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1. Introduction

In statistics, the nonparametric estimation of probability density functions of
continuous random variables is a basic and central problem. From a given sample
of observations, the main goal for a practitionner is to understand the mecanism
from which the observations have been generated. In the last several decades,
this question has attracted much attention among statisticians since it is of
considerable interest in many applied fields such as forecasting, computer vision
and machine learning. Among the plethora of nonparametric density estimators
is the kernel density estimator introduced by Parzen [31] and Rosenblatt [34]
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which received considerable attention in nonparametric estimation for time se-
ries. More precisely, if (X1, ..., X},) is a sample (observations) drawn from some
univariate distribution with an unknown probability density f with respect to
the Lebesgue measure on R then the Parzen-Rosenblatt density estimator of f
is defined for any positive integer n and any x in R by

fR($)=%gK<x;nXi) (1.1)

where K is a density function and the bandwidth h,, is a positive parameter
which converges to zero such that nh,, goes to infinity. The bandwidth h,, is the
most dominant parameter in the kernel density estimator since it controls its
amount of smoothness. In fact, if h,, is small then the variance of the estimator
is large while the bias is small. This leads to a nonsmooth estimated density.
On the other, if h,, is large then the estimated density will be much smoother
(small variance) but with a large bias leading to an unsatisfactory estimation.
So, in practice, a trade-of between the variance and the bias must be found and
the number of publications which are devoted to this crucial question in the
literature is very extensive and is still a subject of many works in the statistic
community (see for example [8], [17], [22], [38]). From a theoretical but also
practical point of view, it is important to investigate asymptotic properties
of density estimators when the number n of observations goes to infinity. For
example, the consistency and the asymptotic normality of the estimator are
very important in order to get pointwise estimation and confidence intervals
for the target density f. In his seminal paper, Parzen [31] proved that when
the observations (X1, ..., X,,) are i.i.d. and the bandwidth h,, goes to zero such
that nh, goes to infinity then (nhy,)Y2(fP%(xo) — E[fFR(x0)]) converges in
distribution to the normal law with zero mean and variance f(zo) [ K?(t)dt as
n goes to infinity and this result was extended by Wu and Mielniczuk [44] for
causal linear processes with i.i.d. innovations and by Dedecker and Merlevede
[11] for strongly mixing sequences. Previously, Bosq, Merlevede and Peligrad [6]
established a central limit theorem for the kernel density estimator f,, when the
sequence (X;);ecz is assumed to be strongly mixing but the bandwidth parameter
hy, is assumed to satisfy h,, > Cn~1/3 log n (for some positive constant C') which
is stronger than the bandwidth parameter assumption in [11], [31] and [44].

In many situations, practicians are also interested by the relationship between
some predictors and a response. This is a natural question and a very important
task in statistics. The objective is to find a relation between a pair of random
variables X (predictor) and Y (response) using a given sample (X;,Y;)1<i<n
drawn from the unknown law of (X,Y"). A very popular tool to handle this prob-
lem is the kernel regression estimator introduced by Nadaraya [30] and Watson
[41]. More formally, let N be a positive integer and assume that (X;,Y;)1<i<n
are identically distributed RY x R-valued sequence of random variables such
that Y; = R(X;,n;) where R is an unknown functional and (1;);cz are i.i.d. RV-
valued random variables with zero mean and finite variance and independent of
(X:)iez. Let f be the marginal density function of Xg. If r is the (unknown)
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regression function defined for any = in RY by r(x) = E[R(z,n0)] if f(x) # 0
and r(z) = E[Yo] if f(z) = 0 then the Nadaraya-Watson regression estimator
W of r is defined for any x in RY by

S YK(@ = X)) en g
NW (3 — S K((w = X3)/hn) £ K((@ = X)/ha) #0

nt Z Y; else.
i=1

(1.2)
The literature on the asymptotic properties of 7Y for time series is very ex-
pansive. One can refer to Lu and Cheng [24], Masry and Fan [26], Robinson
[33], Roussas [36] and many references therein. Kernel nonparametric methods
are still very popular and fairly well established in the statistical community
but despite their power, the data streams problem, which refers to data sets
that continuously and rapidly grow over time, present new challenges. In order
to handle such data sets, several recursive versions of the Parzen-Rosenblatt
estimator (1.1) have been introduced (see for example [3], [12], [20], [43], [47]).
For example, if (wy)r>1 is a nonincreasing sequence of positive real numbers
satisfying Zk>1 wy, = 00 and (hg)r>1 s a sequence of positive real numbers go-
ing to 0 as n goes to infinity (bandwidth parameters) then the resursive kernel
density estimator fH% of Hall and Patil [20] is defined by

n

Wl (@) ! ZwiK(x;LiXi). (1.3)

ZkZI Wk i=1 hl

This estimator is recursive in the sense that it satisfies

’I’IL-{FI?.(:I;) = (1 - '7n+1)fr€-1p(m) + ’7n+1fn+1 (*T) (14)
where 7, := s~ and frg1(z) == #HK (””;f—ﬂ“)

Such a property endows recursive estimators with a decisive computational
advantage because they can be easily updated as new data items arrive over
time. More precisely, in order to obtain the estimation ff(z) at time n + 1,
using the recursive equation (1.4), it is sufficient to combine the estimation
FHP (z) at time n (which is known at time n + 1) with the estimation f,, 11 (z)
at time n + 1 based on the single observation X, ;1. In fact, a non-recursive
estimator must be fully recomputed whenever a new observation is collected.
This clearly represents a drawback in a data stream context compared to the
recursive approach. The class (1.3) contains the recursive estimators introduced
by Wolverton and Wagner [43] and Deheuvels [12] but also a renormalized ver-
sion of the one introduced by Wegman and Davies [42] and another class of
estimators introduced by Amiri [3]. It contains also the (non-recursive) Parzen-
Rosenblatt estimator (1.1) when h; = h,, and w; = 1 for any 1 < 7 < n. In
this work, our aim is to investigate asymptotic properties for a spatial version
of the Hall and Patil estimator (1.3) in terms of mean squared error and asymp-
totic normality under weak and strong dependence conditions. The first studies
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that focused on a recursive version of the Parzen-Rosenblatt estimator were
presented by [12], [43] and [47] and later by [20], [25], [29] and many others.
Actually, many papers in the literature are devoted to the asymptotic proper-
ties of recursive kernel density and regression estimators for i.i.d. observations.
There are also some published papers on the asymptotic properties of recursive
kernel density and regression estimators for dependent (weakly dependent and
strongly mixing) data. One can refer for example to [4], [7], [18], [19], [25], [36],
[39], [40] and others.

In our context, we deal with spatial data which is modelized using finite real-
izations of dependent random fields indexed by Z? where d is a positive integer.
More precisely, let N be a positive integer and let (2, F,P) be a probability
space. We consider a stationary R -valued random field (X} )scze such that the
law pg of Xy is absolutely continuous with respect to the Lebesgue measure Ay
on RY and we denote by f the probability density function of jo with respect to
An. Given two sub-g-algebras U and V of F, recall that the a-mixing coefficient
introduced by Rosenblatt [35] is defined by

aU,V) =sup{|P(AN B) —P(A)P(B)|, AclU, B e V}.

Let p be fixed in [1, +00]. The strong mixing coefficients (o1 ,(n))n>0 associated
to (Xk)reze are defined by

a1,p(n) = sup {a(o(Xy), Fr), k € 2%, T € 2%, | < p, p(T, {k}) > n}

where |I'| is the number of elements in I', the collection Fr is the o-algebra
o(Xy; k €T') and the distance p is defined for any subsets I'; and I'y of Z? by
p(T'1,T9) = min{|u — v|, w € T'1, v € Ty} with |u — v| = maxi<ecq |ue — ve| for
any u = (uy,...,uq) and v = (vq,...,v4) in Z%. We say that the random field
(Xk)reza is strongly mixing if lim,,_, a1 ,(n) = 0. Moreover, we are going to
consider also Bernoulli fields defined for any k € Z¢ by

Xy =G (ch—u; ueZ? (1.5)

where G : (Rm)zd — RY is a measurable function, (e;)gcza are i.i.d. R™-valued
random variables and m is a positive integer. The class of random fields that
(1.5) represents is huge and it includes many commonly used linear and nonlin-
ear processes (see Wu [46] for a review). Let (E;c)kezd be an i.i.d. copy of (e)peza
and let X}’ be the coupled version of X} defined by X} = G (Ez_u; u € Zd)
where € = ¢ if k # 0 and € = £o- Note that X is obtained from Xj, by re-
placing £¢ by its copy (. For any positive integer ¢ and any R-valued random
variable Z € LP(€2, F,P) with p > 0, we denote | Z][, := E H|Z||p]1/p where ||. ||
is the Euclidian norm on R’. Following Wu [45] and El Machkouri et al. [16],
we define the physical dependence measure coefficient 0y, = || X — X} ||, as
soon as Xy is p-integrable for p > 2. Physical dependence measure should be
seen as a measure of the dependence of the function G (defined in (1.5)) in the
coordinate zero. In some sense, it quantifies the degree of dependence of out-
puts on inputs in physical systems and provide a natural framework for a limit
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theory for stationary random fields (see [16]). In particular, it gives mild and
easily verifiable conditions (see condition (H2)(ii) below) because it is directly
related to the data-generating mechanism.

2. Main results

Let Ag = 0, sp =0 € Z% and A,, = {s1,...,8,} C Z% for n > 1. Let (ws, )n>1
and (hs,)n>1 be two nonincreasing sequences of positive real numbers such
that (ws,h;V)n>1 is nondecreasing, hs, goes to 0 as n goes to infinity and
D>t wS = o0. Let also K : RN — R, be a function (called a kernel) such that
Ja~ K(t)dt =1 and supweRN K(z) < oo. Assume that K is Lipschitz and satis-
fies hmHﬂHoo ||| K (x) =0, [z Jul*K(u)du < oo where ||. || is the usual norm
onRY and [,y u; K (u)du = 0 for any 1 <i < N.Let ® : R — R be a measurable
function such that E [|®(Yp)[*™?] < oo and E U@(Yo)|2+9Ksn (z,Xo)] < ChY
for some 6 > 0 and C' > 0 and assume that u — E[|®(Yp)|?|Xo = u] is con-
tinuous. One can notice that E[|®(Yy)[>*T? K, (z, Xo)] < ChY is satisfied when
u — E[|®(Yy)|>T?| Xy = u] is continuous (see Lemma 2 below) Let (k) peze
be ii.d. R¥-valued random variables with zero mean and finite variance and
independent of (Xj)yeze and consider the regression model Yy, = R(Xs,,7s,)
for any 1 < i < n where R is an unknown functional. For any = € RY, we
denote fo(z) = ro(x)f(x) where ro(z) = E[®(Yo)|Xo = z] = E[®(R(z,no))] if
f(z) # 0 and re(x) = E[®(Yp)] if f(z) = 0 and we consider the estimator f,
of fo defined by

fra(x Zws > w h N0V K, (2, X)) (2.1)
j=1

where K, (z,v) = K((x —v)/hs,) for any v € RY and any 1 < j < n. One can
notice that if ®(u) = 1 for any u € R then f,, ¢ reduces to the spatial version
fn,1 of the recursive kernel density estimator of f introduced by Hall and Patil
[20] and defined for any x € RY by

fra(z ng ngj é] (z, X ) (2.2)

