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1. Introduction

In the last decade, improvements in genomic, transcriptomic, and proteomic
technologies have enabled personalized medicine, or precision medicine, to be-
come an essential part of contemporary medicine. Personalized medicine takes
into account individual variability in genes, proteins, environment, and lifestyle
to decide on disease prevention and treatment (Hamburg and Collins 2010).
The use of a patient’s genetic and epigenetic information has already proven
to be highly effective to tailor preventive care or drug therapies in a number
of applications, such as breast cancer (Cho, Jeon and Kim 2012), prostate can-
cer (Nam et al. 2007), ovarian cancer (Hippisley-Cox and Coupland 2015), and
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pancreatic cancer (Ogino et al. 2011), cardiovascular disease (Ehret et al. 2011),
cystic fibrosis (Waters et al. 2018), and psychiatry (Demkow and Wolańczyk
2017). The subfield of pharmacogenomics studies specifically how genes affect a
person’s response to particular drugs to develop more efficient and safer med-
ications (Ziegler et al. 2012). Following Kosorok and Laber (2019) precision
medicine may be formalized as sequence of decision rules, a treatment regime,
mapping patient information to a recommended action among several different
treatments or preventive care.

Genomic, epigenomic, and transcriptomic data used in personalized medicine,
such as gene expression, copy number variants, or methylation levels are often
high-dimensional with a number of variables that rivals or exceeds the number
of observations. Using such data to estimate and predict treatment response or
risk of complications, therefore requires regularization typically by the �1 norm
(lasso), the �2 norm (ridge), or other terms. While there exists tuning-free reg-
ularization, such as the methods proposed in (Lederer and Müller 2015; Huang,
Xie and Lederer 2021), such methods are not tailored for minimizing the person-
alized prediction error. On the other hand, regularization often introduces one
or more tuning parameters, and these tuning parameters are usually calibrated
based on the averaged prediction risks. Most commonly used, K-fold cross-
validation (CV) divides the data into K folds (typically K ∈ {5, 10}), predicts
each fold out-of-sample, averages over all folds for a range of tuning parame-
ters, and selects the value with the lowest averaged error (Stone 1974; Golub,
Heath and Wahba 1979). But the averaging removes the inherent individual
heterogeneity of the patients and, therefore, results in sub-optimal prediction
performance for the individual patients. This may ultimately lead to unsuitable
treatment, administration of improper medication with adverse side effects, or
lack of preventive care (Hamburg and Collins 2010).

Hence, rather than minimizing an averaged prediction error, our goal is to
minimize each patient’s individual (“personalized”) prediction error. The idea
was first introduced by Hellton and Hjort (2018) as a personalized procedure
for ridge regression, but they lacked an appropriate calibration scheme for the
tuning parameters, utilizing only a näıve plug-in approach, and could there-
fore not demonstrate a superior predictive performance. In this paper, we in-
troduce an alternative ridge estimator, referred to as Euclidean distance ridge
(edr) and calibrate the tuning parameter based on the ideas of adaptive valida-
tion (Chichignoud, Lederer and Wainwright 2016) for each patient individually.
We show that this approach offers compelling theory, fast computations, and
accurate prediction on data.

One goal within personalized medicine is to select among multiple treat-
ments (Jeng, Lu and Peng 2018). Our goal, however, is different: we want to
predict the risk for a complication or effect of a single treatment as precisely as
possible. The specific motivation for our method is to unravel the relationship
between gene expression and weight gain in kidney transplant recipients (Cash-
ion et al. 2013). Kidney transplant recipients are known to often gain substantial
weight during the first year after transplantation, which can result in adverse
health effects (Patel 1998). Individual predictions of this weight gain based on
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the genetic data can help in identifying high-risk patients.
The standard regularizers are currently sparsity-inducing regularizers such as

the �1 norm (Hastie, Tibshirani and Wainwright 2015). Sparsity is invoked to
facilitate interpretation and because applications might be inherently sparse in
the first place. However, since we focus sharply on prediction, interpretability
is not the key issue, and there is also little evidence for inherent sparsity: quite
in contrast, Cashion et al. (2013) already indicates that there might be many
genes associated with weight gain. We, therefore, opt for the more classical ridge
regression. Ridge regression (Hoerl and Kennard 1970) yields good predictive
performance for dense or non-sparse effects, that is, for outcomes related to
systemic conditions, as the method does not perform variable selection. Ridge
regression is a classical tool for prediction based on genomic data, and it has
been shown that ridge regression can outmatch competing prediction methods
for survival based on gene expression (Bøvelstad et al. 2007).

From a practical perspective, a short summary of our pipeline is as follows:

1. Compute the ridge estimator for a range of tuning parameters;
2. Translate these estimators into what we call Euclidean distance ridge es-

timators;
3. Find an optimal tuning parameter for these estimators through a testing

scheme.

Our three key contributions of this paper are:

• We introduce a prediction pipeline that takes the heterogeneity among
patients into account;

• We develop theoretical guarantees for this pipeline;
• We establish a fast and ready-to-implement algorithm with publicly avail-

able code.

The remainder of this paper is organized as follows: We introduce the linear
regression framework and the problem statement in Section 2. We then intro-
duce the main methodology of our approach, and present theoretical guarantees
in Section 3. In addition, we discuss the algorithm and analyze its performance
through simulation studies using synthetic and real data in Section 4. We further
apply our pipeline to kidney transplant data in Section 5. Finally, we discuss the
results in Section 6 and we defer all proofs to the Appendix A. All data are pub-
licly available and our code is available at https://github.com/LedererLab/personalized_medicine.

2. Problem Setup

We consider data (y,X) that follows a linear regression model

y = Xβ∗ + u. (2.1)

Let p denote the number of parameters, e.g. genes or genetic probes, and n
the number of samples or patients, then y ∈ R

n is the vector of outcomes, yi,
for example, a person’s response to treatment. We let X ∈ R

n×p denote the

https://github.com/LedererLab/personalized_medicine
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design matrix, where each row xi ∈ R
p, i ∈ {1, . . . n}, contains the genome

information or other covariates of the corresponding person. Each element β∗
j ,

j ∈ {1, . . . p}, of the regression vector β∗ ∈ R
p models the gene’s influence on

the person’s response. We ensure the uniqueness of β∗ by assuming that it is
a projection onto the linear space generated by the n rows of X (Shao and
Deng 2012; Bühlmann 2013). For the random error vector u ∈ R

n, we make no
assumptions on the probability distribution.

