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Abstract: Incorporating information about the target distribution in pro-
posal mechanisms generally produces efficient Markov chain Monte Carlo
algorithms (or at least, algorithms that are more efficient than uninformed
counterparts). For instance, it has proved successful to incorporate gradi-
ent information in fixed-dimensional algorithms, as seen with algorithms
such as Hamiltonian Monte Carlo. In trans-dimensional algorithms, Green
(2003) recommended to sample the parameter proposals during model
switches from normal distributions with informative means and covariance
matrices. These proposal distributions can be viewed as asymptotic approx-
imations to the parameter distributions, where the limit is with regard to
the sample size. Models are typically proposed using uninformed uniform
distributions. In this paper, we build on the approach of Zanella (2020) for
discrete spaces to incorporate information about neighbouring models. We
rely on approximations to posterior model probabilities that are asymp-
totically exact. We prove that, in some scenarios, the samplers combining
this approach with that of Green (2003) behave like ideal ones that use the
exact model probabilities and sample from the correct parameter distribu-
tions, in the large-sample regime. We show that the implementation of the
proposed samplers is straightforward in some cases. The methodology is
applied to a real-data example. The code is available online.§
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1. Introduction

1.1. Reversible jump algorithms

Reversible jump (RJ, Green (1995)) algorithms are Markov chain Monte Carlo
(MCMC) methods that one uses to sample from a target distribution π( · , · | Dn)
defined on a union of sets

⋃
k∈K{k}×R

dk , K being a countable set and dk pos-
itive integers. This distribution corresponds in Bayesian statistics to a joint
posterior distribution of a model indicator K ∈ K and the parameters of Model
K, denoted by XK ∈ R

dK , given Dn, a data sample of size n. Such a posterior
distribution allows to jointly infer about (K,XK), or in other words, to simulta-
neously achieve model selection/averaging (Hoeting et al., 1999) and parameter
estimation. In the following, we assume for simplicity that the parameters of all
models are continuous random variables. Again for simplicity, we will abuse no-
tation by also using π( · , · | Dn) to denote the joint posterior density with respect
to a product of the counting and Lebesgue measures. We will use π( · | Dn) and
π( · | k,Dn) to denote the marginal posterior probability mass function (PMF)
of K and conditional posterior distribution/density of XK given that K = k,
respectively. Note that in this paper, we assume that K is defined such that
π(k | Dn) > 0 for all k.

The variableK ∈ K can take different forms in practice. In mixture modelling
(Richardson and Green, 1997), K is the number of components and K is a subset



Informed reversible jump algorithms 3953

of the positive integers and defines a sequence of nested models, i.e. Model 1 is
nested in Model 2 which is nested in Model 3, and so on. Often there is no such
“ordering” between the models. This is for instance the case in variable selection.
In this framework, K is a vector of 0’s and 1’s indicating which covariates are
included in a model, and for instance, Model k0 = (1, 1, 1, 0, 0, 1, 0, . . . , 0) is
the model with covariates 1, 2, 3 and 6 (as in Figure 1 below); K is thus a
collection of such vectors. A RJ algorithm explores both the model space and
the parameter spaces. We focus in this paper on the case where K does not define
a sequence of nested models. When K defines a sequence of nested models, K
can be recoded as an ordinal discrete variable as above and this case has been
recently studied by Gagnon and Doucet (2021) who proposed efficient non-
reversible trans-dimensional samplers.

The proposal mechanism in a RJ algorithm can be outlined as follows: given
a current state of the Markov chain (k,xk), the algorithm first proposes a
model, say Model k′, by using a PMF g(k, · ) and then parameter values for
this model by applying a diffeomorphism Dk �→k′ to xk and auxiliary variables
uk �→k′ ∼ qk �→k′ , yielding the parameter proposal yk′ and another vector of aux-
iliary variables uk′ �→k. The proposal is accepted, meaning that the next state of
the Markov chain is (k′,yk′), with probability (assuming that the current state
has positive density under the target):

αRJ((k,xk), (k
′,yk′))

:= 1 ∧ π(k′,yk′ | Dn) g(k
′, k) qk′ �→k(uk′ �→k)

π(k,xk | Dn) g(k, k′) qk �→k′(uk �→k′) |JDk �→k′ (xk,uk �→k′)|−1
, (1)

where x ∧ y := min(x, y) and |JDk �→k′ (xk,uk �→k′)| is the absolute value of the
determinant of the Jacobian matrix of the function Dk �→k′ . If the proposal is
rejected, the chain remains at the same state (k,xk). Recall that a diffeomor-
phism is a differentiable map having a differentiable inverse and note that we
abused notation by using qk �→k′ to denote both the distribution and the prob-
ability density function (PDF) of uk �→k′ . The notation k �→ k′ in subscript is
used to highlight a dependence on the model transition that is proposed, which
is from Model k to Model k′. In the particular case where k′ = k, we say that
a parameter update is proposed; otherwise, we say that a model switch is pro-
posed. Model k′ is reachable from Model k if it belongs to the support of g(k, · )
which is considered in this paper to be the neighbourhood of Model k, denoted
by N(k).

In trans-dimensional samplers, the neighbourhoods are usually formed of the
“closest” models. The notion of “proximity” is often natural, making these clos-
est models straightforward to identify. For instance, in Section 4 we apply the
proposed methodology in a variable-selection example and the closest models
are those with an additional and one less covariates, to which the current model
is added. In this paper, we consider that Model k belongs to the support of
g(k, · ) for all k; this will be seen to be useful when the posterior model PMF
concentrates.

Algorithm 1 presents a general RJ.
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Algorithm 1 RJ

1. Sample k′ ∼ g(k, · ), uk �→k′ ∼ qk �→k′ and u ∼ U [0, 1].

2. Apply Dk �→k′ (xk,uk �→k′ ) = (yk′ ,uk′ �→k).

3. If u ≤ αRJ((k,xk), (k
′,yk′ )), set the next state of the chain to (k′,yk′ ). Otherwise, set

it to (k,xk).

4. Go to Step 1.

Looping over the steps described in Algorithm 1 produces Markov chains that
are reversible with respect to the target distribution π( · , · | Dn). If the chains
are in addition irreducible and aperiodic, then they are ergodic (Tierney, 1994),
which guarantees, among others, that the law of large numbers holds, implying
that ergodic averages are approximations to expectations under π( · , · | Dn).

1.2. Problems with RJ

Algorithm 1 takes as inputs: an initial state (k,xk), a total number of itera-
tions, a PMF g(k, · ) for each Model k, and functions qk �→k′ and Dk �→k′ for each
pair (k, k′) with Model k′ being reachable from Model k. Implementing RJ is
well known for being a difficult task considering the large number of functions
that need to be specified and the often lack of intuition about how one should
achieve their specification, the latter being especially true for functions involved
in model switches. Significant amount of work has been carried out to address
the specification of the functions qk �→k′ and Dk �→k′ involved in model switches
in a principled and informed way; see, e.g., Green (2003) and Brooks, Giudici
and Roberts (2003). The approaches of these authors are arguably the most
popular. Their objective is the following: given xk ∼ π( · | k,Dn), we want to
identify qk �→k′ , qk′ �→k and Dk �→k′ such that applying the transformation Dk �→k′ to
(xk,uk �→k′) ∼ π( · | k,Dn)⊗ qk �→k′ leads to (yk′ ,uk′ �→k) ∼ π( · | k′,Dn)⊗ qk′ �→k

(at least approximatively). They essentially look for a way to sample from the
conditional distributions π( · | k′,Dn), in this constrained framework. This in
turn aims at increasing the acceptance probability αRJ defined in (1) towards

αMH(k, k
′) := 1 ∧ π(k′ | Dn) g(k

′, k)

π(k | Dn) g(k, k′)
, (2)

which corresponds to the acceptance probability in a Metropolis–Hastings (MH,
Metropolis et al. (1953) and Hastings (1970)) algorithm targeting the PMF π( · |
Dn). The approach of Green (2003), for instance, proceeds as if the conditional
distributions π( · | k′,Dn) were normal.

Notwithstanding the merit of this objective, it is to be noticed that, even
when it is achieved, “half” of the work for maximizing αRJ is done because, as
shown in Figure 1, poor models may be proposed more often than they should
be if g is not well designed, leading to smaller acceptance rates. Note that
when considering candidate proposal distributions g(k, · ) having all the same
support N(k), choosing the one that maximizes the acceptance probability αRJ
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represents a first step towards proving that it is the best (or at least one of the
best) given that they all allow to reach the same models; this choice is indeed
expected to improve mixing.

Fig 1. (a) posterior probabilities (represented by the size of the dots) of models forming the
neighbourhood of the model with covariates {1, 2, 3, 6}, in a linear-regression analysis of the
prostate-cancer data of Stamey et al. (1989); the models with an additional covariate can
be found in the upper part, whereas those with one less variable are in the lower part; (b)
probabilities of proposing the models forming the neighbourhood (represented by the size of
the dots) when the current model is that with covariates {1, 2, 3, 6} and g is the uniform
over the neighbourhood; (c) probabilities of proposing the models forming the neighbourhood
(represented by the size of the dots) when the current model is that with covariates {1, 2, 3, 6}
and g is instead an informed version (as defined in Section 1.3)

1.3. Objectives

The specification of g has been overlooked; this PMF is indeed typically set to
a uniform distribution as in Figure 1 (b). The first objective of this paper is
to propose methodology to incorporate information about neighbouring models
in its design to make fully-informed RJ available. To achieve this we rely on a
generic technique recently introduced by Zanella (2020) that is used to construct
informed samplers for discrete state-spaces. Let us assume for a moment that we
have access to the unnormalized posterior model probabilities and that we use a
MH algorithm to sample from π( · | Dn); the technique consists in constructing
what the author calls locally-balanced proposal distributions:

g(k, k′) ∝ h

(
π(k′ | Dn)

π(k | Dn)

)
1(k′ ∈ N(k)), (3)

where h is a continuous positive function such that h(0) = 0 and h(x)
/
h(1/x) =

x for all positive x (the square root satisfies this condition for instance), and
1 is the indicator function. Such a function h leads to an acceptance proba-
bility in the MH sampler given by αMH(k, k

′) = 1 ∧ c(k)/c(k′), where c(k) is
the normalizing constant of g(k, · ). A motivation for using this technique is
that, in the limit, when the ambient space becomes larger and larger (but the
neighbourhoods have a fixed size), there is no need for an accept-reject step
anymore; the proposal distributions leave the distribution π( · | Dn) invariant.
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Zanella (2020) indeed proves that c(k)/c(k′) −→ 1 for all possible pairs (k, k′)
under some conditions. These properties suggest that locally-balanced samplers
are efficient, at least in high dimensions. The author in fact empirically shows
that they perform better than alternative solutions to sample from PMFs in
some practical examples, with a highly marked difference in the examples with
high-dimensional spaces.

The first obstacle to achieving our first objective is that we typically do not
have direct access to the model probabilities, because they involve integrals
over the parameter spaces. Drawing inspiration from the approach of Green
(2003) that can be viewed as using asymptotic approximations to π( · | k′,Dn)
to design RJ, where the limit is with regard to the sample size, we propose
to use approximations to the unnormalized version of the model probabili-
ties π(k | Dn) whose accuracy increases with n. We prove that, in some sce-
narios, RJ using both approximations behave asymptotically as RJ that set

g(k, k′) ∝ h
(

π(k′|Dn)
π(k|Dn)

)
1(k′ ∈ N(k)) and that sample parameters from the

correct conditional distributions π( · | k′,Dn). These ideal RJ have acceptance
probabilities equal to αMH. All this suggests that the resulting RJ with asymp-
totically locally-balanced proposal distributions are efficient, at least when n
is large enough. We show that it is the case even in a moderate-size real-data
example. In this example, the PMF π( · | Dn) concentrates on several models.
We also provide evidences that the proposed RJ are efficient when n is large
and the PMF π( · | Dn) is highly concentrated so that the mass is non-negligible
only for a handful of models.

The approximations on which the proposed methodology is based are more
accurate when all parameters of all models take values on the real line. We thus
recommend to apply a transformation to parameters for which this is not the
case. Such a practice is often beneficial for MCMC methods. It is in fact required
when using Hamiltonian Monte Carlo (HMC, see, e.g., Neal (2011)), which is
employed to perform parameter updates within RJ in the real-data application
of Section 4.

The second objective of this paper is to make clear how each function required
for implementation should be specified, at least in some cases, allowing a fully-
automated procedure. These cases are those where each of the log conditional
densities log π( · | k,Dn) has a well-defined mode and second derivatives that
exist and that are continuous. The procedure can be executed even if the model
space is large or infinite, as long as the posterior model PMF concentrates on a
reasonable number of models, which is expected in practice.