Moreover, for particular choices of the weights (ws, )n>1, the estimator (2.2) re-
duces to the recursive estimators introduced by [3], [4], [12] or [43]. In particular,
one can check that f, ¢ satisfies the following recursive equation

fn,<1>(x) =(1- pn)fn717<1>($) + pnh;nN(I)(}/;n)Ksn (z, Xs,) (2.3)

where p, = ST o 5" . Equation (2.3) is the spatial version of the recursive equa-
tion (1.4). It lays emphasls on that the update of f,, ¢ at time n can be done
from f,_1,4 at time n — 1 and the new single observation X, . This is a defini-
tive advantage over the spatial version of the non-recursive Parzen-Rosenblatt
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estimator fI'® defined by (1.1) since it is necessary to consider the whole sample
(X, , .., Xg, ) in order to compute fF% at any time n. In this work, we consider
also the following class of spatial semi-recursive kernel regression estimator r, ¢
of ro defined for any x in R by

fn,@(l’)
fna() if 37y ws, b VK (2, X)) # 0

() = n (2.4)

nt E Ys, else
i=1

which contains the first two semi-recursive kernel regression estimators intro-
duced by Ahmad and Lin [2] and Devroye and Wagner [13] for time series (i.e.
for d = 1) but also the class of semi-recursive kernel regression estimators con-
sidered by Amiri [4]. Since 7y ¢ is defined from f, ¢ and f, 1, it inherits the
good properties in term of computation time of the recursive estimators f, o
and f, 1 and consequently, in a data stream setting, it has a decisive advantage
over the spatial version of the non-recursive Nadaraya-Watson estimator defined
by (1.2).

Now, we are going to present our main contributions. For j € {2, 4}, we adopt
the notation

vi(0) = Lja|jw<co + 7 Ljoo=co (2.5)

0
Jj+o
and for any sequences (an)n>1 and (by)n>1 of real positive numbers, we denote
an, < b, if and only if there exists k > 0 (not depending on n) such that
an < Kby. Recall that (ws, )n>1 and (hs, )p>1 are two nonincreasing sequences
of positive real numbers such that (ws, h;¥),>1 is nondecreasing, hs, goes to 0
as n goes to infinity and ZnZI ws, = oo and keep in mind that K : RY — R, is
a function (kernel) such that [y K(t)dt =1 and |K| := sup,cpn K(t) < 00
For any integer n > 1 and any (p, q) € Z?, we denote also

Anpg = (nhf wi ) g hE wi

Sn

and we consider the following assumptions:

(H1) There exists (Bo,1,8-n2) € (]R’jr)2 such that lim, o, A, 01 = Bo,1 and
lim,, o0 An,—N,Q = ﬂ—N,Z-

(H2) There exist § > 0 such that E[|®(Yy)|>T?] < co and
E[|®(Yo) [>T K, (z, Xo)] < ALY , and 7 €]1 — 14(0), 1] such that

(+ d'/z(a)(’/4(9)+‘r 1) )
v (0)+(d—1)(vg (O)F7—1)

lim,, _, o nhs,, = oo and K17 Y w? dnw?

Moreover, one of the following condition holds:
va (6)
(i) (Xk)geza is strongly mixing and ), ;. |k| G auz(e (|k]) <
(ii) (Xg)peza is of the form (1.5) and

Li(N+2V2(9)+291\7(U4(9)+771)) va(0)
2N (v, +7—1
> keza [k wa® ) (5k72 < oo.
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(H3) (i) The function u — E[|®(Yy)|*|Xo = u] is continuous.

(ii) The function fg is twice differentiable with bounded second deriva-
tives.

(iii) For any k& € Z¥\{0}, the law of (X, Xj) is absolutely continuous
with respect to the Lebesgue measure on RY x R™ and there exists
¢ > 0 such that supyeza g0y [fo.x(z,y) — f(2)f(y)| < c for any
(z,y) € REx RN where fq 1 is the joint density function of (Xg, X}).

Assumptions (H1) and (H3) are classical in the context of recursive kernel esti-
mators (see [4], [25], [28], [42] and many others). In (H2), we assume that the
bandwidth parameter h, _ satisfies a condition sligthly stronger than the usual
minimal condition assumed in the non recursive i.i.d. setting (i.e. nhé\i — 00).
However, this fact seems to be inherent to the case of recursive estimators since
a condition like nh?ﬁflﬁ) — oo for some € > 0 is assumed in many contributions
for dependent data (see for example [4], [1], [25], [28] or [42]).
For any z in RY, we denote

03 () == By 1 B-n2E[|@(Y0) [*| Xo = 2] f () - K2(t)dt. (2.6)

Our first result gives the asymptotic variance of the estimator f,, ¢ defined by
(2.1).

Proposition 1. Assume that (H1) and (H3) hold and there exists § > 0 such
that E[|®(Yp)[*™] < oo and E[|®(Yo)[*T K, (z, Xo)] < hlY. If there ewists

T €]1 — v4(0),1] such that hi\;(kﬂ S w2 < nw? and one of the following
conditions is satisfied:

dvs (0)
(1) (X&)keza is strongly mizing and ), ;a4 |k @) T alfl(e) (|k]) < o0
(ii) (Xk)peza is of the form (1.5) and

AN+20 () F2N (g (O)1+T=1) ), (g)
2N (vg (60 —1
Zkezd |k| (va(O)+7—1) 5k,2 < 00

where vo(0) and v4(0) are defined by (2.5) then for any x € R,

T [nh V] fo ()] — o ()] = 0 (2.7)

where o2 (x) is defined by (2.6).
We obtain also the convergence to zero of the mean square error of f, ¢.

Proposition 2. Assume that fg is twice differentiable with bounded second
derivatives.

Then, for any x € RY, [E[fn.e(2)] — fo(z)| D (321 ws,) ™' 200, we b2, =
o(1). So, if max{A;’hl,An,gyl} <1 then |E[fn.o(x)] — fo(x)] < hin and, under
assumptions of Proposition 1, we get E[(fn.0(x) — fo(z))?] < n= AN for hs =

1
n A4+N,

The main contribution of this paper is the following central limit theorem.
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Theorem 1. If (H1), (H2) and (H3) hold then for any x € RY,

VY (fro(2) — Elfae(2)]) —2 N(0,03 ()

n—oo

where o2 (x) is defined by (2.6).

One can notice that Theorem 1 is an extension of Theorem 1 in [1] where
the case of strongly mixing time series is considered. In fact, with our notations,
if d =1and ®(u) = 1 for any v € R then f, ¢ reduces to the recursive
kernel density estimator f, 1 introduced by Hall and Patil [20]. In this case, we
have v5(0) = v4(#) = 1 and (H2)(ii) holds as soon as >, _ kY7 oo (k) < 0o

dvg(0)(rg(0)+7—1)
(1+ dvg(0)+(d—1)(vg(0)+7—1) )

. N(1 .
and lim,, oo nhs, = lim,,_ oo nhsn( +7) — o which are

exactly the conditions imposed in Theorem 1 in [1]. Using Theorem 1, we derive
the asymptotic normality for the recursive estimator r, ¢ defined by (2.4).

Theorem 2. Assume that (H1), (H2) and (H3) hold. If f is Lipschitz and
twice differentiable with bounded second derivatives then for any x € RN such

that f(z) >0
B e

with 63 (z) = V}S&fﬂf’z Jen K2(0)dt and V(z) = E[|®(Y0)|?| X0 = 2] — r3 ().

Theorem 2 is also an extension of Theorem 2.1 in [36] where the asymptotic
normality of the semi-recursive kernel regression estimator for time series (i.e.
d = 1) introduced by Ahmad and Lin [2] is obtained under more restrictive
conditions on the bandwidth parameter and the strong mixing coefficients. Using
Theorem 2 and Proposition 2, the condition nhN T4 — 0 can be imposed for the
control of the bias of the estimator and leads 1mmed1ately to the following result.

Theorem 3. Assume that (H1), (H2) and (H3) hold. If f is Lipschitz and twice
differentiable with bounded second derivatives, nhé\ff‘l — 0 and Ap 21 41, then
for any x € RY such that f(z) > 0,

b (r a(x) — ro(z)) =225 N (0,52 (z))

n—oo

where 63 (x) is defined in Theorem 2.

3. Preliminary lemmas

This section is devoted to the presentation of several technical lemmas and
propositions which are key tools in the proof of the main contributions in section
4. For any real x, we also define [x] = || + 1, where |z ] is the largest integer
less or equal than x.
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Lemma 1. Let (ay)reze be a family of real numbers such that as, goes to some
value a € R as n goes to infinity. If lim, oo Ap,—N2 = B-n2 € R then

N n 2
lim —2 Doilai _ af
n—oo nw?2 N N2
Sn =1 Si

Proof of Lemma 1. For any positive integers ¢ and n, we denote

_ 2 N N 2 . . _ . . .
bim = wi hy [(nhgw? ) if i < n and b;, = 0 otherwise. Since (hs,)n>1 is
nonincreasing and (ws, ;™Y ),>1 is nondecreasing, for i < n, we have

Sn

N 2 2N N

b' _ h’s,; X wsi /h’S, h51

I N 2 2N N
nhil wsn/hsn nhl n—+oo

Moreover, Z;;Of bin =An_nN2 = P-nN2 € R asn — +oo. So, by Toeplitz’s
lemma (see Lemma 3 in [25]), we get

n
lim E binas, = af_n2.
im

The proof Lemma 1 is complete. O

The following lemma will be usefull in order to compute the asymptotic
variance of the estimator f,, ¢ (see Propositions 1 and 4).

Lemma 2. Let x € RN be fized and let ¥; : R — R and ¥y : R — R be
two functions. If u — E[¥1(Yy)|Xo = u] is continuous and the conditions
sup, e [Wa(K ()] < 00, iy oo [ W2(K(0)] = 0 and [ ¥ (K (1)] dt <
oo are satisfied then

n—oo

lim h;nNE[\Ijl(YO)\IJQ (Ksn (.’E, Xo))} = E[\Ijl(YO)‘XQ = ZL’]f(CL’) /N \IJQ (K(U)) dv.
R
Proof of Lemma 2. Let x € RY and let n be a positive integer. It is obvious that

E[W(Yo)¥2 (K, (2, Xo))]

= hi\; /RNIE[‘lll (Yo) | Xo = — vhs, |¥s (K(v)) f(x — vhs, )dv.