Our goal is to estimate the regression vector β∗ from data (y,X), or in
terms of our application, predicting a person’s treatment response based on
that person’s specific information. Mathematically, this amounts to estimating
z�β∗ in terms of the personalized prediction error∣∣z�(β∗ − β̂)

∣∣, (2.2)

where z ∈ R
p is what we call the person’s “covariate information,” which could

include genome information as one example.
Since the data in personalized medicine is often high-dimensional, that is,

the number of parameters (genes) p rivals or exceeds the number of samples
(patients) n, we consider regularized least-squares estimators of the form

β̂ [r] ∈ argmin
β∈Rp

{
||y −Xβ||22 + r · f [β]

}
. (2.3)

Here, f denotes a function that takes into account prior information, such as
sparsity or smaller regression coefficients, and the tuning parameter r ≥ 0 bal-
ances the least-squares term and the prior term. Regularization can also improve
prediction accuracy in low-dimensional cases.

Given an estimator (2.3), the main challenge is to find a good tuning param-
eter in line with our statistical goal. This means that we want to mimic the
tuning parameter

r∗ := argmin
r∈R

∣∣z�(β∗ − β̂ [r])
∣∣, (2.4)

which is the optimal tuning parameter in terms of prediction in a given set of
candidate parameters R := {r1, r2, . . . , rm}.

The optimal tuning parameter r∗ depends on the family of estimators (2.3),
the unknown noise u, and the patient’s genome information z. The dependence
on z is integral to personalized medicine: different patients can respond very
differently to the same treatment. But standard tuning-parameter calibration
such as CV schemes do not take this personalization into account but instead
attempt to minimize the averaged prediction error ||Xβ∗ − Xβ̂ [r]||22/n rather
than the personalized prediction error |z�(β∗− β̂ [r])|. We, therefore, develop a
new prediction pipeline that is tailored to the personalized prediction error and
equip our methods with fast algorithms and sharp guarantees.

3. Methodology

In this section, we introduce an alternative version of the ridge estimator (Hoerl
and Kennard 1970) along with a calibration scheme tailored to personalized
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medicine. Two distinct features of the pipeline are its finite-sample bounds and
its computational efficiency. Our estimator is called Euclidean distance ridge
(edr) and is defined as

β̂edr[r] ∈ argmin
β∈Rp

{
||y −Xβ||22 + r||β||2

}
. (3.1)

The edr replaces the ridge estimator’s squared �2 prior term fridge[β] ≡ ||β||22
by its square-root fedr[β] ≡

√
fridge[β] ≡ ||β||2. This modification allows us

to derive finite-sample oracle inequalities that can be leveraged for tuning-
parameter calibration. At the same time, the edr preserves two of the ridge
estimator’s most attractive features: it can model the influences of many param-
eters, and it can be computed without the need for elaborate descent algorithms.
Finally, we will exploit the theory and method that is developed for the edr to
calibrate personalized tuning parameters for ridge regression, see Section 4.

Our first step is to establish finite-sample guarantees for the edr. The key
idea is that if the tuning parameter is large enough, the personalized prediction
error (2.2) is bounded by a multiple of the tuning parameter. In the main text,
we assume an orthonormal design X�X = Ip×p for ease of presentation, but
we show in the Appendix that this assumptions is required neither in theory
(see Appendix B) nor in practice (Appendix D). We establish the following
guarantee for edr:

Lemma 3.1 (Oracle inequality for edr). If r ≥ 2|(Xz)�u|/(c[z, r]||z||2), where

c[z, r] :=

∣∣z�β̂edr[r]
∣∣

||z||2
∣∣∣∣β̂edr[r]

∣∣∣∣
2

∈ [0, 1],

then it holds for orthonormal design that∣∣z�(β∗ − β̂edr[r])
∣∣ ≤ c[z, r] · ||z||2 · r.

Such guarantees are usually called oracle inequalities (Lederer et al. 2019). The
given oracle inequality is an ideal starting point for our pipeline, because it gives
us a mathematical handle on the quality of tuning parameters: a good tuning
parameter should be large enough to meet the stated condition and yet small
enough to give a sharp bound. The original ridge estimator, however, lacks such
inequalities for personalized prediction.

Our proof techniques, which are based on the optimality conditions of the
estimator, also yield a similar bound for the original ridge estimator: if t ≥
|(Xz)�u|/||z||2, then |z�(β∗ − β̂ridge[t])| ≤ |1 + z�β̂ridge[t]/||z||2| · ||z||2 · t. The
following pipeline can then be applied the same way as for the edr. But the
crucial advantage of the edr’s bound is that its right-hand side is bounded
by ||z||2 · r, which ensures that the results do not scale with β∗.

The factor c[z, r] can be interpreted as the absolute value of the correlation
between the person’s covariate information z and the estimator β̂edr[r]. This
factor, and therefore z, are included in our calibration scheme below, and our
pipeline, hence, optimizes the prediction for particular study subjects.
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Lemma 3.1 bounds the personalized prediction error of edr as a function of
the tuning parameter r. Given z, the best tuning parameter in terms of the
bound minimizes c[z, r] · r over all tuning parameters, that satisfy the lower
bound

r ≥
2
∣∣(Xz)�u

∣∣
c[z, r]||z||2

.

The value at the lower bound, which we call the oracle tuning parameter, can be
interpreted as the closest theoretical mimic of the optimal tuning parameter r∗

from (2.4):

Definition 3.1 (Oracle tuning parameter for personalized prediction). Given
a new person’s covariate information z, the oracle tuning parameter for person-
alized prediction in a candidate set R is given by

ro ∈ argmin
r∈R̄

{
c[z, r] · r

}
, where R :=

{
r ∈ R : r ≥

2
∣∣(Xz)�u

∣∣
c[z, r]||z||2

}
.

The oracle tuning parameter ro is the best approximation of the optimal tuning
parameter r∗ in view of the mathematical theory expressed by Lemma 3.1. In
practice, however, one does not know the target β∗ nor the noise u (typically
not even its distribution), such that neither r∗ nor ro are accessible.

