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from them.
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1. Introduction and Goal

By this point, it is a cliche to say that networks matter, and that network
data analysis is an increasingly important part of statistics. Statistical work has
largely focused on elaborating models and obtaining point-estimates of their
parameters [31, 21]; there has been comparatively little progress in quantifying
uncertainty in these estimates, though that is essential to their scientific utility.
If we had widely-accepted parametric models, we might hope to use standard
asymptotics, at least heuristically, but we do not have such models, and we
have reason to doubt that standard asymptotics apply to networks [34]1. In
other areas of statistics, bootstrapping has been highly successful at quanti-
fying uncertainty, even in the face of model mis-specification and complicated
dependence structures [22]. Accordingly, in this paper, we introduce two boot-
straps, one, the “empirical graphon bootstrap”, based purely on resampling,
the other, the “histogram bootstrap”, being a model-based “sieve” bootstrap.
We prove that they both accurately approximate the sampling distributions of
“motif densities”, the normalized count of the number of times any fixed sub-
graph (or “motif”) appears in the network. Under exchangeability of the nodes,
such densities are known to characterize the distribution of (infinite) networks,
as well as defining the convergence of sequences of individual (non-random)
graphs. Our bootstraps therefore provide theoretically sound ways to quantify
the uncertainty in inferences regarding a fundamental class of network statistics,
and so of parameters identifiable from these statistics.

As a contribution to network data analysis, our work extends previous pro-
posals for quantifying uncertainty by means of subsampling the network and
using plug-in Gaussian approximations [2], and heuristic parametric bootstraps
[33] and resampling schemes [10]. However, from work on bootstrapping in other
areas, we know that estimation of the distribution via resampling can be more
accurate, particularly with small sample sizes. While our proofs rely on asymp-
totic arguments via normal approximations, we think its reasonable to expect
that our estimators will perform well in the small sample setting as well. From

1Since the standard asymptotics essentially rest on the log-likelihood having a quadratic
maximum [15], this says something interesting and strange about network dependence, but
that will have to be pursued elsewhere.
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a bootstrap-theory perspective, our contribution is to extend the validity of re-
sampling and sieve bootstraps to a new type of dependence structure, joining
previous work on time series, spatial data, and U-statistics.

Probabilistic background and general approach Exchangeability of the
nodes2 is a common assumption on networks; it corresponds to the assumption
that any two isomorphic graphs should be equally probable, and that no infor-
mation we have on individual nodes (other than their location in the network)
is useful for predicting their links. As with other probabilistic symmetries, ex-
changeability is useful, in part, because of representation theorems which state
that all (infinite) exchangeable distributions are mixtures of certain extremal
distributions with the same symmetry, but stronger independence properties
[8, 19, 23]. In the case of exchangeable networks, the relevant extremal distribu-
tions, now often called “graphons”, were characterized by Aldous and Hoover,
and work as follows [19, ch. 7]. Every node gets an independent, uniformly dis-
tributed random variable on [0, 1], say εi for node i, and there is a link function
h : [0, 1]× [0, 1] �→ [0, 1], symmetric in its arguments, such that the probability
of an edge between i and j is h(εi, εj), and all edges are independent (given the
εs). Any exchangeable distribution is a mixture of such graphon distributions3,
and any one realization of an exchangeable distribution is drawn from a single
h.

This provides a natural approach to bootstrapping: estimate the link func-
tion h, then randomly redraw node variables and reconnect the edges with the
corresponding probability. Our task is thus just (!) to estimate the link function
sufficiently well. We propose two approaches. One, the “empirical graphon”,
takes the adjacency matrix, views it as a binary-valued function on the unit
square, and uses that as our estimate of h. Proving the validity of this boot-
strap then relies on results about the convergence, in a suitable topology, of
exchangeable random graphs to their generating graphon. Our other bootstrap
is a histogram-like estimator of the graphon, a special case of stochastic block
models, essentially approximating h by a series of simple functions. Its validity
rests on some smoothness assumptions regarding h, but, when they hold, it gives
a faster rate of convergence. In both approaches, a Berry-Esseen inequality for
U-statistics due to Callaert and Janssen [7] provides a crucial technical tool.

Organization Section 2 fixes notation, lays out assumptions, and, in §2.1,
formally proposes the two bootstraps. Section 3 gives the main theorems, stating
conditions under which our bootstraps consistently approximate the distribution
of motif densities. Section 4 shows empirically that our bootstraps perform well
even on moderate sized networks. Section 5 collects supporting propositions and
lemmas, and Section 6 proves the main results.

2Often called “joint” exchangeability, to indicate that one applies the same permutation to
both the rows and the columns of the adjacency matrix of a graph, as opposed to the stricter
“separate” exchangeability, where rows and columns can be differently permuted [19, sec. 7.1].

3Naturally, the same distribution can be realized by many different h functions, which leads
to some subtleties in a formal statement of the representation theorem. We do not elaborate
on this, since it is not relevant to our concerns, but see Kallenberg [19, sec. 7.6].
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2. Notation and methodology

We (mostly) follow the notation of Bhattacharyya and Bickel [2]. Unless oth-
erwise noted, by “graph” we will always mean an undirected, simple graph.
For any graph G, V (G) will be the set of its vertices, and E(G) the set of
its edges; when i ∈ V (G), j ∈ V (G), we write (i, j) for the (unordered)
pair of nodes, and (i, j) ∈ E(G) or (i, j) /∈ E(G) depending on whether or
not there is an edge. We will sometimes abbreviate this as (i, j) ∈ G when
there is no chance of ambiguity. We will use colons to abbreviate sequences,
so that i : j stands for i, i + 1, . . . j − 1, j, and (say) xi:j the sequence of
variables xi, xi+1, . . . xj−1, xj . Given an ordered p-tuple of indices in 1 : n,
i = (ii, i2, . . . ip), we let G(i) = (i, E(G) ∩ {i × i}) be the induced subgraph
of G with those vertices; we will write Sn(p) for the collection of all ordered
p-tuples of 1 : n. Two graphs G1 and G2 are isomorphic when their nodes can
be put in one-to-one correspondence while preserving both edges and non-edges,
i.e., there is an invertible mapping σ : V (G1) �→ V (G2) such that (i, j) ∈ E(G1)
if and only if (σ(i), σ(j)) ∈ E(G2). When this holds, we write G1 � G2, and
we write N(G) for the number of graphs on 1 : |V (G)| which are isomorphic to
G. Kp will indicate the complete graph on 1 : p, i.e., the p-node graph with all
possible edges.

Our data Gn is a graph on the vertices 1 : n, with corresponding n × n
adjacency matrix A. We assume that the graph is exchangeable, and hence was
generated as follows:

εi
i.i.d∼ Uniform(0, 1) (1)

Aij |ε1:n ind∼ Bernoulli(hn(εi, εj)) (2)

for a symmetric, measurable link function hn : [0, 1] × [0, 1] �→ [0, 1]. Without
loss of generality, we decompose the function hn as

hn(u, v) = ρnw(u, v) (3)

where
∫ 1
0

∫ 1
0
w(u, v)dudv = 1, so that ρn is the marginal probability of an edge

between any two nodes, i.e., the (expected) edge density4. We will frequently
make assume that w is bounded in various Lp([0, 1]2) norms, and we use ‖w‖p =
(
∫
[0,1]2

w(u, v)p du dv)1/p to refer to such norms.

Fixing any p-node connected, simple, undirected graph R that we like, we can
ask about the probability that the first p nodes of Gn instantiate this motif5,

PR(h) = P(Gn(1 : p) = R) (4)

4The job of the ρn factor is to allow the graph to become sparse as n grows, as in Borgs
et al. [6]; otherwise, graph sequences generated by graphons are “dense”, i.e., the number of
edges grows quadratically with the number of nodes. If this is not a concern, and this is a
point of some debate in the field, one can fix ρn to a constant value for all n. All of our results
are valid under such dense-graph limits, and indeed most of them would simplify.

5The literature typically calls both R and Gn(1 : p) “subgraphs”; to avoid confusion, we
borrow the term “motif” from Milo et al. [30] to designate the pattern being matched, though
those authors suggested using it for the patterns which were, in some sense, more common
than expected by chance.



1062 A. Green and C. R. Shalizi

Of course, by exchangeability, PR(h) = P(Gn(i) = R) for any i ∈ Sn(p). These
probabilities are thus very much like moments of the distribution of Gn, and in-
deed it is known from previous work [27] that the collection of these probabilities,
over all motifs R, suffice to characterize an exchangeable graph distribution6.
One can show [27] that

PR(h) = E

⎡⎣ ∏
(i,j)∈E(R)

hn(εi, εj)
∏

(i,j)/∈E(R)

(1− hn(εi, εj))

⎤⎦ (5)

It is natural to want to relate these moments to their sample counter-parts.
It turns out that a good estimate for PR(h) is simply to count the number of
induced subgraphs in Gn which are isomorphic to R:

PR(Gn) =
1(

n
p

)
p!N(R)

∑
i∈Sn(p)

I(Gn(i) � R) (6)

Unsurprisingly, E [PR(Gn)] = PR(h). Moreover, previous work7 on graph limits

tells us that, for fixed R, PR(Gn)
p→ PR(h).

Finally, we will need a few scaled versions of the above quantities, since
we allow the sparsity factor ρn to approach 0 as n grows to ∞. First, let ρ̂n =

PK2(Gn) be the edge density observed in the graph. Second, let P̃R(h) =
PR(h)

ρ
|E(R)|
n

,

and its corresponding empirical quantity P̃R(Gn) =
PR(Gn)

ρ̂
|E(R)|
n

.

Miscellaneous notation and conventions Unless otherwise noted, all lim-
its are taken as the number of nodes in the graph grows, i.e., as n → ∞.

2.1. Resampling procedures

Our resampling procedures begin with an estimate of the graphon, ĥ : [0, 1]2 →
[0, 1], a mapping to be estimated using the graph Gn. Given such an estimate

ĥ, we then generate m random variables ε∗i
i.i.d∼ Uniform(0, 1); here m ∈ N

will be the number of nodes in our resampled network. We then simulate from
ĥ in the way we generate from graphons, forming the bootstrapped network
G∗

m. More precisely, we let the bootstrapped adjacency matrix A∗ =
(
A∗

ij

)
where the entries A∗

ij are conditionally independent given Gn and ε∗1:m, and

follow the distribution A∗
ij |(Gn, ε

∗
1:m) ∼ Bern(ĥ(ε∗i , ε

∗
j )). (Implicitly, m = m(n)).