By Theorem 1A in [31], we derive

lim hs_nNE[\IH (Yo) ¥o (K, (, X0))]

Sn
n—roo

— E[U, (Yo) | Xo = 2]f(2) /RN Uy (K@) dv.  (3.1)

The proof of Lemma 2 is complete. O
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For any ¢ € {1,2}, any 1 < i < n and any sequence (m,),>1 of positive
integers, we define

Ag) _ Do (Ys,) Ky, (7, X,) ;;E[(I)Z(YO)K&(LXO)} and ZE‘) _ E[AS‘f)\Hi )
i 3 Si Si ,

Si

(3.2)
where H; m,, = 0(Ns;, €s,—k; |k| < my) and @, : R — R is a measurable function.

Lemma 3. Let { € {1,2} and 6 > 0 such that E[|®¢(Y,)|*T K, (z, Xo)] < hYY
then E[|®¢(Yo)[P Ky, (z, Xo)]  hlY for any 0 < p < 2+6. Moreover, if (H3)(iii)
holds then suplgi,jgn(hsihsj)_NIE[KS,i (7, X5, ) K, (2, X)) Q1.
i

Proof of Lemma 3. If 0 < p < 2+ 6 then

([0 (Yo)|P K. (2, Xo)] < E[K., (2, Xo)] + El|@4(¥) P K, () Xo)].
Since E[|®,(Yy)|" K, (z, Xo)] < hY for r € {0,2 4 6}, we get
E[|®,(Yo)[P Ky, (x, X0)] < hY . In the other part, using (H3)(iii), for any
1 < 4,5 < n such that ¢ # j we have

E[Ks, (z, Xs,) K, (2, X,;)] S Ksi(x,u)du/ K, (z,v)dv
RN RN

+ E[K, (z, X0)|E[K, (z, Xo)]
(s, s, )N

The proof of Lemma 3 is complete. O

Lemma 4. If (p,q) € {1,2}% and 0 > 0 such that E[|®,(Y))[**’] < o and
El|®(Yo) P+ Ky, (2, Xo)l] S B, for any £ € {p,a} then

—N

ST EJAPAD] <1 (3.3)

sup (hsihsj)

1<i,j<n
i#£]
Lo ma (] o @) < 00
where = 0 if min ([|@ploo, [[Pglec) = 00 (3.4)
318 else.

Proof of Lemma 4. Let i and j be two positive integers such that ¢ # j and
(p,q) € {1,2}? and let 6 > 0 such that E[|®,(Yp)|**’K,, (z,Xo)] < hY and
E[|®,(Y)[**?] < oo for any £ € {p,q}. Keeping in mind the notations AP and
Ag(j) defined by (3.2), we have the following bound

+ 3E[| 2 (Yo) | K, (2, Xo)|E[|@q(Y0)| K, (7, X0)].
(3.5)
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Note that the second term of the right hand side of (3.5) can be dealt with using
Lemma 3. Therefore, we focus on the first part of the right hand side only. Let
L > 1 be fixed then

B[, (Y, )8 (Vs,)| Ko, (2, X, ) Ky, (2, X))
=E[[2,(Ys,) 2 (Ys,)| Lja, (v.,) <L Lja, (v, < Ks; (2, X)) K, (2, X, )]
+ E[[@p(Ys,)Rq (Ve Lo, vy 1<z Loy (v, )15 LK (2, X, ) K (2, Xs])]
+ E[[®p(Ye, )P (Ye)) [ Lo, (vi 1L Lo, (vi ) 1< K, (@, X)) K, (0, X )]
+ E[|®)(Ys,)® X ) K, (2, X))
Using Cauchy-Schwarz’s inequality, we obtain
E{[, (Ve )0 (Vs )| Ko (2, X, ) K, (2, X, )]
S (LA [[@plloc) (LA [[Rglloc) B, (2, X, K, (2, X, )]
+ \/]EH‘I)p(YO)PKi (CU»XO)}\/]EH‘I’(;(YO)\Q Lia, (vo) > K3, (2, Xo)]

o(Ye) Lo, (v. >z Lo, (v ) 1> . K, (2, X,

+ BNy (Y0) Lo vy K2, (@, Xo)] /El| @ (Yo) 2K, (, Xo)]

+ \/E[|<I>p(Y0)|2 Lo, (vo) 1> K32, (%XO)]\/EH‘I)q(%)P Lo, (vo) > K3, (z, Xo)]-

Since E[|®,(Yp)[*™] < oo and E[|®4(Yo) [>T K, (z, Xo)] < A for any ¢ € {p, q},
we apply Lemma 3 and we get

E[|®p (Ve )@q (Ve, )| K, (2, X)) K, (2, X))

J

(LA NRyloe) (LA [[Dglloo) (s, Fos )Y + L7 2 (hs, b ) V2.

(3.6)
Optimizing (3.6) with respect to L, we derive
E[@p(}/;i)q)q(y'sg-)ll(& (‘r’XSi)KSj (x’XSj )]
[N N
NO
(hsihsj) 2CE0 i [[@,]| < oo and [|®g4] = o0
NO
(hsihs;)?CHD i [|@y]| = oo and [y, < o0
N2 (3.7)
(hs,hs,) . if [[®,]l,, <ooand ||®]| < oo

(hehe)) ™50 @, = 00 and [ @, |, = oo

Combining (3.5), (3.7) and Lemma 3, we obtain (3.3). The proof of Lemma 4 is
complete. 0
Lemma 5. Let (Ex)eze be a family of non negative real numbers.

dae
If Y heza |l<:|"_1QE;C < oo for some positive constants {1 and lo then there exists
a sequence (my)n>1 of positive integers satisfying
. _ . dply _ £2 [ —
lim m, = +oo, nll)n;omnhsn =0 and nh_}noloh Z 2 =0.

n—oo
|k|>mp,
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Notice that if 1 < N and nhi,\’n — 0o then md = o (n).

Proof of Lemma 5. Let {1, 2 and r be positive constants such that r > ¢5/¢;
and let (my)n>1 be the sequence defined for any integer n > 1 by

1

dr
My = Max { vy, h;fl/d< > k| w 5k> and v, = [h; (/).
[k|>vp

Since v,, — 00, we have m,, — oo as n goes to infinity. Moreover,

dty
mdhft < max { ha/?, ( E k| a2 > hf1 — 0.
" o " n—00
|k|>vp

Since v, < m,, we have
dey
mant Z 2=
nhsil ( ‘k| f —*k)

dey
Since )z [k| 1 Ex < oo and r > fy/l, we get

1— =
Lz dey dey oy
—t = dpe 22 dha _
it Y ms i) F Y e Y w#s)
|k|>my, |k|>my, |k|>my,
——0
n—oo
The proof of Lemma 5 is complete. O

Lemma 6. Let ¢ € {1,2} and 0 > 0 be ﬁa:ed such that E[\fbg(Yo)PH’] < 0o and
E[|®¢(Yo)[*H K, (v, X0)] S hY then || AL,
(3.2).

Proof of Lemma 6. Let > 0 and ¢ € {1,2} such that E[|®,(Y5)[**?] < 0o and
let 1 < i< n, we have

< hg 2“’ where A( ) is given by

i

2
IAQ 2., < 2[[2e(¥Y0) K, (#, Xo)lla g 2 (B[| ¢ (Yo)| Ky, (2, Xo)))?

Since supcp~ | K (t)] < 0o and E[|®,(Yy)[* K, (x, Xo)] < AY
we get E[|®(Yo)Ks, (z, Xo)*T] < hY. Moreover, using Lemma 3, we have

_ N
E[|®(Yy)|Ks, (x, X0)] < hY and we obtain ||A < hs,*™. The proof of
Lemma 6 is complete. O

Proposition 3. Let M be a positive integer and let x € RN . If (X )peza is of the
form (1.5) and ® : R — R is a measurable function such that [|®(Yp)l[5 4 < 00
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for some 0 €]0,4+00] then for any positive integer n and any family (ck)ken, of
real numbers and any (p, q) € [2,+00[x]0, +00] such that p+q < 2+ 6, we have

1
»_ 2 P e
< 8pMY| K| C(p, q) (ZCQ> hiTT Y n
i=1

n
E CsiWi
i=1

p |4]|>M
where
Wi = CD<Y51)K51 (‘r7X5i) - ]E[(I)(Y;I)Ksz (vaSi) Hi,M]v (38)
2p+q #
Clp,q) =271 [ 2(Yo)l,4q 1Kl
4 (0] - &
+ |K|go+q sup | (R(xa 770)) (R(ya 770))|
(x,9)€RN xRN ||$ - y”
TH#Y »
and
K(z) - K
Hint = 0 (ercuniil < M) and Kl = sup D) Z KW
(m,y)EI;NXIRN ||‘T - y”
z#y

Proof of Proposition 3. Let M be a positive integer and let 2 in RY and 1 <
i < n be fixed. Recall that Y;, = R(X,,,ns,) and let W; = &(Y;,) K, (2, Xs,) —
E[®(Ys,) K, (x, X5, )| Hi ar] where Hi ar = 0 (15,5 €5,—k 5 |k| < M). We follow the
same lines as in the proof of Proposition 1 in [16]. Let 2 < p < 2+ 0 and
denote by H; the measurable function such that W, = H;(H; o) with H; e =
o (nsﬂgSi—k ik € Zd). Let 7 be a bijection from Z to Z? and ¢ in Z be fixed.
We define the projection operator P, by Ppf = E[f|F] — E[f|Fe—1] for any
integrable function f, where Fy = o (E,,-(j);j < Z). One can notice that the
operator P, depends on the bijection 7. The proof of the following technical

result is postponned to section 5.