Such lower bounds on the tuning parameters and corresponding notions of
oracle tuning parameters are standard in high-dimensional regression—see, for
example, Bühlmann and van de Geer (2011, Chapter 6); Hastie, Tibshirani and
Wainwright (2015); Zhuang and Lederer (2018, Section 2). Broadly speaking,
the lower bounds indicate that the tuning parameters need to be chosen suffi-
ciently large to “overrule the noise.” The lower bounds typically include X�u
rather than u directly as a consequence of using Hölder’s inequality in the proofs
(see the Appendix for our proofs); in other words, the estimators are affected
byX�u rather than by u directly. The values of the lower bounds are, therefore,
called the effective noise (Lederer and Vogt 2020, Section 1). Our lower bounds
additionally include the personalized quantities z and c[z, r] simply because we
consider personalized prediction. Overall, our lower bounds and the oracle tun-
ing parameters are only slight variations of standard notions in high-dimensional
statistics.

Our goal is now to estimate ro in order to match its prediction accuracy (and,
therefore, to attempt to reach the accuracy of r∗) with a completely data-driven
scheme. Our proposal is based on pairwise tests along the tuning parameter path:

Definition 3.2 (PAVedr: Personalized adaptive validation for edr). We select
a tuning parameter r̂ by

r̂ ∈ argmin
r∈RA

{
c[z, r] · r · ||z||2

}
, (3.2)
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where the set of admissible tuning parameters is

RA :=

{
r ∈ R

∣∣∣ max
r′,r′′∈R
r′,r′′≥r

[∣∣z�(β̂edr[r
′]− β̂edr[r

′′])
∣∣

− (c[z, r′] · r′ + c[z, r′′] · r′′)||z||2 ≤ 0
]}

.

The idea of using pairwise tests for tuning-parameter calibration in high-
dimensional statistics has been introduced by Chichignoud, Lederer and Wain-
wright (2016) under the name adaptive validation. A difference here is that the
factors c[z, r] · r are not constant but depend both on r and z. The dependence
on z in particular reflects our focus on personalized prediction.

The following result guarantees that the data-driven choice r̂ indeed
provides—up to a constant factor 3—the same performance as the oracle tuning
parameter ro.

Theorem 3.1 (Optimality for personalized adaptive validation for edr). Under
the conditions of Lemma 3.1, it holds that∣∣z�(β∗ − β̂edr[r̂])

∣∣ ≤ 3 c[z, ro] · ||z||2 · ro.

This result guarantees that our calibration pipeline selects an essentially optimal
tuning parameter from any grid R. Our pipeline is the only method for tuning
parameter selection in personalized medicine that is equipped with such finite-
sample guarantees. It does, moreover, not require any knowledge about the
regression vector β∗ nor the noise u.

Our calibration method is fully adaptive to the noise distribution; however,
it is instructive to exemplify our main result by considering Gaussian noise (see
Appendix A.3 for the detailed derivations):

Example 3.1 (Gaussian noise). Suppose orthonormal design and Gaussian ran-
dom noise u ∼ Nn[0n, σ

2In×n/n]. For any δ ∈ (0, 1), it holds with probability
at least 1− δ that

∣∣z�(β∗ − β̂edr[r̂])
∣∣ ≤ 3σ

√
8 log(2/δ)

n
||z||2.

The bound provides the usual parametric rate σ/
√
n in the number of samples n;

the factor ||z||2 entails the dependence on the number of parameters p.

4. Algorithm and Numerical Analysis

One of the main features of our pipeline is its efficient implementation. This
implementation exploits a fundamental property of our estimator: there is a one-
to-one correspondence between the edr and the ridge estimator via the tuning
parameters.



Tuning parameter calibration for personalized medicine 5317

4.1. Connections to the ridge estimator

The ridge estimator is the �22-regularized least-squares estimator (Hoerl and
Kennard 1970)

β̂ridge[t] ∈ argmin
β∈Rp

{
||y −Xβ||22 + t||β||22

}
, (4.1)

where t > 0 is a tuning parameter. Its computational efficiency, which is due to
its closed-form expression, provides a basis for the computation of our edr esti-
mator. The closed-form of the ridge estimator can be derived from the Karush-
Kuhn-Tucker (KKT) conditions as

β̂ridge[t] = (X�X + tIp×p)
−1X�y, (4.2)

noting that the matrix (X�X + tIp×p) is always invertible if t > 0.

However, the inversion of the matrix X�X + tIp×p still deserves some
thought: first, the matrix might be ill-conditioned, and second, the matrix needs
to be computed for a range of tuning parameters rather than only for a single
one. A standard approach to these two challenges is a singular value decompo-
sition (svd) of the design matrix X.

Lemma 4.1 (Computation of the ridge estimator through singular value de-
composition). Let a singular value decomposition of X be given by X =
UDV �, where U ∈ R

n×n and V ∈ R
p×p are orthonormal matrices, and

D = diag(d1, d2, ..., dp) is an n×p diagonal matrix of the corresponding singular
values d1, d2, ..., dp. Then, the ridge estimator can be computed as

β̂ridge[t] = V D†U�y, (4.3)

where D† ∈ R
p×n is diagonal with D† = diag(d1/(d

2
1 + t), ..., dp/(d

2
p + t)).

The singular value decomposition of the design matrix does not depend on
the tuning parameter; therefore, the ridge estimators β̂ridge[t] can be readily
computed for multiple tuning parameters just by substituting the value of t
inD†. The resulting set of ridge (edr) estimators for a set of tuning parameters T
is called the ridge (edr) path for T .

Now, the crucial result is that the ridge estimator and the edr are computa-
tional siblings.

Theorem 4.1 (One-to-one mapping between tuning parameters). The one-to-
one mapping φ[t] : t 	→ r defined by

r = φ[t] :=
∣∣∣∣2X�(y −Xβ̂ridge[t])

∣∣∣∣
2

(4.4)

transforms tuning parameters t of the ridge estimator to tuning parameters r of
the edr estimator such that β̂ridge[t] = β̂edr[r].