1.4. Organization of the paper

In Section 2, we address the specification of the inputs required for the imple-
mentation of the proposed samplers; in particular, we discuss the design of the
PMFs g(k, · ), so that both objectives of the paper are achieved. We next present
in Section 3 a theoretical result about the asymptotic behaviour of the proposed
RJ, and an analysis of the limiting RJ. In Section 4, the methodology is eval-
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uated in a real-data variable-selection example. The paper finishes in Section 5
with retrospective comments and possible directions for future research.

The approximations on which the design of the functions g(k, · ), qk �→k′ and
Dk �→k′ rely can be inaccurate when the sample size is not sufficiently large.
There exist methods that allow to build upon the approximations used to design
qk �→k′ and Dk �→k′ to improve the parameter-proposal mechanism. The methods
of Karagiannis and Andrieu (2013) and Andrieu et al. (2018) are examples of
such methods. An overview of these methods is provided in Section 2, while
the details are presented in Appendix A. In Section 2, it is explained that these
methods are also useful for improving the model-proposal mechanism. In fact, as
the precision parameters of these methods increase without bounds, the result-
ing samplers converge towards ideal ones that have access to the unnormalized
model probabilities to design g and that sample parameters from the correct con-
ditional distributions π( · | k′,Dn), for fixed n (see Appendix A for the details).
The methods of Karagiannis and Andrieu (2013) and Andrieu et al. (2018) are
sophisticated and come at a computational cost (especially that of Karagiannis
and Andrieu (2013)), which may not be worth it when n is large enough for the
problem at hand. This is the case in our variable-selection example, highlighting
that the simple RJ proposed in this paper that use simple approximations are
efficient in certain practical situations. The methods of Karagiannis and Andrieu
(2013) and Andrieu et al. (2018) are nevertheless useful in the variable-selection
example as they allow to show which of the approximations used in the design
of g(k, · ), qk �→k′ and Dk �→k′ explain the gap between the proposed RJ and the
ideal ones. Their computational cost is offset by a significant enough improve-
ment in, for instance, the change-point problem presented in Green (1995) (as
shown in Karagiannis and Andrieu (2013) and Andrieu et al. (2018)).

Some details of the variable-selection example are presented in Appendix B.
All proofs of theoretical results are provided in Appendix C.

2. Input design and proposed RJ

We start in Section 2.1 with the proposed design of g. We next turn in Section 2.2
to the proposed design of the functions qk �→k′ and Dk �→k′ , which will be seen to
represent a simplified version of that in Green (2003). We present in Section 2.3
the resulting RJ. In Section 2.4, we present an overview of the methods of
Karagiannis and Andrieu (2013) and Andrieu et al. (2018) to improve upon
the approximations used in the design of the proposal mechanism when these
approximations are not accurate enough.

2.1. Specification of the model proposal distributions

The design of g starts with the definition of neighbourhoods around all models
which specify the support of g(k, · ) for all k. As mentioned in Section 1.1, it is
typically possible to define these neighbourhoods in a natural way. It will thus
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be considered that the neighbourhoods are given and that we can build on these
to address the specification of g.

In practice, g(k, · ) is commonly set to the uniform distribution over N(k):
g(k, k′) = 1/|N(k)| for all k′ ∈ N(k), where |N(k)| is the cardinality of N(k).
In the simple situation where uk �→k′ = yk′ ∼ π( · | k′,Dn) and |N(k)| = |N(k′)|
for all possible pairs (k, k′) (the latter is true in variable selection with neigh-
bourhoods defined as in Section 1.1), the RJ acceptance probability reduces
to

αRJ((k,xk), (k
′,yk′)) = 1 ∧ π(k′ | Dn)

π(k | Dn)
.

It is thus easily seen that a chain may get stuck for several iterations when there
are a lot of poor models with π(k′ | Dn) 
 π(k | Dn) in the neighbourhood;
this is especially true in high dimensions because the number of poor models
may be very high. Our goal is to include local neighbourhood information in
the PMFs g(k, · ) to skew the latter towards high probability models.

We propose here to follow the strategy of Zanella (2020), implying that ideally
we would set g(k, k′) ∝ h

(
π(k′ | Dn)

/
π(k | Dn)

)
for all k′ ∈ N(k) (recall (3)),

where for all k,

π(k | Dn) =

∫
π(k,xk | Dn) dxk.

These integrals are typically intractable. We propose to approximate them and
for this we assume that each log conditional density log π( · | k,Dn) has a well-
defined mode and that its second derivatives exist and are continuous. In fact,
the integrals that we propose to approximate are∫

πun.(xk | k,Dn) dxk,

where πun.( · | k,Dn) := L( · | k,Dn)π( · | k) is the unnormalized posterior
density under Model k given by the product of the likelihood function and prior
parameter density under Model k, and we use that

π(k | Dn) ∝ π(k)

∫
πun.(xk | k,Dn) dxk,

π(k) being the prior probability assigned to Model k. The approximation that we
propose to apply is the Laplace approximation, meaning that we write πun.( · |
k,Dn) = exp(log πun.( · | k,Dn)) and log πun.(xk | k,Dn) is developed using a
Taylor series expansion (see, e.g., Davison (1986)). This yields:

π̂(k | Dn) ∝ π(k) (2π)dk/2 πun.(x̂k | k,Dn) |Îk|−1/2, for all k, (4)

where x̂k is the maximizer of πun.( · | k,Dn) (and π( · | k,Dn)), Îk is minus the
matrix of second derivatives of log πun.( · | k,Dn) (and log π( · | k,Dn)). We use
Îk to denote the matrix of minus the second derivatives because when the prior
density of the parameters is uniform, this matrix corresponds to the observed
information matrix. It is evaluated at x̂k, but we make this implicit to simplify
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because it will always be the case in this paper. Note that other approximations
may be employed. In our framework, we are interested by approximations that
are easy to compute (at least in some cases) and asymptotically exact as n −→
∞. This is the case for π̂(k | Dn) in (4); it is more precisely a consistent estimator
of π(k | Dn) under the assumptions mentioned above.

We thus propose to define the model proposal distributions as follows:

g(k, k′) ∝ h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
,

for all k′ ∈ N(k). The function h needs to be specified. A natural choice (that
does not satisfy the conditions mentioned in Section 1.3) is the identity func-
tion: g(k, k′) ∝ π̂(k′ | Dn)

/
π̂(k | Dn) ∝ π̂(k′ | Dn). The resulting proposal

distributions are called globally-balanced in Zanella (2020). To understand why,
consider the situation where the size of K is small and it is feasible to switch
from any model to any other one, and thus we can set N(k) = K for all k.
In this case, g(k, k′) is exactly equal to π̂(k′ | Dn), and for large enough n,
π̂(k′ | Dn) ≈ π(k′ | Dn), corresponding to independent Monte Carlo sampling
when uk �→k′ = yk′ ∼ π( · | k′,Dn). Using such global proposal distributions
g(k, · ) with N(k) = K thus asymptotically leaves the target distribution invari-
ant without an accept/reject step, hence the name globally-balanced. In contrast,
when the ambient space becomes larger and larger and the neighbourhoods have
a fixed size, i.e. when the locally-balanced proposal distributions asymptotically
leave the target distribution invariant, setting h to the identity function in-
stead asymptotically leaves a distribution with XK | K ∼ π( · | K,Dn) and
K ∼ π( · | Dn)

2 invariant. We recommend to set h to the identity only when it
is to feasible to set N(k) = K for all k. Otherwise, it seems better to use locally-
balanced proposal distributions; this is the case for instance in Zanella (2020)
and our moderate-size (both in n and dimension) variable-selection example.

Two choices of locally-balanced functions h are considered in Zanella (2020):
h(x) =

√
x and h(x) = x/(1 + x). The choice h(x) = x/(1 + x) yields what

the author calls Barker proposal distributions because of the connection with
Barker (1965)’s acceptance-probability choice:

π̂(k′ | Dn)
/
π̂(k | Dn)

1 + π̂(k′ | Dn)
/
π̂(k | Dn)

=
π̂(k′ | Dn)

π̂(k′ | Dn) + π̂(k | Dn)
.

The empirical results of Zanella (2020) suggest that this latter choice is superior
because h is bounded, which stabilizes the normalizing constants c(k) and c(k′)
and thus the acceptance probabilities. Livingstone and Zanella (2019) reached
the same conclusion using locally-balanced proposal distributions for continu-
ous random variables. In our numerical analyses, both choices lead to similar
performances. In practice, a user will choose one; we thus recommend setting
h(x) = x/(1 + x).

2.2. Specification of the parameter proposal distributions

In this section, we discuss the specification of the functions qk �→k′ and Dk �→k′

that are used when k′ �= k, i.e. during model-switch attempts. As mentioned,
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in Section 1.3, HMC is used during parameter-update attempts. The tuning of
HMC free parameters is discussed in Section 2.3.

Green (2003) proposed to set qk �→k′ and Dk �→k′ as if the parameters of both
Model k and Model k′ were normally distributed. More precisely, when dk′ > dk
(the other cases are similar), the author proposed to set

yk′ = μk′ + Lk′

(
L−1
k (xk − μk)

uk �→k′

)
, (5)

where μk′ and μk are vectors and Lk′ and Lk are matrices. If π( · | k,Dn) and
π( · | k′,Dn) are normal distributions with means μk and μk′ and covariance
matrices LkL

T
k and Lk′LT

k′ , then setting qk �→k′ to a (dk′ −dk)-dimensional stan-
dard normal yields yk′ ∼ π( · | k′,Dn). The function yielding yk′ in (5) defines
Dk �→k′ . Note that in this case uk′ �→k is non-existent. Note also that in the fol-
lowing, we will write ϕ( · ;μ,Σ) to denote both the distribution and PDF of a
normal with mean μ and covariance matrix Σ.

The rationale behind the approach of Green (2003) is to propose yk′ around
a suitable location with a suitable covariance structure using a normal distribu-
tion. This approach is asymptotically valid in some cases, by virtue of Bernstein-
von Mises theorems (see, e.g., Theorem 10.1 in Van der Vaart (2000) and Kleijn
and Van der Vaart (2012)), meaning that for regular models, Xk | k,Dn is
asymptotically normally distributed as n −→ ∞, for all k, when K and dk are
fixed and do not depend on n. In fact, π( · | k,Dn) concentrates around x̂k,
with x̂k −→ x∗

k, at a rate of 1/
√
n with a shape that resembles a normal for

large enough n (see Section 2.1 for the definition of x̂k). When Model k is well
specified, x∗

k is the true parameter value and the covariance matrix is I−1
k , the

latter denoting the inverse information matrix based on the whole data set,
evaluated at x∗

k. We make the dependence on x∗
k implicit to simplify; the in-

verse information matrix will always be evaluated at x∗
k in the following. The

information matrix Ik is equivalent to n times the information of one data point
in the independent and identically distributed (IID) setting. In the misspecified
case, x∗

k is the best possible value under Model k and the covariance matrix is
slightly different than I−1

k (see Kleijn and Van der Vaart (2012) for the details).
The approach to specify qk �→k′ and Dk �→k′ proposed here is a simpler version

of that of Green (2003), but one that is based on the same idea: set

yk′ = uk �→k′ ,

with qk �→k′ = ϕ( · ; x̂k′ , Î−1
k′ ), for any reachable Model k′, regardless of k (see

Section 2.1 for the definition of Îk′). Consequently, uk′ �→k = xk and Dk �→k′(xk,
uk �→k′) = (uk �→k′ ,xk) = (yk′ ,uk′ �→k), implying that qk′ �→k = ϕ( · ; x̂k, Î−1

k )
and |JDk �→k′ (xk,uk �→k′)| = 1. Thus, if Model k′ is a well-specified and regular
model, yk′ is asymptotically generated from the correct conditional distribu-
tion, i.e. qk �→k′ and π( · | k′,Dn) are asymptotically equal, because π( · | k′,Dn)
is asymptotically equal to ϕ( · ; x̂k′ , I−1

k′ ) (Bernstein-von Mises theorem) and

Îk′/n − Ik′/n −→ 0 in probability, where we say that a matrix converges in
probability whenever all entries converge in probability.
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It may be the case that qk �→k′ and π( · | k′,Dn) are not asymptotically equal
because Model k′ may be misspecified, implying that the limiting covariance of
π( · | k′,Dn) is not I−1

k′ . The difference between I−1
k and the correct limiting

covariance depends on how close Model k′ is to the true model, in a Kullback-
Leibler divergence sense. In general, the true model is unknown; therefore we
cannot obtain an analytical expression of the correct limiting covariance. The
recommended methodology thus represents in some cases an approximated ver-
sion of the asymptotically exact one, but it is a methodology that can be easily
applied and, fortunately, the resulting algorithms are expected to propose rarely
models that are far from the true model because of the design of g, as long as
a subset of K are suitable approximations to the true model. In fact when the
latter is true, the resulting algorithms are expected to behave similarly to the
asymptotically exact ones. This discussion is made more precise in Section 3.
In our numerical example, the resulting algorithms are sufficiently close to the
asymptotically exact ones and n is sufficiently large so as to yield efficient sam-
plers. Note that the covariance matrices can be estimated otherwise to obtain a
generic asymptotically exact methodology; for instance, they can be estimated
using pilot MCMC runs. This has for disadvantage of being computationally
expensive and challenging.