Lemma 7. Almost surely, it holds that E[W;|Fy_1] = E[Hi(’}-lggoﬂ]:g]
with Hgo)o =0 (nsi,e;(o,esi_k k€ ZN\{s; — T(E)})

Using Lemma 7, we obtain

YA YA
1P, = [1E[H: (Hi,00) | Fe) — E[H(HL)IFlp < H: (Hio) — Hi(HL) -
(3.9)
Now, denoting ’HE?M =0 (nsi,s;(z),ssi,k;k € ZN\{s; — 7(£)} and |Kk| < M),
we have

Hi(Hino) = ®(Ya,) Ko, (2, Xs,) — E[®(Y:,) K, (2, Xo,)| Haonr VHI ),
‘e ’ /7 ’ ’ e
Hy(H) = @Y ) K, (2, X)) — BIO(Y, 10 K, (0, X, 1 0)| HEY v Hi ]

1,00 [
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where X:T(é) = G(s;(@,esi_k ik € ZN\{s; — 7(¢)}) and )/i,,T(é) = R(X;,T(Z), Ns; )-

3
So, we derive

’

HPZWz‘Hp < 2|2 (Y5 K, (2, X)) — ‘I’(Y-,T(z))KSi (xyXi,T(z))Hp-

So, for any L > 0, we get the bound

2L Kl / 4K o
THXS" — X rlp+ Talp

p+q
p

|, <

12 (Yo)]

p+q

oKl || sup  12EE@m) = O(R(y,m))]

(z,y) RN xRN ||'I - y”
z7y p

’

1 Xs: = X 7o) llp

where

||Xsi—X;,T(z)||p
= [|Gles, ik € Z%) = Gley 1y, €5i—ki k € Z\ {55 = T(OD)]ly
= |G (es,—r(e)-1i k € Z%) = Gleg, €5i—r(ey—t3 k € Z\{si = T(O}) I,
= [|Xs,—r(e) — X5, (o) llp
= 0g,—7(0).p-

Optimizing this last inequality in L, we get the following bound

_p —49 _49
[1PeWill,, < 2[K[& Cp, )& 677 ) (3.10)
where

2p+q L

C(p,q) =277 [[2(Yo)l, 1, IKIIfiy
4 P(R(x, — ®(R(y,
+ |K|(§’5"7 sup |P(R( 770)) ( (ZU n0))]
(z,y) RN xRN Hxin
z#yY »

Now, we are going to obtain another bound for ||P,W|,. Let £ > 0 and i > 1

be two integers. We denote by I'; ; the set of all & in Z% such that lsi — k| =¢
and we define

’
ag:= Y [Ti | =20+ 1)%
=0
On the lattice Z¢ we define the lexicographic order as follows: if u = (u1, . .., uq)
and v = (vy,...,v4) are distinct elements of Z¢, the notation u <jex v means
that either u; < vy or for some k in {2,...,d}, up < vy and uy = v, for

1 < ¢ < k. We consider the bijection 7; :]0, +00[NZ — Z¢ defined by 7;(1) = s;,
Ti(u) €Tipif ary <u<apand £ >0, and 7 (u) <jex 7(v) if
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a1 < u < v < agand £ > 0. Let Gy = U(nsi,sn(j);lgng) and
recall that H; p = o (s, €5,k 3 |k| < M). Since 1 < j < ays if and only if
|s; — 7:(4)| < M, we have G, o,, = H; nm. Consequently,

Wi= Y Diy
{>ans

where Dz}[ = ]E[(I)(szl)KSi (x7X5i) i ] - E[q)(y-sz)Ksl (LC, XSz) — ]
Given that (D ¢) />1 18 @ martingale difference sequence with respect to the
filtration (G; ¢)e>1, we apply Burkholder’s inequality ([10], remark 6, page 85)

and we obtain
1/2
2
IWill,, < <2p > |Di7é||p> : (3.11)

L>apns

’

Since X; © G(En sk 3k € ZWN\{s;—7;(£)}) and Yi/’n(z) = R(X;Ti(g),nsi),
we have E[@(Y;,)K,, (33 XoGie—1] = [@(Y; . ())Ks, (#, X; - (1))]Gie] and

K2

”Di,énp < ||q)(Y;1)K81 (LU, XSz) - (I)(Y,'rl(é))Ksl (LU, Xi,‘ri(é))”p‘
Arguing as before, for any L > 0, we derive

LKl /
» <TPHX31‘ —Xinwllp t

i

2K

pta
||D7 m HCI)( O)Hpiq

K| sup  [BEE ) — OBy, m0))

(z,y)eRN xRN ||x - y”
zFy

1Xsi = Xi oyl
p

with || X,, — X, (€)||p = 0g,—7,(0),p- Optimizing this last inequality on L and

1,Tq

noting that s; — 7;(¢) = —79(¢), we obtain

» < |K|§?C’(p7 )h p+q(5p+q

1D, —70(£),p

Consequently, we get

IPWilly < 21Wil, < 20/20lKIZ7 Cp.)hs7™ Y 6707,

£>an
<2V2PIK[ETClp, )hs, 7 ) 01 (3.12)
|k|>M

Since (31 cs, PoW;) ¢ez, 18 a martingale difference sequence with respect to the
filtration (]:g) ¢z, the Burkholder inequality (see [10], remark 6, page 85) implies

1
2

< ZpZ

LEL

Z CéZPgW

n
E cs; W,
i=1
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=

n 2
<2y (z ] npzw”p) e
=1

LEL

Moreover, by the Cauchy-Schwarz inequality, we have

n 2 n n
(zwmwﬁup) Sy AW, xS IRW G
=1 =1

j=1

Now, keeping in mind that Py is defined from the bijection 7 and using (3.10)
and (3.12), we have

SIEJEZIIPeWiIIp<§up > | eWil, + sup > IPWil,
=1

1<i<n € 1<ign
|si—T(£)|<M |si—7(O)|>M
2 / Md\K|§§qC(p, hsnp+q Z (ﬁ)‘erq
|k|>M
+2|K|% C(p, q)hs, Z 05 ()
1<i<n
|si—7(€)|>M
2(Md,/2p+1) K57 Clp, q)hs, 7 Y 5;52“-
|k|>M

Similarly, we have also

sup Y |[PWill, < sup Y [PWillp+ sup > [P,

<isn oy SIS yer, SISt ez
[si—T(O)|<M |si—T(6)|>M
2 / Md|K|é’§qC(p, hsnp-%-q Z 6p+q
|k|>M
o+ rta il
+2/K[ECp, )hs, Y 6T,
LEL
[si—7(£ )\>M
<2 (M2 +1) IKIET O Y o7,
|k|>M

Combining (3.13) and (3.14) with the last two bound above, we get

Sei| <2002+ DPIKIETCg (Z) hE S oE
i=1 P

|k|>M
Noting that +/2p + 1 < 24/2p, we obtain

1
. n 2 _q
< 8pMAK|E C(p, q) (Zci) I S T

i=1 |k|>M

p
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The proof of Proposition 3 is complete. O

4. Proofs of the main results

Now, we denote by V(Z) the variance of any square-integrable R-valued random
variable Z and we consider a sequence (my,)n>1 of positive integers. For any
x € R and any ¢ € {1,2}, denote

fr(ze)(x) = fn,‘bz (gj) = (Z wsi)il Zw%h;N(I)f(}fsq)K% (x7X51,)

=1 i=1

and 7o (2) = E[f (@) Him, ] (4.1)

where @y : R — R is a measurable function and H; ., = 0(ns,, €s,—k; || < mp).
First, we note that Proposition 1 is a particular case of the following result.

Proposition 4. Assume that (H1) and (H3)(iii) hold. Let (p,q) € {1,2}? and
z € RN be fized. Let 0 > 0 such that E[|®e(Yo)|* K, (z,X0)] < hY and
E[|®¢(Y0)|**?] < oo for any ¢ € {p,q}. Assume also that the function

u = E[®,(Yy)®,(Yo)| Xo = u] is continuous. If there exists T €]1 — ~y, 1] such

that hi\;(lfﬂ S w2 nwgn and one of the following conditions is satisfied:

S —

(i) (Xk)keza is strongly mizing and ), _;q \k;|v+di1 of | (k) < co.
A(N+2342N (y+7-1))

(i) (Xk)keza is of the form (1.5) and ), ya |k|~ 2NOF7—D 52’2 < 00.
where v is defined by

@:{ L if max([|®ploo, [[@glloc) < 400

0
743 else

(4.2)

then

lim nhY Cov [fP)(x), £ (x)]

n—roo

= B3 5w 2Bl (Y0)24(Y0) [ Xo = 2l (@) | KE(t)dt.

Proof of Proposition 4. Let x € RY and let (p,q) € {1,2}? be fixed. Using the
notations (3.2) and (4.1), for £ € {p, ¢}, we have

F0@) ~E [f0@)] = (Fwa) S wn iy N2AL.
i=1 1=1

Keeping in mind that A, 0.1 = (nws,) "' D1, ws,, we get

nhi\i Cov f,(lp) (2), fr(Lq) (33)}
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(St ) (S

n
= nhi,\; (Z ws,) °E
i=1

=1
Anoah, NE[AP) AW 4 N/251 A (D) A (@)
= Do e Zw h NE[AP AL Zw%ng hshs,) NPE[AD ALY]
Sn i=1 i 1
i]#j
So, we obtain
o AL ¢ ) A@)
N m, 21 —N
AT Y &
<R Y waws, (hehs,) TP [E[AD AL (4.3)
Sno g5=1
i#£j

Moreover, for any 1 < i < n,

EADAD] = h N (E[@,(Yo) 8, (Yo) K (2, Xo)]
—E[®,(Y0) Ky, (x, Xo) |E[®q (Y0) K, (2, Xo)]) -

Using Lemma 2 and Lemma 3, we derive

lim [E[APAD] — E[@,(Y)®y(Yo)| Xo = 2]f(z) | K>(t)dt| =0.

1—00 RN

So, using Lemma 1 and (H1), we derive
lim Ao Zh N2 E[AP AW]

n—oo ’I’ng"

= B.1B-n2E[@y(Yo) @y (Yo)| Xo = 2] f(z) | K*(t)dt.  (4.4)

RN
Now, we are going to prove that
lim Anoall, Zw ws, (hs;hs,) "N 2EAPAD]| =0 (4.5)
e an P s Ws; (Mg, s Ag . .
i#£]

Using Lemma 4, we have |E[Agf)Agg)]\ g (hsihsj)% for any ¢ # j where v is

d7 ~
defined by (3.4). Moreover, since ), ;4 || 7771 o] (|k]) < oo, using Lemma
5, there exists a sequence (m,,),>1 of positive integers such that

nl;n;omth v+T-1) —nlingoh Ny Z a?71(|k\) =0. (4.6)
kez?
[k|>m,
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So, we have
A
S wwy, (e hy,) VP EAD ALY
nws =
i#£]
2h£] —N/2 ®) A(2)
= Z ws, s, (s, hs;) E[AP AL Q By + Bap
Sno1<i<j<n
where N
hsn —N(1—7v)/2
El,n = W Z Ws; Ws; (hslhsj)
Sno1<i<ji<n
|si—sj|<mp
and
hqu N/2 @) A(
EZ,n - nw; Z Ws; Ws; (hs'i hsj)_ / |E[A5€) Asg)”

Sno1<i<j<n
‘Si*sj ‘>mn

Since v < 1, using the inequality 2ab < a? + b?, we have

WY WY 5 5
Sn Sn
Evn < nw? Z Wsi Ws; S 2nw? Z (wsi * wsj)

Sn1<i<j<n Sn1<i<ji<n
[si—s;|<mn |[si—sj|<mp
n
mihé\['y 2
n
an wsi
Sn =1
hN(l—T) n
— S
= mfllhiv(w” DN M— wf
Sn an Si
Sno =1

Using (4.6) and keeping in mind that hé\i(l_ﬂ S w? nwgn, we get

Sq
lim,,—, o E1,n = 0. Now, we are going to control the term FEs ,, when (X)gezq is
assumed to be strongly mixing. Using Rio’s inequality ([32], Theorem 1.1), we
have for any 1 <¢ < j < n,

2a1,1(|si—5;1)
EAPAD) <2 [ Qi (W)@ p10 ()
A @ (@

where Qo (u) = inf{e > 0|]P’(|Agf)| > ¢) < u} for any u € [0,1] and any
g

t e {i,j}.
First, we assume that || ®,]|- = 00 or ||®4]|cc = co. In this case, ¥ = 0/(2+0).

