)
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where the latter integrand defines ARθ(n, P ) as in (2.7). The quantityARθ(n, P ),
whose estimation was already discussed, is now a random variable, since it
depends on Gθ with θ ∼ P; its expectation, given by (3.9), is the basis of
our estimation of Rpop(n, P ) of (3.8). Lemma 3.4 below generalizes (2.9).

Lemma 3.4. Suppose that the conditions of Theorem 2.1 hold uniformly in
θ ∈ Θ; that is, for each k, the kth moment with respect to Gθ of each entry of
X and Y is bounded uniformly in θ, and the entries of (X′

nXn/n)
−1 have third

moments with respect to Gθ that are bounded uniformly in n and θ. Then

Rpop(n, P ) = ARpop(n, P ) +O(1/n3/2).

The lemma clearly holds if Θ is finite, and in general it follows readily by
the uniform boundedness of moments in θ and the proof of (2.9) given in the
Appendix. Recall Lemma 2.2, where we showed that the moment conditions of
Theorem 2.1 hold when X is a mixture of normals and infΣ∈Ξ λmin(Σ) > 0. For
the bound on moments as assumed in Lemma 3.4 to hold uniformly, it suffices
that infΣ λmin(Σ) > 0, where now the infimum is over all covariance matrices
of all the mixing normal distributions involved in all the distributions Gθ for
all θ ∈ Θ. This technical assumption means that the covariates that are taken
into account for the model selection are “bounded away” from multicollinearity.
For discrete variables we redefine the prediction error by conditioning as in
Section 2.4. Theorem 2.3 extends easily when we assume that all covariates are
uniformly bounded in θ, and that λmin(Qθ) > c for some c > 0, for all θ.

Lemma 3.4 suggests that a consistent estimator of ARpop(n, P ) will lead to
selection of an adequate model in the sense of Section 2.2, that is, a model that
is as good as the model that minimizes Rpop(n, P ).

Recall the definition of AR(n, P ) in (3.2); now this quantity is considered
random as it is a function of the sampled distributions G1, . . . , GJ . In order to
generalize the consistency results of Theorem 3.1 to this case, we need to bound
ARpop(n, P )−AR(n, P ) as in the lemma below.

Lemma 3.5. Under the conditions of Lemma 3.4,

ARpop(n, P )−AR(n, P ) = Op(1/
√
J ) (3.10)

uniformly in n. Moreover, for any fixed n,
√
J
(
ARpop(n, P ) − AR(n, P )

)
is

asymptotically normal.

We now consider the population versions of the quantities defined in Section
3.2.

PPP∗
pop(n) := argmin

P
Rpop(n, P ) = argmin

P

∫
EGθ

(Y −X(P)′ β̂
(P)
θ,n)

2P(dθ),

π∗
pop(n) := argmin

P
ARpop(n, P )

= argmin
P

∫ {
EGθ

(Y −X(P)′β
(P)
θ )2 +

tr(V(P)
θ )

n

}
P(dθ),
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PPP∗
pop := arg min

P∈Mpop

|P | where Mpop := argmin
P

∫
EGθ

(Y −X(P)′β
(P)
θ )2P(dθ).

π̂∗(n,N) and π∗(n) are defined as in (3.6), however the fact that now the Gj ’s

are random adds randomness to π̂∗(n,N), and makes π∗(n) a random variable.
Proposition 3.6 parallels Proposition 3.3; it shows consistency properties of

π̂∗(n,N), as defined in (3.6) using (3.4). Below, the probability P is obtained by
first conditioning on θ1, . . . , θJ , and then unconditioning by taking expectation
over θ1, . . . , θJ with respect to the product measure PJ .

Proposition 3.6. Assume that the conditions of Lemma 3.4 hold, and in ad-

dition that n/Nj , λmax(W
(P)
θ ), 1/λmin(W

(P)
θ ), λmax(Q

(P)
θ ) ≤ C for all θ and P .

1. When n is fixed,

lim inf
N→∞

P
(
π̂∗(n,N) ⊆ π∗

pop(n)
)
≥ 1− KC

J .

2. Letting n,N → ∞,

lim inf
n/Nj≤C, n→∞,N→∞

P
(
π̂∗(n,N) = PPP∗

pop(n)
)
≥ 1− KC

J ,

where KC depends only on C.

The proof of Proposition 3.6 also shows that PPP∗
pop is a singleton and PPP∗

pop(n)
and π∗

pop(n) converge to it when n → ∞.

4. GENO

4.1. Definition of GENO

Given a model (i.e., a set of covariates) P with coefficients estimated by a sample
of n observations, we can say that it is equivalent to another model Q with m
observations if their expected prediction errors satisfy R(m,Q ) = R(n, P ). Using
the approximation AR(n, P ) to R(n, P ) given in (2.7), (3.2), and (3.9) for each
of the scenarios we consider, we define GENO by

GENO(n; P ,Q ) :=
{
m : AR(m,Q ) = AR(n, P )

}
. (4.1)

If AR(m,Q ) > (<)AR(n, P ) for allm, we set GENO(n, P ,Q ) = ∞(0), indicating
that model P with n observations is better than model Q with any number of
observations (model Q with any number of observations is better than P with
n). A direct calculation shows that for J = 1 we have

GENO(n; P ,Q ) = tr(V(Q ))
{
AR(n, P )−AR(n,Q ) +

1

n
trV(Q )

}−1
.

For J > 1 with AR defined in (3.2) we have

GENO(n; P ,Q )=
[ 1

J
∑
j

tr(V(Q )
j )

]{
AR(n, P )−AR(n,Q )+

1

J n

∑
j

tr(V(Q )
j )

}−1

.
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For the case of (3.9), j is replaced by θ, and the averages by integrals P(dθ).
GENO(n; P ,Q ) = m means that model P with n observations is equivalent

in terms of expected prediction error to model Q with m observations. Note
that the larger GENO(n; P ,Q ) is, the better model P (with n observations) is
relative to model Q . For each model P and sample size n, we define

GENO(n, P ) = min
R

GENO(n; P ,R ), (4.2)

where the minimum is over all subsets of covariates R . It follows that the in-
equality GENO(n, P ) ≤ n holds always, where equality means that P is the
best model for n observations, as no other model can achieve the same predic-
tion error with fewer observations. On the other hand, GENO(n, P ) = m < n
means that there is a model that achieves, with m < n observations, the same
prediction error as P with n observations. Thus, small values of GENO(n, P )
suggest considering another model. By the monotonicity of AR(n, P ) in n, if the
inequality GENO(n; P ,R ) ≥ GENO(n;Q ,R ) holds for some model R , then it
holds all R . This readily implies

AR(n, P ) ≤ AR(n,Q ) ⇔ GENO(n; P ,R ) ≥ GENO(n;Q ,R ) for all R

⇔ GENO(n, P ) ≥ GENO(n,Q ). (4.3)

4.2. Estimation of GENO

In the case J = 1, (2.13) shows the consistency of C(P)(n,N) as an estimator
of AR(n, P ) for fixed n as N → ∞. In view of (4.1) we define a consistent
estimator of GENO(n; p, q) by

ĜENO(n; p, q) :=
{
m : C(Q )(m,N) = C(P)(n,N)

}
.

To avoid cumbersome notation we suppress N in ĜENO. Using (2.8) we obtain,
as before,

ĜENO(n; P ,Q ) = tr(V̂(Q )
N )

{
C(P)(n,N)− C(Q )(n,N) +

tr(V̂(Q )
N )

n

}−1

, (4.4)

setting it to be ∞ if the expression in curly brackets is negative or zero.
In the case of J > 1 datasets of Section 3.1, or in the population case of

Section 3.3, the above expression (4.4) remains unchanged except that now

C(P)(n,N) is replaced by C(P)(n,N) defined in (3.4), and V̂(Q )
N is replaced by

1
J
∑

j tr(V̂
(Q )
j,Nj

). We can also define the estimator of (4.4) in terms of the jack-

knife bias-corrected CCC(P)(n,N) of (3.5). This is done in estimating GENO in
Section 6.3. The results below hold in the same way for all these cases. Simi-
larly to (4.2), we define the statistic

ĜENO(n, P ) := min
R

ĜENO(n; P ,R ),
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which is an estimate the minimal number of observations required by the best
competing model to achieve the same prediction error as model P with sample
size n.