This mapping transforms, in particular, the optimal tuning parameter of the
ridge estimator to a corresponding optimal tuning parameter of the edr estima-
tor. It can be viewed as a consequence of the edr penalty being a continuous
transformation of the ridge penalty. More generally, this mapping allows us to
compute the edr estimator via the ridge estimator—see below.
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4.2. Algorithm

The core idea of our proposed algorithm is to exploit the above one-to-one
mapping between edr estimator and ridge estimator. This correspondence allows
us to efficiently compute edr solution paths via the ridge’s explicit formulation
and svd.

First, consider a set of ridge tuning parameters T and its corresponding set
of edr tuning parameters given by

Rφ :=
{
r ∈ R : r = φ[t], t ∈ T

}
with cardinality m := |Rφ|. This set contains, in particular, the tuning parame-
ter r̂, whose optimality is guaranteed under Theorem 3.1. To compute the tuning
parameter r̂, given data z, we first order the elements r1, r2, . . . , rm of Rφ such
that

c[z, r1] · r1 ≤ c[z, r2] · r2 ≤ · · · ≤ c[z, rm] · rm. (4.5)

The PAVedr method can then be formulated in terms of the binary random
variables

ŝri :=

m∏
j=i

1
{∣∣z�(β̂edr[ri]− β̂edr[rj ])

∣∣− (
c[z, ri] · ri + c[z, rj ] · rj

)
||z||2 ≤ 0

}

for i ∈ {1, . . . ,m}, and an algorithm is as follows:

Input:
(
ri
)
i=1,...,m

,
(
β̂edr[ri]

)
i=1,...,m

, z

Result: r̂

Set initial index: i ← m
while ŝri �= 0 and i > 1 do

Update index: i ← i− 1
end
Set output: r̂ ← ri

Algorithm 1: Algorithm for PAVedr of Definition 3.2.

The full pipeline can be summarized by the following four steps:

Step 1: Generate a set T of tuning parameters for ridge regression.
Step 2: Compute the ridge solution path with respect to T by using (4.3).
Step 3: Transform the ridge tuning parameters to their edr counterparts Rφ

using (4.4) and sort the tuning parameters according to (4.5).
Step 4: Use the PAVedr method (Algorithm 1) to compute the tuning pa-

rameter r̂ and map it back to its ridge counterpart t̂.

The algorithm can be readily implemented and is fast: it essentially only requires
the computation of one ridge solution path (a single svd). In strong contrast,
K-fold CV requires the computation of K ridge solution paths. Consequently,
the ridge estimator with PAVedr can be computed approximately K times faster
than with K-fold CV, which we will confirm in the simulations. Moreover, CV
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still requires a tuning parameter, namely, the number of folds K, while PAVedr

is completely parameter-free. We defer a detailed discussion on the complexity
and run time of the algorithm to Appendix C.

4.3. Simulation Study

We evaluate the prediction performance of the PAVedr method using (1) fully
simulated data with random design and (2) a real data set with a simulated
outcome. The results are compared to the ridge estimators defined in (4.1)
computed byK-fold CV withK ∈ {5, 10}, which is a standard reference method,
and the Fridge method for personalized prediction (Hellton and Hjort 2018).

The first setting is solely based on simulated data. The dimensions of the
design matrix are (n, p) ∈ {(50, 100), (150, 250), (200, 500)}. First, the entries
of each row of the design matrix X are sampled i.i.d. from N [μ, 1], where the
mean itself is sampled according to μ ∼ N [0, 1002], and the columns of the
design matrix are then normalized to have Euclidean norm equal to one. The
entries of the regression vector β∗ are sample i.i.d. from N [0, 102] and then
projected onto the row space of X to ensure identifiability (Shao and Deng
2012; Bühlmann 2013). The entries of the noise vector u are sampled i.i.d.
from N [0, σ2], where σ2 = 2Var[Xβ∗] to ensure a signal-to-noise ratio of 0.5.
We sample 100 data testing vectors z i.i.d. from N [0, 102] and generate a set
of 300 tuning parameters T = {10q | q = −5 + 10i/299, i ∈ {0, . . . , 299}}.
The mean personalized prediction error |z�(β∗ − β̂ [r])| for all 100 data testing
vectors z is compared with (i) Fridge method proposed by Hellton and Hjort
(2018), (ii) for r ∈ T calibrated by PAVedr, 5-fold CV, and 10-fold CV, (iii) the
oracle tuning parameter defined in Definition 3.1, and (iv) the optimal tuning
parameter r∗ defined in (2.4). The computation is repeated 100 times and results
are averaged. To compare the distributions of the mean personalized prediction
error obtained by PAVedr, 5-fold CV, and 10-fold CV, respectively, we further
compute the corresponding standard error (SE) that is defined as the standard
deviation of all N := 100×100 computed personalized prediction errors divided
by

√
N .

We observe that in all considered cases, PAVedr improves on CV and Fridge
both in terms of accuracy as well as in standard error (Table 1). In particular,
PAVedr mimics the prediction performance of the oracle tuning parameter ro
defined in Definition 3.1 well. While there is still a reasonable discrepancy be-
tween the personalized prediction performance of ro and r∗, we were able to
achieve a strong improvement compared to all other tested tuning parameter
calibration methods.

In the second setting, we base our simulation on real data for covariates but
simulate the outcome. We use the genomic data from the application in Section 5
where the sample size is n = 26. The number of covariates in the design matrix is
restricted to the p = 1936 gene probe targets identified as potentially influential
by Cashion et al. (2013). The regression vector and the noise are generated as
in the first simulation setting above. The results were averaged over 100 runs
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Table 1

Personalized prediction errors for the first simulation setting, which entirely consists of
artificial data. PAVedr outperforms 5-fold, 10-fold CV, and Fridge both in accuracy and

standard error.

(n,p) Method Mean error SE

(50,100)

Optimal tuning r∗ 65.96 0.77

Oracle tuning ro 565.20 4.67

PAVedr 570.45 4.30

Fridge 751.54 21.14

5-fold CV 8816.08 256.52

10-fold CV 7181.56 186.64

(150,250)

Optimal tuning r∗ 132.71 1.99

Oracle tuning ro 959.60 7.30

PAVedr 969.88 7.39

Fridge 1838.47 78.34

5-fold CV 8702.49 169.75

10-fold CV 8366.60 161.77

(200,500)

Optimal tuning r∗ 156.81 1.85

Oracle tuning ro 1129.41 8.69

PAVedr 1145.46 8.74

Fridge 2414.48 81.89

5-fold CV 5274.06 127.23

10-fold CV 6411.85 156.43

Table 2

Personalized prediction errors for the the second simulation setting, which consists of real
covariate data and simulated outcomes. PAVedr outperforms 5-fold, 10-fold CV, and Fridge

again both in accuracy and standard error.