We finish this section by noting that the approach of Green (2003) is also an
approximated version of the asymptotically exact one when μk = x̂k and Lk is
such that LkL

T
k = Î−1

k for all k. We also note that a RJ user employing the
approach of Green (2003) or that described above, already computes what is
required to design g(k, · ) as in Section 2.1. This user can therefore implement
the proposed methodology without much additional effort.

2.3. Resulting RJ

We now present in Algorithm 2 a special case of Algorithm 1 with inputs spec-
ified as in Sections 2.1 and 2.2.

Algorithm 2 Proposed RJ

1. Sample k′ ∼ g(k, · ) with g(k, k′) ∝ h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
for all k′ ∈ N(k).

2.(a) If k′ = k, attempt a parameter update using a MCMC kernel of invariant distribution
π( · | k,Dn) while keeping the value of the model indicator k fixed.

2.(b) If k′ �= k, sample yk′ ∼ ϕ( · ; x̂k′ , Î−1
k′ ) and u ∼ U [0, 1]. If

u ≤ αRJ((k,xk), (k
′,yk′ )) = 1 ∧

π(k′,yk′ | Dn) g(k′, k)ϕ(xk; x̂k, Î−1
k )

π(k,xk | Dn) g(k, k′)ϕ(yk′ ; ŷk′ , Î−1
k′ )

,

set the next state of the chain to (k′,yk′ ). Otherwise, set it to (k,xk).

3. Go to Step 1.

Recall that we recommend to set h to the identity function when N(k) = K
for all k and to a locally-balanced function, namely h(x) = x/(1+x), otherwise.

We recommend to apply HMC to update the parameters in Step 2.(a). HMC
generate paths which evolve according to Hamiltonian dynamics, thus exploiting
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the local structure of the target through gradient information; the endpoints of
these paths are used as proposals within a MH scheme. This proposal mechanism
allows the chain to take large steps while not ending up in areas with negligible
densities. HMC thus has the ability to decorrelate, which is an interesting feature
that is especially important in RJ given that the samplers may not spend a lot
of consecutive iterations updating the parameters.

There exist several variants of HMC, the most popular being the No-U-Turn
sampler (Hoffman and Gelman, 2014). The latter can be run automatically for
parameter estimation using the probabilistic programming langage Stan (see,
e.g., Carpenter et al. (2017)). To our knowledge, it is not possible to directly
use the Stan implementation within RJ to update the parameters, and given
that the No-U-Turn sampler is difficult to implement, we have chosen to employ
the “vanilla” version of HMC (see, e.g., Neal (2011)). The implementation of
this version for a given model requires the specification of three free parameters:
a step size, a trajectory length and a mass matrix. To tune these parameters
for a given model, we recommend to first run Stan with the option static HMC
(meaning that the vanilla HMC is employed), and to extract the step size and
marginal empirical standard deviations of all parameters. This step size results
from a tuning procedure and can thus directly be used. The mass matrix is set
to a diagonal matrix with diagonal elements being these standard deviations.
For the trajectory length, a grid search is applied and the best (found) value is
used. The merit of each trajectory length is evaluated through the minimum of
marginal effective sample sizes. Note that in this trans-dimensional framework,
the momentum variables need in theory to be considered with care. Theoreti-
cally, we may consider that a momentum refreshment is performed every odd
iteration, and that the algorithm proceeds as in Algorithm 2 every even itera-
tion. Also, we need (in theory) to add or withdraw momentum variables when
switching models. In practice, we do not have to proceed in this way. Given
that momentum variables are only required when updating the parameters and
that the expectations that one wants to approximate typically do not depend on
these variables, we may generate them only when it is known that a parameter
update is proposed (i.e. k′ = k).

Some authors (for instance, Green (2003)) mentioned that using informed
RJ samplers like Algorithm 2 may be problematic when it is required to gather
information for each model before running the algorithms, because this is infea-
sible for large (or infinite) model spaces. The information that is required for
an iteration of Algorithm 2 is in fact x̂k′ and Îk′ for all k′ ∈ N(k), and possibly
free parameters for an HMC step in Step 2.(a). The required information can
thus be gathered on the fly as the chains reach new models; it is unnecessary to
gather all of it beforehand. The maximizers x̂k′ , matrices Îk′ and free param-
eters should be stored and reused next time they are needed. We only need to
make sure that these are independent of the chain paths to have a valid proce-
dure. For maximizers, any general-purpose optimization tool can be employed,
but a starting point, if needed, should consequently not depend on the chain
path to make sure there is no interference; the same recommendation follows
for the computation of Îk and tuning of HMC free parameters.



Informed reversible jump algorithms 3963

This strategy makes the implementation of informed RJ samplers possible,
even if the model space is large or infinite, provided that the posterior model
PMF concentrates on a reasonable number of models (in the sense that the num-
ber of different models visited during algorithm runs is on average reasonable).
When the PMF concentrates on few models, this implementation strategy is
expected to be highly effective as the information required for model switches
and parameter updates will in practice be gathered for these few models and
their neighbours only (if the algorithm is well initialized).

2.4. Methods to use when the approximations are not accurate

For finite n, the shapes of the posterior parameter densities under Model k and
Model k′ involved during a model-switch attempt may be quite different from
bell curves. When this is the case, using normal approximations to the distribu-
tions, i.e. qk �→k′ = ϕ( · ; x̂k′ , Î−1

k′ ) and qk′ �→k = ϕ( · ; x̂k, Î−1
k ), may lead to high

rejection rates. The method of Karagiannis and Andrieu (2013) allows to build

upon these approximations by generating a sequence (x
(0)
k ,y

(0)
k′ ), . . . , (x

(T−1)
k ,

y
(T−1)
k′ ) using inhomogeneous Markov kernels K

(t)
k �→k′ , with y

(T−1)
k′ being the

proposal for the parameters of Model k′. More precisely, the starting point

(x
(0)
k ,y

(0)
k′ ) is such that x

(0)
k = xk and y

(0)
k′ ∼ ϕ( · ; x̂k′ , Î−1

k′ ), and the following

(x
(t)
k ,y

(t)
k′ ) are sampled from K

(t)
k �→k′((x

(t−1)
k ,y

(t−1)
k′ ), · ), K(t)

k �→k′ being, for each t,
reversible with respect to an annealing intermediate distribution given by

ρ
(t)
k �→k′(x

(t)
k ,y

(t)
k′ ) ∝

[
π(k,x

(t)
k | Dn)ϕ(y

(t)
k′ ; x̂k′ , Î−1

k′ )
]1−γt

×
[
π(k′,y

(t)
k′ | Dn)ϕ(x

(t)
k ; x̂k, Î−1

k )
]γt

. (6)

The free parameter T is a positive integer, γ0 = 0, γT = 1 and γt = t/T for each
t ∈ {1, . . . , T − 1}.

We notice that when switching from Model k to Model k′, we start with

distributions ρ
(t)
k �→k′ close to π(k, · | Dn)⊗ ϕ( · ; x̂k′ , Î−1

k′ ) to finish, after a tran-

sition phase, with distributions close to ϕ( · ; x̂k, Î−1
k ) ⊗ π(k′, · | Dn). Under

some regularity conditions, choosing T large enough allows a smooth transition
and makes that the last steps of the sequence, with t ≥ t∗, are similar to steps of
a time-homogeneous Markov chain with ϕ( · ; x̂k, Î−1

k ) ⊗ π(k′, · | Dn) as a sta-

tionary distribution (because t/T ≥ t∗/T ≈ 1), ensuring that (x
(T−1)
k ,y

(T−1)
k′ )

is approximately distributed as ϕ( · ; x̂k, Î−1
k ) ⊗ π(k′, · | Dn). A proof can be

found in Gagnon and Doucet (2021). Also, the acceptance probability in the
resulting RJ, given by

αRJ2((k,x
(0)
k ), (k′,y

(T−1)
k′ )) := 1 ∧ g(k′, k)

g(k, k′)
rRJ2((k,x

(0)
k ), (k′,y

(T−1)
k′ )) (7)

with

rRJ2((k,x
(0)
k ), (k′,y

(T−1)
k′ )) :=

T−1∏
t=0

ρ
(t+1)
k �→k′(x

(t)
k ,y

(t)
k′ )

ρ
(t)
k �→k′(x

(t)
k ,y

(t)
k′ )

, (8)
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is such that rRJ2((k,x
(0)
k ), (k′,y

(T−1)
k′ )) is a consistent estimator of π(k′ | Dn)/

π(k | Dn) as T −→ ∞. This shows that the resulting RJ behave asymptotically
like the ones in which the parameter proposals are sampled from the correct
conditional distributions π( · | k′,Dn), for fixed n.

Given that rRJ2((k,x
(0)
k ), (k′,y

(T−1)
k′ )) can be seen as an estimator of π(k′ |

Dn)/π(k | Dn), Andrieu et al. (2018) proposed to exploit this through a scheme
allowing to generate in parallel N estimates to average them to reduce the
variance. With T fixed, increasing N thus gets the resulting RJ closer to the
ones in which the parameter proposals are sampled from the correct conditional
distributions π( · | k′,Dn). In Appendix A, it is shown that the methods of
Karagiannis and Andrieu (2013) and Andrieu et al. (2018) with their estimators
of ratios of posterior probabilities can be used to enhance the approximations
π̂(k′ | Dn)/π̂(k | Dn) in g(k, · ).

3. Asymptotic result and analysis

In Section 2.2, we described situations where using an informed but approxi-
mate design for qk �→k′ is expected to yield RJ that behave like asymptotically
exact ones, the latter being asymptotically equivalent to ideal RJ that sample
parameters yk′ during model switches from the correct conditional distributions
π( · | k′,Dn) and that use the unnormalized version of the model probabilities
π(k | Dn) to construct g. In Section 3.1, we make this discussion precise and
present a weak convergence result. We next provide in Section 3.2 an analysis
of the limiting RJ.

3.1. Asymptotic result

The weak convergence result presented in this section is about weak convergence
of Markov chains, but the convergence does not happen for almost all data sets
Dn. It rather occurs with a probability that becomes closer to 1 as n −→ ∞,
where the randomness comes from Dn. A first statement of this kind in MCMC
recently appeared in Schmon et al. (2021). It allows to exploit Berstein-von
Mises theorems which are about the convergence of posterior parameter distri-
butions towards normal distributions in total variation (TV), with a probability
that converges to 1 (thus not for almost all data sets Dn). In this section, the
randomness for all convergence in probability comes from Dn; the source of
randomness is thus omitted to simplify the statements.

The first condition for the weak convergence result to hold is about an explicit
independence between n and the state-space.

Assumption 1. The model space K and the parameter dimensions, i.e. dk for
all k ∈ K, do not change with n.

The second condition is that π̂(k | Dn) is an asymptotically exact estimator
of π(k | Dn), the latter admitting a limit π̄(k), for all k. In some cases, the
posterior model mass concentrates. For instance when a model, say Model k∗,
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is well specified and regular, π̄(k∗) = 1 (see, e.g., Johnson and Rossell (2012) in
linear regression).

Assumption 2. For each k ∈ K, the pair of random variables (π̂(k | Dn), π(k |
Dn)) is such that |π̂(k | Dn) − π(k | Dn)| and |π(k | Dn) − π̄(k)| converge in
probability towards 0 as n −→ ∞.

The last assumption is about the asymptotic equivalence in TV between
qk �→k′ that is used to generate uk �→k′ = yk′ and π( · | k′,Dn), for all k′. This
happens when a Bernstein-von Mises theorem holds for each Model k′ and
qk �→k′ = ϕ( · ; x̂k′ , Σ̂k′/n) with x̂k′ and Σ̂k′ being consistent estimator of x∗

k′

and Σk′ , respectively, where Σk′ is the limiting covariance matrix (if we divide
by n) of π( · | k′,Dn). When, for instance, Model k′ is well defined and regular

and data points are IID, Σ̂k′ = (Îk′/n)−1 and Σk′ is the inverse information
matrix of one data point.

Assumption 3. For each k′ ∈ K, there exist x̂k′ , x∗
k′ and Σk′ such that

x̂k′ −→ x∗
k′ and TV(π( · | k′,Dn), ϕ( · ; x̂k′ ,Σk′/n)) −→ 0, both in probability

(Bernstein-von Mises theorem). Also, qk �→k′ = ϕ( · ; x̂k′ , Σ̂k′/n) with Σ̂k′ −→
Σk′ in probability, implying that

TV(ϕ( · ; x̂k′ ,Σk′/n), qk �→k′) −→ 0 and TV(π( · | k′,Dn), qk �→k′) −→ 0,

in probability, for all k′ (thus regardless of k).