-N
Using Lemma 6, we have HAE? lla+0 < hs,2 * for any ¢ € {p,q} and any
— N7

. 1
1 < r < n. So, we derive QA(;) (u) <u *ehg? and

—2

— N7 20(1,1(‘545_53")
BADADI 22 (hohe,) [ uTdy
0
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d (h’sih’sj) : O‘?,l(lsi - Sj|)'
Consequently, we get

hY “NGHD 5
s —NGHD g
Ly, & 5 E ws,Ws, (s hs;) ™ 2 041,1(‘31‘ = s)-
Sno1<i<j<n
[si—sj|>mny

Using again the inequality 2ab < a® + b2, we derive

hy - _ -
o < nJS E: (uéjgfﬂw+n<+u€jh;NP%H)>a11“&__st

Sno1<i<j<n
[si—sj|>mp

MV S w2 - .
ﬁ(nujg > o | a1 (k).

Snoj=1 "Si kezd
[k|>mny
Using (H1) and (4.6), we get
—N% v
E2,n g h’sn Z 05171(‘]<3|) m 0 (47)
kez?
[k|>mn

and finally, we obtain (4.5). Now, we deal with the case ||®,] < oo and
|®4lloc < oo. In this case, we have 4 = 1. So, noting that |Ag€)| < h;,N;’/Q
for any ¢ € {p,q} and any 1 < r < n, we derive QAE? (u) < h;N&/z and
|]E[Agf)Agg)]| g (hsihsj)_]\hw2 a?,1(|si —s;]). Arguing as before, we obtain (4.7)
and consequently (4.5) holds.

Finally, combining (4.3), (4.4) and (4.5), we obtain

(
li_>m nhi\i Cov [fr(f])(x), fy(ﬂ) ()]

= BB_QN’2E[%(Y0)‘I’«;(%)IX0 =a]f(z) [ K*(t)dt.
0,1 RN

Now, we assume that (X})geza is of the form (1.5). Since

UN+2IFIN (rE7=1)) g L ANH2T) gy
> keza K IN(v+7-1) 5k’2 < oo implies Y, pa |K[PNOTTD |k 5k’2 < o0
and using Lemma 5, there exists a sequence (my,),>1 of positive integers such
that

N~
. _ . —(5+7 o
lim mdpNO+F7=D = lim hsn(Q ) E k|45, = 0.
n—oo " n—oo )
kez?
|k|>m,

Keeping in mind (3.2) and (4.1), we have nhY Cov [fflp) (2), £ ()] = Cin +
Con + C3 5 + Cy , where

Cim = b Cov[fP (@) - T (@), £ () - T2 (@)]
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Con = nhY Cov[fP(2) — T (2), TV ()]

Cs.n = nhY Cov[F? (2), £ () — T2 ()]
Cin = nhY Cov[F? (2), 79 ()]

First, we assume that ||®, e = 00 or ||®|lcc = 00. In this case, ¥ = 0/(2 + 0).
Moreover, we have

hN/2A7%) . n )
Crnl < | =220 w2 (AP A
’ \/ﬁwsn i—=1 v . *
= 2
hlPAnh & <@
X — ZWSi hs_N/z(qu) - Asq )
Vs, i=1 2
Using (H1) and Proposition 3, we obtain for any ¢ € {p, ¢},
WA O (0
N
Sno =1 2
1/2
hN n w2 _ ﬂ+~ _ _ ﬁ+~ -
d n i gl v d
e oo I N VT W
Sn =1 ' 'Si kezd kez?
|k|>my, [k[>m,
(4.8)
So, we derive
2
_ ﬂ+” ~
[N IS A ST ) )
kezd
|k|>mp
Similarly, we have
|02,n| < \/HT,OJ Z'LUSih;N/Z(Ag) - AS))
Sno =1 2
héV/zA—l n o
« n “p0,1 ZwSih;N/zAitf)

Viws, =

2

From (4.8), we know that

N/2 -1 n
Pon Anon > wo A N2 (AP - A

_ %J’_” -
s, ; < hs (3+3) Z |k|46) 5.
Sno =1

n

2 kezd
|k|>mp,
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: ~ (@ ~ () .
Moreover, since A" and A" are independent as soon as |si — 5] > 2my,, we
have '

N/2A 1 n 2

hs,! n,0,1 Z w N/2A((1)
Sq s
\/7w5n i=1

N p4—2
_ hSw,An,O,l in th”Z(q)“Z
o nw2 Si'Us; s; 112
=1

2hl A%

2

_ _ ~(@)~(a
5 g wsiws.hg‘NﬂhgvN/QE[AE,)AQv)]
nw Ws; Mg, sj s; Bs;
b —
n 1<i<jsn
[si—si|<2my

and, keeping in mind ||Ag‘f)||2 <1 (see Lemma 3) and (H1), we have also

hévAnOI - 2 N A~@2 hévA;%1 . 2, N
n — n — (q)12
nwgn ;wSihSi ||ASL ||2 < nw gn ;wsihw ”AS(LI H2 S] 1.

Denotlng W( ) = E(Y )KSz ('r7X$i) - E[q)e(yt%)Ks@ (m7X81)|Hl,mn] where

Him, = 0—(77517557,—k; |k| < my,) for any 1 < i < n and any ¢ € {p, ¢} and noting
that AL — ZS) = hNPW!9 | we have
(@) =(a) -
B[R AL - EALAD] < N2 AL | WD |12 + 5N AD |5 [ WP
BN (WOl + [W)l) -

Using (3.12), we obtain

ERYEY) - Ba@AD) <, T S 47, (4.9)

kez?
[k|>mp

Consequently, using Lemma 4, we obtain for any i # j,
(N5 -
| [A(q)A(q)H <] (h h )TW +hsn( 2 +’y) Z 52’2
kez?

|k|>my

where v is defined by (3.4). Since v < 1 and using the inequality 2ab < a? + b2,
we derive

hNAT_LOl

_ _ () =(a)
77172 Z wsq',w5j h97N/2h9JN/2|E[A9? As‘j ”
Sn 1<i<jsn
|si— sj<|j<2mn
hN A‘
S D s ()N
nw

Sn 1<i<j<n
[si—s;|<2my,
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% (h/SI hsj)N’Y/2 + h/;n(%Jr’?) Z 6272

kezd
|E[>mp
N 2 2
h An ,0,1 wsi + w5j
S 2nw? Z . V=)
n 1<i<j<n Sn
|si—s;|<2mn,
hNA
n,0,1 27, -N 2 1 —N F+9)
+ W E (’wsihsi +w5]‘h5j ) Sn E 5k 9
sn 1<i<jsn kezd
[si—s;|<2mn [k|>my,

Using (H1) and keeping in mind that hﬁ(lfﬂ S w2 dnw? | we get

hNAnOl

2
nws

S wgwgh V2RV EBRYRY))

1<i<j<n
|si—s;]|<2mp

N
d r— —(z+7 d 57
< md RO+ 1>+hsn(2 ) > [k, —0. (4.10)
kezd
|k|>m,

Consequently, we derive

hN/2A 1 n

fsp Ano1 Z N/QZS!) <1

2
and

n

_ %_;'_:Y -
Gl 25N k57, —— 0

kezd
|k|>my,

Similarly, one can notice that

_(N_5
ol 2 S k5T, —— 0

kez?
|k|>my,
Now, we have to control the last term
A;% 1hiv - — ~(P)x(a)
Cyn = 47111)2 u ZwihSiNE[Asi A,
i=1
242 BN )
+ % S wgw,(hehy,) N EBRY AW
s, 1<i<j<n

|si—s;]<2mn
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We are going to prove that

A2 _
lim ”01 Zw W VERAY A

n—o0 Si' 8
B 57N,2 _ 2
= 5 B[y (Y0)Pq(Y0)| Xo = 2] f(x) [ K=(t)dt (4.11)

B RN
and
24,8 1 hY) N2 A P) A (@)
nh—{:go W Z wS'inj (h’Sih’Sj) N/QE[ASZ: As(j ] =0. (412)
1<i<jsn

|si—s;|<2mn,

Keeping in mind (3.12) and arguing as in (4.9), we have
EEVED) - BAPAD) 2122 (IW P + W)

an; (549 DL

kezs
|k|>mp
Using (H1), we obtain
2 n
Anohi, Zw2 h—N‘E[Z(ZD)Z(Q)] _EAPA®]| < o (519) Z Ik[157
nw? 8i'Vs; Si Si Sg S — %8n k,2
Snoi=1 kezd
[k|>mp
— 0.
n—oo

Using (4.4), we obtain (4.11). Now, arguing as in (4.10), we get

N
hsn An 0,1

- ~ ()= (2)
W Z wSin]‘ (hsihsj) N/2|E[A5L AS]' H
Sn 1<i<j<n
|si—s;|<2my

dpNiy+r—1) | p=(5+9) d g3
SmghJ 0T b 2N RIS, —— 0.

kez?
[k|>mp

So, (4.12) holds.
Finally, if |[®,|lcc < 00 and [|®y]/oc < 00 then ¥ = 1 and the proof follows
exactly the same lines as above. The proof of Proposition 4 is complete. O

Proof of Proposition 2. Let x € R? and let n be a positive integer. We have

E[(fne(@) = fo(x))’] = V(fna(@)) + (B fne(@)] - fo(2))*.

Moreover,

ELfy 0 ()] - Zwsb Zw&/ K(0) (falz — vhy,) — falx)) du].
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Using Taylor’s formula, we derive

‘E[fn,é(‘r)] - f‘b(x” d (Z wsi)_l Zwsbhi

A

Since maX{A;}M, Ap21} <1, weobtain [E[f, ¢ (x)]—fo ()] < A;}),lAn,th

Sn —

hZ . Finally, using Proposition 1, we have V[f, ¢(z)] < (nhé\;)fl and for
—4

hs, = NN | we get E[(fn.a(z) — fo(z))?] < nTF~. The proof of Proposition 2
is complete. O

Proof of Theorem 1. We are going to split the proof in two parts. In the first part,
we deal simultaneously with the strong mixing case and the weakly mixing case
(see (4.15) below) whereas, in the second part, the two dependence conditions
are investigated separately.

First part

Let n be a positive integer and € RY be fixed. One can notice that

Y (@) — Elfus(2)]) = % ; U,

where
K Pwg, A, (Y, Ky, (z, Xs,) — E[@(Yo) Ky, (2, Xo)]
Usi= g~ and A, = ===y ‘ -
hs! “ws, An01 hs,

(4.13)
In the sequel, (my,),>1 is the sequence defined by Lemma 5 which satisfies
m‘flhﬁ(u“(eyﬁfl) — 0 and either h; V"2 2 (k| alf,zo(g)(\kD — 0 (if (Xg)peza

. v mixi h—(u2<9)+%) K520 0 (if (X ‘< of th
is strongly mixing) or hs Dok, [E%0 — 0 (if (Xk)geza is of the

form (1.5)) where v2(6) = Lo <oo} + % 1{)a =0} Moreover, if (Xj) ez
is of the form (1.5), we consider the notations

n

Asi = E[A91 |Hi7mn] and U‘?q = E[U91 |Hi,mn]'

where H; m,, = 0(1s,,s,—k; |k] < mp).