Method Mean error SE

Optimal tuning r∗ 10.24 0.09

Oracle tuning ro 403.54 3.11

PAVedr 366.48 2.82

Fridge 431.67 3.75

5-fold cross-validated edr 1216.97 35.04

10-fold cross-validated edr 1407.00 36.12

and are summarized in Table 2. We observe again that PAVedr improves on CV
and Fridge both in terms of accuracy as well as in standard error.

Finally, we investigate a simulation setting where the design matrix X has
mutually correlated coordinates with varying degree of correlation. Again, we
observe a large improvement in terms of accuracy as well as in standard error
of PAVedr compared to CV and Fridge. The details and results are deferred to
Appendix D. In summary, the results of our simulation studies demonstrate that
PAVedr is a contender on data, which confirms and complements our theoretical
findings from before.
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Table 3

Personalized prediction errors for in-sample (left) and leave-one-out (right) prediction for
the kidney transplant data. Regardless of in-sample or leave-one-out prediction, PAVedr

outperforms 5-fold, 10-fold CV, and Fridge again both in accuracy and standard error.

(a) In-sample prediction

Method Mean error SE

PAVedr 0.0049 0.0023

Fridge 0.0235 0.0034

5-fold CV 0.0457 0.0106

10-fold CV 0.0399 0.0094

(b) Leave-one-out prediction

Method Mean error SE

PAVedr 0.0622 0.0060

Fridge 0.0650 0.0069

5-fold CV 0.0651 0.0099

10-fold CV 0.0680 0.0089

5. Application

Kidney transplant recipients are known to gain significant weight during the
first year after transplantation, with a reported average increase of 12 kg (Patel
1998). Such substantial weight gain over a relatively short time period gives an
increased risk for several adverse health effects, such as cardiovascular disease,
leads to less favorable graft outcomes and may be detrimental for the over-
all outcome of the patient. The weight gain has been explained by the use of
prescribed steroids which increase the appetite, but steroid-free protocols alone
have not reduced the risk of obesity, suggesting alternative causes. Even though
weight gain is fundamentally caused by a too high calorie intake relative to the
energy expenditure, the heterogeneity in the individual response is substantial.
Genetic variation has, therefore, been considered as a contributing factor, and
several genes have been linked to obesity and weight gain (Bauer et al. 2009;
Cheung et al. 2010).

Cashion et al. (2013) investigated whether genomic data can be used to pre-
dict weight gain in kidney transplant recipients. This was done by measuring
gene expression in subcutaneous adipose tissue which has an important role
in appetite regulation and can easily be obtained from the patients during
surgery. The patients’ weight was recorded at the time of transplantation and
at a 6-months follow-up visit, resulting in a relative weight difference. The adi-
pose tissue samples were collected from 26 transplant patients at the time of
surgery, and mRNA levels were measured to obtain the gene expression pro-
files for 28 869 gene probe targets using Affymetrix Human Gene 1.0 ST ar-
rays. All data is publicly available in the EMBL-EBI ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under accession number E-GEOD-33070. As
excessive weight gain can have severe consequences for the patients, the goal
is to predict the future weight increase based on the available gene expression
profiles. When a large weight increase is predicted, additional efforts assisting
with diet restriction and physiotherapy can be set into effect to better tailor the
care of each individual patient.

We compare the performance of our method in predicting weight gain for
the kidney transplant patients to the prediction of standard ridge regression
calibrated by CV. In detail, we make predictions for each patient both in-sample
and out-of-sample, leaving out the observation and using the remaining data to

www.ebi.ac.uk/arrayexpress


5322 S.-T. Huang et al.

fit the penalized regression model and select the optimal tuning parameter. Since
we do not know the true parameter β∗, we can only examine the performance of
our method and CV by comparing their estimation errors, which is defined by∣∣yi − x�

i β̂edr[r]
∣∣. (5.1)

As described in the previous section, the columns of the design matrix are nor-
malized to have Euclidean norm one. Unlike in Section 4.3, we here take all
28 869 gene probes into consideration.

The averaged results are summarized in Table 3a and Table 3b. We observe
that PAVedr clearly outperforms 5-fold and 10-fold CV for both in-sample and
out-of-sample prediction of the kidney transplant data. For out-of-sample predic-
tion, we observe an improvement of about 9.3% in the estimation error compared
to 10-fold CV. These improvements, especially in standard deviation, reinforce
the advantages of a personalized approach to tuning-parameter calibration.

By predicting the individual weight gain more precisely, our method con-
tributes in ensuring that each patient may get the best possible care. Even
though kidney transplant patients are typically encouraged to adhere to a heal-
thy lifestyle (diet and physical activity), obesity prevention can be a difficult to
achieve (Cashion et al. 2013). Thus by identifying high-risk patients as precisely
as possible, one can better tailor the necessary lifestyle changes, through addi-
tional dietary counselling and physical activity. This may prevent the adverse
weight gain documented in the first year after transplantation.

6. Conclusion

We have introduced a pipeline that calibrates ridge regression for personalized
prediction. Its distinctive features are the finite sample guarantees (see Theo-
rem 3.1) and the statistical and computational efficiency (see Tables 1, 2, and 4).
These features are echoed when predicting the weight gain of kidney transplant
patients (see Table 3). Hence, our pipeline can improve personalized prediction
and, thereby, further the cause of personalized medicine.

One possible limitation of our procedure, relevant for all personalized predic-
tion methods, is that the training data needs to be available to compute each
new prediction. This may give certain constraints in terms of data storage and
privacy when implementing the procedure in practice or as a commercial prod-
uct. Nowadays memory tends to not be a problem, in particular for medical
dataset where the number of patients is typically small, ranging from tens to
hundreds. The memory needed is thus relatively small in view of current on-
line and offline storage capacities. Further, to ensure proper data privacy and
software safety any included data would have to be properly anonymized.