As mentioned in Section 2.2, the proposed methodology represents in some
cases an approximation to the asymptotically exact one, because for some prob-
able transitions from Model k to Model k′, TV(ϕ( · ; x̂k′ ,Σk′/n), qk �→k′) does not
converge to 0 if Model k′ is misspecified. In fact, the proposed methodology is
asymptotically exact only if all models are well specified, or at least, if some are
misspecified, then π̄ must assign a probability of 0 to them. Indeed, in the latter
case, considering that the chain is currently visiting Model k with π̄(k) > 0,

g(k, k′) ∝ h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
−→ 0,

for all misspecified models with k′ �= k, so that the proposal distributions qk �→k′

with TV(ϕ( · ; x̂k′ ,Σk′/n), qk �→k′) �−→ 0 will asymptotically never be used.
In practice, it is expected that all models are misspecified, but that some

well approximate the true model. We now briefly explain why the proposed
methodology is a good approximation to the asymptotically exact one in this
case and next present the weak convergence result. Denote by K∗ ⊂ K the
subset formed of the good models, and consider that for all k ∈ K∗ and for large
enough n, TV(ϕ( · ; x̂k′ ,Σk′/n), qk �→k′) is small (because Σ̂k′ = (Îk′/n)−1 and
Σk′ are similar), implying that TV(π( · | k′,Dn), qk �→k′) is small. Consider also
to simplify that all models are either good or poor approximations to the true
model, and that for all the poor models, i.e. with k′ /∈ K∗, g(k, k′) −→ 0 for
k ∈ K∗ (because π̂(k′ | Dn)/π̂(k | Dn) −→ 0). Therefore, for large enough n, if
the chain is currently visiting Model k ∈ K∗, then with probability close to 1, a
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model in K∗ is proposed, say Model k′, with

g(k, k′) ∝ h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
≈ h

(
π(k′ | Dn)

/
π(k | Dn)

)
,

and next, parameters yk′ = uk �→k′ ∼ qk �→k′ are proposed, with TV(π( · |
k′,Dn), qk �→k′) small. In this situation, the proposed RJ are well approximating
the asymptotically exact ones. We keep this situation in mind for the rest of
Section 3.

We now introduce notation that are required to present the weak conver-
gence result. Use {(K,XK)n(m) : m ∈ N} to denote a Markov chain simulated
by a RJ that targets π( · , · | Dn) and sets g(k, k′) ∝ h

(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
,

qk �→k′ = ϕ( · ; x̂k′ , Σ̂k′/n) and Dk �→k′(xk,uk �→k′) = (uk �→k′ ,xk) = (yk′ ,uk′ �→k),
for all k and k′ ∈ N(k). Use {(K,XK)ideal(m) : m ∈ N} to denote a Markov
chain simulated by an ideal RJ that targets π( · , · | Dn) as well, but in-
stead sets g(k, k′) ∝ h

(
π(k′ | Dn)

/
π(k | Dn)

)
and qk �→k′ = π( · | k′,Dn) with

Dk �→k′(xk,uk �→k′) = (uk �→k′ ,xk) = (yk′ ,uk′ �→k), for all k and k′ ∈ N(k).
Because the target distribution concentrates, we need to apply a transfor-

mation to the Markov chains to obtain a non-trivial limit. We apply a trans-
formation reflecting that even for large n, the samplers continue to explore the
parameter spaces, but at different scales given that the parameters are con-
tinuous variables. In contrast, if the posterior PMF π( · | Dn) concentrates
on say, one model, then fewer and fewer models are visited during an algo-
rithm run as more and more of them have negligible mass as n −→ ∞. The
transformation that is applied aims at reflecting this reality and thus obtaining
a limiting situation that represents an approximation to what one encounters
in practice. We more precisely standardize the parameter variable XK , but
leave the model indicator K as is, i.e. we define {(K,ZK)n(m) : m ∈ N}
and {(K,ZK)ideal(m) : m ∈ N} such that (K,ZK)n(m) = (K,

√
n(XK −

x̂K))n(m) and (K,ZK)ideal(m) = (K,
√
n(XK − x̂K))ideal(m), respectively, for

all m.
To be an admissible limit of {(K,ZK)n(m) : m ∈ N}, {(K,ZK)ideal(m) : m ∈

N} would need to be independent of n, but it is readily seen to be not the case.
For instance, the invariant conditional density of ZK given K is π( · /√n+ x̂k |
k,Dn)/

√
n, which is asymptotically equivalent to a normal with mean 0 and

covarianceΣk, but not equal to it for all n. We thus introduce a process for which
the transformation is independent of n and prove that {(K,ZK)n(m) : m ∈ N}
and {(K,ZK)ideal(m) : m ∈ N} weakly converge towards it, showing that they
all share a similar behaviour for large enough n.

Denote by {(K,XK)limit(m) : m ∈ N} this process. It is an RJ which tar-
gets a distribution such that XK | K ∼ ϕ( · ; x̂K ,ΣK/n) and K ∼ π̄. It sets
g(k, k′) ∝ h

(
π̄(k′)

/
π̄(k)

)
, qk �→k′ = ϕ( · ; x̂k′ ,Σk′/n), and Dk �→k′(xk,uk �→k′) =

(uk �→k′ ,xk) = (yk′ ,uk′ �→k), for all k with π̄(k) > 0 and k′ ∈ N(k). Because
the chains will be assumed to start in stationarity, there is no need to de-
fine the functions for k with π̄(k) = 0. Denote the standardized version of
{(K,XK)limit(m) : m ∈ N} by {(K,ZK)limit(m) : m ∈ N}, which is such that
(K,ZK)limit(m) = (K,

√
n(XK − x̂K))limit(m), for all m. We denote the weak
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convergence of, for instance, {(K,ZK)n(m) : m ∈ N} to {(K,ZK)limit(m) : m ∈
N} by {(K,ZK)n(m) : m ∈ N} =⇒ {(K,ZK)limit(m) : m ∈ N}.
Theorem 1 (Weak convergence). Under Assumptions 1 to 3, we have that
{(K,ZK)n(m) : m ∈ N} =⇒ {(K,ZK)limit(m) : m ∈ N} and {(K,ZK)ideal(m) :
m ∈ N} =⇒ {(K,ZK)limit(m) : m ∈ N}, both in probability as n −→ ∞,
provided that all chains start in stationarity.

Formally, in Theorem 1, it is considered that, for each sampler, the proposal
mechanism for parameter updates and model switches is the same. For instance,
in the implementable RJ (that simulate {(K,ZK)n(m) : m ∈ N}), a normal is
used to sample the parameter proposals in parameter-update attempts. This is
often not the case in practice; for instance in our numerical example, we use
HMC steps. To accommodate for such types of parameter-update mechanisms,
an additional, rather technical, assumption is required about the convergence
of the associated Markov kernels in some sense as n −→ ∞. We proceeded in
that way to simplify and for brevity.

3.2. Analysis of the limiting RJ

The stochastic process {(K,ZK)limit(m) : m ∈ N} can be used as a proxy to
{(K,ZK)n(m) : m ∈ N} in the large-sample regime. An analysis of it thus helps
understand how {(K,ZK)n(m) : m ∈ N}, and thus {(K,XK)n(m) : m ∈ N},
behave in this regime. The stationary distribution of {(K,ZK)limit(m) : m ∈ N}
is such that ZK | K ∼ ϕ( · ;0,ΣK) and K ∼ π̄.

A theoretical result that can be established in the situation where the pos-
terior model PMF concentrates on one model is the dominance of the limiting
RJ over any RJ targeting the same distribution and using the same functions,
except g(k, · ). This is true because the limiting RJ does not waste iterations
trying to propose to switch to models other than the best. This shows the rel-
evance of using informed RJ which automatically incorporate such features of
the target.

Let us denote by Plimit,1 and Plimit,2 the Markov kernels of the limiting RJ
setting g(k, k′) ∝ h

(
π̄(k′)

/
π̄(k)

)
and that of the other RJ with the only differ-

ence being in g, respectively. The result is a Peskun-Tierney ordering (Peskun,
1973; Tierney, 1998), meaning an order on the Markov kernels, implying an
order on the asymptotic variances. We use var(f, Plimit,i) to denote the asymp-
totic variance of the function f applied to the Markov chain of transition kernel
Plimit,i at equilibrium, i = 1, 2.

Proposition 1. Assume that there exists k∗ with π̄(k∗) = 1. Then, for any
zk∗ ∈ R

dk∗ and measurable set A,

Plimit,1((k
∗, zk∗), A \ {(k∗, zk∗)}) ≥ Plimit,2((k

∗, zk∗), A \ {(k∗, zk∗)}),

implying that for any square-integrable function f ,

var(f, Plimit,1) ≤ var(f, Plimit,2).
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Note that this result holds for globally-balanced proposal distributions as
well. What is required is that h(x) = 0 when x = 0 and h(x) > 0 when x > 0,
which holds when h is the identity function.

In the limiting RJ, the parameters are sampled from the correct conditional
distributions and therefore the transition probabilities for K are the same as a
MH sampler targeting π̄ using g(k, k′) ∝ h

(
π̄(k′)

/
π̄(k)

)
with acceptance prob-

abilities given by

1 ∧ π̄(k′) g(k′, k)

π̄(k) g(k, k′)
= 1 ∧ c(k)

c(k′)
. (9)

This implies that any analysis of MH samplers with h set to a locally-balanced
function (which is what we recommend in typical cases) applies to the limiting
RJ. For a thorough analysis of such samplers, we refer the reader to Zanella
(2020). Recall that c(k) and c(k′) are the normalizing constants of g(k, · ) and
g(k′, · ), respectively. As mentioned in Section 1.3, Zanella (2020) proved that
c(k)/c(k′) are close to 1 in some situations, suggesting that locally-balanced
samplers are efficient.

Note that in practice even when π( · | Dn) concentrates, we have that π(k |
Dn) > 0 for any finite n and any k, implying that before finding the best model
with a significantly larger probability, the chain may move around for a while.
For these transitions with acceptance probabilities close to αMH(k, k

′) in the
large-sample regime, the result of Zanella (2020), stating that αMH(k, k

′) −→ 1
as the ambient space becomes larger and larger, holds under some conditions;
this suggests again an efficiency in exploring the state-space and thus finding
the best model.

When h is the globally-balanced function, i.e. the identity function, and
N(k) = K for all k, then the limiting RJ proposes models and parameters
independently of the current state of the chain and these proposals are always
accepted. It thus corresponds to independent Monte Carlo sampling, which is
often seen as the gold standard in MCMC.

4. Application: Variable selection in wholly-robust linear regression

In this section, we apply the proposed RJ methodology to a variable-selection
problem in a wholly-robust linear regression. An overview of wholly-robust linear
regression is provided in Section 4.1 and then the computational results are
presented and analysed in Section 4.2.

4.1. Wholly-robust linear regression

A new technique emerged to gain robustness against outliers in parametric
modelling: replace the traditional distribution assumption (which is a normal
assumption in the problems previously studied) by a super-heavy-tailed dis-
tribution assumption (Desgagné, 2015; Desgagné and Gagnon, 2019; Gagnon,
Desgagné and Bédard, 2020a; Gagnon, Bédard and Desgagné, 2021). The ra-
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tionale is that this latter assumption is more adapted to the eventual presence
of outliers by giving higher probabilities to extreme values. A proof of effec-
tiveness of the approach resides in the following: the posterior distribution con-
verges towards that based on the non-outliers only (i.e. excluding the outliers)
as the outliers move further and further away from the bulk of the data. This
theoretical result corresponds to a property in Bayesian statistics called whole
robustness (Desgagné, 2015), and implies a conflict resolution (O’Hagan and
Pericchi, 2012). As explained in the papers cited above, the models with super-
heavy-tailed distributions have built-in robustness that resolve conflicts due to
contradictory sources of information in a sensitive way. It takes full consider-
ation of non-outliers and excludes observations that are undoubtedly outlying;
in between these two extremes, it balances and bounds the impact of possi-
ble outliers, reflecting that there is a uncertainty about whether or not these
observations really are outliers.

These features of wholly-robust models are appealing, but they come at price,
mainly a computational one. The super-heavy-tailed distribution used in the pa-
pers cited above cannot indeed be represented as a scale mixture of normal dis-
tributions, contrarily to the Student distribution which is commonly assumed in
Bayesian robust models. A scale mixture representation of the Student allows
a straightforward implementation of the Gibbs sampler in, for instance, lin-
ear regression, for parameter estimation and variable selection (Verdinelli and
Wasserman, 1991). A motivation for assuming a distribution with heavier tails
than the Student is that the latter only allows to reach partial robustness. In
linear regression, partial robustness translates into robust regression-coefficient
point estimates, but inflated posterior variances, which contaminates uncer-
tainty assessments and thus model selection (see Hayashi (2020) for a proof of
partial robustness in linear regression).