As in (4.3), we have

C(P)(n,N) < C(Q )(n,N) ⇔ ĜENO(n; P ,R ) ≥ ĜENO(n;Q ,R ) ∀R

⇔ ĜENO(n, P ) ≥ ĜENO(n,Q ).

The next proposition follows from (2.13) by applying the δ-method to the in-

verse function in (4.4). In particular, it shows the consistency of ĜENO(n; P ,Q )
for fixed n as N → ∞.

Proposition 4.1. Under the conditions of Theorem 3.1 (which include the case
J = 1), we have for any fixed n√

N1

(
ĜENO(n; P ,Q )−GENO(n; P ,Q )

) D−→ N(0,η2) as N → ∞,

for some η2 > 0.

The variance η2 is not given explicitly since it is too complicated to be useful,
and it can be be computed by the bootstrap. See Theorem 3.1 and the ensuing
comment, which show that (under certain conditions) the variance decreases at
a rate of 1/J .

A similar problem is to estimate for a given model P and a certain prescribed
prediction error E the sample size n that satisfies AR(n, P ) = E. When J =

1, using (2.7) this quantity is given by
tr(V(P))

E − E
(
Y −X(P)′β(P))2 and can be

estimated by

tr(V̂N )

E − 1
N {||YN − X(P)

N β̂
(P)
N ||2 + tr(V̂(P)

N )}
(4.5)

(Since 1
N {||YN − X(P)

N β̂
(P)
N ||2 + tr(V̂(P)

N )} is an unbiased estimator of E
(
Y −

X(P)′β(P))2); the extensions to the cases J > 1 and to the population setup are
straightforward.

5. Simulations

In this section we evaluate by simulations the prediction error R(n, P ), its ap-
proximation AR(n, P ), and its estimation using C(P). We start with a single
dataset (J = 1) and then we consider the case of several datasets. This simple
example demonstrates the well-known difficulty involved in model selection for
a single given dataset with methods such as Mallows Cp, AIC, BIC, as well as
our version C(P). In Section 5.2 we compare the case of model selection for one
dataset to that of choosing a common model for successful prediction on the
average when we have data from several datasets, that is, a multi-task. Section
5.3 compares the prediction error when model selection is done according to
CCC(P) to the prediction error under other methods.
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5.1. A single dataset

Suppose that the distribution of (X, Y ) for X ∈ R5 is given by

Y = b0 + b1X1 + . . .+ b5X5 + a(X2
1 − 1) + σε, (5.1)

with X1, . . . , X5, ε ∼iid N(0, 1). Setting all models to include the intercept,
there are 25 possible submodels; for simplicity, we focus for now on two models
consisting of the subsets of covariates P1 = {1, X1}, P2 = {1, X1, . . . , X5}; more
explicitly, we have model P1: Y = β0+β1X1+e and model P2: Y = β0+β1X1+
. . . β5X5 + e. These two models are wrong (as linear conditional expectation
function models, see Hansen [12] Section 2.15) since the residual e includes
the nonlinear term X2

1 − 1. By the orthogonality of the variables in (5.1), the
projection parameters βk are equal to bk for these models; see (2.1). This is
used in computing the first part of AR(n, P�) for 
 = 1, 2, and since in this case
Q = I, it is also easy to compute tr(V) for each model. We obtain

AR(n, P1) =

5∑
k=2

b2k + 2a2 + σ2 +
2(
∑5

k=2 b
2
k + σ2) + 12a2

n
, (5.2)

AR(n, P2) = 2a2 + σ2 +
6σ2 + 20a2

n
; (5.3)

notice that the above functions do not depend on b0, b1. For a concrete example,
we set in (5.1)

(b0, b1) = (1, 3), (b2, . . . , b5) = (1, . . . , 1), a = 1, σ = 7. (5.4)

Figure 1 plots R(n, P�) (see (2.4)-(2.5)) (solid lines) and AR(n, p�) (see (5.2))
(dashed line), 
 = 1, 2, as functions of n for the above parameters. We evaluated
R(n, P�), where 
 = 1, 2, by a simulation based on 103 repetitions and using the
decomposition (see (7.1) and recall that Q = I)

R(n, P�) = E
(
Y − (X(P�))′β(P�)

)2
+ E‖β̂(P�) − β(P�)‖2;

the first expectation can be computed explicitly and the second is evaluated
using simulations. For small n, R(n, P2) differs from AR(n, P2), and the approx-
imation improves as n increases. For n smaller than about 50, model P1 has a
smaller prediction error; for large nmodel P2 is better. This holds approximately
for both R and AR. This makes sense as models with fewer parameters have a
smaller prediction error for small n. The rest of the models are not optimal for
any n (this observation is not shown in Figure 1).

Consider GENO as defined in (4.1). Careful inspection of Figure 1 shows, for
example, that GENO(49; P1, P2) = 49, which means that in order to achieve the
same prediction error as model P1 with n = 49 observations (the value of n where
the dashed black line and red the line intersect), model P2 requires the same
number of observations. Also, GENO(60; p2, p1) = 95, and therefore, to achieve
the same prediction error as model P2 with n = 60, model P1 would require 95
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Fig 1: Simulation estimates of R(n, P1) and R(n, P2) (solid line) as well as the approximations
AR (dashed line) given in (5.2).

observations (the value of n where the dashed black line has the same level as
the dashed red line at 60). Since the decrease of AR(n, P1) (the black line) in n is
slow, a small increase in n, will result in a much larger value of GENO(n; P2, P1);
for example, GENO(65; P2, P1) = 142. As mentioned before, GENO allows the
statistician to compare the cost of additional observations to the cost of mea-
suring additional variables, which may be expensive, or harmful, such as in the
case of an invasive medical procedure or imaging that involves radiation.

By (4.5), the numbers of observations for models P1 and P2 to obtain a
prediction error of 59 are about 29 and 39, respectively; i.e., model P1 can achieve
this prediction error with a sample size that is smaller by 10 observations. On
the other hand, for a prediction error of 56, model P1 requires 118 observations,
while model P2 needs only 63 observations.

We now discuss estimation of the prediction error using C(P)(n,N) based on
a single dataset of size N = 100. Figure 2 plots R(n, P1)−R(n, P2) (solid line),
AR(n, P1)−AR(n, P2) (dashed line), and boxplots of the estimators C(P1)(n,N)
−C(P2)(n,N) on the left-hand side, and C(P1)(n,N)−C(p2)(n,N), the jackknife
bias-corrected version, on the right-hand side, based on 103 simulations for each
n = 20, 40, . . . , 200. Their means are given by circles. We see that the jackknife
corrects the bias of C(P1)(n,N) − C(P2)(n,N) as an estimator of AR(n, P1) −
AR(n, P2); see the discussion following (2.8). Recall that the bias itself and the
correction decrease in n. The mean of the difference C(P1)(n,N) − C(P2)(n,N)
and C(P1)(n,N) − C(P2)(n,N) equals 0 at about n = 40 and n = 50, respec-
tively; thus the jackknife leads to correct selection on average since it is optimal
to select model P1 for about n ≤ 50.

Figure 3 depicts simulation estimates of the probability of selecting models P1

and P2 as a function of n, using C(P)(n,N) and the jackknifed C(P)(n,N), where
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Fig 2: (a) Boxplots of the simulation results of C(P1)(n,N) − C(P2)(n,N), where ◦ (circle)
denotes the mean, and R(n, P1) − R(n, P2) (respectively, AR(n, P1) − AR(n, P2)) is a solid
(respectively, dashed) line. (b) Same as (a) for jackknifed version C(P1)(n,N)− C(P2)(n,N).

Fig 3: Probability of selecting model p1; the thick line is the simulation mean and the thin
lines are plus and minus two standard errors.

all 25 possible sub-models P are considered; for clarity we present the curves
of P1 and P2 only. For each n and for each simulated dataset, C(P)(n,N) and
C(P)(n,N) are calculated for all P . The empirical averages over 100 simulations
of selecting models P1 and P2 out of the 25 sub-models for each n are plotted
in Figure 3. The bias correction increases the probability of selecting model P1

for small n. This improves the selection for small or moderate values of n. For
the problem of selecting a common model for J datasets, the bias correction
becomes more significant, as demonstrated next.