Despite our focus on personalized medicine, we also envision applications
in other areas where individual heterogeneity is crucial for predictions. Two
examples are item recommendation, predicting the rating of an item or prod-
uct assigned by a specific user (Guy et al. 2010; Rafailidis et al. 2014), and
personalized marketing, delivering individualized product prices or messages to



Tuning parameter calibration for personalized medicine 5323

specific costumers (Tang, Liao and Sun 2013). Future work includes to extend
the methodology to logistic and generalized linear regression and to explore
possibilities regarding �1 or lasso regularization. Further, the improvements in
prediction error are also beneficial when selection between different treatments,
and our proposed methodology may be extended in the setting of Jeng, Lu and
Peng (2018).

Appendix A: Proofs

A.1. Proof of Lemma 3.1

Proof. Assume r ≥ 2|(Xz)�u|/(c[z, r]||z||2) and orthonormal design X�X =
Ip×p. According to the KKT conditions of the edr estimator, we have

r
β̂edr[r]∣∣∣∣β̂edr[r]

∣∣∣∣
2

= 2X�(y −Xβ̂edr[r])

= 2X�(Xβ∗ + u−Xβ̂edr[r])

= 2X�X(β∗ − β̂edr[r]) + 2X�u.

Hence,

X�X(β∗ − β̂edr[r]) = −X�u+
r

2

β̂edr[r]∣∣∣∣β̂edr[r]
∣∣∣∣
2

. (A.1)

Let z ∈ R
p and multiply z� from the left to obtain

z�(β∗ − β̂edr[r]) = −z�X�u+
r

2

z�β̂edr[r]∣∣∣∣β̂edr[r]
∣∣∣∣
2

where we use the assumption of orthonormal design. By taking absolute value
on both sides and applying the triangle inequality, we derive the following bound
for the personalized prediction error (2.2):

∣∣z�(β∗ − β̂edr[r])
∣∣ ≤ ∣∣z�X�u

∣∣+ r

2

∣∣∣∣ z�β̂edr[r]∣∣∣∣β̂edr[r]
∣∣∣∣
2

∣∣∣∣
≤ r

2
c[z, r]||z||2 +

r

2

∣∣∣∣ z�β̂edr[r]

||z||2
∣∣∣∣β̂edr[r]

∣∣∣∣
2

∣∣∣∣||z||2
= c[z, r] · r · ||z||2,

since r ≥ 2|(Xz)�u|/(c[z, r]||z||2) by assumption. Finally, we obtain the bound∣∣z�(β∗ − β̂edr[r])
∣∣ ≤ c[z, r] · ||z||2 · r, (A.2)

with

c[z, r] :=

∣∣z�β̂edr[r]
∣∣

||z||2
∣∣∣∣β̂edr[r]

∣∣∣∣
2

.
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A.2. Proof of Theorem 3.1

Proof. Let z ∈ R
p and suppose that the linear regression model (2.1) is under

orthonormal design.

Bound on c[z, r̂] · r̂: First, we show that c[z, r̂] · r̂ ≤ c[z, ro] · ro. Let

c[z, r̂] · r̂ ≥ c[z, ro] · ro,

then by definition of r̂, there must exist two tuning parameters r′, r′′ with

r′ ≥
2
∣∣(Xz)�u

∣∣
c[z, r′]||z||2

, r′′ ≥
2
∣∣(Xz)�u

∣∣
c[z, r′′]||z||2

,

such that

∣∣z�(β̂edr[r
′]− β̂edr[r

′′])
∣∣ ≥ (

c[z, r′] · r′ + c[z, r′′] · r′′
)
· ||z||2.

However, by Lemma (3.1), we have

∣∣z�(β∗ − β̂edr[r
′])
∣∣ ≤ c[z, r′] · r′ · ||z||2

and ∣∣z�(β∗ − β̂edr[r
′′])

∣∣ ≤ c[z, r′′] · r′′ · ||z||2.

Applying the triangle inequality to the above displays and combining the results
yields

∣∣z�(β̂edr[r
′]− β̂edr[r

′′])
∣∣ ≤ (

c[z, r′] · r′ + c[z, r′′] · r′′
)
· ||z||2,

which leads to a contradiction to our assumption. Therefore, we obtain the
following bound with respect to ro:

c[z, r̂] · r̂ ≤ c[z, ro] · ro.

Bound on the personalized prediction error: Since c[z, r̂]·r̂ ≤ c[z, ro]·ro,
we have ∣∣z�(β̂edr[r̂]− β̂edr[ro])

∣∣ ≤ (
c[z, r̂] · r̂ + c[z, ro] · ro

)
· ||z||2

≤ 2 · c[z, ro] · ro · ||z||2

Applying the triangle inequality, we ultimately find the bound

∣∣z�(β∗ − β̂edr[r̂])
∣∣ = ∣∣z�(β∗ − β̂edr[ro] + β̂edr[ro]− β̂edr[r̂])

∣∣
≤

∣∣z�(β∗ − β̂edr[ro])
∣∣+ ∣∣z�(β̂edr[ro]− β̂edr[r̂])

∣∣
≤ 3 · c[z, ro] · ro · ||z||2.
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A.3. Proof of Example 3.1

Lemma A.1 (Deviation inequality). For any standard normal variable V ∼
N1[0, 1], we have the following concentration bound

P[|V | ≥ x] ≤ 2e−x2/2 (x > 0).

Proof. P[V > x] = P[eλV > eλx] for all λ. Now by Markov’s inequality,

P[eλV > eλx] ≤ E[eλV ]

eλx

= e
λ2

2 −λx

For λ = x, we have P[V > x] ≤ e−x2/2. Since the standard normal distribution
is symmetric about 0, we obtain the desired result.

Using this concentration bound, we derive the results of Example 3.1.

Proof. Given a z ∈ R
p, Gaussian noise u ∼ Nn[0n, σ

2In×n/n] with variance σ2,
and suppose that the linear regression model (2.1) is under orthonormal design.
We first show that P[2|(Xz)�u|/(c[z, r]||z||2) ≥ rδ] ≤ δ for

rδ :=
σ||Xz||2

(c[z, r]||z||2)

√
8 log(2/δ)

n

using the concentration bound, Lemma A.1:

P

[
2
∣∣(Xz)�u

∣∣/(c[z, r]||z||2) ≥ rδ

]
= P

[ ∣∣(Xz)�u
∣∣

σ||Xz||2
c[z,r]||z||2

√
1/n

≥ c[z, r]||z||2rδ
2σ||Xz||2

√
1/n

]

≤ 2 exp

[
−
(σ||Xz||2

√
8 log(2/δ)

n

2σ||Xz||2
√
1/n

)2

/2

]

= 2 exp
[
log[δ/2]

]
= δ.