In Gagnon, Desgagné and Bédard (2020a), the convergence of the posterior
distribution is proved under the most general linear-regression framework, en-
compassing analysis of variance and covariance (ANOVA and ANCOVA), and
variable selection. In this section, we apply the RJ methodology presented in the
previous sections to sample from a joint posterior distribution of wholly-robust
linear regression models and their parameters. RJ is thus required for this task.
The data analysed are the same prostate-cancer data mentioned in Figure 1.

The models are thus linear regressions, but the errors follow a super-heavy-
tailed distribution. See Appendix B for all the details about the models and
inputs required for RJ implementation. The super-heavy-tailed distribution used
is called log-Pareto-tailed normal (LPTN). This distribution was introduced by
Desgagné (2015). Its density exactly matches that of the normal on the interval
[−τ, τ ], where P(−τ ≤ ϕ( · ; 0, 1) ≤ τ) = ρ. Outside of this area, the tails of this
continuous density behave as a log-Pareto: (1/|x|)(log |x|)−λ−1, hence its name.
The only free parameter of this distribution is ρ: the parameter λ is a function
of ρ and τ , the latter being itself a function of ρ. The linear regression with
a LPTN is thus expected to behave similarly to the traditional normal one in
the absence of outliers. Not only this is the case in the absence of outliers, but
the limiting robust-regression posterior distribution (as the distance between
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the outliers and the bulk of the data approaches infinity) is also similar to the
normal one, the latter being instead based on the non-outliers only.

This resemblance is useful in our informed RJ framework because, first, it
suggests that the proposed methodology is an approximation to the asymptot-
ically exact one if some linear regressions are good approximations to the true
model. Indeed, in the normal linear-regression framework, Assumptions 1 and
2 of Section 3.1 hold, and a Berstein-von Mises theorem holds for each model.
It is thus expected to be the case in the robust LPTN framework as well, yet it
is much more difficult to prove.

Second, the resemblance between the wholly-robust and normal regressions
provides us with an approximation to the observed information matrix. We
indeed set Îk in the robust LPTN framework to the observed information matrix
of the normal regression, but evaluated at the maximizer under the wholly-
robust model. The matrix Îk is thus basically the maximum a posteriori estimate
of the scale parameter in the robust model multiplied by the observed covariate
correlation matrix. The approximation is thus expected to be accurate when
there are no severe outliers among the covariate observations. One may instead
use a robust version of the correlation matrix (see Gagnon, Bédard and Desgagné
(2021) for such a robust alternative), but this is not investigated here for brevity.
Whether or not a robust version of the covariate matrix is used is expected
to have no impact on our comparison of the algorithms in the next section
because they all use qk �→k′ = ϕ( · ; x̂k′ , Î−1

k′ ) and the matrix Îk′ only appears in

qk �→k′ . Indeed, |Îk′ |−1/2 in π̂(k′ | Dn) (4) cancels with another term in the same
expression.

Finally, the resemblance between the wholly-robust and normal regressions
is useful to validate our RJ computer code. Indeed, the robust approach yields
an outlier-detection method and a “clean” data set without outliers can thus
be identified. Based on this data set, posterior coefficient estimates and model
probabilities of the normal models can be computed using their closed-form
expressions. These estimates and probabilities are expected to be similar to
those obtained under the robust models.

4.2. Results and analysis

The performance of the different algorithms are summarized in Table 1 and
Figure 2. The results for the uninformed RJ are based on 1,000 runs of 100,000
iterations, with burn-ins of 10,000. The uninformed RJ is in fact a “non-fully”
informed RJ corresponding to Algorithm 2 with the only difference that g(k, · ) =
U{N(k)} instead of locally- or globally-balanced proposal distributions such that
g(k, k′) ∝ h

(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
for all k′ ∈ N(k). It may thus be seen as

corresponding to the approach of Green (2003). For a fair comparison with this
RJ, the number of iterations for which the fully informed RJ, i.e. Algorithm 2,
is run is reduced to account for the additional complexity of using informed
distributions g(k, · ). The number of iterations has to be reduced to 85,000 to
reach the same runtime as the uninformed RJ; one run takes about one minute in
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Table 1

Performance of the uninformed and informed RJ in terms of model-switching acceptance
rate, model-visit rate and relative increase in TV with respect to Algorithm 2 with

h(x) =
√
x

Algorithms Acc. rate Visit rate Rel. increase in TV

Algorithm 2 w. h(x) =
√
x 66% 55% —

Algorithm 2 w. h(x) = x/(1 + x) 67% 53% 2%
Uninformed RJ 30% 27% 28%
Algorithm 2 w. h(x) = x 57% 46% 40%

R on a i9 computer.1 To measure performance, we display the model-switching
acceptance rates, model-visit rates and relative increases in TV with respect
to the best sampler, which is Algorithm 2 with h(x) =

√
x. The TVs are in

between approximated model distributions from RJ outputs and the posterior
model PMF2.

The model-switching acceptance rates are the acceptance rates, but com-
puted considering only the iterations in which model switches are proposed.
The visit rates are the average number of model switches in one run, reported
per iteration. For both these measures, we count the number of accepted model
switches, and this number is divided by either the number of proposed model
switches or total number of iterations. These rates are thus similar but they con-
vey different information: model-switching acceptance rates reflect the quality
of the proposal distributions used during model switches, while visit rates mea-
sure the propensity to propose a switch to another model (and accept it). They
together allow to understand why, for instance, Algorithm 2 with h(x) =

√
x is

(slightly) better than Algorithm 2 with h(x) = x/(1+x) in terms of TV. Indeed,
even if it has a (slightly) worse model-switch proposal scheme (model-switching
acceptance rates: 66% vs 67%), it proposes more often to switch models (visit
rates: 55% vs 53%), which has an impact on the TV.

This robust-variable-selection application shows that even in a moderate-size
example, in this case with 8 covariates and 256 models, the locally-balanced
proposal distributions lead to RJ that can outperform RJ proposing models
uniformly at random, at fixed computational budget. In contrast, the globally-
balanced proposal distribution does not yield an improvement that is significant
enough to compensate for the decrease in number of iterations. We observed that
even when the RJ with the function h(x) = x is run for the same number of
iterations as the uniformed one, the former only slightly outperforms the latter.

For the informed RJ to be effective, the approximations on which they rely
have to be accurate. Recall that their accuracy depends on the sample size
(at least in some scenarios regarding the approximations of π( · | k′,Dn) by
qk �→k′ , as explained in Section 3.1). In this example, n = 97. To understand

1We do not claim optimality of the computer code; we coded all algorithms in the same
fashion for a fair comparison.

2We used accurate MCMC approximations to the posterior model probabilities. We verified
that the TV goes to 0 for all algorithms as the number of iterations increases.
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if this is actually large for such a robust-linear-regression problem with 8 co-
variates, we can compare the model-switching acceptance rates of Algorithm 2
with those of the ideal RJ they approximate. Recall that ideal RJ set g(k, k′) ∝
h
(
π(k′ | Dn)

/
π(k | Dn)

)
and qk �→k′ = π( · | k′,Dn). It is possible to evaluate

their model-switching acceptance rates because these correspond to the accep-
tance rates of MH samplers targeting the PMF π( · | Dn) using g(k, k′) ∝
h
(
π(k′ | Dn)

/
π(k | Dn)

)
, computed considering only iterations in which k′ �= k

is proposed. When h(x) = x/(1 + x), the acceptance rate of the MH sampler
is 88%, which is sufficiently close to 1 to suggest that the asymptotic regime
presented in Zanella (2020) where the size of the discrete space increases and the
acceptance probabilities converge to 1 is nearly reached. To understand which
approximations explain the gap between Algorithm 2 with h(x) = x/(1+x) and
a model-switching acceptance rate of 67% and its ideal counterpart with a rate
of 88%, we can look at the model-switching acceptance rate of a RJ using meth-
ods to sample parameter proposals from a distribution closer to π( · | k′,Dn)
and next at that of a RJ additionally using a method making g(k, k′) closer to
being proportional to h

(
π(k′ | Dn)

/
π(k | Dn)

)
(recall the overview of the meth-

ods presented in Section 2.4). It is 84% for the first RJ (with T = N = 10), and
it increases to 87% for the second RJ. Using such methods simply make RJ too
computationally expensive to be competitive in this example. Recall that their
precision parameters can be increased to make the second RJ arbitrarily close
to the ideal one with a model-switching acceptance rate of 88%.

These results suggest that n is of moderate size, in the sense that the approx-
imations used in Algorithm 2 are good enough to yield an improvement, but it is
expected that the improvement would be even more marked if we had access to
more data points. Also, the results suggest that the approximations explaining
the most part of the gap between Algorithm 2 with h(x) = x/(1 + x) and a
model-switching acceptance rate of 67% and its ideal counterpart with a rate of
88% are the approximations of π( · | k′,Dn) by qk �→k′ . We investigated to see if
there are significant differences between the covariance matrices used in qk �→k′

and those of π( · | k′,Dn), and it is not the case. This means that the approxima-
tions of π( · | k′,Dn) by qk �→k′ are not as accurate as we would like because the
densities π( · | k′,Dn) are significantly different from bell curves. Our analysis
also allows to rule out an issue with using the same observed covariance matrix
as the normal regression in the robust LPTN framework. In fact, a robust-
linear-regression analysis reveals the presence of outliers, but only for models
with negligible posterior mass (both in the robust and non-robust frameworks).
We finally note that, for models with non-negligible posterior mass, there is no
gross violation of the assumptions underlying linear regression.

5. Discussion

In this paper, we proposed simple fully-informed RJ and described the situations
in which they are expected to be efficient: when the sample size is sufficiently
large, Assumptions 1–2 of Section 3.1 are verified, some models among those
considered well approximate the true data generating process and Bernstein-
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Fig 2. Number of visited models as a function of the iteration number in a typical run of the
uninformed RJ and Algorithm 2 with h(x) =

√
x

von Mises theorems hold for these models. Informed proposal distributions are
crucial when the model probabilities and parameter densities vary significantly
within neighbourhoods of states of the Markov chains. They are expected to vary
significantly in the large-sample regime in which the target concentrates. But we
noticed with our numerical example that they may vary greatly even when this
large-sample regime is not reached. The proposed RJ show major improvements
in this example as the chains spend less iterations at the same state, compared
with the RJ that naively proposes models uniformly at random and thus often
tries to reach low probability models, leading to higher rejection rates.

Yet, the proposed samplers are reversible which allows them to return to
recently visited models often. The next step in the line of research of trans-
dimensional samplers for non-nested model selection is to propose sampling
schemes which do not suffer from this diffusive behaviour, but instead induce
persistent movement in the model-indicator process. A first step in this direction
has recently been made by Gagnon and Maire (2020), but their approach cannot
be used in all contexts of non-nested model selection. It can nevertheless be
applied in any variable-selection problem. It is however expected to be efficient
when the posterior model mass is diffused over a large number of models with
different number of covariates, which is not the case in our numerical example.

Appendix A: Improving the approximations

In practice, the sample size may not be large enough for the approximations in
the proposal mechanisms to be accurate. In Sections A.1 and A.2, we present
the details of the methods reviewed in Section 2.4 that allow to improve upon
the normal-distribution approximations to π( · | k,Dn). These methods turn out
to be useful for improving upon the approximations forming the model proposal
distributions g(k, · ) as well; this is explained in detail in Section A.3.

A.1. RJ with the method of Karagiannis and Andrieu (2013)

In the definition of the annealing intermediate distributions ρ
(t)
k �→k′ in (6), it is

considered that Dk �→k′(xk,uk �→k′) = (uk �→k′ ,xk) = (yk′ ,uk′ �→k), implying that
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|JDk �→k′ (xk,uk �→k′)| = 1, and qk′ �→k = ϕ( · ; x̂k, Î−1
k ). For the general definition,

see Karagiannis and Andrieu (2013).
We now present in Algorithm 3 an informed RJ incorporating the method of

Karagiannis and Andrieu (2013). Recall that the acceptance probability in this
RJ is defined in (7). Note that Algorithm 3 corresponds to Algorithm 2 when
T = 1; no path is sampled in Step 2.(b).

Algorithm 3 RJ incorporating the method of Karagiannis and Andrieu (2013)

1. Sample k′ ∼ g(k, · ) with g(k, k′) ∝ h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
for all k′ ∈ N(k).

2.(a) If k′ = k, attempt a parameter update using a MCMC kernel of invariant distribution
π( · | k,Dn) while keeping the value of the model indicator k fixed.