Note that U, and U, are independent if |s; — s;[ > 2m,,. Using (H1) and
Proposition 3, we derive

1 =3 7(u2(9)+ﬂ) d sv2(0)
NG Z;(Usi Us)|| < hs, 2 Zd k1%6%5" —— 0. (4.14)
= 2 kEZ
S 7

From now on, we denote

| (Us,,my)  if (X;);eza is strongly mixing

(Zsi, Mn) = { (Us,,2my) if (X;);eza is of the form (1.5) (4.15)
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and it suffices to prove the asymptotic normality of the partial sums
n~Y23"" | Z,, asn goes to infinity. Let (€ )reze be independent normal random
variables independent of (Xj)reze and (mx)peze and such that E[¢;] = 0 and
E[¢2] = E[Z?]. Let 1 < i < n and define Ty, = n~/2Z,, and =, = n~/2¢,,.
One can notice that Y ;- | E, is a gaussian random variable with zero mean. If
(Xk)peza 1s strongly mixing then Z, = Us, and

V(iH&) ZIE U]

i=1

hNAn%1 - E[®(Yo)*K? (= Xo)]*(]E@(YEJ)Ksi(w,Xo)DQ_

$i \)
T Z W iy
7 21

Keeping in mind (2.6) and (H1) and using Lemma 1, Lemma 2 and Lemma 3,

we get
_ 2
7Lll>rfooV < E HSI> =og(x). (4.16)

i=1

If (X)) peza is of the form (1.5) then Z,, = U,, and applying (3.12), we get

-2 —
E[U,] -EUZ]l < 2|Us |, |Us, = Us

-|2

g e Wsi (5 () o (6)
= h¥w? A2 '
n 0 1 EZd
|E|>my,

Using (H1), we derive

_ RN S hsNw? (va
_ZUE 2 U2]| Sn, 21:1 s; W, < h (9)+ Z 51’2 (0)

- 2 2
annAﬂ,O’ kezd
|k|>may,
—(v(0 +ﬂ
SR S T G
? n— o0
kez?
|k|>my,

So, we get also (4.16) when (X})yeza is of the form (1.5). Let ¢ be any measur-
able function from R to R. For any 1 < i < j < n, we introduce the notation

Gig =0 > T+ Es
=1 =)

Let h : R — R be a three times continuously differentiable function such that
maxg<i<s |A? | s < 1. Keeping in mind (4.16), it suffices to prove lim |L,| = 0,
n—oo

where
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Using Lindeberg’s idea [23] (see also [9]), we have

Ly = Elhnni1 —hoa] = ZE[hi,m — hi 1]

= Z ( iiv1 — hicviv1] — E[hi—1,; — hi—1»i+1])'

Applying Taylor’s formula, we get

n

L= 3 (BT s 5T o+ B -BIE a2 ),

i=1

where |8;| < T2 (1 A|Ty,]) and |ps] < B2, (1 A|E,,]). Since EF and by, ;,, are

independent, E[Z5,h;_; ;1] = 0 and E[Ez] =n"'E[Z2], we obtain
- 1
=2 ( sihicvie] + SEITS = n T EBIZE]) Pl ia] + BB — Pi])-
i=1

Since, for any 1 < ¢ < n, the random variable &, is gaussian with zero mean
and variance E[Z2 ], we have

E[&.,°] = /87 (B[Z2))"* < v/&/x (E[U2])**.

Moreover, since (ws,, h;nN )n>1 is nondeacreasing, we get

1/2
hN 2 th2 3/2
E[U2])*? = 3 s; E[A2
( [ sz]) thz A%Ol hé\fwgnA%,og ( [ S'i])

hY w N 1/2 9 1\ 3/2
@ e ) B2

Using (H1) and E[A2 ] <1 (see Lemma 3), we get

1 h’i\;An01 ~ 5N 2 1\3/2 4 Ny—1/2
ZE|pl < Ea > w2 h N (BIAZ))YT < (nh)) T ———0.

8;'78; Si
/nhé\; wsn =1 n—-+oo

In the other part, if ||®|_ < oo then |U,,| < ha N2 (since (wg, hy™N)p>1 is
nondeacreasing) and

n 1 n
> E[Bi]] < 3 > R[]z,
=1 i=1

1 n
3 E U 3
} < 7’L3/2 ‘ EH Si

1 2 1/2
XHZEU < (nhY ) —— 0.

- n—+4oo

<

nh

T
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Since (ws, h; ¥ )n>1 is nondeacreasing, if ||®]| ., = oo then

2 6
hé\;ﬂw ; hﬁmw ;
E“Usqz‘%_e] = N/2 . N/2 > E[|A5i|2+9]
hsi wsnAn,O,l hSi wsnAn,O,l
N'IU2

. _xe hNw?
E el S Yo T TR 10

< hi\’fnwgl (h%h*% Oh 2 h 2
S N2 A2 Nl ftsn ) S P
hsiwsnAn,O,l hsiwsnAn,O,l

=0
Consequently, if d,, := (nhé\i) 200+ then

n

- 1 1 d,,
ZE[I&I] < fZEHUs,.,I”"] + gZJE[Ui]
=1

—— %
d?n?/2 " n

=1 =1
A5 hY, O w?
—0 N —60/2 n,0,1"%s,, Si
d,” (nhy X —0— L+ d,.
= Uy ( sn) wg n at héV n
n = i

Using (H1), we get

- 1
S E[Bi]] © —————575 + du = 2d, ——— 0.
P d9 (nh) )" n—o0

Now, we have to prove that

i 3 (BT o] + (20) T BIZ2 ~ BIZEDH ] ) =0, (418)

(2

n
=1
For any 1 < ¢ < j7 < n and any function ¢ from R to R, we define also

i—1 n
Mn —_
o=l X Tt X
=1 t=j
[se—si|>My,
Using Taylor’s formula, we have
i—1
/ M, " M,
Tsihgfl,iJrl = TSihi(fl,ill + TSi Z TSZ hi£1,ill + 5;
=1
|sé_sz|<Mn
with
1—1 i—1
FEAE1 3% R S 9 I WS B N s | PR O R L)

=1 (=1
[se—si|<Mp [s¢—si|<Mp

In order to obtain (4.18), we have to prove

(M) (4.20)

nh—>Holo z; E[Tsihzq,wl] =0,
i
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n i—1
lim BT, T, | Y3, | =0 (4.21)
i=1 =1
|Sz—8, <My,
lim B[] =0, (4.22)
=1
and
1 n
Jim =% E[(25 - EIZ2) 1] = 0. (4.23)
i=1

Second part
First, we assume that (Xj)peza is strongly mixing. We are going to prove (4.20).
Since Z is independent of T, then E {Tsih, (OCrin EST)} = 0. So, if we define

Ez(‘n) ={1<j<i]|lsj—s;| > M,}and 7 is a one to one map from [1, |E§")|]QZ
to EE”) such that |Sﬂ-(g) — 5] < |37r(£71) — 54| then

r=i+1

B

=Y Cov[Ty, te—ty],

=1

E[T,,h, M) 1 =E

silli—1,i41

where t; = h’ (Zﬁzl Teriy * 2ormign EST> and 30_, T, ., = 0. Since (X) ez
is strongly mixing, using Rio’s inequality ([32], Theorem 1.1) and keeping in
mind that |sr) — si| < [Sxe—1) — si|, we get

(n)
B 201,00 (|5 (e)—5il)

\
BT, A ] <2 S / Qr. (1)Qiy 1, , (u)du.
/=1

Assume that ||®]., < co and let u €]0,1[ be fixed. Since b’ is Lipschitz and
|Us,| < h;LN/2 (because (ws, by N)n>1 is nondeacreasing), we have

max {QT% (w), Qtp—t,_, (w)} < (nhY )~1/% and we derive

n n 1B
(M, 1 _
DB AN S e D0 D7 anee (e = sil) <h5Y 30 anee (1K)
i=1 Sno4=1 (=1 kezd
|k|>Mp,
Using Lemma 6, if ||®|loc = oo then
1 o N/2
246 ||U.. 240 hs .
Qr, (w) < T Weillzve o W TD T
l vn YrhZED hs!Tws, Apon



Recursive estimators for random fields 4609

and

. _ 1 N/2
u  2+e ||USW(2)||2+9 <] u 2-}—9 hsn/ ws,,(g)

Qté_te—l (u) <

wsnAn 0,1

s

\/E \/_h2(2+9> h N/2

Sx(e)
Consequently, using again the inequality 2ab < a® + b%, we obtain

n f¥ n B

N
(M, hy s Ws; Ws () _6
Z|E[Tsihi(—17izr1” Z Z N2RNTZ o [2 ar e (Isece) — sil)
i=1 im1 =1 D sy Ws,, 410,01

N6

0 1h n |27 2 wf
_W n Sn m(£) 2+6 .
ha 27 > D Ty ) et (Isx(e) = sil)

Sn i=1 (=1 Sm ()

A

2 n i—1 2 2
B h_% y An01hsn w; o wg, aHg (s; — sil)
— lbsp 2 E E N N 1,00 J ?
wy, o o he  hg
|sj—si|>My
2 N n 2
No
< ho 2t A"01h 51 o a2+e |k|
X tsn TLU)2 N 1,00
1 Si d
keZ
|E|>M,
Using (H1), we get
N6 0
"(My) N 310
E BT, b, ) QB2 > al (k).
kez?
|k|>My,

Finally, we proved that

SRR QRO ST 62O (k) ——— 0
=1

A n—-+oo
kEZ
|k|> M,

where 1/2(9) = ]1{Hq>”oo<°°} + 2_;_% ]I{HCPHDC:OC} So, (420) holds.
The proof of the following lemma is postponed to section 5.