5.2. Multiple datasets

We now consider the case of J > 1 datasets. Suppose that Gθ is given by model
(5.1) with bθ,0 = 1, bθ,k = Wk(bk + Zk) for k = 1, . . . , 5, where bk is given in
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(5.4), (Z1, . . . , Z5) ∼ N(0, 0.22), Wk is ±1 with equal probability, and all the
above random variables are independent (thus determining the distribution P
of Section 3.3), and then fixed throughout this section. The expected b2θ,k is

approximately equal to b2k in (5.4), but about half of the bθ,k’s are positive and
half are negative. The number of regression datasets is J = 100, and Nj =
20, 100, and 200 for 1 ≤ j ≤ 33, 34 ≤ j ≤ 66, 67 ≤ j ≤ 100, respectively.

In the case of observing all regressions (see Section 3.1, Equation (1.1)), we
wish to estimateR(n, P ), whereas in the case of observing a sample of regressions
from the distribution P (see Section 3.3, Equation (3.8)), the relevant quantity
is Rpop(n, P ). Computing the latter quantity is difficult, and instead we use
the approximation R(n, P ), which is justified by the law of large numbers and
the central limit theorem (see Lemma 3.5). Thus we now focus on estimating
R(n, P ) and selecting according to its estimate. The plot of R(n, P ) for J = 100
and P = P1, P2 is similar to Figure 1 and therefore is not presented here.

Figure 4 parallels Figure 2, where now in the case of J datasets, C(P)(n,N)
and CCC(P)(n,N) replace C(P)(n,N), and C(P)(n,N), respectively; see (3.4) and
(3.5); the number of simulations to evaluate Rpop(n, P ) and to produce Figures
4 and 5 is 100. We see that the jackknife bias correction works well. Here the
variances of the estimates are much smaller, indicating that several datasets can
lead to better estimates and model selection procedures, as predicted by theory.
The y-axis scale varies between Figures 4 and 2, in a way that undermines their
difference.

Figure 5 plots the selection probabilities as a function of n (out of all 25 sub-
models). Unlike the case J = 1 (see Figure 3), model P1 (respectively, model P2)
is selected with high probability for small n (respectively, large n). Recall that
it is optimal to select model P1 (respectively, P2) when n ≤ 50, (respectively,
n ≥ 50). Selecting according to C(P)(n,N) leads to favoring P2 (or other models)
when n is greater than approximately 25 (instead of 50) and CCC(P)(n,N) corrects
this bias. Thus, the probability of correct model selection is much higher when
using the J = 100 datasets (see Figure 1). Clearly, the probability of making
a correct selection depends on the number of datasets J , the similarity among
the J models, the noise level in the models, and the sample size n.

5.3. Comparisons to other approaches

We considered the possibility of concatenating the whole training sample and
performing a single regression with an intercept for each j. In this simulation,
since about half of the bθ,k’s are positive and half are negative, the resulting
regression model leads to a higher prediction error than the one of CCC(P)(n,N).
The latter has estimated prediction error of 56.1 (SE=0.03) (see Table 1 below),
while for the ordinary least squares applied to the concatenated dataset the
corresponding number is 63.6 (SE=0.1), computed by averaging the prediction
error over 1000 independent datasets with the same distribution. For ridge and
lasso estimators applied to the concatenated dataset (calculated using the glm-
net package, where the tuning parameter was computed using cross-validation),
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Fig 4: Same plots as in Figure 2 when there are J = 100 samples.

Fig 5: Same plots as in Figure 3 when there are J = 100 samples.

the prediction error was slightly higher: 64.1 (SE=0.1) and 63.9 (SE=0.1) for
ridge and lasso respectively.

Another approach is to consider a separate model selection algorithm for
each of the J datasets. We considered three selection criteria: C(P)(n,Nj) with
n = Nj as in (2.8) (applied to each dataset separately), Mallows’ Cp and BIC.
The means of the resulting prediction errors are given in the Table 1 below as
well as that of CCC(P)(n,N) (where the same model is selected for all j’s with the
same sample sizeNj). The datasets are divided into three categories according to
their sample sizes and the mean is reported for each category separately. Recall
that Nj = 20, 100, and 200 for 1 ≤ j ≤ 33, 34 ≤ j ≤ 66, and 67 ≤ j ≤ 100,
respectively. The prediction error Rj(Nj , P�) was evaluated as in Figure 1. Table
1 shows that CCC(P)(n,N) leads to smaller prediction errors and the improvements
is higher for smaller sample-sizes, where borrowing power from other datasets
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is more important.

Table 1

The means of the prediction errors Rj(Nj , P�), where P� is selected by different methods.
The standard errors are about 0.03.

Model selection method

Nj CCC(P)(n,N) C(P)(n,Nj) Mallows’ Cp BIC

20 61.4 67.4 66.4 66.1
100 54.4 55.2 55.2 56.1
200 52.7 53.4 53.4 54.5

Average 56.1 58.7 58.3 58.9

6. Prediction of durations of medical examinations

In this section we analyze a dataset of outpatients’ hospital visits. Different
models are considered in order to predict the actual appointments’ durations as
opposed to the planned durations.

6.1. Description of the data

The dataset analyzed is taken from the SEE Lab at the Technion. It consists of
information on 140,924 hospital visits that took place in a certain US hospital
for about two years between 2013 and 2015. For each visit, both the planned
time and the actual time are reported. The goal was to provide a more accurate
prediction of the actual duration than the planned one. In this dataset there is
information on 44,516 patients and 258 doctors, out of whom 34 doctors had
fewer than 50 visits. We shall focus on the rest, which corresponds to 99.5% of
all visits. The regression coefficients will differ between doctors, and the goal
is to select one common subset of covariates (for each n) for all doctors for
prediction of visit durations.

The distribution of the planned duration is given in Table 2 and Figure 6 plots
the estimated density (a normal kernel estimate using the R command “den-
sity”) of the actual durations for the time slots of 15, 30, and 60 minutes. Actual
durations are obtained by a real-time location system (RTLS). The means are
16.7, 21.3, and 41.2, respectively.

Table 2

The distribution of the planned duration.

minutes 15 30 45 60 other

percentage 29.8% 52.6% 1.8% 15.5% 0.3%
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Fig 6: Estimated density of the actual duration for the time slots of 15, 30, and 60 minutes.
The vertical dashed lines are at 15, 30, and 60 minutes.

6.2. A regression model

The original dataset contains a large number of covariates, of which many did
not seem to have any predictive power relative to visit durations. For simplic-
ity of presentation, we focus on a small number of covariates that seem most
relevant. We aim to predict actual duration, using the following covariates:

• duration planned = the planned duration of the visit in minutes.
• duration planned 2 = the planned duration in minutes of the visit,

squared.
• last = the planned minus the actual duration of the previous visit of the

same patient (taken to be 0 for the first visit of the patient).
• hour end = whether the exam is planned to end on the hour. It turns out

that these kinds of visits tend to be somewhat longer.
• type = there are two types of examinations: consultation/examination

only, or the above plus treatment. In either case, only the first part counts
as duration.

Standard statistical inference of the linear regression model of the whole dataset
(ignoring the doctors’ index) reveals that all of the above covariates besides
“type” are statistically significant; however, the standard error of the residuals
is 15.33, and R2 = 0.227, suggesting that the prediction error is quite large.

6.3. CCC(P) and model selection

In our notation, each doctor is indexed by j, and Nj is the number of visits to
doctor j in the dataset; Nj varies between 50 and 2135. We demonstrate our
approach by focusing on four candidate models that have the smallest (or nearly
smallest) CCC(P) from all submodels of the five covariates (all models included the
intercept term) for relevant sample sizes n. These models are P1 – the model
with the covariates: duration planned, duration planned 2; P2 – the model with
the same covariates as in P1 and additionally, the variable “last”; P3 – the model
with the same covariates of P2 and additionally, the variable “type”; and P4 –
the full model. For certain submodels estimation is possible only for a subset of
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Fig 7: A plot of CCC(p)(n,N) for p = p1, p2, p3, p4 and n = 50, 55, . . . , 500.

the doctors since X(P)′

j,Nj
X(P)

j,Nj
is not always invertible. Therefore J varies between

the models. For the models P1 and P2, invertibility held for 96 doctors and for
the models P3 and P4, the corresponding number is 95, and so for these models
J = 96 or J = 95. In this case, CCC(P)(n,N) is based only on this subset.