2.(b) If k′ �= k, sample y
(0)
k′ ∼ ϕ( · ; x̂k′ , Î−1

k′ ) and u ∼ U [0, 1], and set

x
(0)
k := xk. Sample a path (x

(1)
k ,y

(1)
k′ ), . . . , (x

(T−1)
k ,y

(T−1)
k′ ), where (x

(t)
k ,y

(t)
k′ ) ∼

K
(t)
k �→k′ ((x

(t−1)
k ,y

(t−1)
k′ ), · ). If u ≤ αRJ2((k,x

(0)
k ), (k′,y(T−1)

k′ )) set the next state of

the chain to (k′,y(T−1)
k′ ). Otherwise, set it to (k,xk).

3. Go to Step 1.

Using the same proof technique as in Gagnon and Doucet (2021), it can
be proved that under regularity conditions a Markov chain simulated by Al-
gorithm 3 converges weakly to that of a RJ which is able to sample from
π( · | k,Dn) for all k with acceptance probabilities αMH but using g(k, k′) ∝
h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
, as T −→ ∞, for fixed n. Note that the weak conver-

gence in this case is not in probability because the target is considered non-
random (contrarily to the framework under which Theorem 1 is stated).

As T increases, it is expected that the acceptance probabilities increase
steadily towards αMH until convergence is reached. A RJ user thus has to find a
balance between a RJ close to be ideal and the computational cost associated to
this. As explained in Karagiannis and Andrieu (2013), the computational cost
scales linearly with T . In some situations, the improvement as a function of T
is very marked for T ≤ T0, effectively offsetting the computational cost. This is
not the case in our numerical example.

Karagiannis and Andrieu (2013) prove that under two conditions Algorithm 3
is valid, in the sense that the target distribution is an invariant distribution.
These conditions are the following.

Symmetry condition: For t = 1, . . . , T − 1 the pairs of transition kernels

K
(t)
k �→k′( · , · ) and K

(T−t)
k′ �→k ( · , · ) satisfy

K
(t)
k �→k′((xk,yk′), · ) = K

(T−t)
k′ �→k ((xk,yk′), · ) for any (xk,yk′). (10)

Reversibility condition: For t = 1, . . . , T − 1, and for any (xk,yk′) and
(x′

k,y
′
k′),

ρ
(t)
k �→k′(xk,yk′)K

(t)
k �→k′((xk,yk′), (x′

k,y
′
k′))

= ρ
(t)
k �→k′(x

′
k,y

′
k′)K

(t)
k �→k′((x

′
k,y

′
k′), (xk,yk′)). (11)
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As mentioned in Karagiannis and Andrieu (2013), (10) is verified if for all

t, K
(t)
k �→k′( · , · ) and K

(T−t)
k′ �→k ( · , · ) are MH kernels sharing the same proposal dis-

tributions. (11) is satisfied if K
(t)
k �→k′( · , · ) is a MH kernel targeting ρ

(t)
k �→k′ . We

recommend to use MALA (Metropolis-adjusted Langevin algorithm, Roberts
and Tweedie (1996)) proposal distributions whenever this is possible; see Kara-
giannis and Andrieu (2013) for other examples. If MALA proposal distributions
are used, a step size is required for each pair (k, k′) defining a transition from
Model k to Model k′. For any of these model switches, we recommend to set the
step size to 	/(dk + dk′)1/6, according to the findings in Roberts and Rosenthal
(1998), and to tune 	. To achieve the latter, do a line search with a fixed value
of T and choose 	 that maximizes the model-switching acceptance rate, so that
the resulting RJ is the closest to the ideal one.

A.2. RJ with additionally the method of Andrieu et al. (2018)

Denote the N estimates of π(k′ | Dn)/π(k | Dn) produced by the scheme of

Karagiannis and Andrieu (2013) by rRJ2((k,x
(0)
k ), (k′,y

(T−1,1)
k′ )), . . . , rRJ2((k,

x
(0)
k ), (k′,y

(T−1,N)
k′ )). Denote the average (with simplified notation) by

r̄(k, k′) :=
1

N

N∑
j=1

rRJ2((k,x
(0)
k ), (k′,y

(T−1,j)
k′ )).

We now present in Algorithm 4 the RJ additionally incorporating the method
of Andrieu et al. (2018).

No additional assumptions to those presented in Section A.1 are required to
guarantee that Algorithm 4 is valid. Andrieu et al. (2018) prove that increas-
ing N decreases monotonically the asymptotic variances of the Monte Carlo
estimates produced by RJ incorporating their approach.

It is expected that increasing N (as increasing T in the last section) leads to a
steady increase in the acceptance probabilities until convergence is reached. As
with Algorithm 3, there exists a balance between a RJ close to be ideal and the
computational cost associated to this. An advantage of the approach presented
in this section is that several operations can be executed in parallel, so that
the computational burden is alleviated. The computational cost (over that of
using the approach of Karagiannis and Andrieu (2013)) nevertheless depends
on N because computational overheads have to be taken into account. In our
numerical example, the improvement as a function of N is not significant enough
to offset the computational cost.

A.3. Improving the model proposal distribution

We have seen in Section A.2 that r̄(k, k′) and the ratios rRJ2 forming it are
estimators of π(k′ | Dn)/π(k | Dn). They can thus be used to enhance the
approximations to the posterior probability ratios in g(k, · ).
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Algorithm 4 RJ additionally incorporating the method of Andrieu et al. (2018)

1. Sample k′ ∼ g(k, · ) with g(k, k′) ∝ h
(
π̂(k′ | Dn)

/
π̂(k | Dn)

)
for all k′ ∈ N(k).

2.(a) If k′ = k, attempt a parameter update using a MCMC kernel of invariant distribution
π( · | k,Dn) while keeping the value of the model indicator k fixed.

2.(b) If k′ �= k, generate ua, uc ∼ U(0, 1). If uc ≤ 1/2 go to Step 2.(b-i), otherwise go to
Step 2.(b-ii).

2.(b-i) Sample N proposals y
(T−1,1)
k′ , . . . ,y

(T−1,N)
k′ as in Step 2.(b) of Algorithm 3. Sample

j∗ from a PMF such that P(J∗ = j) ∝ rRJ2((k,xk), (k
′,y(T−1,j)

k′ )). If

ua ≤ g(k′, k)

g(k, k′)
r̄(k, k′),

set the next state of the chain to (k′,y(T−1,j∗)
k′ ). Otherwise, set it to (k,xk).

2.(b-ii) Sample one forward path as in Step 2.(b) of Algorithm 3. Denote the endpoint by

y
(T−1,1)
k′ . From y

(T−1,1)
k′ , sample N − 1 reverse paths again as in Step 2.(b) of

Algorithm 3, yielding N − 1 proposals for the parameters of Model k. If

ua ≤ g(k′, k)

g(k, k′)
r̄(k′, k)−1,

set the next state of the chain to (k′,y(T−1,1)
k′ ). Otherwise, set it to (k,xk).

3. Go to Step 1.

If we want to enhance the PMF g(k, · ), we need to improve π̂(l | Dn)/π̂(k |
Dn) for all l ∈ N(k) as these are all involved in the construction of the PMF.
Also, once k′ has been sampled, we need to do the same for g(k′, · ) given that this
PMF comes into play in the computation of the acceptance probabilities (see,

e.g., Algorithm 4). We thus need parameter proposals y
(T−1,1)
l , . . . ,y

(T−1,N)
l for

all Models l ∈ N(k), and also for all models belonging to N(k′). The ratios rRJ2

are next computed.
There are several ways to combine these ratios with π̂(l | Dn)/π̂(k | Dn) and

π̂(s | Dn)/π̂(k
′ | Dn) to improve the estimation of π(l | Dn)/π(k | Dn) and

π(s | Dn)/π(k
′ | Dn). We define the improved version of the PMF g as follows

to reflect this flexibility:

gimp.(k, k
′,x

(0:T−1,•)
k �→• ,y

(0:T−1,•)
• ) := h

(
π̃(k′ | Dn)

π̃(k | Dn)

)/
cimp.(k), (12)

where

π̃(k′ | Dn)

π̃(k | Dn)
:= 


(
π̂(k′ | Dn)

π̂(k | Dn)
, rRJ2((k,x

(0)
k ), (k′,y

(T−1,1)
k′ )), . . . ,

rRJ2((k,x
(0)
k ), (k′,y

(T−1,N)
k′ ))

)
,

y
(0:T−1,•)
• is the vector containing y

(0,j)
l , . . . ,y

(T−1,j)
l for all j ∈ {1, . . . , N} and

l ∈ N(k), and cimp.
k is the normalizing constant. 
 is a function aiming at putting

together the information; its choice is discussed below. x
(0:T−1,•)
k �→• is the vector
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containing x
(0,j)
k �→l , . . . ,x

(T−1,j)
k �→l for all j ∈ {1, . . . , N} and l ∈ N(k). Here we

added the subscript k �→ l and superscript (t, j) to highlight that the sequence
generated using Step 2.(b) of Algorithm 3 depends on j (different sequences

are generated for different j), and also on l through ρ
(t)
k �→l (6). Note that π̃(l |

Dn)/π̃(k | Dn) is an estimator of π(l | Dn)/π(k | Dn) which is in fact a function

of x
(0,j)
k �→l , . . . ,x

(T−1,j)
k �→l and y

(0,j)
l , . . . ,y

(T−1,j)
l for all j ∈ {1, . . . , N} additionally

to k and l; we used this notation to simplify and make the connection with
π̂(l | Dn)/π̂(k | Dn).

Algorithm 5 includes the idea of improving π̂(l | Dn)/π̂(k | Dn) using ra-
tios rRJ2 in a valid way (as indicated by Proposition 2 below). This algorithm
is quite complicated, but once a code for Algorithm 4 has been written, we
can use the connections between Algorithm 5 and Algorithm 4 to facilitate
the coding of the former. Another drawback of Algorithm 5 is that it requires
to perform the computations for gimp.(k

′, · ) even when k′ = k. This is be-

cause gimp.(k, k
′,x

(0:T−1,•)
k �→• ,y

(0:T−1,•)
• ) is different from gimp.(k

′, k,y
(0:T−1,j∗)
k′ �→• ,

z
(0:T−1,j∗)
• , z

(0:T−1,•)
• ) (see Step 2.(i)), even when k′ = k. At least, most of

computations for the two main steps (Steps 2.(i) and 2.(ii)) can be performed
in parallel. Again, computational overheads have to be taken into account. In
our numerical example, the improvement is not significant enough to offset the
computational cost.

Proposition 2. Under the two assumptions presented in Section A.1, (10)–
(11), Algorithm 5 is valid.

It is natural to set π̃(l | Dn)/π̃(k | Dn) to 1 when l = k. This implies that
we in fact do not need to sample proposals for Model k in the first parts of
Steps 2.(i) and 2.(ii). Also, in the second parts of Steps 2.(i) and 2.(ii), it is
not required to sample proposals for s = k′ for the same reason. When k′ = k,
we actually perform a “vanilla” parameter-update step (an HMC step in our
numerical example). In this case, the MH ratio as to be multiplied by

gimp.(k
′, k,y

(0:T−1,j∗)
k′ �→• , z

(0:T−1,j∗)
• , z

(0:T−1,•)
• )

gimp.(k, k′,x
(0:T−1,•)
k �→• ,y

(0:T−1,•)
• )

or

gimp.(k
′, k,y

(0:T−1,1)
k′ �→• , z

(0:T−1,•)
• )

gimp.(k, k′,x
(0:T−1,1)
k �→• ,y

(0:T−1,1)
• ,y

(0:T−1,•)
•�→k )

,

depending if Step 2.(i) or Step 2.(ii) is used.

The function 
 in (12) specifies the way the information is combined. It may
be set for instance to the simple average:

π̃(l | Dn)

π̃(k | Dn)
=

1

N + 1

⎛⎝ π̂(l | Dn)

π̂(k | Dn)
+

N∑
j=1

rRJ2((k,x
(0)
k ), (l,y

(T−1,j)
l ))

⎞⎠ . (13)
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Algorithm 5 RJ additionally improving the model proposal distribution

1. Sample ua, uc ∼ U(0, 1). If uc ≤ 1/2 go to Step 2.(i), otherwise go to Step 2.(ii).

2.(i) Do:

(a) For all l ∈ N(k), sample proposals as in Step 2.(b-i) of Algorithm 4: from xk,

sample N proposals y
(T−1,1)
l , . . . ,y

(T−1,N)
l as in Step 2.(b) of Algorithm 3.

(b) Compute π̃(l | Dn)
/
π̃(k | Dn) for all l ∈ N(k) and gimp.(k, · ) as in (12).

(c) Sample k′ ∼ gimp.(k, · ) and j∗ from a PMF such that P(J∗ = j) ∝
rRJ2((k,x

(0)
k ), (k′,y(T−1,j)

k′ )), and compute r̄(k, k′).