Lemma 8. It holds that supi1<; j<n E[|Us,Us,|] < wsiwsjw;?hi\iy“(e)
i#£] '
where v4(0) = L) <o} + 755 L{1@) =00} -
Since (Xj)peze is strongly mixing, we have Z;, = Us, for any 1 < i < n.
Moreover, using (4.19), we have

n n i—1 n i—1
7 | |ZS'| 2
(5] <23 E |2l — == E[lUsUs,
L v D S | P DR DR L]
\sj—s,\<M lsj—sil<Mn
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and
n i—1 n i—1
"(My) |Zs |ZS‘
S |E|T T, | b S0 <Y R |2 > ke 1}
i 2 1—1,2+1 ~
i=1 =1 i=1 Vin j=1 Vn
[se—si|<Mn [sj—si|<Mp
1 n i—1
== ) [1Us, Us, ] (4.25)
n °
i=1 Jj=1
|Sj75i|<Mn
Using Lemma 8 and the inequality 2ab < a® + b2, we get
1 n i—1 MthV4(9) n Nvy(0) n i—1
Sn
-3 E[|U,, Uy || 9 22— S u? + SOy Wl
n J an i nw2 J
i=1 j=1 Sn i=1 Sn =1 j=1
|sj—si|<Mn |sj—si| <My
Moreover
n 1—1 n—1 n n
2 _ d 2
Do =D owh Y ISMY w
i=1 j=1 j=1 =741 i=1
|sj—s;| <My [si—s;|<Mn

n i—1 Nug(6) n
1 Mdhsn ! 2
EZ Z [|U51Us]|] szsl
i=1 j=1 n i=1
‘Sj_él‘gMn
hN(l—T) n
_ Mth(l/4(9)+T71) w 5n w2
n'ls, nwgn v S;
Imi RO =1 ¢ (4.26)
n—+oo

Combining (4.24), (4.25) and (4.26), we obtain (4.21) and (4.22).

Now, it suffices to prove (4.23). Let S > 1 be a positive integer. For any
1 < j < n, the notation Eg [Zsj] will stand for the conditional expectation of
Zs,; with respect to the o-algebra o (Z,; £ < jand |s; — s;j| > (). Then,

1 n
oY IE(Z2 ~E[Z2 DR ) <D+ D,

where
Z“E Z2 Eﬁ ZQ]) z/ 1l+1]|

and
1 n
I, = - Z \E[(EB[ZE] - E[Zi])h/i/—l,z‘+1]|~

The next result can be found in [27].
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Lemma 9. Let U and V be two o-algebras and let X be a random variable
which is measurable with respect to U.

If1<p<r< oo, then [E[X[V] - E[X]|l, < 2(2"/7 +1) (o, V))? " | X].

Since (Xk)kezd is strongly mixing, we have Z,, = Us, for any 1 < i < n. If
|®||cc = oo then using Lemma 9 with p =1 and r = (2 + 0)/2, we derive

_0
1 n 604222(5) n
I < - Y IB[U2] ~ EIU2 ]I < 2223 o,

=1 =1

From Lemma 6, we have

_ o
hs, T RN w?
n K2

2+67 hN 2 AELOI.

1,113

i

Consequently, using (H1), we get
o, A2 AN 2 w? _ Mo
0,1
I, S hy*° afti(ﬂ) x s ) w S he aféi(ﬂ)
i=1 i

N/2

2
nwyg n

Similarly, if |®]| ., < oo then |Ag,| < hg,
N/2 and

and since (ws, by )n>1 is nonde-

Sn

creasing, we have |Us,| < hg,

I < 6a1 (8) x = Z 1Us, 113

> O51 OO(/B)

Finally, keeping in mind that v(6) = 1| _<co} + 2+9 L) =occ}, it means
that

]. i — Nv- v
I < 3 E[U2] ~ EUZ ]I < 15 V20 (8). (4.27)
i=1
Now, we make the choice

—Nv(0)(rg(0)+7—1)

B — ’Vh;:2(9)+(d—1)(y4(9)+7——1)-‘ . (4.28)

Consequently, since ), ,a |k Fa 104”2(0 (|k]) < oo means
du () +(d=1) (4 (0)+7—1)
St e alf"o(f)(ﬂ) < 00, we derive

dvo (0)+(d—1)(vg(0)+7—1)
I, 48 PP IQE== v2(0)

(B) —— 0.

100 n—00

Since h;/_(f)H_l is 0(Z2s,, Zsk, 1<k <i,l|sg—s;| =2 B,¢ € N*)-measurable, we find
that E[(Z2 — Eg[Z2 ])hl (1)1+1] = 0 and consequently

E[(Z2 —Ep[Z2)) b1 1] :E[(Z2 EsZ2)) (hi 11 h‘z—(q)z—i-l)]
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Keeping in mind that

we obtain

Let L > 0,

1 — Zs.
L<=) E|]|2A 2 (722 +EpZ2]
33 > L@z rmaz)
| <6
then
I n i—1 9 n
ﬁz Z E[|Zs,]|Z, 11|ZS1_‘<L]+EZ]E[Z
z:l j=1 i=1
gz‘ B
+lzn:E 2A 2 (EslzZ] —E[Z])
n ‘ \/ﬁ B Si S;
=1
L s
1 « Z,.
“ME|]|2A 2 E[Z2
3 21| B2
L [s;
Since Z,, = Us, for any 1 < i < n, we derive
I n i—1 9 n
T Z Z E |U51USJ| ZE[USL ]1|U5 \>L]
=1 Jj=1 z':l
lsj—sil<B
1—1 U
2 2 8
LRI Dol
[sj—sil<B

M. El Machkouri and L. Reding

Z\E (22 -

E’5 ZQ]) ’L/ lz+1]|

Arguing as in (4.26) and Lemma 9, we derive

I, <

ﬁdLhi\f(V4(9)+T—1)

>

j=1
[sj—s:|<B

i=1

2

PO N a0 ()
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Using (4.17), (4.28) and (H1), we get

N(vg(0)+7—-1)
B LA g, =N drp O+ waO)+7=1) ()
I, < = + L %hs? +p va(@)Fr—1 aq s (B)
= \/ﬁ n 00
1 n 1—1 U
+ o BRI DD A
i j=1 Vin
|s;—s:|<B 2
Moreover,
2
1—1 U 1 i—1 i—1
S 2
Z = = Z E[Usa‘] + Z E[Us; Us,]
J=1 vn " j=1 3.e=1
[sj—si|<B 2 [sj—si|<B max{|s;—s;|,|se—s:|}<B
J#L

NO
2

If ||®]|oo = oo then using (H1) and (4.17), for L' = (ﬁ_dnh; )m, we have

i—1 ’ ’ n ’
1 piL? L —? piL? ., _ne
- E[U?] < E[U,. 2T == + L', 2
oY B+ T Y E(U P 9 B L
Jj=1 Jj=1
|sj—si|<B

o
d 2+6
=2 p .
(nhé\fl)

If ||®||oc < oo then |Us,| < hs_nN/2 (since |Ag,| hs_iN/2 and (wsnhgnN)n>1 is

nondecreasing) and consequently

i—1
1 2 B
n Z E[Us’] — nhl
]:1 n
[sj—si|<B

i—1 , Bd v2(6)
> e 2 ()

S|

—— 0. (4.29)

Sn

—vo(0)
dvg (0)(va(0)+7—1)
N1+ G =D (=T
< <nh ( 2(0)+( ) (g (0)+ ))

n—00

Moreover, we have

i—1 -2 N i—1
1 An,O,thn wsjwsz|E[ASjASe”
- E |E[Us,Us,]| 9 T E (hs g, )N2

3e=1 Sn 3e=1 si7nse

max{|s;—si|,[s¢e—s:|}<B max{|s;—si|,[s¢—s:|}<B
J#L J#L
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A r it

n,0,1"%s,, Z Ws; Ws,
= w2 N(=ra(®)

Sn

j=1 (hsjhse
max{|s;—s;|,[se—s:[}<B
J#E, |se—s;|<Mny

i—1

Ws wwal oo (|S] — Sel)
+ Z NQA+vy(6))
3
=1 (hs, hs,
max{]|s; — Sz\ [se—si|}<B
J#L, |sg—sj|>My,
i—1 2 2
An 0, lhsn Z ws] wsg
- nw2 - hN(l v4(0)) hN(l—V4(9))
J =1 Se
max{|s;—si|,|se—si[}<B
J#L, |se—s51<Mp
—2 N 1—1 2 2
n,0,1'%s,, wsj Wg, v2(0)
+ «@ (Isj — sel) -
nw?. E : N(1+v2(0)) N(1tv2(0) | Ftoo Ui
7 4=1 th hse

max{|s;—s;|,|se—s:[}<p
J#L, |sg—sj|>M,

Since v4(0) < 1, we have

1 i—1
ﬁ Z |E[USjUSz”
=1
Hlax{‘sj_s'i|7lsé_si‘}<6
J#e
Mdhifl”‘l AL oahd s W N v2(0)
o Mile S a4 [ 2R SR ) 0 T ol ),
nwg TL 0,1 ,—q nwsn j=1 "Si kezd
|k|> M.,
Using (H1) and (H2), we derive
1 i—1
dp N(va(0)+7—1 —Nuvy(8 va(0)
S S B U) SO N0 S =) ()
je=1 kez?
max{|sj—s7\ [se—sil}<B [k|> My
J#L
Consequently, denoting
(+ dup (0) (v4(0)+7—1) ) —v2(6)
&2 .— T3 ()@= 1) (g (O)F7—1)

2. nhs, + mihi\fl(V4(9)+T—1)

+h N0 N 2O (k) —— 0,

—
kezd e
[k|>mp,
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we get

1< = U, A2 RN w2 B[A2 ]

- E U2 J ;g n,0,1 7 "sn Sq Si % q

n ; [ Si] jZ:; \/E —_ nwzn ; hé\f En — en
[sj—s:i|<B 2

and finally,

Sy ., =NE dva(0)+(d—1)(vg(0)+7—1) 0
° L\/— + L ehsnz + 8 va(O)F7—1 0/1/2(50)(5) + e,.
n ,

Optimizing in L, we get

ap N @a(0)+7-1)
I, < B°Lh

a0 N9<v4l(i)9+r—1>
B+ hg dvg(O)+(d-D(rg(O)F+7=1) g
n< - AT a2 (B) e
— 0 1,00 n-
N ) 2(1+9)
(nh3))

. 7(101\71/2((19)(1/4(9);771)
. v —1)(v. T—1 .
Since, 8% < hsn2( )HA=D a0+ ), we derive

=0 NO(d—1)(vy (0)+7—1)?2 dvo (0)+(d—1)(vy (O)+7—1)
N\ 2(1+0) 3, T+0)(dvz(0)+(d—1)(vg(0)F7—1)) 2\ a A v2(0)
Il Sl (nhSn) hsn +ﬂ A=t Oél’oo (ﬂ)

+¢e, — 0.
n—-+o0o
So, we obtain (4.23).
Now, we assume that (X)peza is of the form (1.5). As before, we have to

prove (4.20), (4.21), (4.22) and (4.23). Now, we have Z,, = U,, for any 1 <

i < n. Moreover, U, ans U, are independent as soon as |s; — s;| > M,, where
M,, = 2m,,. So, (4.20) holds since

1—1 — n
! 77 ! Us s
BIL T =n PR (O | 3 e S T
’ n
=1 i

14
[se—si|>My

Arguing as in (4.24) and (4.25), we have

n n 1—1
2 —
Y E[Bil < - > Y E[ULT
=1 =1 Jj=1
|Sj75i|<Mn
and
n 1—1 1 n i—1
" Mn J— —
SE(T Y T | wSEL < E[|U,.Us,]]
i=1 (=1 i=1 j=1
[se—si|<Mp |sj—si| <My