Hence, rδ ≥ 2|(Xz)�u|/c[z, ro]||z||2 holds with at least probability 1 − δ. By
Theorem 3.1, we have with at least probability 1− δ:∣∣z�(β∗ − β̂edr[r̂])

∣∣ ≤ 3 c[z, ro] ro||z||2 (|c[z, ro]| ≤ 1)

= 3 c[z, ro]
σ||Xz||2

c[z, ro]||z||2

√
8 log(2/δ)

n
||z||2

= 3σ

√
8 log(2/δ)

n
||z||2. (orthon. design)



5326 S.-T. Huang et al.

A.4. Proof of Lemma 4.1

Proof. Let X = UDV � be a singular value decomposition of X as given in
Lemma 4.1. Then by algebraic manipulation of Equation (4.2) the ridge estima-
tor can be written as

β̂ridge[t] =
(
X�X + tIp×p

)−1
X�y

=
(
V DTUTUDV � + tIp×p

)−1
V DU�y

=
(
V D2V � + tIp×p

)−1
V DU�y

= V
(
D2 + tIp×p

)−1
V �V DU�y

= V D†U�y,

where the matrix D† is defined as

D† = diag

(
d1

d21 + t
, ...,

dp
d2p + t

)
.

A.5. Proof of Theorem 4.1

Proof. We consider the KKT-conditions of (3.1) and replace the edr estimator
with the ridge estimator to obtain

r
β̂ridge[t]∣∣∣∣β̂ridge[t]

∣∣∣∣
2

= 2X�(y −Xβ̂ridge[t]
)
.

By taking the �2-norm of both sides and with r > 0, we obtain

r =
∣∣∣∣2X�(y −Xβ̂ridge[t]

)∣∣∣∣
2
.

Thus, we can transform the ridge tuning parameter t to the edr tuning param-
eter r with respect to the same estimator.

Moreover, there is a one-to-one relationship between edr and ridge. The ridge
estimator in (4.2) implies that(

X�X + tIp×p

)
β̂ridge[t] = X�y,

and hence
tβ̂ridge[t] = X�(y −Xβ̂ridge[t]

)
.

Since
r =

∣∣∣∣2X�(y −Xβ̂ridge[t]
)∣∣∣∣

2
= 2t

∣∣∣∣β̂ridge[t]
∣∣∣∣
2
,

we have
r

2
∣∣∣∣β̂ridge[t]

∣∣∣∣
2

= t

and we finally conclude that β̂ridge[t] = β̂edr[r] when r/2||β̂ridge[t]||2 = t.



Tuning parameter calibration for personalized medicine 5327

Appendix B: Beyond Orthogonality

To avoid digression, we have restricted the theories in the main body of the
paper to orthonormal design matrices. However, there are straightforward ex-
tensions along established lines in high-dimensional theory. In general, the in-
fluence of correlation on regularized estimation has been studied extensively—
see, for example, Dalalyan, Hebiri and Lederer (2017) and Hebiri and Led-
erer (2013) for the lasso case. The most straightforward extension of our the-
ories goes via the �∞-restricted eigenvalue introduced in Chichignoud, Lederer
and Wainwright (2016). This condition allows for design matrices, that satisfy
||X�Xδ||∞ � ||δ||∞ for certain δ. We omit the details; importantly, our simu-
lations demonstrate that our method provides accurate prediction far beyond
orthonormal design.

Appendix C: Run Time Measurement

In this section, we compare the complexity and run time of our PAVedr algorithm
in theory and practice. The PAVedr algorithm can be split into two parts: the
computation of the ridge solution path and the patient-wise tuning parameter
calibration. The ridge solution path is computed using the results of Lemma 4.1
and essentially requires only the computation of a single svd. This computation
is independent of the genome information z of new patients and needs to be
performed only once.

Algorithm 1 describes the second part of the PAVedr method and is computed
for each new patient’s genome information. The method mainly requires order-
ing of the bounds c[z, ri] · ri and computation of the binary random variables
ŝri for all tuning parameters ri, i = 1, . . . ,m. Hence, its complexity scales with
the number of tuning parameters m, which is fixed; and we use m = 300 in
all of our simulation studies and applications. Ordering the bounds c[z, ri] · ri
can be achieved using standard sorting algorithms with average complexity of
O(m logm). However, for a pair of tuning parameters ri, rj with i < j the role
of c[z, ri], c[z, rj ] is very limited in practice and ri < rj ; hence, these bounds
can be expected to be largely presorted. Indeed, we observed that all c[z, ri] · ri
were fully presorted in all of our simulation studies.

We recorded the computational run time of the tuning parameter calibration
using PAVedr, Fridge (Hellton and Hjort 2018), 5-fold CV, and 10-fold CV for
both simulation settings (see Section 4.3). All computations were performed
in R version 4.0.2, and for CV, we used the implementation provided by the
glmnet package (Friedman, Hastie and Tibshirani 2010). The results (Table 4)
demonstrate that PAVedr offers feasible and competitive performance in both
simulation settings. While PAVedr is much slower than Fridge in the patient-
independent computation, its patient-wise run time is faster for high (n, p). It
is important to note, that since cross-validation only computes a single tuning
parameter that is used for all new patients zi, it does not have a patient-wise
run time. Hence, for a high number of new patients, CV may be faster in total
— however, still much less accurate (compare Section 4.3).
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Table 4

Run times in seconds measured for tuning parameter calibration using PAVedr, Fridge,
5-fold CV, and 10-fold CV. The recorded run times are split into a patient-independent and

patient-wise runtime, where the patient-wise run time records the mean run time for a
single patient. All run times are averaged over 100 runs. The first simulation setting (top)
entirely consists of artificial data. The second simulation setting (bottom) consists of real
covariate data (see Section 5) and simulated outcomes. PAVedr outperforms 5-fold and
10-fold CV in terms of the patient-independent run time. Fridge is the overall fastest
method. CV does not have a patient-wise run time because it does not perform any

patient-wise tuning parameter calibration.