Figure 7 plots CCC(P)(n,N) for P = P� where 
 = 1, . . . , 4 and n is between
50 and 500. For n smaller than approximately 80, model P1 is the best among
the candidate models; for n between 80 and 450, P2 has a smaller CCC(P), and for
larger n, P3 is the best, but P2 is very close. In terms of GENO, we have, for

example, that for n = 50, ĜENO(n, P1,Q ) for Q = P2, P3, and P4 equals 54, 63,
73, respectively. The latter number means that model P4 (the full model) would
require 73 observations to achieve the same prediction error as model P1 with

n = 50 observations. Also, ĜENO(200, P2, P1) = 370; if one considers using only
the planned duration (P1) or using model P2, that is, adding the variable “last”
with the information on the last visit, which may not be available for some
patients, then the estimated prediction error by the model P2 with n = 200
observations can be achieved without knowing “last” by P1, with n = 370. It is
then left to the user to decide whether to invest in measuring “last” or in using
a larger sample, if such a sample is available.

Table 3 reports CCC(P�)(n,N) for different sample sizes n. Standard deviations
estimated by the bootstrap, and cross-validation estimates of R(n, P ), are also
provided. The latter estimates are computed only for j’s where Nj > n. For each
such j, the data were split at random into a training set with n observations, and

a testing set of size Nj−n. The estimates β̂
(P)
j,n are based on the training set and

the prediction error Rj(n, P ) is evaluated using the testing set. This procedure
was repeated 1,000 times and the average prediction error is reported. The cross-
validation estimates are mostly within one standard error of theCCC(P) values, and
the two approaches lead to selection of the same models.

Table 4 reports the values of CCC(P)(n,N) −CCC(Q )(n,N) together with a boot-
strap estimate of the standard deviation for different values of n and various
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pairs of models. Also the differences of the corresponding cross-validation es-
timates are given. The standard deviations of Table 4 are much smaller than
those of Table 3. This is consistent with our theoretical results that comparison
of two similar models leads to a small estimation error (see the discussion after
Theorem 2.1). The table shows which pairs P , Q differ significantly, and for
which values of n.

Table 3

CCC(P)(n,N) for P = P1, P2, P3, P4 and for n = 50, 150, 500. Bootstrap standard deviations
(SD) and cross-validation (CV) estimates are also provided.

Model P1 Model P2 Model P3 Model P4

n CCC(P1) (SD) CV CCC(P2) (SD) CV CCC(P3) (SD) CV CCC(P4) (SD) CV

50 189.9 (3.4) 183.9 191.2 (3.5) 185.9 194.0 (3.5) 190.1 197.4 (3.8) 194.5
150 181.1 (3.3) 181.1 180.0 (3.3) 180.4 180.7 (3.4) 181.3 181.7 (3.4) 183.0
500 178.1 (3.3) 183.0 176.1 (3.1) 181.3 176.0 (3.4) 181.2 176.2 (3.3) 181.3

Table 4

The values of CCC(P)(n,N)−CCC(Q )(n,N) for n = 50, 150, 500. Bootstrap standard deviations
(SD) and cross-validation (CV) estimates are also provided. Boldface numbers indicate

differences that are significantly (more than two SD’s) non-zero.

n = 50 n = 150 n = 500

P Q CCC(P) −CCC(Q ) (SD) CV CCC(P) −CCC(Q ) (SD) CV CCC(P) −CCC(Q ) (SD) CV

P1 P2 -1.3 (0.3) -2.0 1.2 (0.3) 0.7 2.1 (0.3) 1.7
P1 P3 -4.1 (0.4) -6.2 0.5 (0.4) −0.2 2.1 (0.4) 1.8
P1 P4 -7.5 (0.5) -10.6 -0.5 (0.5) −1.9 1.9 (0.5) 1.7
P2 P3 -2.7 (0.2) -4.2 -0.7 (0.2) -0.9 0.0 (0.2) 0.1
P2 P4 -6.2 (0.4) -8.6 -1.7 (0.3) -2.6 -0.1 (0.3) 0.0
P3 P4 -3.4 (0.3) -4.4 -1.0 (0.2) -1.7 -0.2 (0.2) -0.1

6.4. Comparisons to other approaches

As in Section 5.3 we compare our method to other approaches. One possibility
is to concatenate the whole training sample and add a categorical variable for
the doctors. The (10-fold) cross-validation estimate of the prediction error of
the OLS is 204.5. The corresponding numbers for the ridge and lasso estimates
(applied to the concatenated data) are similar: 205.0 and 204.8. The estimates
of prediction errors of our method are smaller: they vary between 190 and 176
for 50 ≤ n ≤ 500 (See Figure 7 and Table 3).

A different approach is to preform a separate model selection for each of the J
datasets. As in Section 5.3, three selection criteria are considered, C(P)(Nj , Nj)
(the bias-corrected C(P)(n,N) with n = Nj), Mallows’ Cp and BIC. Figure
8 plots the cross-validation estimates of the prediction errors of the selected
models by the three criteria as a function of the sample size n = Nj . A normal-
kernel smoothing is drawn to illustrate the average prediction error as a function
of the sample size. Also plotted is the prediction error of the common model
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Fig 8: Prediction errors (estimated by cross-validation) of the model selection methods
C(p)(Nj , Nj), Mallows’ Cp and BIC applied to each dataset separately compared to the com-

mon model P2. The dashed lines are Gaussian-kernel smoothing. The green line is CCC(P2)(n,N)
as a function of n ∈ [50, 500].

selection P2 (which is close to optimal for sample sizes between 50 and 500) as
estimated by CCC(P2). Table 3 shows that the latter estimate is rather close to its
cross validation estimate. Figure 8 shows that: a. the differences between the
three selection criteria are small; b. a common model selection by CCC(P) is better
on average than a separate model selection; c. the latter statement is especially
true for small sample sizes where borrowing strength is more important.

7. Appendix A: Proofs

Recall that we use P to denote a subset of the covariates, to which we sometimes
refer as a model, and denote its size with the corresponding letter p. We suppress
it in most of our notation below and instead of X(P) we write X and assume it
is in Rp.
Proof of Theorem 2.1. We first prove (2.9). For β̂n computed from a sample
D = {(Xi, Yi) : i = 1, . . . , n}, and a pair of new observations from the same
distribution (X, Y ), independent of D, we have

E(Y −X′β̂n)
2 = E(Y −X′β)2+E[X′(β̂n−β)]2−2E[(Y −X′β)X′(β̂n−β)]

= E(Y −X′β)2 + E[X′(β̂n − β)]2, (7.1)

where the last term in the first line of (7.1) vanishes since E[(Y − X′β)X] =

E[eX] = 0 and Y and X are independent of β̂n. This argument holds also if we
condition on Hn (see (2.14), and Theorem 2.3). By (7.1) we have that

n[R(n, P )−AR(n, P )] = E[X′√n(β̂n − β)]2 − tr(V). (7.2)
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Using independence of X and β̂n again we have

E[X′√n(β̂n − β)]2 = tr{E[XX′]E[n(β̂n − β)(β̂n − β)′]}
= tr{QE[n(β̂n − β)(β̂n − β)′]}.

For the proof of Theorem 2.3 the expectations should be conditioned on the set
Hn, whose probability is large, and the conditioning does not affect the rates
we obtain.

By Equation (7.3) of Hansen [12],

√
n(β̂n − β) = Q̂−1

n

1√
n

n∑
i=1

Xiei = Q̂−1
n Un.

Since E{tr(UnU
′
nQ−1)} = tr(V) we rewrite the right-hand side of (7.2) as

E{tr(QQ̂−1
n UnU

′
nQ̂

−1
n )− tr(QQ−1UnU

′
nQ

−1)}
= tr(QE{Q̂−1

n UnU
′
nQ̂

−1
n −Q−1UnU

′
nQ

−1}). (7.3)

In order to prove (2.9) we now show that the latter expectation is of order
O(1/n1/2). To this end, notice that

Q̂−1
n UnU

′
nQ̂

−1
n −Q−1UnU

′
nQ

−1

= (Q̂−1
n −Q−1)UnU

′
nQ̂

−1
n +Q−1UnU

′
n(Q̂

−1
n −Q−1).

We now deal with the first term on the right-hand side above, the other term
being similar, and simpler. We have

Q̂−1
n −Q−1 = Q−1(Q− Q̂n)Q̂−1

n (7.4)

and therefore (recall (7.3)) we consider the expectation of

tr
(
Q(Q̂−1

n −Q−1)UnU
′
nQ̂

−1
n

)
= tr

(
(Q− Q̂n)Q̂−1

n UnU
′
nQ̂

−1
n

)
.