The properties of our bootstrapping procedure clearly depend on the graphon
estimate ĥ, and we now formally define the two estimators we will subsequently
analyze.

6See Bickel, Chen and Levina [3] for a discussion, and a method-of-moments procedure for
estimating h, based on this fact.

7See, for instance, Borgs et al. [5, Lemma 4.4], which gives an explicit (though potentially
loose) rate of convergence. This rate is fast enough that a Borel-Cantelli argument could
strengthen convergence in probability to almost-sure convergence, but this goes beyond what
we need here.
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Our first approach estimates the graphon by using its empirical counterpart:
the adjacency matrix.

Definition 1 (Empirical Graphon). The empirical graphon, denoted ĥadj , is

ĥadj(u, v) := A�nu��nv�. We refer to the process of resampling using the empirical
graphon as the empirical graphon bootstrap.

The empirical graphon bootstrap is equivalent to sampling m vertices from
Gn (with replacement), and adding in adjacencies exactly as they appear in
Gn. Despite the intuitive analogy between this scheme and the classical i.i.d
bootstrap — here, we treat the vertices as the units of data to be resampled —
and the widespread success of the bootstrap in the i.i.d case, vertex resampling
procedures have not heretofore been rigorously analyzed8. One potential expla-
nation for this is that when the number of resampled vertices m is sufficiently
large, with high probability the resampled graph G∗

m will contain multiple copies
of the same vertex in Gn. Since Gn is a simple graph containing no loops, these
copies will never be connected in G∗

m. This (non)-adjacency structure between
copies of the same vertex does not reflect any underlying feature of the true gen-
erative process by which Gn was formed, and therefore induces a bias between
the conditional distribution of G∗

m and the distribution of Gn, a fact remarked
upon by [10, 25]. However, as we will see, under appropriate conditions this bias
is asymptotically negligible, at least with regards to estimating the distribution
of motif densities.

That being said, these conditions, such as on the maximum amount of sparsity
tolerated, may be unrealistic depending on the particular problem of interest.
Under stronger assumptions on the link function w, it is possible to more accu-
rately estimate the graphon hn, with resulting improvements to the downstream
bootstrap procedure. This motivates our second estimator, which is exactly the
restricted least squares histogram estimator set forth in Klopp, Tsybakov and
Verzelen [20].

Definition 2 (Histogram). Fix an integer r > 1 which corresponds to the num-
ber of bins in the histogram, and a number s ∈ (0, 1] which corresponds to the
maximum value the histogram estimate can take. Define the set Zn,r to consist
of all functions which assign each of the n nodes to one of the r classes. Then
we set the histogram estimate ĥhist of h to be the least-squares estimate over
functions which are piecewise-constant on partitions over the unit square, and
which are bounded above by s. That is, for Q = (Qab) ∈ Rr×r, ‖Q‖∞ ≤ s and
z ∈ Zn,r, we set

L(Q, z) =
∑

a,b∈[r]

∑
(i,j)∈z−1(a)×z−1(b)

(Aij −Qab)
2 (7)

(Q̂, ẑ) = argmin
Q,z

L(Q, z) (8)

θ̂ij = Q̂ẑ(i)ẑ(j) (9)

8Owen and Eckles [32], drawing on Mccullagh [29], consider a similar bootstrap for esti-
mating the variance in the mean of a multi-dimensional array of real-valued random variables.
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ĥhist(u, v) = θ�nu��nv� (10)

We refer to the process of resampling using the histogram estimate ĥhist as the
histogram bootstrap.

The histogram estimator of the graphon is a specific case of the stochastic
block model, which itself dates back at least to [12, 17, 11]. In such models,
every node is independently and randomly assigned to one of r latent classes
or “blocks”, and edges form independently between nodes, with probabilities
depending only on the nodes’ block assignments. The histogram estimator used
here was introduced by Klopp, Tsybakov and Verzelen [20], though see also
[36, 13, 14]. Klopp, Tsybakov and Verzelen [20] derive upper bounds on the
mean-squared error of this particular histogram estimator which hold for all
Cn−1 ≤ ρn ≤ 1. In our analysis of the histogram bootstrap, we will make use
of these estimates on mean-squared error; interestingly, we will also make use
of the fact that the histogram estimate ĥ is itself bounded, by construction.

Related work We have already mentioned a few suggested schemes for quan-
tifying uncertainty of network statistics. Of these, the closest to our own ap-
proach is that of Bhattacharyya and Bickel [2], who consider a pair of subsam-
pling schemes which they show lead to consistent distributional estimates for the
same types of statistics (motif densities) that we analyze. The empirical graphon
bootstrap can be viewed as analogous to their uniform subsampling procedure,
but with nodes sampled with replacement rather than without replacement; as
mentioned previously, it is known in the i.i.d setting that resampling can lead
to much more accurate estimates at small sample sizes than subsampling (see
e.g. [4]). Our theoretical results also cover general motifs, as opposed to Bhat-
tacharyya and Bickel [2] who study only acyclic motifs and rings.

There also exists some other related work, which appeared after an initial
version of this manuscript was made available as a preprint. Levin and Levina
[26] study a model-based bootstrap under the assumption that the observed
network is a random dot product graph. In a different direction, Lunde and
Sarkar [28] establish the consistency of a subsampling approach for more general
classes of network statistics. Finally, Zhang and Xia [38] consider a studentized
version of our empirical graphon bootstrap, and use the Edgeworth expansion
to derive rates of convergence and prove higher-order correctness.

3. Main results

Our main pair of results establish that if one samples G∗
m using either the

empirical graphon or histogram bootstraps, then the conditional distribution
(after the right scaling and centering) of PR(G

∗
m) converges in probability to

the distribution of PR(Gn), under some assumptions about the sparsity of the
graphon, the structure of the motif R, and — in the case of estimation using
a histogram — the smoothness of the graphon. For notational convenience, set
ρ̄n := PK2(ĥ) to be the expected edge density of the resampled graph G∗

m.
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Theorem 1. Let G∗
m be sampled from the empirical graphon bootstrap. Suppose

that w �= 1 on a set of strictly positive (Lebesgue) measure in [0, 1]2. For any
p-node motif R, if (i)

∫
[0,1]2

w4|E(R)|(u1, u2)du1:2 < ∞, (ii) either R is acyclic

and ρn = ω(n−1) or R is general and ρn = ω(n− 1
2p ), and (iii) m → ∞ and

m = ω(ρ
−4|E(R)|
n ), then

sup
x

∣∣∣∣∣P
( √

m

ρ̄
|E(R)|
n

(
PR(G

∗
m)− PR(ĥ)

)
≤ x

∣∣∣∣∣Gn

)

− P

( √
n

ρ̂
|E(R)|
n

(PR(Gn)− PR(h)) ≤ x

)∣∣∣∣∣ p→ 0.

(11)

In practice one would approximate the conditional distribution of PR(G
∗
m)

given Gn through Monte Carlo: that is, by repeatedly drawing samples of G∗
m

according to the resampling procedure outlined in Section 2.1. Theorem 1 estab-
lishes that, asymptotically in n and the number of resamples B, such a procedure
accurately approximates the distribution of PR(Gn).

We discuss the various conditions on w, ρn and m in detail in Sections 5
and 6, which is also where the proof of Theorem 1 and all our other theorems
can be found. For now, we make only a few basic observations. Theorem 1
shows that the empirical graphon bootstrap is consistent under the relatively
modest condition ‖w‖4|E(R)| < ∞. On the other hand, a more severe limitation
of the empirical graphon bootstrap lies in the assumption for general motifs
R that ρn = Ω(n−1/2p). In contrast, the scaled and centered motif density

ρ
−|E(R)|
n

√
n
(
PR(Gn)− PR(h)

)
is known to converge to a non-degenerate Gaus-

sian limit as long as ρn = Ω(n−2/p), which allows for much sparser sequences of
graphs.

To obtain a consistent distributional estimate for these sparser sequences,
we turn to a different graphon estimate. Under appropriate smoothness as-
sumptions on w, estimators such as ĥhist converge in a strong sense (e.g. in an

Lp([0, 1]2) norm) to the graphon function hn; by contrast, ĥadj converges to hn

only in a weaker topology. By leveraging this stronger notion of convergence, we
can prove that the subsequent bootstrap procedure is consistent under weaker
minimal conditions on the sparsity ρn.

Before focusing on the histogram estimator ĥhist, we start by considering an
arbitrary graphon estimate ĥ: this could be be formed by binning, smoothing,
low-rank reconstruction, etc. In Theorem 2, we show that so long as ĥ satisfies
a pair of general conditions, the distribution of the resampled graph G∗

n will
converge to that of the original graph Gn.

Theorem 2. Let ĥ be a graphon estimate, and let G∗
n be a graph resampled

from ĥ as described in Section 2.1. Suppose w �= 1 on a set of positive Lebesgue
measure on [0, 1]2. For a p-node motif R, if (i)

∫
[0,1]2

w2|E(R)|(u, v) du dv < ∞,

(ii) either R is acyclic and ρn = ω(n−1) or R is general and ρn = ω(n−2/p),
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and (iii) the graphon estimate ĥ satisfies

‖ĥ‖3|E(R)| = Op(ρn), and ‖ĥ− hn‖2|E(R)| = op(ρn), (12)

then

sup
x

∣∣∣∣∣P
( √

n

ρ̄
|E(R)|
n

(
PR(G

∗
n)− PR(ĥ)

)
≤ x

∣∣∣∣∣Gn

)

− P

( √
n

ρ̂
|E(R)|
n

(PR(Gn)− PR(h)) ≤ x

)∣∣∣∣∣ p→ 0.