(d) For all s ∈ N(k′) \ {k}, sample proposals as in Step 2.(b-ii) of Algorithm 4: from

y
(T−1,j∗)
k′ , sample one path as in Step 2.(b) of Algorithm 3. Denote the endpoint

by z
(0,j∗)
s . From z

(0,j∗)
s , sample N − 1 reverse paths again as in Step 2.(b) of

Algorithm 3, yielding N − 1 proposals for the parameters of Model k′ that we

denote by z
(T−1,j)
s �→k′ , j ∈ {1, . . . , N} \ {j∗}.

(e) Compute π̃(s | Dn)
/
π̃(k′ | Dn) for all s ∈ N(k′) \ {k}. Compute gimp.(k

′, · )
using these and (π̃(k′ | Dn)

/
π̃(k | Dn))−1 computed in (b).

(f) If

ua ≤
gimp.(k

′, k,y(0:T−1,j∗)
k′ �→• , z

(0:T−1,j∗)
• , z

(0:T−1,•)
• )

gimp.(k, k′,x
(0:T−1,•)
k �→• ,y

(0:T−1,•)
• )

r̄(k, k′),

set the next state of the chain to (k′,y(T−1,j∗)
k′ ). Otherwise, set it to (k,xk).

2.(ii) Do:

(a) For all l ∈ N(k), sample proposals as in Step 2.(b-ii) of Algorithm 4: from
xk, sample one path as in Step 2.(b) of Algorithm 3. Denote the endpoint by

y
(T−1,1)
l . From y

(T−1,1)
l , sample N − 1 reverse paths again as in Step 2.(b) of

Algorithm 3, yielding N − 1 proposals for the parameters of Model k that we

denote by y
(0,2)
l�→k , . . . ,y

(0,N)
l�→k .

(b) Compute π̃(l | Dn)
/
π̃(k | Dn) for all l ∈ N(k) and gimp.(k, · ) as in (12).

(c) Sample k′ ∼ gimp.(k, · ) and compute r̄(k′, k)−1.

(d) For all s ∈ N(k′) \ {k}, sample proposals as in Step 2.(b-i) of Algorithm 4: from

y
(T−1,1)
k′ , sample N proposals z

(0,1)
s , . . . , z

(0,N)
s as in Step 2.(b) of Algorithm 3.

(e) Compute π̃(s | Dn)
/
π̃(k′ | Dn) for all s ∈ N(k′) \ {k}. Compute gimp.(k

′, · )
using these and (π̃(k′ | Dn)

/
π̃(k | Dn))−1 computed in (b).

(f) If

ua ≤
gimp.(k

′, k,y(0:T−1,1)
k′ �→• , z

(0:T−1,•)
• )

gimp.(k, k′,x
(0:T−1,1)
k �→• ,y

(0:T−1,1)
• ,y

(0:T−1,•)
•�→k )

r̄(k′, k)−1,

set the next state of the chain to (k′,y(T−1,1)
k′ ). Otherwise, set it to (k,xk).

3. Go to Step 1.

One may alternatively take the average of π̂(l | Dn)/π̂(k | Dn) and r̄(k, l):

π̃(l | Dn)

π̃(k | Dn)
=

1

2

(
π̂(l | Dn)

π̂(k | Dn)
+ r̄(k, l)

)
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=
1

2

⎛⎝ π̂(l | Dn)

π̂(k | Dn)
+

1

N

N∑
j=1

rRJ2((k,x
(0)
k ), (l,y

(T−1,j)
l ))

⎞⎠ .

These reflect a choice of putting more or less weight on π̂(l | Dn)/π̂(k | Dn). We
know that if T and N are large enough then r̄(k, l) is close to π(l | Dn)/π(k |
Dn), which may not be the case for π̂(l | Dn)/π̂(k | Dn) when n is not suffi-
ciently large. The latter ratio may thus act as outlying/conflicting information
against which these averages above are not robust. A robust approach consists in

setting 
 to be the median of π̂(l | Dn)/π̂(k | Dn), rRJ2((k,x
(0)
k ), (l,y

(T−1,1)
l )),

. . . , rRJ2((k,x
(0)
k ), (l,y

(T−1,N)
l )). We recommend this approach and use it in our

numerical example.
Furthermore, as T,N −→ ∞, π̃(l | Dn)/π̃(k | Dn) is a consistent estimator

of π(l | Dn)/π(k | Dn) for fixed n when the median or (13) is used (recall
the properties of rRJ2 and r̄ mentioned in Sections A.1 and A.2). Therefore,
if the function h is such that h(x) = xh(1/x) for x > 0, then the acceptance
probabilities in Algorithm 5 converge towards 1 ∧ c(k)/c(k′), where c(k) and
c(k′) are the normalizing constants with

c(k) =
∑

l∈N(k)

h

(
π(l | Dn)

π(k | Dn)

)
.

In fact, the same technique as in the proof of Theorem 1 in Gagnon and Doucet
(2021) allows to prove that a Markov chain simulated by Algorithm 5 converges
weakly for fixed n to that of an ideal RJ which has access to the unnormalized
version of the posterior probabilities π(k | Dn) and is able to sample from the
conditional distributions π( · | k,Dn) (and for which the acceptance probabilities
are 1 ∧ c(k)/c(k′)), with its good mixing properties as discussed in Section 1.3.

Appendix B: Details of the variable-selection example

We review linear regression and introduce notation in Section B.1. We present in
Section B.2 all the details to compute estimates for the normal linear-regression
model. Some are useful for the computation of algorithm inputs, such as the
observed information matrix, and to verify the validity of our RJ code (as men-
tioned in Section 4.1). In Section B.3, we turn to the details of the robust linear
regressions and the computation of algorithm inputs.

B.1. Linear regression

We first introduce notation. We define γ1, . . . , γn ∈ R to be n data points from
the dependent variable, and γn := (γ1, . . . , γn)

T . We denote the full design
matrix containing n observations from all covariates by C ∈ R

n×p, where p is
a positive integer. For simplicity, we refer to the first column of C as the first
covariate even if, as usual, it is a column of 1’s. The design matrix associated
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with Model k whose columns form a subset of C is denoted by Ck, with lines
denoted by cTi,k. We use dk to denote the number of covariates in Model k; we
therefore slightly abuse notation given that the number of parameters for Model
k is dk + 1 (one regression coefficient per covariate plus the scale parameter of
the error term).

The linear regression is

γi = cTi,K βK + εi,K , i = 1, . . . , n, K ∈ K,

where K is the model indicator, βK is the random vector containing the regres-
sion coefficients of Model K and ε1,K , . . . , εn,K ∈ R are the random errors of
Model K. We assume that ε1,K , . . . , εn,K and βK are n+ 1 conditionally inde-
pendent random variables given (K,σK), with σK > 0 being the scale parameter
of the errors of Model K. The conditional density of εi,K is given by

εi,K | K,σK ,βK
d
= εi,K | K,σK

d∼ (1/σK)f(εi,K/σK), i = 1, . . . , n.

B.2. Normal linear regression

We present in this section a result giving the precise form of the joint posterior
density for the normal linear regression.

Proposition 3. If f = ϕ( · ; 0, 1) and π(βk, σk | k) ∝ 1/σk, then

π(k | γn) ∝ π(k)
Γ((n− dk)/2)π

dk/2

‖γn − γ̂k‖n−dk
2 |CT

kCk|1/2
, (14)

π(σk | k,γn) =
21−

n−dk
2 ‖γn − γ̂k‖n−dk

2

Γ((n− dk)/2)σ
n−dk+1
k

exp

{
− 1

2σ2
k

‖γn − γ̂k‖22
}
,

and
βK | K,σK ,γn ∼ ϕ( · ; β̂k, σ

2
K(CT

KCK)−1),

where γ̂k := Ck(C
T
kCk)

−1CT
k γn, β̂k := (CT

KCK)−1CT
Kγn, and ‖ · ‖2 is the

Euclidian norm. Note that the normalization constant of π(k | γn) is the sum
over k of the expression on the right-hand side (RHS) in (14).

Note that σ2
K | K,γn has an inverse-gamma distribution with shape and scale

parameters given by (n−dk)/2 and ‖γn− γ̂k‖22/2, respectively. We work on the
log-scale for the scale parameters so that all the parameters take values on the
real line, and presumably, have densities that are closer to the bell curve. We
thus define ηk := log σk. The associated conditional distribution is given by

π(ηk | k,γn) :=
21−

n−dk
2 ‖γn − γ̂k‖n−dk

2

Γ((n− dk)/2) e(n−dk)ηk
exp

{
− 1

2e2ηk
‖γn − γ̂k‖22

}
.

The other terms in the joint posterior do not change except that we now consider
that βK | K, ηK ,γn ∼ ϕ( · ; β̂k, exp(2ηK)(CT

KCK)−1).
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The maximizers of the conditional posterior densities given that K = k are:

x̂k = (β̂k, η̂k),

where

η̂k := log

√
1

n
‖γn − γ̂k‖22.

The observed information matrix evaluated at the maximizers is thus given by

Îk =

(
CT

kCk/e
2η̂k 0

0 2n

)
.

Then,

Î−1
k =

(
e2η̂k(CT

kCk)
−1 0

0 (2n)−1

)
. (15)

Relying on improper priors such as π(βk, σk | k) ∝ 1/σk may lead to incon-
sistencies in model selection (see, e.g., Casella et al. (2009)). When this problem
happens, the phenomenon is referred to as the Jeffreys-Lindley paradox (Lindley
(1957) and Jeffreys (1967)) in the literature. It can be shown that the Jeffreys-
Lindley paradox does not arise under the framework of normal linear regression
described above when the prior distribution on K is carefully chosen, and more
precisely, set to

π(k) ∝ |CT
kCk|1/2/ndk/2.

See Gagnon, Bédard and Desgagné (2021) for an analogous proof in a framework
of principal component regression.

When the covariates are orthonormal, |CT
kCk|1/2 = |nIdk

|1/2 = ndk/2 (if all
covariate observations are standardized using a standard deviation in which the
divisor is n). In this case, π(k) ∝ |CT

kCk|1/2/ndk/2 = 1. The proposed prior
on K can thus be seen as a relative adjustment of the volume spanned by the
columns of CT

KCK .

B.3. Robust linear regression

In this section, we consider that the density f is a LPTN with parameter ρ ∈
(2Φ(1)− 1, 1) ≈ (0.6827, 1), i.e.

f(x) =

{
ϕ(x; 0, 1) if |x| ≤ τ,

ϕ(τ ; 0, 1) τ
|x|

(
log τ
log |x|

)λ+1

if |x| > τ,
(16)

where x ∈ R and Φ( · ) is the cumulative distribution function (CDF) of a
standard normal. The terms τ > 1 and λ > 0 are functions of ρ and satisfy

τ = {τ : P(−τ ≤ Z ≤ τ) = ρ for Z ∼ ϕ( · ; 0, 1)},
λ = 2(1− ρ)−1ϕ(τ ; 0, 1) τ log(τ).
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Setting ρ to 0.95 has proved to be suitable for practical purposes (see Gagnon,
Desgagné and Bédard (2020a)). Accordingly, this is the value that is used in our
numerical example.

Using the same prior as the normal regression, the joint posterior density is:

π(k,βk, σk | γn) ∝
|CT

kCk|1/2
ndk/2

1

σk

n∏
i=1

1

σk
f

(
γi − cTi,kβk

σk

)
.

With the change of variable ηk = log σk, we have

π(k,βk, ηk | γn) ∝
|CT

kCk|1/2
ndk/2

1

eηkn

n∏
i=1

f

(
γi − cTi,kβk

eηk

)
.