This matrix is a product of random matrices of the form ABCD where A =
Q − Q̂n, B = D = Q̂−1

n , and C = UnU
′
n. The trace is a sum of products

of entries from all the matrices appearing in the product. Different choices of
powers can be made, but we use Hölder’s inequality in the form E|abcd| ≤
(Ea12)1/12(E|b|3)1/3(Ec4)1/4(E|d|3)1/3 for simplicity. Here a is an entry from
A, b an entry from from B, etc., and the triangle inequality can then be used
to bound the sum comprising the trace.

For each element j, k of Q− Q̂n we have

E(Q− Q̂n)
12
j,k = E

( 1

n

n∑
i=1

[E(XjXk)−XijXik]
)12

.

The summands E(XjXk)−XijXik have zero expectation; expanding (Q−Q̂n)
12
j,k

we see that the number of nonvanishing terms when the expectation is taken
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is of order n6, and all these terms are bounded by our assumptions. Therefore,
[E(Q− Q̂n)

12
j,k]

1/12 is of order 1/
√
n. (Actually, it is easy to see that 24 bounded

moments suffice for this argument, and also for bounding the remaining terms,
and 24 can be somewhat reduced by a better but more cumbersome choice of the
powers in Hölder’s inequality.) A similar computation for the matrix C shows
that the required moments of its entries are bounded. The rest of the terms are
bounded by our assumptions. Now (2.9) follows.

The proof required the bounded third power of B = Q̂−1
n , which means that

with a mixture of normals we need n > p+ 5. See the Proof of Lemma 2.2.
We now show (2.10). The definitions of AR(n, P ) and C(P)(n,N) imply that

AR(n, P )− C(P)(n,N)

= E(Y −X′β)2 − 1

N
||YN − XN β̂N ||2 + 1

n

{
tr(V)− tr(V̂N )

}
− tr(V̂N )

N
.

(7.5)

Starting with the second term on the right-hand side of (7.5), we have

||YN − XNβ||2 = ||YN − XN β̂N ||2 + ||XN (β̂N − β)||2

− 2(YN − XN β̂N )′(XN (β̂N − β)),

where the last term vanishes since X′
N (YN − XN β̂N ) = 0. Hence,

E(Y −X′β)2 − 1

N
||YN − XN β̂N ||2

= E(Y −X′β)2 − 1

N
||YN − XNβ||2 + 1

N
||XN (β̂N − β)||2. (7.6)

Recall the notation UN = X′
NeN/

√
N . Since by Equation (7.3) of Hansen

[12] N−1/2(β̂N − β) = N−1/2(X′
NXN )−1X′

NeN = (X′
NXN )−1UN , we have

1

N
||XN (β̂N − β)||2 =

1

N
(β̂N − β)′X′

NXN (β̂N − β) = U′
N (X′

NXN )−1UN

=
1

N
tr{UNU′

N (X′
NXN/N)−1} =

1

N
tr{UNU′

NQ−1}+ op(1/N),

where the last equality holds true since (X′
NXN/N)−1 −Q−1 = op(1). Also,

1

N
||XN (β̂N−β)||2 =

1

N

[
tr(UNU′

NQ−1)−tr(WQ−1)+tr(WQ−1)
]
+op(1/N)

=
1

N

[
tr(UNU′

NQ−1)− tr(V) + tr(V̂N )
]
+ op(1/N), (7.7)

where for the last equality it suffices that Q̂N and ŴN are consistent estimates of
Q and W, and therefore tr(V̂N ) is consistent for tr(V) = tr(WQ−1). Equations
(7.5), (7.6), and (7.7) imply (2.10).
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Next we show that
√
N{tr(V̂N ) − tr(V)} is asymptotically normal starting

with the asymptotic normality of
√
N(ŴN −W). We have,

ŴN =
1

N

N∑
i=1

XiX
′
iê

2
i =

1

N

N∑
i=1

XiX
′
i(Yi −X′

iβ̂N )2

=
1

N

N∑
i=1

XiX
′
i

(
Yi −X′

iβ − {X′
iβ̂N −X′

iβ}
)2

=
1

N

N∑
i=1

XiX
′
i

(
Yi −X′

iβ
)2

− 2

N

N∑
i=1

XiX
′
i

(
Yi −X′

iβ
) (

X′
i(β̂N − β)

)
+

1

N

N∑
i=1

XiX
′
i(X

′
i{β̂N − β})2

=: A−B + C, (7.8)

respectively. Starting with the first term we have

√
N(A−W) =

1√
N

n∑
i=1

(
XiX

′
ie

2
i − E[XX′e2]

)
,

which is asymptotically normal. Now B is obtained by multiplying the sum
2
N

∑N
i=1 XiX

′
i

(
Yi−X′

iβ
)
⊗X′

i (which converges to a matrix of constants by the

law of large numbers) by Ip⊗ (β̂N −β), where Ip is the identity matrix of order
p, and ⊗ is Kronecker’s product. By Equation (7.3) of Hansen [12],

√
N(β̂N − β) = Q̂−1

N

1√
N

N∑
i=1

Xiei.

By the law of large numbers and the fact that N(β̂N −β)j(β̂N −β)k = Op(1),
we have that the term C in (7.8) is Op(

1
N ). Summing up,

√
N(ŴN −W)

=
1√
N

n∑
i=1

(
XiX

′
ie

2
i − E[XX′e2]

)
−BN [Ip⊗ (Q̂−1

N

1√
N

n∑
i=1

Xiei)]+Op(1/N),

where BN is the matrix 2
N

∑N
i=1 XiX

′
i

(
Yi − X′

iβ
)
⊗ X′

i. Condition (i) implies
that the second moment of XiX

′
ie

2
i is finite. Hence, by the central limit theorem,

1√
N

( n∑
i=1

{
XiX

′
ie

2
i − E[XX′e2]

}
,

n∑
i=1

Xiei

)
(7.9)

is jointly asymptotically normal, and since BN and Q̂N converge to a matrix of

constants, a version of Slutsky’s theorem implies that
√
N(ŴN −W) is asymp-

totically normal.

Another application of Slutsky’s theorem implies that
√
N(ŴN Q̂−1

N −WQ−1)

is asymptotically normal (since Q̂N → Q in probability) and therefore so is

√
N

{
tr

(
ŴN Q̂−1

N

)
− tr(WQ−1)

}
=

√
N

{
tr(V̂N )− tr(V)

}
.
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It follows that tr(V̂N )− tr(V) = Op(1/
√
N) and it is asymptotically normal.

Similar to previous arguments, the random variables in (7.9) and the first
part of EN are jointly asymptotically normal and a version of Slutsky’s theorem
that allows us to ignore the term Op(1/N) together with (2.10) and (2.11),
implies the last statement of Theorem 2.1 about the asymptotic normality of√
N
(
C(P)(n,N)−AR(n, P )

)
.

Proof of Lemma 2.2. First assume that the first coordinate of the covariate
vectors is 1 (corresponding to an intercept coefficient). Let X̃ denote the n ×
(p − 1) matrix defined as Xn but without the first column of 1’s. We suppress

n here and in the following notation. Let X := X̃′1/n, where 1 is an n-
column vector of 1’s, that is, X is the (p− 1)-column of covariates means, and

let S := X̃′X̃/n − XX
′
. Then by Horn and Johnson [13], page 25, Equation

(0.8.5.6)

(X′X/n)−1 =

[
1 +X

′
S−1X −X

′
S−1

−S−1X S−1

]
. (7.10)

Let X̃ denote a (p − 1)-vector of the covariates without the first 1, and as-

sume first that X̃ ∼ N(μ,Σ). Then nS ∼ Wishartp−1(Σ, n − 1), and X and S
are independent. The third moments of S−1 are uniformly (in n) bounded by
Cmax{1, 1/λmin(Σ)

3} for some C > 0, provided n− p− 5 > 0 by Theorem 4.1
of von Rosen [19]. By (7.10) the third moments of (X′X/n)−1 are also bounded.

If X̃ is distributed according to a mixture of normals, the assumption in the
lemma that all these normal distributions have λmin(Σ) > c > 0 implies the
uniform boundedness for the mixture.