(13)

Of course, for Theorem 2 to be practically useful, we need an estimator ĥ
which actually achieves the notions of boundedness and convergence that are
assumed in (12). Various difficulties arise in finding such an estimator:

• Smoothness. Although in Theorem 2, the only explicit assumption made
on the function w is that w ∈ L2|E(R)|([0, 1]2), this is insufficient to guar-

antee the convergence of ĥ−hn in the sense of (12). In order to obtain such
a result, some additional structure must be placed on w. Typical assump-
tions are that w is piecewise constant (which corresponds to the stochastic
block model) or that w is α-Hölder for some α ∈ (0,∞]. For concreteness,
we will stick with the assumption that w is L-Lipschitz, meaning

|w(u, v)−w(x, y)| ≤ L
(
|u−x|+ |v−y|

)
, for all (u, v) and (x, y) ∈ [0, 1]2.

• Sparsity. The sparsity parameter ρn plays various roles in the hardness
of graphon estimation. Intuitively, as the graph becomes sparser the whole
function hn gets closer to 0, and is thus easier to estimate; on the other
hand, the available data suffers from a worse signal-to-noise ratio. More-
over, we note that as ρn decreases the conditions in (12) become stronger;
thus it is important to have an estimator which has a fast rate of conver-
gence in the very-sparse regime, where say ρn = n−1 log logn.

• Correct norm. Assuming appropriate conditions on smoothness and
sparsity, various works have considered the problem of graphon estima-
tion. Typically these works study either the squared-error loss ‖ĥ − h‖22
or an in-sample analogue. However, for any motif R except for the edge
R = K2, the norm ‖ ·‖2|E(R)| is a stricter norm than the ‖ ·‖2, in the sense
that ‖ · ‖2 ≤ ‖ · ‖2|E(R)|. So it is not the case that every graphon estimate

ĥ which accurately approximates h in L2([0, 1]2) norm necessarily yields
a consistent bootstrapping procedure.

We consider the particular restricted histogram estimator of [20] precisely be-
cause, assuming the link function w is Lipschitz, the estimator converges in a
sufficiently strong norm at a sufficiently fast rate.

Proposition 1 (Corollary 3.6 of [20].). Suppose w is L-Lipschitz, ρn = ω(n−1),

and the histogram estimate ĥhist is computed with r =
√
nρn and s = ρn. Then

‖ĥhist‖∞ ≤ ρn, and ‖ĥhist − hn‖2 = Op

(√
ρnn−1 log(nρn)

)
= op(ρn). (14)
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Using Hölder’s inequality, we see that the guarantees in (14) imply the con-
ditions in (12). Therefore we may apply Theorem 2, and conclude that the
histogram bootstrap yields a consistent distributional estimate.

Corollary 1. Let G∗
n be sampled from the histogram bootstrap, where the his-

togram estimate ĥhist is computed with r =
√
nρn and s = ρn. Suppose w is

L-Lipschitz, and w �= 1 on a set of positive Lebesgue measure on [0, 1]2. For
a p-node motif R, if either R is acyclic and ρn = ω(n−1) or R is general and
ρn = ω(n−2/p), then

sup
x

∣∣∣∣∣P
( √

n

ρ̄
|E(R)|
n

(
PR(G

∗
n)− PR(ĥ)

)
≤ x

∣∣∣∣∣Gn

)

− P

( √
n

ρ̂
|E(R)|
n

(PR(Gn)− PR(h)) ≤ x

)∣∣∣∣∣ p→ 0.

(15)

Corollary 1 shows that when the link function w is Lipschitz, the histogram
bootstrap is consistent for all ranges of sparsity in which the limiting distribution

of ρ
−|E(R)|
n

√
n
(
PR(Gn) − PR(h)

)
is known (see [3]). As promised, when R is a

general motif, the sparsity assumptions needed for Theorem 2 and Corollary 1 to
hold can be much weaker than those required for Theorem 1. For example, sup-
pose the motif of interest R is a triangle, i.e. R =

{
{1, 2, 3}, {(1, 2), (2, 3), (1, 3)}

}
is the complete graph on 3 nodes. In this case, for the guarantees of Theorem 1
to hold the sparsity must satisfy ρn = ω(n−1/6). On the other hand, assuming
w is Lipschitz the conclusions of Corollary 1 hold whenever the sparsity is at
least ω(n−2/3), which is much smaller.

There are certainly drawbacks to the histogram bootstrap. First of all, as
already mentioned, to obtain stronger results in terms of the sparsity param-
eter ρn, we are forced to make stronger assumptions on the link function w.
Additionally, we note that the estimator ĥhist explicitly enforces sparsity in
the estimate through the tuning parameter s, which in Theorem 2 is set based
on the (typically unknown) sparsity ρn. [20] suggest a data-dependent way for
choosing s, which will not affect the results of (14) nor the consistency of the
resulting bootstrap procedure. Finally, although the estimator of [20] has strong
theoretical guarantees, it involves solving a combinatorial optimization problem
and is not computationally feasible. We now turn to a discussion of this and
other computational issues.

Computational considerations Each of our proposed bootstraps are com-
putationally intensive procedures. Naively computing PR(G

∗
m) even once re-

quires checking O(mp) separate subgraphs, which may be infeasible except when
the sample size n is modest, and the number of vertices in the motif R is small.
Repeating this computation for each bootstrap sample only exacerbates these is-
sues. The histogram bootstrap poses the added challenge that one need compute
the estimate ĥhist, which as already mentioned poses a serious computational
challenge.
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Still, the situation is not as bleak as these considerations suggest, for several
reasons. First, for certain graphs, such as stars and triangles, there exist fast (in-
deed, sublinear time) algorithms for approximating the subgraph count [9, 16].
Second, the motifs whose densities are of scientific interest in applied problems
tend to be small. Third, any graphon estimate ĥ which satisfies (14) will meet
the condition (12), and will yield a consistent bootstrap. For instance, the spec-
tral method studied by [37] is a computationally reasonable alternative to the

histogram estimate which—after appropriate truncation of the estimate ĥ to
satisfy ‖ĥ‖∞ ≤ ρn, and extension of the estimate to [0, 1]2—should satisfy (14).

Practical implications To summarize, the theory developed in this section
shows that our proposed empirical graphon and histogram bootstraps result in
consistent estimates for the distributions of motif densities. Motif densities are
statistics of direct scientific interest, for instance in biological [30] and social [1]
networks. Additionally, our conclusions apply to sparse graphons, which are one
way to model the sparsity often seen in real-world networks.

Finally, the fact that our bootstraps are valid for motif densities suggests (via
the delta method) that they should also be valid for functionals which can be
expressed as well-behaved functions of motif densities. Precisely because motif
densities characterize infinite-exchangeable network distributions, this class of
functionals should be quite rich, and include more complicated and scientifically
interesting functionals than just motif densities. We thus view our results as
evidence that the bootstrap is a statistically reasonable off-the-shelf method of
generally quantifying uncertainty in network data analysis.

4. Simulations

Our theory kicks in only as the number of vertices n → ∞. Of course we would
like to be confident that our bootstraps work when n is finite, and even when
n is reasonably small. In this section, we provide empirical evidence supporting
this conclusion. We consider various graphons hn and motifs R, and show that
confidence intervals formed using either of our proposed bootstraps typically
have close to nominal coverage when n is even moderately large. Moreover,
the interval widths shrink quickly and at comparable rates for each bootstrap
procedure.

Setup We will consider three separate simulation setups. In each, the graph
Gn will be sampled as in (1), and the setups will be distinguished only by
different choices of the link function w. Within each setup, we will vary n =
25, 50, . . . , 400 and ρn = .02, .1 and .25, to investigate the effects of both sam-
ple size and sparsity. We will always draw 100 resampled graphs (G∗

n)
(1), . . . ,

(G∗
n)

(100) with resulting motif densities PR((G
∗
n)

(1)), . . . , PR((G
∗
n)

(100)), and take
the empirical distribution

1

100

100∑
b=1

√
n

ρ̄
|E(R)|
n

(
PR

(
(G∗

n)
(b)
)
− PR(ĥ)

)
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as a Monte Carlo estimate of the (centered and scaled) conditional distribution
of PR(G

∗
n). Letting 1 − α be the nominal coverage, we take q̂α/2 and q̂1−α/2

to be the α/2 and 1 − α/2 quantiles of this Monte Carlo estimate. Our final
confidence interval is then given by

ÎR(Gn) =

(
PR(Gn) + q̂α/2

ρ̂
|E(R)|
n√

n
, PR(Gn) + q̂1−α/2

ρ̂
|E(R)|
n√

n

)
Our theory establishes that, under appropriate conditions on the link function
w, the true coverage of ÎR(Gn) should approach 1 − α as n → ∞ (up to error
induced by the Monte Carlo approximation). To examine finite sample behavior,
we repeat the above setup overN = 1000 draws of the graph Gn — and resulting
intervals ÎR(Gn) — to obtain an estimated coverage and average interval width
for each value of n and ρn, and for each of our two bootstraps. It is these
quantities which we examine below.

For the empirical graphon bootstrap, we implemented our own code. To com-
pute a histogram estimator, we use the blockmodels package Leger [24], which
approximates the least squares estimator using a variational EM procedure, and
chooses the optimal number of blocks by cross-validation. Note that this devi-
ates slightly from our theoretical definition of the histogram estimator, but the
deviation is in the direction of being more computationally tractable, i.e., not
having to solve a difficult combinatorial optimization problem.

Simulation 1: Gaussian link function In our first simulation, we let

w(u, v) ∝ exp(−25‖u− v‖2/2)

be a Gaussian link function with bandwidth 1/5 (the constant of proportionality
is chosen so that

∫
w(u, v) du dv = 1). In Figure 1, we see coverage plotted

against sample size, for the motifs R = {(1, 2), (2, 3), (1, 3)} (triangle), R =
{(1, 2), (2, 3)} (two-star), R = {(1, 2), (2, 3), (3, 4), (4, 1)} (four-cycle), and R =
{(1, 2), (1, 3), (1, 4)} (claw). The lines are colored according to the resampling
procedure used, and marked according to whether ρn = .02, .1 or .25.