The proof of the following lemma is postponed to section 5.
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Lemma 10. For any positive integer n,

1 n
E Z E[lUSiUSjH
i=1 =1
|sj—si| <My
i#j
dp N(va(0)+7—1 7(ﬂ+y2(0)) dsv2(9) ,
ﬂ m’nhSn( 4( )+ ) + hsn : Z ‘k| 5]6,22 n—oo 0
kez?
|k|>my,

Consequently, we obtain (4.21) and (4.22). In order to finish the proof, it
suffices to prove (4.23). Let L > 0 be fixed. Keeping in mind that U,, and Uy,
are independent if |s; — s;| > M,,, we have

E[(2% —E [22]) b, 3]

1—1 = n
—2 —2 U, &s
- (Usq,—IE{USiDh” 3 se y |l 2o
' =1 Vi =i+l Vin
|se—si|>My,

So, we have

1 n
n Z |]E[ (Zf —-E [ng]) hgl—l,iﬂ] |
i=1

S ]E[ (T — BT 1) (s — L 4) ] ‘
=1

i—1

I U, —2 —2
SSXEIN X G (72, +ED2)
[se—si|<Mp
L n 1—1 L n
=Y. > EULTU.l+ —Z]E[Ui 7o)

L 1< L - — 2170 & 040
S —7= X% - > E[|Us,Us,|] + ) E[|U., 12
n n n
=1 /=1 =1
[se—si|<M,,

2
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Moreover,
2
1—1 = — 1—1
Us 1 —2 — —
§ ¢ 2 §
\/ﬁ 5 ]E[Us[] + E[Use US_;’]
=1 2,j=1
|se— Sz‘<M7L 2 [s¢— |<M max(\sg—si|,|s'j—si|)<Mn
L#j

Noting that E[Uie] < E[U2] and using (4.29), we get

2 ( L dva(O)(wa() kT 1) ) —v2(9)
T T dvo (0)+(d—1)(vg (0 1
E[US,J < nh, 2@ +(@—1)(v2 (O Fr—1) 0.

n—oo

i—1

1
n

w

=1
[se—si|<Mp

Using Lemma 10 and keeping in mind that U, and Usj are independent if
|s¢ — s;| > M, we have

1 i—1 o 1 n n .
-~ Z E[U,,U ]|<EZ Z \E[UseUsJHmO
£,j=1 =1 =1
max(|sefsi;;!5377si|)<Mn |sefz;-é|‘<Mn
J J
Consequently,
i—1 =
Us
lim su 2~ =0
n—+00 1<1£)n ; \/ﬁ
[se—si|<Mp 9
and
1 n i—1 U
. + S¢ 2
=1 =

|S[78i‘<1\/fn 2

A ALD L SN w2 E[A —~ U
< lim - n,O,lZw [ sz] X sup Z Us, —0.

n—+too  nw? — hy 1<i<n — Vvn
[se—s:| <My 2
<1
Using (4.17) and (H1), we obtain
1 & L 1 L _g, =No
S B2 B2 D) QxS BT T Lk (1)
i i=1 =
|51/757.|1<Mn
Optimizing in L, we get
4
1 n
S B2 B2 DK ] S ()T —Z ZE\UMUSL +o(1)
i=1

|€g sl|<1\/I
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Using Lemma 10, we obtain (4.23). The proof of Theorem 1 is complete. O

In the proof of Theorem 1, the asymptotic normality of the estimator f, & is
obtained using the Lindeberg’s method based on the stability of the standard
normal law. This approach seems to be superior to the so-called Bernstein’s
method (see for example [5] and [21]) since it allows us to obtain mild condi-
tions on the weak and strong dependent coefficients of the considered random
field. This fact is of theoretical importance and has already been observed in
[1], [14] and [15].

Proof of Theorem 2. Let n be a positive integer and z € RY such that f(z) > 0.
Then,

ro,o(T)—

Elfn.a(x)]
E[f,1()]
_ (fnﬁb(x) — E[fn@(x)])E[fn,l(x)] — (fn,l(x) — E[fn,l(x)])E[fn@(x)]
fna(2)E[fn 1 (2)] '

Using Proposition 1 and Proposition 2, we obtain that f, 1(x) converges in

probability to f(z) and [[f" ‘I’((;C))}] converges to re(z) as n — oo. So, using
Slutsky’s lemma, it is sufficient to prove

A/ nhl (fre(x) — E[fne(@)]) + A2y /nhY (fo1(2)—E[fr1(2)])

—”\/(0 PAl 20 (7))

n—oo

where

Pane () = TE[@(Y0)[*|Xo = 2]+2M dara (2)+A3) B0 1 B-n.2f (z) | K*(t)dt
RN

for any (A1, \2) € R?.
Let (A1, \2) € R? be fixed. Then,

Ay/nhl, (fa.e(x) = Elfne(2)]) + A2y /nhg, (fo1(z) — E[fn1(2)])

=/nhY (fmg(l”)*E[fn,E(x)])

where ®(x) = A\ ®(z) + Ay for any x in R. Since u — E[|®(Y0)[?|Xo = u] is
continuous, one can notice that u — E[|®(Y))|?|Xo = u] is continuous. More-
over, since E[|®(Yp)[*™] < oo and E[|®(Yy)[*T? K, (z,Xo)] < hY, we have
E[|®(Yo)[*™] < oo and E[|®(Yy)[*T K, (z, Xo)] < hl . Consequently, using
Theorem 1, we get the result. The proof of Theorem 2 is complete. O

One can notice that the asymptotic normality of the regression estimator
T,o Obtained in the proof of Theorem 2 is a direct consequence of Theorem 1.
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In some sense, it means that Theorem 1 is quite a deep result since it contains
both the asymptotic normality of the kernel density estimator f, 1 and that of
the regression estimator r, 1.

Proof of Theorem 3. Let z € RY such that f(z) > 0. Then, according to
Theorem 2, we have

O e

where 52 (z) = % Jow K2(t)dt and V (z) = E[|®(Yo)[?| Xo = ] — 13 (2).

Applying Proposition 2, we have

Elfno(@)] = fo(2)| Qb2 and |E[fpa(2)] = fz)] < B2 .

Recall that re(x) = f}‘((;;) Then, for n sufficiently large, we have

'E[fn,é(x)] _ T@(:C)

Elfn1(2)]

(Elfn.a(@)] = fo(2)f(x) = (E[fn1(2)] = f(z))fe(2)|
f(@)E [fn1(2)]

< h? .

Finally, using Slutsky’s lemma, we obtain

Y (s (1) — ro(z)) —25s N (0,52 (2)) .

n—oQ

The proof of Theorem 3 is complete. (|

5. Appendix

Proof of Lemma 7. First, we note that E [W;|Fy—_1] is Fe-measurable. It suffices
to show that for every A € Fy, we have E[E [W;|Fy_1] 14a] = E {Hi(Hgfo)o)IA],
One can notice that the collections P = {ANB|A€ Fy_1,B € o(e;(r))} and
A:{A € Fy|E[E[W;|Feo1] 14] = E [HZ(HZ(QO)IA} } are respectively a w-system
and a A-system which satisfy o (P) = F;. Since (e+(;))jez and (Es_e()j))jez are
identically distributed where eg()j) =¢er ifj# L and ag&) = 6;_(0, it holds for
every C' € Fy_1 that E[1cW;] = E {ICHZ(’HEQO)} Then, if A=A NAy € P
with Ay € Fy—1 and Ay € o(e-(g)), we obtain
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So, we obtain A € A and finally P C A. Applying Dynkin’s lemma, we get the
desired result. The proof of Lemma 7 is complete. g

Proof of Lemma 8. Let 1 <
Nuy(6)
E[|Ay A, || 9

1,7 < n such that ¢ # j. From Lemma 4, we have

(hsihsj) s Keeping in mind (4.13), we have

hi\flwsinj]EHAsiAsj I
(hSith ) %wgn A?L,O,l

2 N
An 0, lh

Ws. Wg .
Sp 817785

E[|Us, W2 (g, h) ) NA=va 0D /2"

Usj'” =

_ghéVML(O)

Since v4(#) < 1 and using (H1), we derive E[|U;, U, |] < ws,ws,w

The proof of Lemma 8 is complete. O

Proof of Lemma 10. For any 1 <

j < n such that i # j, we have

E[UsUs ]

and for any 1 <

- EHU&'USJ- Hl <

1Us; [1211Us; =

Us.llz + U, [I2l1Us; = Us, 12

¢ < n, using (3.12), we get

B N/2 B N/2

||U HQ _ Sn wSZHAStZHQ Sn wse
sell2 ™ . N/2 — , N/2
hsg/ wsnAn,O,l hs/ wsnAn,O,l
and
N/2 ~ N/2 —(F+v2(0))
77 hsn Ws, HASe — AS@HQ hSn wSeh VQ 6)
|Us, = Us,ll2 = < E 5 .
c K Pw, A W w, A
s¢ Ws, An,0,1 s¢ Ws, An,0,1 kezd
|k|>M,,
Consequently, we get
1 n n
E E E |E[|U81USJH _EHUSIUSJH‘
i= =
‘3_7’—57‘,‘<M"
#j
n
n O 1 Z Z wsinj +V2 9) 51/2(0
nw2 BN/2pN/2 sn E :
S; Sj kEZd
\9 —$7\_<Mn |k|> M,
i#]
N 2 n 2 2
h An ,0,1 Z Z Wy, T Ws;, < h F+v2(9)) Z 51/2(0)
T2 N N Sn
ann hsi hs: d
J kEZ
‘SJ Sz‘<Mn |k|>DM,,
N A—2 n 2
d h An 0,1 wsi +V2 9) V2(0
< 2M! . s ) (3 S oo,
nw? hY
Sn i=1 Si kezd

|k|> M,
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Using (H1), we obtain

I, & — — —(5+20)
-y BT Ts, | = BV Us, ] @ mihe, 200 37 5207
=1 j=1 ez
|ij§;\§Mn |k|>my
i#]
< BN S g,
kezd 7
|k|>my,
Using Lemma 8, we obtain
1 n n
= > EU.T]
i=1  j=1
[si—s;|<Mp
i#]
hé\;w;w) n n Ws, Ws; —(&+12(0)) d v ()
S'TZ > 2 T he PRI
=1 j=1 Sn kGZd
lsi—s;| <My [k|>my
177
hé\hq(@) n n (N0 ,
D DD DI R LA DI 2w L
Sno =1 j=1 kezd
[si—s;|< My |k|>mn

md th/4 0 n

(N, 5
< Sn szi+h3n(2+ 2(9)) Z |k|d5k,22(9)

2
nw
Sn i=1 kEZd
|k|>may,

Using (H2), we derive

1 n n o
IS Em
i=1 =1
|si—s;|< My
i#£]
R R D D
keZd n—roo
[k|>ma,
The proof of Lemma 10 is complete. O
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