If the first coordinate is not 1, we append 1 to the covariates and now the
matrix of interest in the above notation (with p replacing p − 1) is X̃′X̃/n,
which is now p × p, and we wish to show that its inverse has bounded third
moments. The eigenvalues of the latter matrix are larger (not strictly) than

those of S = X̃′X̃/n−XX
′
. The latter relation is revered for the inverses. Now

use the inequality that for a positive definite matrix A we have |aij | ≤ tr(A)/2

to conclude that the entries of (X̃′X̃/n)−1 are bounded by tr(S−1). By the first
part of the theorem (with p replacing p− 1) we know that S−1 has finite third
moments and therefore also its trace (by Minkowski inequality), and the result
follows.

Lemma 2.3. For Xn ∈ Hn (see (2.14)) the matrix (X′
nXn/n)

−1 exists and all
its entries are bounded uniformly in n. Moreover, if the components of X are
bounded, then for some a < 1 we have, P (Hn) > 1− anλmin(Q), which converge
to 1 at an exponential rate in n.

Proof. When Xn ∈ Hn, then λmin(X′
nXn/n) ≥ 1

2λmin(Q) > 0, and there-
fore (X′

nXn/n)
−1 exists. Since the entries of a positive semi-definite matrix are

bounded by the maximal eigenvalue, all entries of (X′
nXn/n)

−1 are bounded
in this case by 2/λmin(Q). For the moreover part, notice that when the ele-
ments of X are bounded then so is λmax(X′

nXn/n). By Tropp [25], Theorem 1.1,
P (Hc

n) ≤ anλmin(Q) for some a < 1.
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Proof of Theorem 2.3. Conditionally on Hn the arguments in the proof of
Theorem 2.1 continue to apply with obvious modifications. Lemma 2.3 provides
an exponentially small bound on P (Hc

n), adding a term Op(e
−γn) in Equation

(2.9) and Op(e
−γN ) to (2.10) and (2.12) (b) for some γ > 0. Clearly, these terms

do not affect the results.

Proof of Proposition 2.4. For Part (i), set P (n) ∈ π∗(n) and P̃ (n) ∈ P∗(n).
We have R(n, P (n)) − R(n, P̃ (n)) ≥ 0, and also R(n, P (n)) − R(n, P̃ (n)) =
[R(n, P (n)) − AR(n, P (n))] + [AR(n, P (n)) − AR(n, P̃ (n))] + [AR(n, P̃ (n)) −
R(n, P̃ (n))]. The middle term is negative and by (2.9) the two other terms
are o(1/n) and Part (i) follows.

For Part (ii), we first show that P∗ is a singleton. Suppose that there are two
models P ,Q in P∗. By the definition of P∗, the components of the projection
coefficient vectors β(P) and β(Q ) must all be non-zero. Since the function (Y −a)2

is strictly convex in a, we have(
Y − X(P)′β(P) +X(Q )′β(Q )

2

)2

≤
(
Y −X(P)′β(P))2 + (

Y −X(Q )′β(Q )
)2

2
,

(7.11)

with equality if and only if X(P)′β(P) = X(Q )′β(Q ). Unless X(P)′β(P) = X(Q )′β(P)

a.s., the model P ∪Q would contradict the assumption that P and Q are in M by
taking expectations in (7.11). We assumed that E(XX′) is invertible and hence

X′β vanishes a.s. only for β = 0. Adding zeros to β(P) and β(Q ), thus completing
them to vectors in Rd, we see that the completed vectors are identical. Since
the two models are in M and their projection coefficients are all non-zero, it
follows that P = Q , and therefore P∗ is a singleton. The above discussion also
shows that any model Q ∈ M must satisfy, as sets of covariates, Q ⊇ P∗.

In order to show that π∗(n) = P∗ for large n, note first that Q ∈ π∗(n)
for large enough n implies Q ∈ M; if not then there is some Q̃ ∈ M such

that E
(
Y − X(Q̃ )′β(Q̃ )

)2
< E

(
Y − X(Q )′β(Q )

)2
. For large n this q̃ contradicts

Q ∈ π∗(n). It follows that Q ⊇ P∗ as sets of covariates, and it suffices to show
that tr(V(P)) is minimized over M by P∗. Indeed we show that if P ,Q ∈ M
and Q � P as sets of covariates, then tr(V(P)) < tr(V(Q )). Consider a Gram–
Schmidt process on the space of square integrable random variables, with the
inner product of two random variables being the expectation of their product.
Starting with the indexes in P , there exist linear transformations X̃(P) := AX(P)

and X̃(Q ) := BX(Q ), where A and B are invertible p × p and q × q matrices,
such that E

(
X̃(P)X̃(P)′

)
and E

(
X̃(Q )X̃(Q )′

)
are both identity matrices (with

different dimensions). Also, we can assume that the first p rows of B can be
obtained from those of A by adding q−p zeros to each of these rows. Therefore,

for k ∈ P we have X̃
(P)
k = X̃

(Q )
k , where X̃

(P)
k is the kth coordinate of X̃(P).

The relation X̃(P) = AX(P) and straightforward algebra, using properties of the
trace function, imply that tr(V(P)) = tr(Ṽ(P)), where

Ṽ(P) := E
(
X̃(P)X̃(P)′{e(P)}2

){
E
(
X̃(P)X̃(P)′

)}−1

= E
(
X̃(P)X̃(P)′{e(P)}2

)
,
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and similarly for tr(V(Q )). We have e(P) = e(Q ) for any P ,Q ∈ M (with proba-
bility 1) since otherwise, by the argument in (7.11), P ∪Q would contradict the
assumption that both P and Q are in M as above. We conclude that,

tr(V(P)) = tr
{
E
(
X̃(P)X̃(P)′{e(P)}2

)}
=

∑
k∈P

E
(
X̃

(P)
k e(P)

)2

<
∑
k∈Q

E
(
X̃

(Q )
k e(Q )

)2

= tr(V(Q )). (7.12)

The strict inequality follows from the fact that W is positive definite, and thus
X̃(P)X̃(P)′{e(P)}2 = AX(P)X(P)′{e(P)}2A′ are matrices with positive definite ex-
pectations, and therefore positive diagonal elements. Summing up, the above
discussion shows that P∗ is a singleton, and that tr(V(P∗)) is minimal among
the models in M. This implies that π∗(n) → P∗ as n → ∞. By (2.9), for every
model p, R(n, P ) − AR(n, P ) = o(1/n), and therefore P∗(n) = π∗(n) for large
enough n. Hence, also P∗(n) → P∗ as n → ∞.
Proof of Proposition 2.5. It suffices to prove that P (π̂∗(n,N) = P∗) → 1
when n,N → ∞ and n/N → 0, since by Proposition 2.4, P∗(n) = P∗ for large
enough n. Equivalently, we claim that for every P �= P∗ we have P (π̂∗(n,N) =
P ) → 0, and since there is a finite number of models, the result follows. The
latter claim is proved separately for P /∈ M and then for P ∈ M, (conditions
(a) and (b) below):
(a) For P /∈ M we shall show that

C(P)(n,N)− C(P∗)(n,N) = A− tr(V(P))− tr(V(P∗))

n
+Op(1/

√
N), (7.13)

for a positive constant A. Since π̂∗(n,N) is the minimizer of C(P)(n,N), it
follows that P (π̂∗(n,N) = P ) → 0 as both n,N go to infinity. To prove (7.13)
note that by the definition of AR(n, P ) and Equations (2.7), (2.10), and (2.12),
we have

C(P)(n,N)− C(P∗)(n,N) = AR(n, P )−AR(n, P∗) +Op(1/
√
N)

= E
(
Y −X(P)′β(p)

)2 − E
(
Y −X(P∗)′β(P∗))2

+
tr(V(P))− tr(V(P∗))

n
+Op(1/

√
N).

Since P /∈ M and P∗ ∈ M, the difference of the expectations, which we denote
by A, is positive.

(b) For P ∈ M and P �= P∗ we shall show that

C(P)(n,N)− C(P∗)(n,N) = B/n+Op(1/N) +Op

(
1

n
√
N

)
, (7.14)

where B is a positive constant implying that P (π̂∗(n,N) = P ) → 0 when both
n,N go to infinity and n/N → 0.
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We now prove (7.14). Consider P ∈ M and P �= P∗. Since both models are
in M, we have

E
(
Y −X(P)′β(P))2 − E

(
Y −X(P∗)′β(P∗))2 = 0

and therefore

AR(n, P )−AR(n, P∗) =
tr(V(P))− tr(V(P∗))

n
.