When ρn = .25, for all of the aforementioned motifs except the four-cycle
and for all n > 300, the estimated coverage is within .05 of nominal coverage for
both bootstraps; it is therefore fair to say that both of our bootstraps “work”
reasonably well in this setting. When ρn = .1, the story is more mixed. Resam-
pling using the histogram estimate still gives approximately nominal coverage,
but estimated coverage of the empirical bootstrap deviates substantially from
nominal coverage. That being, even for the empirical bootstrap estimated cov-
erage appears to be tending towards 1− α as n increases, as we would expect.
When ρn = .02, even the histogram estimator is not particularly accurate for
the four-cycle. All of this is in line with our theory, which requires suitable lower
bounds on ρn as a function of n for both bootstraps, with the lower bound being
more stringent for the empirical graphon than for the histogram estimator, and
for motifs with more nodes and edges such as the four-cycle.
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Fig 1. Coverage of bootstrapping methods as a function of sample size for Gaussian link
function. Nominal level 1 − α = .7 denoted by horizontal green line. The empirical graphon
procedure is shown in blue, and the histogram graphon procedure in orange. Dashed lines and
circular symbols correspond to ρn = .02; dotted lines and triangles to ρn = .1; filled lines and
squares to ρn = .25.

Figure 2 shows the average interval widths for each of the four aforementioned
motifs when ρn = .2, plotted on a log-log scale. We see that, in addition to having
better coverage, the histogram bootstrap has narrower confidence intervals than
the empirical graphon bootstrap. However, as n grows the difference between
the two decreases, and the slopes become more and more similar, converging
towards the 1/

√
n rate we would expect from Theorems 1 and 2 (since ρn = .25

does not change with n.)

Simulation 2: stochastic block model In our second simulation, we take

w(u, v) ∝

⎧⎪⎨⎪⎩
1, if u ≤ .5, v ≤ .5

.8, if u > .5, v > .5

.25, otherwise;
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Fig 2. Interval width of bootstrapping methods as a function of sample size for Gaussian link
function. Colors and symbols are the same as in Figure 1.

in other words we sample Gn from a stochastic block model with two blocks.

Figure 3 shows estimated coverage as a function of sample size. The con-
clusions we draw are similar in spirit to those drawn from our first experiment.
Both bootstrap methods appear to be approaching 1−α coverage as n increases,
when the density parameter ρn is sufficiently large (although we note that for
the empirical graphon bootstrap, the difference between nominal and actual
coverage is larger than it was for the Gaussian link function). The histogram
bootstrap has close to nominal coverage across all values of ρn, but after all
this is a case where the true model is itself a histogram, and we should not be
surprised that the histogram bootstrap performs quite well.

Figure 4 shows the average confidence interval width as a function of n when
ρn = .25. Again the conclusions are similar to those of our first experiment. In
particular, while resampling using a histogram graphon estimate results in nar-
rower average confidence intervals than resampling using the empirical graphon,
the difference between the two decreases as n grows, and the rate at which in-
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Fig 3. Coverage of bootstrapping methods as a function of sample size for stochastic block
model. Colors and symbols are the same as in Figure 1.

terval width shrinks tends towards the expected 1/
√
n rate.

Simulation 3: horseshoe link function In our third and final simulation,
we let

w(u, v) ∝ exp
(
−200(u− v2)2/2

)
+ exp

(
−200(v − u2)2/2

)
.

We call this the horseshoe link function, since when w is visualized using a heat
map it looks like a horseshoe.9 Due to its odd shape, w is poorly approximated
by a histogram of any reasonable binwidth. Relatedly, the Lipschitz condition
required for Corollary 1 is satisfied only for a very large Lipschitz constant L.
On the other hand, our theory for the empirical graphon does not depend on the
smoothness of the function w, and so it applies equally as well to the horseshoe
link function as to the previous — smoother — graphons considered in our first
two simulations.

9We have borrowed this graphon from Wang [35], where it was used as a challenging
example for graphon estimation.
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Fig 4. Interval width of bootstrapping methods as a function of sample size for stochastic
block model. Colors and symbols are the same as in Figure 2.

Such is the theoretical state of affairs; Figure 5 shows the empirical reality. In
contrast to the previous two simulations, when ρn = .25 it is now the empirical
graphon bootstrap which has closer to nominal coverage, consistently across the
different possibilities for R and n. (When ρn = .1 or ρn = .02, resampling from
a histogram estimate still results in coverage closer to 1−α). We conclude that
for sufficiently non-smooth link functions w and large values of ρn, the empiri-
cal graphon may outperform the histogram estimate as a bootstrap procedure.
Figure 6 shows that average interval widths are similar for both resampling
procedures, reiterating the takeaway message of Simulations 1 and 2.

Taken as a whole, our simulations demonstrate that even for networks with
a moderate number of vertices, both of our bootstraps result in reasonable esti-
mates of the motif density distribution, across different choices of graphon func-
tion and motif. In particular, confidence intervals formed using these bootstraps
have approximately nominal coverage when ρn is sufficiently large, as suggested
by our asymptotic theory, and interval widths shrink rapidly (approaching the
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Fig 5. Coverage of bootstrapping methods as a function of sample size for horseshoe graphon.
Nominal level 1−α = .7 denoted by green line. Colors and symbols are the same as in Figure
1.

anticipated 1/
√
n rate for fixed ρn) as n grows.

5. Supporting propositions and lemmas

As mentioned earlier, the proofs for Theorems 1 and 2 each rely on a series of
3 approximations: first, that the distribution of a scaled version of PR(Gn) is
close to Gaussian; second, that the conditional distribution of a scaled version of
PR(G

∗
m) is close to Gaussian; and third, that the variances of both distributions

are close. Propositions 2 and 3 formalize the first and third of these assertions
(the second assertion is covered in the proof of the theorems.)

In order to state Proposition 2, we will need an expression for the (normal-
ized) variance of PR(Gn). Intuitively, this will involve taking expectation over
the product of indicator functions, of the form E [I{Gn(i) � R}I{Gn(j) � R}].
As we might expect, this quantity can be related to PW (h) for a set of motifs
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Fig 6. Interval width of bootstrapping methods as a function of sample size for horseshoe
graphon. Colors and symbols are the same as in Figure 2.

W . The intuition is that the event of seeing the same motif on two different
subgraphs corresponds to seeing one of several particular motifs on the union
subgraph. We will call the set of these motifs W the “merged copy set”, because
it consists of motifs formed by taking two copies of R and merging some of their
vertices.

Definition 3. The merged copy set of a motif R on k vertices, denoted
MC(R, k), is the set of all W such that

MC(R, k) = {W : |V (W )| = k, ∃i, j s.t. i ∪ j = 1 : k,W (i) � R,W (j) � R}
(16)

Lemma 1, next, relates the double sum present in E
[
PR(Gn)

2
]
to summing

over motifs in the various merged copy sets. The merged copy sets tells us which
motifs we need to sum over, but not how many times we’ll need to consider
each motif. Luckily, this depends only on

(
n
k

)
and a combinatorial factor, itself
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a function of R and W , which counts how many ways W can be formed by
merging two copies of R.10.

Lemma 1. For any p-node motif R,

∑
i,j∈Sp(n)

E [I{Gn(i) � R}I{Gn(j) � R}] =
2p∑
k=p

(
n

k

) ∑
W∈MC(R,k)

CR(W )PW (h),

(17)
where CR(W ) counts the number of ways of forming W by merging two copies
of R.

Lemma 2. Define

σ2
R(hn) ≡ Var

( √
n

ρ
|E(R)|
n

PR(Gn)

)
. (18)

Then,

σ2
R(hn) =

n

(ρ
|E(R)|
n

(
n
p

)
|p!N(R)|)2

2p−1∑
k=p

(
n

k

) ∑
S∈MC(R,k)

CR(S)PS(hn)

−
(
1−
(
n−p
p

)(
n
p

) ) P̃R(hn)
2.

Moreover, if
∫
[0,1]2

w2|E(R)|(u1, u2)du1:2 < ∞, and either R is acyclic and ρn =

ω(n−1) or R is general and ρn = ω(n−2/p), then

σ2
R := lim

n→∞
σ2
R(hn) < ∞. (19)

Now that we know that ρ
−|E(R)|
n is the appropriate normalization, we can

state a central limit theorem from [3] for the empirical subgraph densities.

Proposition 2 (Theorem 1 of [3]). Suppose w �= 1 on a subset of [0, 1]2 with pos-
itive Lebesgue measure. For a p-node motif R, if (i)

∫
[0,1]2

w2|E(R)|(u1, u2)du1:2

< ∞ and (ii) either R is acyclic and ρn = ω(n−1), or R is general and

ρn = Ω(n− 2
p ) then

√
nρ−|E(R)|

n

(
PR(Gn)− PR(h)

)
w→ N (0, σ2

R) (20)

Also

P̃R(Gn)
p→ P̃R(h) (21)

10For example, if R = K2, the single edge between two nodes, there are four different ways
we can merge two copies of R to get a 2-star.
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We reiterate that the requirement ρn = ω(n−2/p) in Theorem 2 essentially
matches that of Proposition 2, and that when ρn = o(n−2/p) the limiting dis-

tribution of
√
nρ

−|E(R)|
n

(
PR(Gn)− PR(h)

)
is not known.

As stated above, one step required for the proofs of our main theorems is
to show that the bootstrap estimate of variance, for both of our procedures, is
close to σ2

R. Proposition 3 formalizes this statement.

Proposition 3. For a motif R, under the conditions of Theorem 1, the empir-
ical graphon ĥ = ĥadj satisfies

σ2
R(ĥ)

p→ σ2
R, (22)

and under the conditions of Theorem 2, for any graphon estimate ĥ which sat-
isfies (12),

σ2
R(ĥ)

p→ σ2
R. (23)

Finally, in order to show that Proposition 3 holds, we must have that the
PS(ĥ) terms in σ2

R(ĥ) converge at the appropriate rate to the PS(h) terms in
σ2
R. Lemmas 3 and 4 establish this, respectively, for the empirical graphon and

for an arbitrary estimator that satisfies (12).