(a) Fully-simulated data.

(n,p) Method Run time (in sec)
patient-independent patient-wise

(50,100)

PAVedr 0.09 0.15
Fridge 0.01 0.05
5-fold CV 4.21 -
10-fold CV 8.09 -

(150,250)

PAVedr 0.65 0.18
Fridge 0.11 0.27
5-fold CV 17.50 -
10-fold CV 33.33 -

(200,500)

PAVedr 1.62 0.23
Fridge 0.26 0.66
5-fold CV 27.57 -
10-fold CV 57.33 -

(b) Real covariate data, simulated outcomes (n = 26, p = 1936).

Method Run time (in sec)
patient-independent patient-wise

PAVedr 0.33 0.73
Fridge 0.01 0.27
5-fold CV 2.01 -
10-fold CV 3.71 -

Appendix D: SIMULATION STUDY

In this section, we perform a simulation study for correlated covariates and,
hence, apply our method to non-orthogonal design matrices. We sample each
row of the design matrixX from a p-dimensional normal distributionN [μp,Σp].

Here, the mean vector μp ∈ R
p is defined as μp := (μ, . . . , μ)� such that μ is

sampled from N [0, 1002] and the covariance matrix Σp ∈ R
p×p is given by

Σp := (1 − k)I + k1, where 1 := (1, . . . , 1)�(1, . . . , 1) is the matrix of ones
and k ∈ {0, 0.2, 0.4} is the magnitude of the mutual correlations. All other
settings including the dimensions of X, regression vector β∗, noise vector u,
signal-to-noise ratio, testing vectors, and tuning parameters are the same as in
Section 4.3.

The personalized prediction error |z�(β∗ − β̂ [r])| is averaged over 100 data
vectors z where the tuning parameter r ∈ T is calibrated using PAVedr, 5-fold
CV, and 10-fold CV. We run 100 experiments for each set of parameters and
report the averaged results in Tables 5, 6, and 7 where the run time is scaled rel-
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Table 5

Personalized prediction errors for the simulation setting with correlated covariates for {n,
p} = {50, 100}. PAVedr outperforms 5-fold, 10-fold CV, and Fridge in accuracy and

standard error.

n p k Method Mean error SE

50 100 0 Optimal tuning r∗ 74.54 0.92

50 100 0 Oracle tuning ro 554.62 4.16

50 100 0 PAVedr 555.75 4.61

50 100 0 Fridge 918.50 51.31

50 100 0 5-fold CV 8734.20 226.55

50 100 0 10-fold CV 9847.69 274.48

50 100 0.2 Optimal tuning r∗ 60.12 0.75

50 100 0.2 Oracle tuning ro 549.92 4.21

50 100 0.2 PAVedr 556.11 4.27

50 100 0.2 Fridge 679.48 15.07

50 100 0.2 5-fold CV 9153.27 238.31

50 100 0.2 10-fold CV 10637.90 293.39

50 100 0.4 Optimal tuning r∗ 46.05 0.47

50 100 0.4 Oracle tuning ro 566.93 4.34

50 100 0.4 PAVedr 571.57 4.39

50 100 0.4 Fridge 633.44 11.61

50 100 0.4 5-fold CV 9036.80 213.18

50 100 0.4 10-fold CV 10810.48 234.74

Table 6

Personalized prediction errors for the simulation setting with correlated covariates for {n,
p} = {150, 250}. PAVedr outperforms 5-fold, 10-fold CV, and Fridge in accuracy and

standard error.

n p k Method Mean error SE

150 250 0 Optimal tuning r∗ 123.01 1.65

150 250 0 Oracle tuning ro 981.10 7.42

150 250 0 PAVedr 985.64 7.50

150 250 0 Fridge 1511.52 46.95

150 250 0 5-fold CV 8218.37 196.53

150 250 0 10-fold CV 9747.13 250.32

150 250 0.2 Optimal tuning r∗ 112.23 1.15

150 250 0.2 Oracle tuning ro 974.30 7.45

150 250 0.2 PAVedr 992.19 7.45

150 250 0.2 Fridge 1238.27 34.71

150 250 0.2 5-fold CV 7297.49 167.94

150 250 0.2 10-fold CV 7008.09 158.10

150 250 0.4 Optimal tuning r∗ 109.72 1.24

150 250 0.4 Oracle tuning ro 975.78 7.36

150 250 0.4 PAVedr 983.09 7.41

150 250 0.4 Fridge 1182.14 28.97

150 250 0.4 5-fold CV 9428.55 217.59

150 250 0.4 10-fold CV 7408.99 157.15
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Table 7

Personalized prediction errors for the simulation setting with correlated covariates for {n,
p} = {200, 500}. PAVedr outperforms 5-fold, 10-fold CV, and Fridge in accuracy and

standard error.

n p k Method Mean error SE

200 500 0 Optimal tuning r∗ 155.80 2.27

200 500 0 Oracle tuning ro 1123.73 8.59

200 500 0 PAVedr 1138.62 9.13

200 500 0 Fridge 2106.23 61.65

200 500 0 5-fold CV 9615.19 296.89

200 500 0 10-fold CV 9455.81 269.50

200 500 0.2 Optimal tuning r∗ 161.19 2.26

200 500 0.2 Oracle tuning ro 1125.55 8.56

200 500 0.2 PAVedr 1137.33 8.67

200 500 0.2 Fridge 2746.95 108.81

200 500 0.2 5-fold CV 10967.50 362.05

200 500 0.2 10-fold CV 12045.71 352.02

200 500 0.4 Optimal tuning r∗ 188.15 3.31

200 500 0.4 Oracle tuning ro 1123.57 8.46

200 500 0.4 PAVedr 1136.71 8.64

200 500 0.4 Fridge 2031.13 84.694

200 500 0.4 5-fold CV 9432.63 241.50

200 500 0.4 10-fold CV 8181.57 217.79

ative to PAVedr. We observe that PAVedr clearly outperforms 5-fold, 10-fold CV,
and Fridge both in terms of accuracy as well as in standard error in all consid-
ered cases. This demonstrates that PAVedr can effectively account for individual
heterogeneity of the data vectors even in cases of correlated covariates.
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