In Proposition 2.4 we showed that tr(V(P∗)) < tr(V(P)), and therefore AR(n, P )
− AR(n, P∗) = B/n, where B is a positive constant. Since both P and P∗ are

in M, it follows that X(P)′β(P) = X(P∗)′β(P∗) a.s. (see the proof of Proposition

2.4). Therefore, the first part of E(P)
N and E(P∗)

N is equal, and hence, E(P)
N −E(P∗)

N =
Op(1/N). Recalling that AR(n, P )−AR(n, P∗) = B/n, (2.10) implies that

C(P)(n,N)− C(P∗)(n,N)

= B/n+Op(1/N)− tr(V(P))− tr(V̂(P)
N )− tr(V(P∗)) + tr(V̂(P∗)

N )

n
,

which implies (7.14) by (2.12) (b).
Proof of Theorem 3.1. The first part follows from (2.10) of Theorem 2.1.
That the op terms do not depend on n can be seen by inspecting the proof of
(2.10) of Theorem 2.1. The moreover part follows from the asymptotic normality
of each j; see (2.13).
Proof of Proposition 3.3. Part 1 follows from the first part of Theorem 3.1.

The proof of Part 2 differs from that of Proposition 2.5 only in taking averages
over J in similar expressions. The only real difference is in case (b) of the proof
of Proposition 2.5, with P and PPP∗ both in M. The proof is achieved by showing
that there exists B > 0 such that

lim sup
n/Nj≤C,n,N→∞

P
(
n{C(P)(n,N)−C(PPP ∗

)(n,N)} < B/2
)
< K/J . (7.15)

We have

n{C(P)(n,N)−C(PPP ∗
)(n,N)} =

1

J

J∑
j=1

Bj +
1

J

J∑
j=1

Cj +
1

J

J∑
j=1

Dj +
1

J

J∑
j=1

Ej

(7.16)
where,

Bj := tr(V(P)
j )− tr(V(PPP ∗

)
j ), Cj := n(E(P)

j,Nj
− E(PPP ∗

)
j,Nj

),

Dj := tr(V(P)
j )− tr(V̂(P)

j,Nj
)− tr(V(PPP ∗

)
j ) + tr(V̂(PPP ∗

)
j,Nj

),

and Ej = nop(1/Nj), arising from the last term in (2.10). The proof of (7.15) is

accomplished by showing that 1
J
∑J

j=1 Bj ≥ B, to be defined below, and that
the other three sums are small.
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We start with the first term in (7.16), 1
J
∑J

j=1 Bj = 1
J
∑

j [tr(V
(P)
j ) −

tr(V(PPP ∗
)

j )]. Since P is in M we have P ⊇ PPP∗ as sets of covariates. By (7.12),

tr(V(P)
j ) − tr(V(PPP ∗

)
j ) is bounded below by EGj

(
X̃

(P)
k e(P)

)2

for k ∈ P � PPP∗ (as

sets). We have X̃k = b′
kX where b′

k is the kth row of the matrix B defined in

the proof of Proposition 2.4. We have 1 = E(b′
kX)2 = b′

kQ
(P)
j bk and therefore

‖b′
k{Q

(P)
j }1/2‖ = 1. It follows that ‖bk‖2 = b′

k{Q
(P)
j }1/2{Q(P)

j }−1{Q(P)
j }1/2bk ≥

λmin({Q(P)
j }−1)=1/λmax(Q

(P)
j ) and therefore EGj

(
X̃

(P)
k e(P)

)2
=EGj (b

′
kX

(P)e)2

= b′W(P)
j b̃k ≥ λmin(W

(P)
j )/λmax(Q

(P)
j ) > 1/C2 > 0. We obtained that

1
J
∑J

j=1 Bj ≥ 1/C2 =: B.
We now deal with 1

J
∑J

j=1 Cj . By (2.10) and (2.11) and the fact that P , P∗ ∈
M, this term equals,

n

J
[∑

j

1

Nj

{
tr

[
U

(PPP ∗
)

j,Nj
U

(PPP ∗
)′

j,Nj
(Q(PPP ∗

)
j )−1

]
− tr(V(PPP ∗

)
j )

− tr
[
U

(p)
j,Nj

U
(P)′

j,Nj
(Q(P)

j )−1
]
+ tr(V(P)

j )
}]

. (7.17)

Since U
(P)
j,Nj

converges in distribution to Z
(P)
j ∼ N(0,W(P)

j ) and C is an upper

bound on n/Nj we have that the limit of the probability that the expression in
(7.17) exceeds ε is bounded by P (TJ > ε) where

TJ :=
C

J

∣∣∣∑
j

{
tr
[
Z

(PPP ∗
)

j Z
(PPP ∗

)′

j (Q(PPP ∗
)

j )−1
]
− tr(V(PPP ∗

)
j )

− tr
[
Z

(P)
j Z

(P)′

j (Q(P)
j )−1

]
+ tr(V(P)

j )
}∣∣∣.

Note that the expression within the absolute value sign has mean zero. Writing
TJ = C

J |
∑J

j=1 Aj |, Markov’s inequality implies that in order to obtain P (TJ >
ε) ≤ K/J it is enough to bound V ar(Aj) uniformly in j, which holds when

(Q(P)
j )−1,W(P)

j are bounded (element-wise) for all models P (of which there
is a finite number) and uniformly for all j. This follows from our eigenvalue
assumptions (see (3.7)) and the fact that the entries of a positive-definite matrix
are bounded by its maximal eigenvalue. Finally, it suffices to show that Dj → 0
and Ej → 0 as n,Nj → ∞ with n/Nj bounded. The first follows from (2.12),
and the second is obvious.
Proof of Lemma 3.5. First notice that when the moments appearing in (i)
of Theorem 2.1 are bounded uniformly in θ ∈ Θ, then EGθ

(Y − X′βθ)
2 is

bounded in θ. Also, the matrix Wθ is bounded (element-wise) uniformly in
θ. Finally, because E{(Xn

′Xn/n)
−1}−Q−1

θ is positive semi-definite (see Groves
and Rothenberg [11]), then uniform boundedness of the moment condition (ii) of
Theorem 2.1 implies that Q−1

θ is uniformly bounded and therefore so is tr(Vθ) =
tr(WθQ−1

θ ).
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We have

ARpop(n, P )−AR(n, P )

=
{∫

EGθ
(Y −X′βθ)

2P(dθ)− 1

J

J∑
j=1

EGj (Y −X′βj)
2
}

+
1

n

{∫
tr(Vθ)P(dθ)− 1

J

J∑
j=1

tr(Vj)
}
. (7.18)

The above two sums contain random variables that are bounded, and hence so
are their variances. The central limit theorem applied twice, implies (3.10) and
the claimed asymptotic normality. It is easy to see directly from (7.18) that the
Op term in (3.10) is uniform in n.

For the proof of Proposition 3.6 we need the following lemma:

Lemma 7.1. Suppose that the conditions of Lemma 3.4 hold and also that
λmin(Wθ) is bounded away from zero uniformly in θ; then

1. The set PPP∗
pop is a singleton and as n → ∞ both π∗

pop(n) → PPP∗
pop and

PPP∗
pop(n) → PPP∗

pop, and therefore also π∗
pop(n) = PPP∗

pop(n) for large n.
2. There exists a constant KC depending only on C, such that for π∗(n)

defined in (3.6),

P
(
π∗(n) ⊆ π∗

pop(n)
)
≥ 1− KC

J ∀n.

Proof of Lemma 7.1. Part 1. The proof is similar to that of Proposition 2.4.
We sketch the proof. Let P and Q be in PPP∗

pop. By convexity as in (7.11),

(
Y −X(P)′β(P))2 + (

Y −X(Q )′β(Q )
)2

2
−
(
Y − X(P)′β(P) +X(Q )′β(Q )

2

)2

≥ 0,

(7.19)

with equality iff X(P)′β(P) = X(Q )′β(P). This implies that PPP∗
pop is a singleton as

in the proof of Proposition 2.4, Part (ii). Since P and Q are in Mpop, the expec-

tation of the left-hand side of (7.19) is zero. It follows that
∫
PGθ

(
X(P)′β(P) =

X(Q )′β(Q )
)
P(dθ) = 1, and therefore for every model P in Mpop we have that

PPP∗
pop ⊆ P . By the assumptions on moments being uniformly bounded, it fol-

lows that λmax(Qθ) is bounded above and λmin(Wθ) is positive and bounded
away from zero, both uniformly in θ. Now (7.12) and the discussion in the para-
graph above (7.17) imply that if PPP∗

pop ⊆ P as sets of covariates, P ∈ Mpop, and

PPP∗
pop �= P then

∫
tr
(
V

(PPP ∗
pop)

θ

)
P(dθ) <

∫
tr

(
V(P)

θ

)
P(dθ). Therefore, PPP∗

pop has

a minimal trace among Mpop. It follows that π
∗
pop(n) → PPP∗

pop as n → ∞.
Furthermore, Lemma 3.4 implies that π∗

pop(n) and PPP∗
pop(n) coincide for large n.