Lemma 3. For any k-node motif S, if
∫
[0,1]2

w2|E(S)|(u1, u2)du1:2 < ∞, and

ρn = ω(n−1), then for ĥ = ĥadj∣∣∣∣∣PS(ĥ)− PS(hn)

ρk−1
n

∣∣∣∣∣ p→ 0. (24)

If additionally ρn = ω(n− 1
k ), then∣∣∣∣∣PS(ĥ)− PS(hn)

ρ
|E(S)|
n

∣∣∣∣∣ p→ 0. (25)

In order to prove (22) in Proposition 3, we will need to invoke Lemma 3 with
respect to motifs S in the merged copy set MC(R, k), for k = p, . . . , 2p − 1.
For such motifs S, the number of edges |E(S)| may be as large as 2|E(R)|, and
the number of nodes as large as 2p − 1. This explains why in Theorem 1, we
require that w ∈ L4|E(R)|([0, 1]2) and ρn = ω(n−1/2p). On the other hand, the
requirements of Lemma 4 are weaker, and translate to weaker requirements in
Theorem 2.

Lemma 4. For any motif S, if ‖w‖|E(S)| < ∞ and ĥ is a graphon estimate
which satisfies

ρ−1
n ‖ĥ− hn‖|E(S)|

p→ 0, (26)

then ∣∣∣∣∣PS(ĥ)− PS(hn)

ρ
|E(S)|
n

∣∣∣∣∣ p→ 0. (27)
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6. Proofs

6.1. Proof of Theorem 1

We can upper bound (11) by

sup
x

∣∣∣∣∣P
( √

m

ρ̄
|E(R)|
n

(
PR(G

∗
m)− PR(ĥ)

)
≤ x

∣∣∣∣∣Gn

)
− Φ

(
x

σR(ĥ)

)∣∣∣∣∣
+ sup

x

∣∣∣∣∣Φ
(

x

σR(ĥ)

)
− Φ

(
x

σR(h)

)∣∣∣∣∣
+ sup

x

∣∣∣∣∣Φ
(

x

σR(h)

)
− P(

√
n

ρ̂
|E(R)|
n

(PR(Gn)− PR(h)) ≤ x)

∣∣∣∣∣.
The third term goes to 0 by Proposition 2. The second term goes to 0 by

Proposition 3. All that remains is to bound the first term. Note that to do so, we
cannot simply invoke Proposition 2, because the empirical graphon ĥ is random
and changing with n. Instead, we bound the first term using a Berry-Esseen
inequality for U-statistics, keeping in mind that PR(G

∗
n) is strictly a U-statistic,

conditional on Gn, because once the ε
∗
i are specified there is no more randomness

in PR(G
∗
n). To ease notation, for i ∈ Sn(p) define

ε∗i = (ε∗i1 , . . . , ε
∗
ip) (28)

ĤR(ε
∗
i ) := E [I(G∗

n(i) = R)|ε∗, Gn] (29)

and note that

PR(G
∗
m) =

1

N(R)p!
(
n
p

) ∑
i∈Sn(p)

∑
R1∼R

ĤR(ε
∗
i ) (30)

Therefore, by Janssen [18], we have that

sup
x

∣∣∣∣∣P(
√
m

ρ̄
|E(R)|
n

(
PR(G

∗
m)− PR(ĥ)

)
≤ x

∣∣∣∣∣Gn)− Φ

(
x

σR(ĥ)

)∣∣∣∣∣ ≤ C
ν̄3

σ̄3
gm

1
2

(31)

where

σ̄2
g := Var

(
E

[ ∑
R1∼R

ĤR1(ε
∗
1:p)

p!N(R)ρ̄
|E(R)|
n

∣∣∣∣∣ε∗1, Gn

]∣∣∣∣∣Gn

)
(32)

ν̄3 := E

⎡⎣∣∣∣∣∣ ∑
R1∼R

ĤR1(ε
∗
1:p)− PR(ĥ)

p!N(R)ρ̄
|E(R)|
n

∣∣∣∣∣
3
∣∣∣∣∣∣Gn

⎤⎦ (33)
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We first bound ν̄3, using the fact that ĤR(ε
∗
1:p)

3 = ĤR(ε
∗
1:p). By Holder’s

Inequality, we have

E

[
ĤR1(ε

∗
1:p)ĤR2(ε

∗
1:p)ĤR3(ε

∗
1:p)
]
≤ E

[
ĤR(ε

∗
1:p)

3
]

(34)

By Lemma 3, we have that ∣∣∣∣∣PR(ĥ)− PR(hn)

ρ
|E(R)|
n

∣∣∣∣∣ p→ 0 (35)

since either |E(R)| = p− 1 or ρn = ω(n− 1
p ). Therefore,

PR(ĥ) = Op (PR(hn)) = Op

(
ρ|E(R)|
n

)
(36)

where the last statement is implied by the condition
∫
[0,1]2

w4|E(R)|(u1, u2)du1:2

< ∞. Putting these together, we can upper bound ν̄3,

ν̄3 ≤ 8

ρ̄
|3E(R)|
n

(E
[
ĤR(ε

∗
1:p)

3
∣∣∣Gn

]
+ PR(ĥ)

3) (37)

=
8

ρ̄
|3E(R)|
n

(E
[
ĤR(ε

∗
1:p)
∣∣∣Gn

]
+ PR(ĥ)

3) (38)

=
8

ρ̄
|3E(R)|
n

(PR(ĥ) + PR(ĥ)
3) (39)

= Op

(
ρ−2|E(R)|
n

)
. (40)

Turning to σ̄2
g , we have

σ̄2
g = Var

(
E

[∑
R1∼R ĤR1(ε

∗
1:p)

p!N(R)ρ̄n|E(R)|

∣∣∣∣∣ε∗1, Gn

]∣∣∣∣∣Gn

)
(41)

=

∑
S∈MC(R,1) CR(S)

(
PS(ĥ)− PR(ĥ)

2
)

¯
ρ
2|E(R)|
n

, (42)

with the second equality following because

E

[
E

[
ĤR1(ε

∗
1:p)|ε∗1

]
E

[
ĤR2(ε

∗
1:p)|ε∗1

]∣∣∣Gn

]
= PS(ĥ)

for some S inMC(R, 1). If R is acyclic, 2|E(R)| = 2p−2 = |V (S)|−1. Otherwise,

by assumption, ρn = ω(n− 1
2p ) and |V (S)| = 2p − 1. Either way, by Lemma 3,

we have that for all S ∈ MC(R, 1),∣∣∣∣∣PS(ĥ)− PR(ĥ)
2 − PS(h) + PR(h)

2

ρ̄n2|E(R)|

∣∣∣∣∣ p→ 0 (43)
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Note that PS(h)−PR(h)2

ρ̄n
2|E(R)| = P̃S(h)−(P̃R(h))

2 = θ(1) by Holder’s inequality, unless

w = 1 almost everywhere. So, σ̄2
g = Ωp(1). Finally, if m = ω(ρ

−4|E(R)|
n ),

ν̄3σ̄
−3
g m− 1

2 = op(1) (44)

which completes the proof.

6.2. Proof of Theorem 2

We begin, similarly to the Proof of Theorem 1, by upper bounding (13) via the
triangle inequality by

sup
x

∣∣∣∣∣P(
√
n

ρ̄
|E(R)|
n

(
PR(G

∗
n)− PR(ĥ)

)
≤ x

∣∣∣∣∣Gn)− Φ

(
x

σ2
R(ĥ)

)∣∣∣∣∣
+ sup

x

∣∣∣∣∣Φ
(

x

σ2
R(ĥ)

)
− Φ

(
x

σ2
R(h)

)∣∣∣∣∣ (45)

+ sup
x

∣∣∣∣∣Φ
(

x

σ2
R(h)

)
− P(

√
n

ρ̂
|E(R)|
n

(PR(Gn)− PR(h)) ≤ x)

∣∣∣∣∣. (46)

The third term goes to 0 by Proposition 2. The second term goes to 0 by
Proposition 3. To bound the first term, we split PR(G

∗
n) − PR(ĥ) up into two

components, based on the randomness from resampling latent variables and the
randomness from resampling edges respectively. In other words,

PR(G
∗
n)− PR(ĥ) = PR(G

∗
n)− E [PR(G

∗
n)|ε∗, Gn] + E [PR(G

∗
n)|ε∗, Gn]− PR(ĥ).

(47)

Lemma 5 establishes that E [PR(G
∗
n)|ε∗, Gn] − PR(ĥ) obeys, conditional on

Gn, a central limit theorem for U-statistics. Lemma 6 establishes that PR(G
∗
n)−

E [PR(G
∗
n)|ε∗, Gn], once appropriately scaled, has asymptotically neglible con-

tribution to the overall randomness. Let

τ2R(ĥ) := Var

( √
n

ρ̄n|E(R)|E [PR(G
∗
n)|ε∗, Gn]

∣∣∣∣Gn

)
(48)

Lemma 5. Let R be a fixed motif. Then, if the conditions of Theorem 2 hold,

sup
x

∣∣∣∣∣P(
√
n

ρ̄n|E(R)| (E [PR(G
∗
n)|ε∗, Gn]− PR(ĥ)) ≤ x

∣∣∣∣∣Gn)− Φ

(
x

τR(ĥ)

)∣∣∣∣∣ p→ 0.

(49)

Proof. We use the same notation as in the Proof of Theorem 1. We can write

E [PR(G
∗
n)|ε∗, Gn] =

1(
n
p

) ∑
i∈Sn(p)

E [I(G∗
n(i) � R)|ε∗i , Gn]

p!N(R)ρ̄n|E(R)| (50)
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=
1(
n
p

) ∑
i∈Sn(p)

∑
R1∼R

ĤR1(ε
∗
i )

p!N(R)ρ̄n|E(R)| , (51)

which shows that E [PR(G
∗
n)|ε∗, Gn] is a U-statistic conditional on the graph

Gn. The Berry-Esseen theorem for U-statistics [18] therefore tells us

sup
x

∣∣∣∣∣P
( √

n

ρ̄n|E(R)| (E [PR(G
∗
n)|ε∗, Gn]− PR(ĥ)) ≤ x

∣∣∣∣Gn

)
− Φ

(
x

τR(ĥ)

)∣∣∣∣∣
≤ ν̄3σ̄g

−3n− 1
2

(52)

where ν̄3 and σ̄g
−3 are defined as in the proof of Theorem 1. First, we’ll upper

bound ν̄3.