The result now follows from the convergence of π∗
pop(n) to PPP∗

pop.
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Part 2. By Part 1, there exists n1 such that for every n ≥ n1 π∗
pop(n) = PPP∗

pop,
and both are singletons.

For n > n1 the set PPP∗
pop is a singleton, and we now show that for n sufficiently

large

P
(

PPP∗
pop /∈ π∗(n)

)
≤ KC

J . (7.20)

We have that

P
(

PPP∗
pop /∈ π∗(n)

)
≤

∑
P 	=PPP ∗

pop

P
(
{P ∈ π∗(n)} ∩ {PPP∗

pop /∈ π∗(n)}
)
.

The event {P ∈ π∗(n)} implies thatAR(n, P ) < AR(n,Q ) for every Q /∈ π∗(n).
In particular,

P
(
{P ∈ π∗(n)} ∩ {PPP∗

pop /∈ π∗(n)}
)
≤ P

(
AR(n, P ) < AR(n, PPP∗

pop)
)
. (7.21)

We consider now two cases for P : P ∈ Mpop and P /∈ Mpop. Starting with
the former case, since both P and PPP∗

pop are in Mpop, by the argument ensuing

(7.19),
∫
PGθ

(
X(P)′β(P) = X(PPP ∗

pop)
′
β(PPP ∗

pop)
)
P(dθ) = 1, and therefore for almost

every θ, PGθ
(X(P)′β(P) = X(PPP ∗

pop)
′
β(PPP ∗

pop)) = 1; hence,

J∑
j=1

EGj (Y −X(P)′β
(P)
j )2 =

J∑
j=1

EGj (Y −X(PPP ∗
pop)

′
β
(PPP ∗

pop)

j )2,

with probability 1. By the definition of AR(n, P ),

AR(n, PPP∗
pop)−AR(n, P ) =

1
J
∑J

j=1 tr(V
(PPP ∗

pop)

j )− 1
J
∑J

j=1 tr(V
(P)
j )

n

Therefore, going back to (7.21), we have

P
(
AR(n, P ) < AR(n, PPP∗

pop)
)
= P

( 1

J

J∑
j=1

tr(V
(PPP ∗

pop)

j )− 1

J

J∑
j=1

tr(V(P)
j ) > 0

)
.

By Part 1, ∫
tr

(
V

(PPP ∗
pop)

θ

)
P(dθ)−

∫
tr

(
V(P)

θ

)
P(dθ) ≤ −ε,

where ε is the difference between
∫
tr
(
V

(PPP ∗
pop)

θ

)
P(dθ) and the second best.

Therefore, E
(

1
J
∑J

j=1 tr(V
(PPP ∗

pop)

j ) − 1
J
∑J

j=1 tr(V
(P)
j )

)
≤ −ε; also, V ar(tr(Vθ))

is bounded (by a constant that depends on C). Chebyshev’s inequality implies
that

P
( 1

J

J∑
j=1

tr(V
(PPP ∗

pop)

j )− 1

J

J∑
j=1

tr(V(P)
j ) > 0

)
≤ KC/J ,
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and therefore, P
(
{P ∈ π∗(n)} ∩ {PPP∗

pop /∈ π∗(n)}
)
≤ KC/J .

Next consider the case P /∈ Mpop. By definition, there exists ε > 0 such that
for any P /∈ Mpop∫

EGθ
(Y −X(P)′β

(P)
θ )2P(dθ)−

∫
EGθ

(Y −X(PPP ∗
pop)

′
β
(PPP ∗

pop)

θ )2P(dθ) > ε.

It is easy to see that for n2 large enough this implies

E
(
AR(n, PPP∗

pop)−AR(n, P )
)
< −ε/2 ∀n ≥ n2.

By an argument as above P
(
{P ∈ π∗(n)} ∩ {PPP∗

pop /∈ π∗(n)}
)
≤ KC/J . Since

the number of models is finite, (7.20) follows.
Now, for fixed n that satisfies n < n0 := max{n1, n2} again a similar argu-

ment shows that for any P ∈ π∗(n),

P
(

P /∈ π∗
pop(n)

)
≤ KC(n)

J ,

where KC(n) may depend on n (and on C). Since there are only finite such n’s
the result of Part 2 follows.
Proof of Proposition 3.6. The first part of Proposition 3.6 follows from Part
1 of Proposition 3.3, which shows that π̂∗(n,N) ⊆ π∗(n) with probability con-
verging to 1, and Part 2 of Lemma 7.1, which shows that π∗(n) ⊆ π∗

pop(n) with
high probability.

The second part of Proposition 3.6 follows from a combination of several
statements: π̂∗(n,N) = PPP∗(n) with high probability (Proposition 3.3, Part
2); PPP∗(n) = π∗(n) for large n (Proposition 3.2); π∗(n) ⊆ π∗

pop(n) with high
probability (Lemma 7.1 Part 2); and for large n, π∗

pop(n) is a singleton, and
π∗

pop(n) = PPP∗
pop(n) (Lemma 7.1, Part 1).
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8. Appendix B: A table of notation

Expression Description
J Number of observed regression datasets
Nj Number of observations in the the jth regression dataset
Yij The response of the ith observation from the jth regression

Xij ∈ Rd The covariate vector of the ith observation from the jth regression
(X, Y ) A generic observation (whose distribution is Gj)

Dj = {(Xij , Yij)} The jth regression dataset
Gj The distribution of the jth regression, i.e., {(Xij , Yij)} ∼iid Gj

G A set of distributions to which Gj belongs (the cases |G| = 1,
|G| = J and J < |G| ≤ ∞ appear in Sections 2, 3.1, and 3.3,
respectively)

K The size of G
P A subset of {1, . . . , d}, used to denote a subset of covariates

Its size is denoted by p.
R(n, P) The prediction error of the linear model with covariates in P with n

observations for the case |G| = 1; R(n, P) and Rpop(n, P)
denote the cases of |G| = J and J < |G|, respectively

AR(n, P) Approximate prediction error; AR(n, P) and ARpop(n, P) are
approximations of R(n, P) and Rpop(n, P), respectively

In the notation below j and (P) are sometimes suppressed

X(P)
j,Nj

The Nj × p design matrix of the jth regression

Yj,Nj
The vector of responses for the jth regression

β
(P)
j Projection coefficients under Gj for model P

e
(P)
j The residual; e

(P)
j = Y −X

(P)′

j β
(P)
j ; ej,Nj

denotes the vector

of the residuals of dimension Nj

β̂
(P)
j,n The least squares estimate of β

(P)
j based on n observations.

Q(P)
j EGj

(X(P)X(P)′ )

W(P)
j EGj

(X(P)X(P)′e2)

V(P)
j W(P)

j {Q(P)
j }−1

Q̂(P)
j,Nj

The empirical estimate of Q(P)
j

Ŵ(P)
j,Nj

The empirical estimate of W(P)
j

V̂(P)
j,Nj

The empirical estimate of V(P)
j

U
(P)
j,Nj

1√
Nj

X(P)′

j,Nj
ej,Nj

(it is not a statistic)

C(P)(n,N) An estimate of AR(n, P); C(P)(n,N) corresponds to the case J > 1;

C(P)(n,N) and CCC(P)(n,N) denote a jackknife bias correction
P∗(n) argminP R(n, P) (the best model for n observations);

PPP∗(n) corresponds to the case J > 1
π∗(n) argminP AR(n, P); π∗(n) corresponds to the case J > 1

P∗ The limit of both P∗(n) and π∗(n) as n → ∞;
PPP∗ corresponds to the case J > 1

π̂∗(n,N) argminP C(P)(n,N); π̂∗(n,N) corresponds to the case J > 1
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