ν̄3 ≤ 8

⎛⎝E
⎡⎣∣∣∣∣∣
∑

R1∼R ĤR1(ε
∗
1:p)

p!N(R)ρ̄n|E(R)|

∣∣∣∣∣
3
∣∣∣∣∣∣Gn

⎤⎦+ E

[∑
R1∼R ĤR1(ε

∗
1:p)

p!N(R)ρ̄n|E(R)|

∣∣∣∣∣Gn

]3⎞⎠ (53)

≤ 16

ρ̄n3|E(R)|E
[
ĤR(ε

∗
1:p)

3
∣∣∣Gn

]
(54)

where the second line follows from Holder’s inequality. Then,

E

[
ĤR(ε

∗
1:p)

3
∣∣∣Gn

]
(55)

=

∫
[0,1]p

∏
(i,j)∈R

ĥ(ui, uj)
3
∏

(i,j)∈Kn\R
(1− ĥ(ui, uj))

3du1:p

≤
∫
[0,1]p

∏
(i,j)∈R

ĥ(ui, uj)
3du1:p (56)

≤
∫
[0,1]2

(ĥ(u1, u2)
3|E(R)|)du1:2 (57)

= O
(
ρ3|E(R)|
n

)
, (58)

where the final equality follows by the boundedness in norm assumed in (12).
This implies an upper bound on the skewness,

ν̄3 =
Op

(
ρ
3|E(R)|
n

)
ρ̄n3|E(R)| = Op(1). (59)

Turning to σ̄2
g , just as in Theorem 1, we have

σ̄2
g = Var

(
E

[∑
R1∼R ĤR1(ε

∗
1:p)

p!N(R)ρ̄n|E(R)|

∣∣∣∣∣ε∗1, Gn

]∣∣∣∣∣Gn

)
(60)

=

∑
S∈MC(R,2p−1) CR(S)

(
PS(ĥ)− PR(ĥ)

2
)

ρ̄
2|E(R)|
n

. (61)
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Observe that S ∈ MC(R, 2p− 1) satisfies |E(S)| = 2|E(R)|. Consequently, the
assumptions ‖w‖|E(S)| < ∞ and ρn‖hn − ĥ‖|E(S)| = op(ρn) of Lemma 4 hold
for all S ∈ MC(R, 2p − 1) as well as for S = R, and so do the conclusions
of Lemma 4. From here, reasoning exactly the same as in the proof of Theo-
rem 1, except using Lemma 4 rather than Lemma 3, implies that σ̄2

g = Ωp(1).
Combining this with our upper bound on ν̄3, we conclude that

ν̄3σ̄
−3
g n− 1

2 = Op(1)Op(1)n
− 1

2
p→ 0, (62)

which concludes the proof of Lemma 5.

Lemma 6. Let R be a fixed motif. Then, if the conditions of Theorem 2 hold,

Var

( √
n

p!N(R)ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n)|ε∗, Gn])

∣∣∣∣Gn

)
p→ 0, (63)

and √
n

p!N(R)ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n)|ε∗, Gn])

p→ 0. (64)

Proof. We start by rewriting

√
n

p!N(R)ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n)|ε∗, Gn]) (65)

=

√
n

p!N(R)
(
n
p

)
ρ̄n|E(R)|

∑
i∈Sn(p)

∑
R1∼R

{I(G∗
n(i) = R1)− ĤR1(ε

∗
i )}.

By the definition of ĤR,

E

[
I(G∗

n(i) = R)− ĤR(ε
∗
i )
∣∣∣ε∗, Gn

]
= 0 (66)

and so by the law of total variance,

Cov
[
I(G∗

n(i) = R1)− ĤR1(ε
∗
i ), I(G

∗
n(j) = R2)− ĤR2(ε

∗
j )
∣∣∣Gn

]
(67)

= E

[
Cov
[
I(G∗

n(i) = R1)− ĤR1(ε
∗
i ), I(G

∗
n(j) = R2)− ĤR2(ε

∗
j )
∣∣∣ε∗, Gn

}]
= E [Cov [I(G∗

n(i) = R1), I(G
∗
n(j) = R2)|ε∗, Gn]] (68)

Therefore,

Var

( √
n

p!N(R)ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n)|ε∗, Gn])

∣∣∣∣Gn

)
(69)

=
n

(N(R)p!
(
n
p

)
)2ρ̄n2|E(R)|

·
∑

i,j∈Sn(p)

∑
R1,R2∼R

E [Cov [I(G∗
n(i) = R1), I(G

∗
n(j) = R2)|ε∗, Gn]] (70)
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Let us fix i, j and denote by k = |i ∩ j| the number of nodes that i and j have
in common, and k′ = |i ∪ j| = 2p− k. Note that if k < 2, then G∗

n(i) and G∗
n(j)

share no dyads, and are thus independent once we condition on ε∗. Otherwise if
k = 2, . . . , p, we can bound the expected conditional covariance in terms of the
moment PW (ĥ) for some motif W ∈ MC(R, k′)11 as follows:∣∣∣∣E[Cov[I(G∗

n(i) = R1), I(G
∗
n(j) = R2)

∣∣ε∗, Gn

]∣∣∣Gn

]∣∣∣∣ (71)

≤ E

[
I(G∗

n(i) = R1), I(G
∗
n(j) = R2)

∣∣∣Gn

]
= PW (ĥ) (72)

= Op

(
ρ|E(W )|
n

)
, (73)

where the last equality follows from Lemma 4, which we may invoke because (12)

implies ‖ĥ− h‖|E(W )| =≤ ‖ĥ− h‖2|E(R)| = op(ρn) for all k
′ = p, . . . , 2p− 1 and

W ∈ MC(R, k′).
From here, we divide our analysis into cases, based on whether (a) R is acyclic

and ρn = ω(n−1), or (b) R is general and ρn = ω(n−2/p). Assuming (a), we have
only the lower bound |E(W )| ≥ k′ − 1 for each W ∈ MC(R, k′), because W
must be connected. Fortunately, this lower bound is enough, since in this case
2|E(R)| = 2(p − 1). Noting that there will be on the order of nk′

valid choices
for i and j which yield two subgraphs with k vertices in common, it follows
from (69), (73), and the facts we have just observed that

Var

( √
n

p!N(R)ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n)|ε∗, Gn])

∣∣∣∣Gn

)
(74)

=

p∑
k=2

O(n1−k)Op

(
ρ(k

′−1)−2|E(R)|
n

)
(75)

=

p∑
k=2

O(n1−k)Op

(
ρ−(k−1)
n

)
(76)

= op(1), (77)

which implies (63).
Otherwise we assume (b), that R is general and ρn = ω(n−2/p). By the

properties of the merged copy set, if W ∈ MC(R, k′) then |E(W )| ≥ 2|E(R)| −(
k
2

)
. It follows from (69) and (73) that

Var

( √
n

p!N(R)ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n)|ε∗, Gn])

∣∣∣∣Gn

)
(78)

=

p∑
k=2

O(n1−k)Op

(
ρ
−(k2)
n

)
(79)

11In particular, the motif W on nodes 1, . . . , k′ such that W (i) = R1 and W (j) = R2
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=

p∑
k=2

o(ρ(1−k)p/2
n )Op

(
ρ
−(k2)
n

)
(80)

= op(1), (81)

again implying (63).
Equation (64) then follows via an application of (conditional) Chebyshev’s

Inequality, which we make precise in Lemma 7, along with the fact that

E

[
PR(G

∗
n)− E [PR(G

∗
n)|ε∗, Gn]

∣∣∣Gn

]
= 0.

Thus the proof of Lemma 6 follows upon proving Lemma 7.

Lemma 7. Let (Xn), (Yn) be two sequences of random variables.
Suppose E[Xn|Yn] = 0 and Var(Xn|Yn) = op(1). Then Xn = op(1).

Proof. It suffices to show that for any a, δ > 0, P(Xn > a) < δ for all n
sufficiently large. To begin with, we have that for any b > 0:

P(Xn > a) ≤ P
(
Xn > a|Var(Xn|Yn) ≤ b

)
+ P(Var(Xn|Yn) > b).

By the law of iterated expectation, the conditional zero-mean property E[Xn|Yn]
= 0 and Chebyshev’s inequality,

P
(
Xn > a|Var(Xn|Yn) ≤ b

)
= E

[
P(Xn > a|Yn)

∣∣∣Var(Xn|Yn) ≤ b
]

≤ E

[
Var(Xn|Yn)a

−2
∣∣∣Var(Xn|Yn) ≤ b

]
≤ b

a2
;

note that the second line follows because by assumption E[Xn|Yn] = 0. Taking
b = δa2/2, we have by assumption that P(Var(Xn|Yn) > b) ≤ δ/2 for all n
sufficiently large, and so for all such n we obtain that P(Xn > a) ≤ δ, as
desired.

The proof of Theorem 2 now follows straightforwardly. Putting Lemmas 5
and 6 together via Slutsky’s Theorem yields

sup
x

∣∣∣∣∣P
( √

n

ρ̄n|E(R)| (PR(G
∗
n)− PR(ĥ)) ≤ x

∣∣∣∣Gn

)
− Φ

(
x

τR(ĥ)

)∣∣∣∣∣ p→ 0 (82)

Finally, we have by the definition of conditional expectation that

σ2
R(ĥ) = τ2R(ĥ) + Var

( √
n

ρ̄n|E(R)| (PR(G
∗
n)− E [PR(G

∗
n|Gn)|ε∗, Gn])

∣∣∣∣Gn

)
(83)

By Lemma 6, we therefore have that∣∣∣σ2
R(ĥ)− τ2R(ĥ)

∣∣∣ p→ 0 (84)
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Since σ2
R(ĥ) = θp(1) and thus τ2R(ĥ) = θp(1), this in turn implies∣∣∣∣∣Φ

(
x

τR(ĥ)

)
− Φ

(
x

σR(ĥ)

)∣∣∣∣∣ p→ 0 (85)

which completes the proof of Theorem 2.

6.3. Proof of Lemma 1

This proof will be made slightly easier by introducing a second motif S, also on
p nodes. (We can think of S as being an isomorphic copy of R.) Let i ∪ j = l,
where (with slight notational mangling) l is an ordered k-tuple. Then, define
Ri = {(c, d) : (a, b) ∈ R, (ia, ib) = (lc, ld)} and similarly Sj = {(c, d) : (a, b) ∈
S, (ja, jb) = (lc, ld)}. (Here, we’ve done nothing more than taken the two motifs
and sent them to the right vertices as defined by the joint vertex set l.) Now,
let W = Ri ∪ Sj. We would like to relate I{Gn(i) � R}I{Gn(j) � S} and
I{Gn(l) � W}. Unfortunately, they not not quite equal. After all, if there are
some edges between the vertices only in Gn(i) and those only in Gn(j) the LHS
can still be 1, but the RHS will clearly be 0. To fix this, we sum over all these
possible fuller motifs. Let CV (Ri),V (Sj) be the set of dyads between vertices only
in Ri and those only in Sj. Then,

I{Gn(i) = R}I{Gn(j) = S} =
∑

W :W=Ri∪Sj∪Q
Q⊆CV (Ri),V (Sj)

I{Gn(l) = W} (86)

and the relationship between seeing two motifs on different subsets of nodes and
seeing one merged motif on the union of the subsets is established.12

These manipulations allow us to write the double sum over i and j, with the
product of indicators of seeing the motifs R and S on the induced subgraphs
G(i) and G(j), as a sum over l, with the sum of indicators of seeing the motif
W on G(l). ∑

i,j∈Sp(n)

I(Gn(i) = R)I(Gn(j) = S)

=

2p∑
k=p

∑
l∈Sk(n)

∑
i,j∈Sp(n):

i∪j=l

∑
W :W=Ri∪Sj∪Q
Q⊆CV (Si),V (Sj)

I(Gn(l) = W ).
(87)

(87) makes clear how we can leverage the assumption of exchangeability, since
E [I(Gn(l) = W )] = PW (h) remains unchanged for all choices of l, and so we

12Notice that we have replaced equality up to isomorphism with strict equality. This will
simplify the following algebra, and returning to the isomorphism relationship can be estab-
lished with one line at the end.
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can simplify (17) to

2p∑
k=p

(
n

k

)
k!
∑

i,j∈Sp(n):
i∪j=1:k

∑
W :W=Ri∪Sj∪Q
Q⊆CV (Ri),V (Sj)

PW (h). (88)

Now, let us specify that S � R. Then, for every choice of i, j and Q, by
definition Ri, Sj � R and so W ∈ MC(R, k). Moreover, for a given k the number
of choices of i, j and Q are clearly fixed in n, and so the number of times each
W in MC(R, k) appears in the sum must also be fixed in n. Finally, to return
to isomorphism note that∑

R1,R2�R

I(Gn(i) = R1)I(Gn(i) = R2) = I(Gn(i) � R)I(Gn(i) � R). (89)

and of course the number of S � R, N(R) is fixed in n as well. Denote the
number of times each W appears as CW (R), where

CW0(R0) =
∑

i,j∈1:k,
i∪j=1:k

∑
R,S�R0

∑
W :W=Ri∪Sj∪Q
Q⊆CV (Ri),V (Sj)

I(W = W0), (90)

and the expression reduces to exactly the desired form.

6.4. Proof of Lemma 2

To get the expression for the first statement in the lemma, we expand the square
and use Lemma 1.

E
[
PR(Gn)

2
]
=

n

ρ
2|E(R)|
n (

(
n
p

)
p!N(R))2

∑
i,j∈Sp(n)

E [I(Gn(i) � R)I(Gn(j) � R]

(91)

=
n

ρ
2|E(R)|
n (

(
n
p

)
p!N(R))2

2p∑
k=p

(
n

k

) ∑
W∈MC(R,k)

CR(W )PW (h) (92)

Subtracting PR(h)
2 from this, and doing some basic algebraic rearrangement,

yields the desired result.
Now, we turn to the second statement in the lemma. Since the set MC(R, k)

is finite for any given R and k, and we are summing over a finite number of k,
the problem reduces to showing that

lim
n
(
n
k

)
PW (h)

(ρ
|E(R)|
n

(
n
p

)
)2

< ∞ (93)
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for all k in p, . . . , 2p− 1 and all W in MC(R, k). But then,

PW (h) ≤
∫
[0,1]k

∏
(i,j)∈E(W )

hn(ui, uj)du1:k (94)

≤
∫
[0,1]2

hn(u1, u2)
|E(W )|du1:2 (95)

= O
(
ρ|E(W )|
n

)
(96)

and so

lim
n→∞

n
(
n
k

)
PW (h)

(ρ
|R|
n

(
n
p

)
p!N(R))2

= O
(
nk+1−2pρ|E(W )|−2|E(R)|

n

)
p→ 0 (97)

where the last statement follows because either R is acyclic (and thus |E(R)| =
p− 1) or ρn = O(1/p).

6.5. Proof of Proposition 2

Both (20) and (21) come from Bickel, Chen and Levina [3].

6.6. Proof of Proposition 3

By Lemma 2, σ2
R(hn) → σ2

R; thus to prove Proposition 3 it suffices to show that

for either the specific estimator ĥ = ĥadj , or for an arbitrary estimator ĥ that
satisfies (12),

|σ2
R(ĥ)− σ2

R(hn)|
p→ 0. (98)

Lemma 2 also gives an expression for the normalized variance σ2
R(h), when

either h = hn is the true graphon, or h = ĥ is a graphon estimate. Taking the
difference between these two gives

σ2
R(hn)− σ2

R(ĥ) = (99)

n

(
(
n
p

)
p!(N(R))2

2p−1∑
k=p

(
n

k

) ∑
S∈MC(R,k)

CR(S)

[
PS(hn)

ρ
2|E(R)|
n

− PS(ĥ)

ρ̄n2|E(R)|

]

− 1

p!2N(R)2

(
1−
(
n−p
p

)(
n
p

) )2 [
PR(hn)

ρ
|E(R)|
n

− PR(ĥ)

ρ̄n|E(R)|

]
.

The above expression makes clear that in order to establish (98), we want to

suitably upper bound |PS(ĥ) − PS(hn)| for each motif S ∈ MC(R, k), k =
p, . . . , 2p− 1, as well as for S = R.

We now collect the relevant upper bounds on |PS(ĥ)−PS(hn)|, under various
assumptions and for each of ĥ = ĥadj or ĥ an arbitrary estimator satisfying (12).
We then show that these upper bounds imply (98).
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Rates of convergence for motif densities. We summarize the results of
Lemmas 3 and 4, insofar as they apply to the proof of Proposition 3

• Suppose R is a general motif, and S ∈ MC(R, k) for some k = p, . . . , 2p−1.

Then by assumption ‖w‖|E(S)| ≤ ‖w‖|2E(R)| < ∞, and either (a) ĥ = ĥadj

and ρn = ω(n−1/2p), or (b) ĥ = ĥ and ‖ĥ− hn‖|E(S)| ≤ ‖ĥ− hn‖2|E(R)| =
op(ρn). Either way, ∣∣PS(ĥ)− PS(hn)

∣∣ = op(ρ
|E(S)|
n ). (100)

• Suppose R is an acyclic motif, and S ∈ MC(R, k) for some k = p, . . . , 2p−
1. Then by assumption ‖w‖|E(S)| < ‖w‖|2E(R)| < ∞, and either (a) ĥ =

ĥadj and ρn = ω(n−1), or (b) ĥ = ĥ and ‖ĥ−hn‖|E(S)| ≤ ‖ĥ−hn‖2|E(R)| =
op(ρn). Either way,

13 for any connected k-node motif S,∣∣PS(ĥ)− PS(hn)
∣∣ = op(ρ

k−1
n ). (101)

Note that the above pair of statements hold because the assumptions of Propo-
sition 3 subsume those of Lemma 3 and Lemma 4, respectively. Now we turn
to establishing (98); we will show the results for ĥ = ĥadj and ĥ an arbitrary
estimator satisfying (12) at the same time, since the proof relies only on the
above properties.

Proof of (98). To begin, we note that ρ̄n = P̂S(ĥ) for S = K2, and so we
know that

|ρ̄n − ρn| = op(ρn). (102)

Next, we observe that(
1−
(
n−p
p

)(
n
p

) )2 ∣∣PR(ĥ)−PR(hn)
∣∣ = o

(∣∣PR(ĥ)−PR(hn)
∣∣) = op

(
ρ|E(R)|
n

)
; (103)

the last equality follows immediately from (100) when R is general, and from
(101) in the special case where R is acyclic and |E(R)| = p− 1.

It remains to show that for all S ∈ MC(R, k) and k = p, . . . , 2p− 1,

n
(
n
k

)(
n
p

)2
ρ
2|E(R)|
n

[
PS(hn)− PS(ĥ)

]
p→ 0. (104)

We now separate our analysis into the case where R is a general motif, and the
special case of R acyclic.

General motif. When R is general, we can use (100) to reduce the left hand
side of (104) to

n
(
n
k

)(
n
p

)2
ρ
2|E(R)|−|E(S)|
n

[
PS(hn)− PS(ĥ)

]
ρ
|E(S)|
n

= O(nk+1−2p)op(1)ρ
|E(S)|−2|E(R)|
n .

(105)

13Of course, Lemma 4 implies something stronger than (101) in case (b), but we will not
need this stronger result.
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To upper bound 2|E(R)| − |E(S)|, we leverage the fact that S is a member of
the merged copy set of R. The key is to notice that edges which are lost in S
when vertices are merged can only be edges between two merged vertices. There
are 2p−k such merged vertices, so there must be at least 2|E(R)|−

(
2p−k

2

)
edges

in S, and 2|E(R)| − |E(S)| ≤ (2p−k)(2p−k−1)
2 =: k′(k′−1)

2 for k′ = 2p − k. Then
plugging back into (105) gives

n
(
n
k

)(
n
p

)2
ρ
2|E(R)|
n

[
PS(hn)− PS(ĥ)

]
= O(n1−k′

)ρ−k′(k′−1)/2
n op(1) (106)

= O(n1−k′
)O(nk′−1)op(1) = op(1), (107)

with the penultimate equality following because ρn = Ω(n−2/p) = Ω(n−2/k′
).

Acyclic motif. Otherwise if R is acyclic, then |E(R)| = p−1, and we use (101)
to deduce that

n
(
n
k

)(
n
p

)2
ρ
2|E(R)|
n

[
PS(hn)− PS(ĥ)

]
=

n
(
n
k

)(
n
p

)2
ρ2p−k−1
n

(
PS(hn)− PS(ĥ)

ρk−1
n

)
(108)

=
n
(
n
k

)(
n
p

)2
ρ2p−k−1
n

op(1) (109)

= O
(
(nρn)

−(2p−k−1)
)
op(1) (110)

= O(1)op(1), (111)

with the last line following because ρn = Ω(n−1).
Thus we have established (104), which concludes the proof of Proposition 3.

6.7. Proof of Lemma 3

Throughout the proof of this lemma, ĥ = ĥadj . First, we will show that when

ρn = ω(n− 1
k ), where |V (S)| = k, then∣∣∣∣∣PS(ĥ)− PS(h)

ρ
|E(S)|
n

∣∣∣∣∣ p→ 0 (112)

We begin by bounding (112) by∣∣∣∣∣PS(ĥ)− PS(h)

ρ
|E(S)|
n

∣∣∣∣∣ ≤
∣∣∣∣∣PS(ĥ)− PS(Gn)

ρ
|E(S)|
n

∣∣∣∣∣+
∣∣∣∣∣PS(Gn)− PS(h)

ρ
|E(S)|
n

∣∣∣∣∣ (113)

The second of these is op(1) by Proposition 2, along with the assumption
that

∫
[0,1]2

w(u, v)2|E(S)| is finite. To bound the first term, we will make use of

the following combinatorial identity, which relates the V -statistic PS(ĥ) to the
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U -statistic PS(Gn) and can be verified by standard counting arguments:∣∣∣∣∣PS(ĥ)− PS(Gn)

ρ
|E(S)|
n

∣∣∣∣∣ =
[
1−
(
n
k

)
nk

]
PS(Gn)

ρ
|E(S)|
n

+O

(k−1∑
j=1

nj−k
∑

W∈M(S,j)

PW (Gn)

ρ
|E(S)|
n

)
.

(114)
HereM(S, j) is the set of motifsW on j vertices which can be formed by merging
vertices in S, and is not the same as the merged copy set MC(S, j).

W being formed by merging vertices in S restricts how many fewer edges it
may have than S. The first merger of two vertices can have merged at most
k − 1 edges, the second merger can have merged at most k − 2 edges, and so
forth. As a result, if W ∈ M(S, j),

|E(S)| − |E(W )| ≤ (k + j − 1)(k − j)

2
. (115)

We will also use the fact that PW (Gn)

ρ
|E(W )|
n

= Op(1), again by Proposition 2 along

with the fact that W has fewer edges than S. Putting these two together, we
have

O
(
nj−k
) PW (Gn)

ρ
|E(S)|
n

= Op

(
nj−k

ρ
(k+j−1)(k−j)

2
n

)
(116)

= op

(
nj−k+

(k+j−1)(k−j)
2k

)
(117)

= op

(
n− k−j

2k

)
= op(1) (118)

since j < k. We must now deal with the leading term, but this is merely[
1−
(
n
k

)
k!

nk

]
PS(Gn)

ρ
|E(S)|
n

= O

(
1

n

)
Op(1) (119)

and so we have shown (112) in the case where ρn = ω(n−1/k).

Now we turn to the setting where the only restriction on ρn is that nρn
n→ ∞.

What we must show is that ∣∣∣∣∣PS(h)− PS(ĥ)

ρk−1
n

∣∣∣∣∣ p→ 0. (120)

Similar to (114), we have∣∣∣∣∣PS(ĥ)− PS(Gn)

ρ
|k−1|
n

∣∣∣∣∣ =
[
1−
(
n
k

)
nk

]
PS(Gn)

ρ
|k−1|
n

+O

(k−1∑
j=1

nj−k
∑

W∈M(S,j)

PW (Gn)

ρ
|k−1|
n

)
(121)

By Proposition 2, we have that for all j and all W ∈ MC(S, j), PW (Gn)

ρ
|E(W )|
n

=

Op(1). Since |E(W )| ≥ j− 1, this implies PW (Gn)

ρ
|k−1|
n

= Op(ρ
j−k
n ). Therefore, along
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with the fact nρn → ∞, it follows that

O
(
nj−k
) ∑
W∈M(S,j)

PW (Gn)

ρ
|k−1|
n

= op(1). (122)

Finally,

[
1− (nk)

nk

]
PS(Gn)

ρ
|k−1|
n

= op(1), since
PS(Gn)

ρ
|E(S)|
n

= Op(1) and |E(S)| ≥ k − 1.

Thus, we have shown (120).

6.8. Proof of Lemma 4

Throughout the proof of this Lemma, ĥ is a graphon estimate which satisfies (26)

but is otherwise arbitrary, and q = |V (S)|. We can rewrite PS(ĥ)−PS(hn) using
their definitions to yield∣∣∣∣∣

∫
[0,1]q

{ ∏
(i,j)∈E(S)

ĥ(ui, uj)
∏

(i,j) 
∈E(S)

(1− ĥ(ui, uj)) (123)

−
∏

(i,j)∈E(S)

hn(ui, uj)
∏

(i,j) 
∈E(S)

(1− hn(ui, uj))du1:q

}∣∣∣∣∣. (124)

We now have the difference of products, but want the product of differences.
We would also like to ignore the contribution of non-edges. So we use the fol-
lowing Lemma.

Lemma 8. Let a1, . . . , a�, b1, . . . , b� ∈ [0, 1] for a positive integer �. Then, for
any k ∈ 1 : �,∣∣∣∣ k∏

i=1

ai

�∏
i=k+1

(1− ai)−
k∏

i=1

bi

�∏
i=k+1

(1− bi)

∣∣∣∣
≤

k−1∏
i=1

ai ·
�∑

j=k+1

|aj − bj |+
k∑

j=1

{j−1∏
i=1

ai · |aj − bj | ·
k∏

i=j+1

|bi|
}
.

(125)

In (125) we have adopted the convention that products which run over empty

index sets are one—i.e.
∏1

i=2 ai =
∏k

i=k+1 bi = 1— and sums which run over

empty index sets are zero—i.e.
∑�

j=�+1 |aj−bj | = 0—for notational conciseness.

Proof. Lemma 8 To begin, suppose k = �, so that our goal is to show∣∣∣∣ k∏
i=1

ai −
k∏

i=1

bi

∣∣∣∣ ≤ k∑
j=1

{j−1∏
i=1

ai · |aj − bj | ·
k∏

i=j+1

|bi|
}
. (126)

When k = � = 1, the claim is obvious. For a general k = � it follows by induction;
letting A =

∏k−1
i=1 ai and B =

∏k−1
i=1 bi, we have

|Aak −Bbk| ≤ A|ak − bk|+ bk|A−B|



1092 A. Green and C. R. Shalizi

≤ A|ak − bk|+ bk

k−1∑
j=1

{j−1∏
i=1

ai · |aj − bj | ·
k−1∏

i=j+1

|bi|
}

=

k∑
j=1

{j−1∏
i=1

ai · |aj − bj | ·
k∏

i=j+1

|bi|
}
.

Now if k < �, then we have∣∣∣∣∣
k∏

i=1

ai

�∏
i=k+1

(1− ai)−
k∏

i=1

bi

�∏
i=k+1

(1− bi)

∣∣∣∣∣
≤

k∏
i=1

ai

∣∣∣∣∣
�∏

i=k+1

(1− ai)−
�∏

i=k+1

(1− bi)

∣∣∣∣∣+
�∏

i=k+1

(1− bi)

∣∣∣∣∣
k∏

i=1

ai −
k∏

i=1

bi

∣∣∣∣∣
≤

k∏
i=1

ai

�∑
j=k+1

|aj − bj |+
∣∣∣∣∣

k∏
i=1

ai −
k∏

i=1

bi

∣∣∣∣∣,
with the second inequality following because 1 − bi ∈ [0, 1], along with the
sum-product inequality which holds for numbers in [0, 1]. Then the claim of the
Lemma follows from (126).

For notational convenience, let us adopt an arbitrary ordering e1, . . . , e|E(S)|
of the edges in E(S), and also write Δ̂(u, v) := |ĥ(u, v)− hn(u, v)|. From (123)

and Lemma 8, we can upper bound |PS(ĥ)− PS(hn)| by the sum of two terms,

|PS(ĥ)− PS(hn)|

≤
∑

(i′,j′) 
∈E(S)

∫
[0,1]q

|E(S)|−1∏
i=1

hn(uei(1), uei(2))Δ̂(ui′ , uj′) du1:q

+

|E(S)|∑
j=1

∫
[0,1]q

j−1∏
i=1

hn(uei(1), uei(2))Δ̂(uei(1), uei(2))

k∏
i=j+1

ĥ(uei(1), uei(2))

=: T1 + T2.

Thus it remains to show that T1, T2 = op(ρ
|E(S)|
n ). This is accomplished in

a similar manner for each term, by using Hölder’s inequality, the assumption
‖w‖|E(S)| < ∞, and the rate of convergence assumed in (26). For T1, we have

T1 =
∑

(i′,j′) 
∈E(S)

∫
[0,1]q

|E(S)|−1∏
i=1

hn(uei(1), uei(2))Δ̂(ui′ , uj′) du1:q

≤
∑
(i′,j′)

‖hn‖|E(S)|−1
|E(S)| ‖Δ̂‖|E(S)|

= op(ρ
|E(S)|
n ),
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and for T2,

T2 =

|E(S)|∑
j=1

∫
[0,1]q

j−1∏
i=1

hn(uei(1), uei(2))Δ̂(uei(1), uei(2))

k∏
i=j+1

ĥ(uei(1), uei(2))

≤
|E(S)|∑
j=1

‖hn‖j−1
|E(S)|‖Δ̂‖|E(S)|‖ĥ‖|E(S)|−j

= op(ρ
|E(S)|
n ).

This concludes the proof of Lemma 4.
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