Recall that for the robust models we set Î−1
k as in (15) but use the maxi-

mizer η̂k of the function above. We need log conditionals and their gradients for
optimizers and HMC:

log π(βk, ηk | k,γn) ∝ −nηk +

n∑
i=1

log f

(
γi − cTi,kβk

eηk

)
,

where the proportional sign has to be understood in the original scale, and

∂

∂βk

log π(βk, ηk | k,γn) =

n∑
i=1

e−2ηk(γi − cTi,kβk)ci,k1
(
(γi − cTi,kβk)/e

ηk ≤ τ
)

+

⎡⎣ sgn(γi − cTi,kβk)ci,k

|γi − cTi,kβk|
+ (λ+ 1)

sgn(γi − cTi,kβk)ci,k

|γi − cTi,kβk| log
(
(γi − cTi,kβk)/e

ηk

)
⎤⎦

× 1
(
(γi − cTi,kβk)/e

ηk > τ
)
,

and

∂

∂ηk
log π(βk, ηk | k,γn)

= −n+

n∑
i=1

e−2ηk(γi − cTi,kβk)
21

(
(γi − cTi,kβk)/e

ηk ≤ τ
)

+

⎡⎣1 + (λ+ 1)
1

log
(
(γi − cTi,kβk)/e

ηk

)
⎤⎦1

(
(γi − cTi,kβk)/e

ηk > τ
)
,

sgn( · ) being the sign function.
To use the annealing distributions in Algorithms 3, 4 and 5, we work with

the log densities; therefore we simply multiply log π( · | k,γn) by 1 − t/T and

log π( · | k′,γn) by t/T to obtain log ρ
(t)
k �→k′ . To use MALA proposal distributions,

we however need to compute the gradient of log ρ
(t)
k �→k′ . We now compute the
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gradient with respect to x
(t)
k ; the gradient with respect to y

(t)
k′ is computed

similarly. The proportional sign “∝” is with respect to everything that are not
the parameters:

π(x
(t)
k | k,Dn)

1−t/T qk′ �→k(x
(t)
k )t/T

= [π(βk, ηk | k,γn)]
1−t/T

×
[

|CT
kCk|1/2

(2π)dk/2edkη̂k
exp

(
− 1

2e2η̂k
(βk − β̂k)

T (CT
kCk)(βk − β̂k)

)]t/T

×
[

1√
2π(1/(2n))

exp

(
− 1

2(1/(2n))
(ηk − η̂k)

2

)]t/T

∝ [π(βk, ηk | k,γn)]
1−t/T

× 1

edk(t/T )η̂k
exp

(
− (t/T )

2e2η̂k
(βk − β̂k)

T (CT
kCk)(βk − β̂k)

)
× exp

(
−n(t/T )(ηk − η̂k)

2
)
,

where we omitted the superscript “(t)” for the variables to simplify. Therefore,

∂

∂βk

log π(x
(t)
k | k,Dn)

1−t/T qk′ �→k(x
(t)
k )t/T

= (1− t/T )
∂

∂βk

log π(βk, ηk | k,γn)− (t/T )e−2η̂k(CT
kCk)(βk − β̂k),

and

∂

∂ηk
log π(x

(t)
k | k,Dn)

1−t/T qk′ �→k(x
(t)
k )t/T

= (1− t/T )
∂

∂ηk
log π(βk, ηk | k,γn)− 2n(t/T )(ηk − η̂k).

Appendix C: Proofs

We present the proofs of Theorem 1, Proposition 1, Proposition 2 and Proposi-
tion 3 in that order.

Proof of Theorem 1. We here only prove that {(K,ZK)n(m) : m ∈ N} =⇒
{(K,ZK)limit(m) : m ∈ N} in probability as the proof of {(K,ZK)ideal(m) :
m ∈ N} =⇒ {(K,ZK)limit(m) : m ∈ N} is similar. To prove this result, we use
Theorem 2 of Schmon et al. (2021). We thus have to verify the following three
conditions.

1. (K,ZK)n(0) =⇒ (K,ZK)limit(0) in probability as n −→ ∞.
2. Use Pn and Plimit to denote the transition kernels of {(K,ZK)n(m) : m ∈

N} and {(K,ZK)limit(m) : m ∈ N}, respectively. These are such that∑
k

∫
|Pnφ(k, zk)− Plimitφ(k, zk)| πK,ZK

(k, zk | Dn) dzk −→ 0, (17)
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in probability as n −→ ∞ for all φ ∈ BL, where πK,ZK
( · , · | Dn) denotes

the stationary distribution/density of {(K,ZK)n(m) : m ∈ N} and BL
denotes the set of bounded Lipschitz functions.

3. The transition kernel Plimit is such that Plimitφ is continuous for any φ ∈ Cb
(the set of continuous bounded functions).

We start with Step 1. Given that K is finite (Assumption 1), it suffices to
verify that

|π(k | Dn)P(Zk,n ∈ A)− π̄(k)P(Zk,limit ∈ A)| −→ 0 in probability,

for any k and measurable set A, where P(Zk,n ∈ A) and P(Zk,limit ∈ A) are com-
puted using the conditional distributions given that K = k. Using the triangle
inequality, we have that

|π(k | Dn)P(Zk,n ∈ A)− π̄(k)P(Zk,limit ∈ A)|
≤ |π(k | Dn)P(Zk,n ∈ A)− π̄(k)P(Zk,n ∈ A)|
+ |π̄(k)P(Zk,n ∈ A)− π̄(k)P(Zk,limit ∈ A)| .

We now show that both absolute values converge towards 0 in probability which
will allow to conclude by Slutsky’s theorem and monotonicity of probabilities.
We first have that

|π(k | Dn)P(Zk,n ∈ A)− π̄(k)P(Zk,n ∈ A)| ≤ |π(k | Dn)− π̄(k)| −→ 0,

in probability by Assumption 2 and the fact that P(Zk,n ∈ A) ≤ 1. Using now
that π̄(k) ≤ 1, we have that

|π̄(k)P(Zk,n ∈ A)− π̄(k)P(Zk,limit ∈ A)|
≤ |P(Zk,n ∈ A)− P(Zk,limit ∈ A)|
= |P(Xk,n ∈ An)− P(Xk,limit ∈ An)|

≤
∫

|π(xk | k,Dn)− ϕ(xk; x̂k,Σk/n)| dxk −→ 0,

in probability, by Jensen’s inequality and Assumption 3, where An is the set
A after applying the inverse transformation to retrieve the original random
variables. Note that in the last inequality, we also used that An ⊂ R

dk .
We continue with Step 2 and prove (17). We have that

Plimit((k, zk), (k
′, dyk′)) = glimit(k, k

′)αlimit(k, k
′)ϕ(dyk′ ;0,Σk′)

+ δ(k,zk)(k
′, dyk′)

∑
l∈N(k)

glimit(k, l) (1− αlimit(k, l)),

where

glimit(k, k
′) :=

h
(

π̄(k′)
π̄(k)

)
∑

l∈N(k) h
(

π̄(l)
π̄(k)

) ,
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and

αlimit(k, k
′) := 1 ∧ π̄(k′) glimit(k

′, k)

π̄(k) glimit(k, k′)
.

By definition,

Plimitφ(k, zk) =
∑

k′∈N(k)

∫
φ(k′,yk′)Plimit((k, zk), (k

′, dyk′))

=
∑

k′∈N(k)

∫
φ(k′,yk′) glimit(k, k

′)αlimit(k, k
′)ϕ(yk′ ;0,Σk′) dyk′

+ φ(k, zk)
∑

l∈N(k)

glimit(k, l) (1− αlimit(k, l)).

Plimitφ is thus continuous for any φ ∈ Cb so Condition 3 above is satisfied.
We also have that

Pn((k, zk), (k
′, dyk′)) = g(k, k′)ϕ(dyk′ ;0, Σ̂k′)α((k, zk), (k

′,yk′))

+ δ(k,zk)(k
′, dyk′)

×
∑

l∈N(k)

∫
(1− α((k, zk), (l,uk �→k′))) g(k, l)ϕ(uk �→k′ ;0, Σ̂k′) duk �→k′ ,

where in this case

α((k, zk), (k
′,yk′)) = 1 ∧ πK,ZK

(k′,yk′ | Dn) g(k
′, k)ϕ(zk;0, Σ̂k)

πK,ZK
(k, zk | Dn) g(k, k′)ϕ(yk′ ;0, Σ̂k′)

.

Therefore,

Pnφ(k, zk) =
∑
k′

∫
φ(k′,yk′)Pn((k, zk), (k

′, dyk′))

=
∑

k′∈N(k)

∫
φ(k′,yk′) g(k, k′)ϕ(yk′ ;0, Σ̂k′)α((k, zk), (k

′,yk′)) dyk′

+ φ(k, zk)
∑

l∈N(k)

∫
(1− α((k, zk), (l,uk �→k′))) g(k, l)ϕ(uk �→k′ ;0, Σ̂k′) duk �→k′ .

Consequently,∑
k

∫
|Pnφ(k, zk)− Plimitφ(k, zk)| πK,ZK

(k, zk | Dn) dzk

≤
∑
k

∫ ∣∣∣∣∣∣
∑

k′∈N(k)

∫ (
φ(k′,yk′) g(k, k′)ϕ(yk′ ;0, Σ̂k′)α((k, zk), (k

′,yk′))

−φ(k′,yk′) glimit(k, k
′)αlimit(k, k

′)ϕ(yk′ ;0,Σk′)) dyk′ |πK,ZK
(k, zk | Dn) dzk
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+
∑
k

∫
πK,ZK

(k, zk | Dn)

×

∣∣∣∣∣∣φ(k, zk)
∑

l∈N(k)

∫
(1− α((k, zk), (l,uk �→k′))) g(k, l)ϕ(uk �→k′ ;0, Σ̂k′) duk �→k′

−φ(k, zk)
∑

l∈N(k)

glimit(k, l) (1− αlimit(k, l))

∣∣∣∣∣∣ dzk, (18)

using the triangle inequality.
We now show that first term on the RHS in (18) converges towards 0 in

probability. The second term converges towards 0 in probability following sim-
ilar arguments. We will thus be able to conclude by Slutsky’s theorem and
monotonicity of probabilities.

Firstly,

∑
k

∫ ∣∣∣∣∣∣
∑

k′∈N(k)

∫ (
φ(k′,yk′) g(k, k′)ϕ(yk′ ;0, Σ̂k′,n)α((k, zk), (k

′,yk′))

−φ(k′,yk′) glimit(k, k
′)αlimit(k, k

′)ϕ(yk′ ;0,Σk′)) dyk′ |πK,ZK
(k, zk | Dn) dzk

≤ M
∑
k

∑
k′∈N(k)

∫ ∣∣∣g(k, k′)ϕ(yk′ ;0, Σ̂k′,n)α((k, zk), (k
′,yk′))

−glimit(k, k
′)αlimit(k, k

′)ϕ(yk′ ;0,Σk′)|πK,ZK
(k, zk | Dn) dyk′ dzk,

because we can assume that |φ| ≤ M with M a positive constant and using
Jensen’s inequality. Because the sums are on a finite number of terms, it suffices
to prove that the integral converges to 0, for any k, k′. Note that we have not
properly defined glimit(k, k

′) when π̄(k) = 0. For the proof, we can consider that
these glimit(k, k

′) with π̄(k) = 0 have any definition, because we can use that∫ ∣∣∣g(k, k′)ϕ(yk′ ;0, Σ̂k′)α((k, zk), (k
′,yk′))

−glimit(k, k
′)αlimit(k, k

′)ϕ(yk′ ;0,Σk′)|πK,ZK
(k, zk | Dn) dyk′ dzk

≤
∫

ϕ(yk′ ;0, Σ̂k′)πK,ZK
(k, zk | Dn) dyk′ dzk

+

∫
ϕ(yk′ ;0,Σk′)πK,ZK

(k, zk | Dn) dyk′ dzk = 2π(k | Dn) −→ 0,

using the triangle inequality, that 0 ≤ g, α, glimit, αlimit ≤ 1, and that π(k |
Dn) −→ π̄(k) = 0.

We can thus restrict our attention to the case where π̄(k) > 0. Note that for
similar reasons, we can restrict our attention to the case where glimit(k, k

′) > 0
(implying that π̄(k′) > 0). Indeed, consider that π̄(k) > 0, then all terms in-
volved in g(k, k′), i.e. h(π̂(l | Dn)/π̂(k | Dn)) with l ∈ N(k), have a well-defined
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limit in probability given by h(π̄(l)/π̄(k)) by Slutsky’s and continuous mapping
theorems and Assumption 2. Given that g(k, k′) is a continuous function of a
finite number of random variables all converging towards a constant in proba-
bility, g(k, k′) −→ glimit(k, k

′) = 0 by Slutsky’s theorem, and glimit(k, k
′) = 0

when π̄(k′) = 0.
Using twice the triangle inequality,∫ ∣∣∣g(k, k′)ϕ(yk′ ;0, Σ̂k′)α((k, zk), (k

′,yk′))

−glimit(k, k
′)αlimit(k, k

′)ϕ(yk′ ;0,Σk′)|πK,ZK
(k, zk | Dn) dyk′ dzk

≤
∫

g(k, k′)ϕ(yk′ ;0, Σ̂k′)πK,ZK
(k, zk | Dn)

× |α((k, zk), (k′,yk′)− αlimit(k, k
′)| dyk′ dzk

+ |g(k, k′)− glimit(k, k
′)|αlimit(k, k

′)

×
∫

ϕ(yk′ ;0, Σ̂k′)πK,ZK
(k, zk | Dn) dyk′ dzk

+ glimit(k, k
′)αlimit(k, k

′)

×
∫

|ϕ(yk′ ;0, Σ̂k′)− ϕ(yk′ ;0,Σk′)|πK,ZK
(k, zk | Dn) dyk′ dzk. (19)

It is easily seen that the second term on the RHS converges to 0 given that
g(k, k′) −→ glimit(k, k

′). The third term can be bounded above as follows:

glimit(k, k
′)αlimit(k, k

′)

×
∫

|ϕ(yk′ ;0, Σ̂k′)− ϕ(yk′ ;0,Σk′)|πK,ZK
(k, zk | Dn) dyk′ dzk

≤
∫

|ϕ(yk′ ;0, Σ̂k′)− ϕ(yk′ ;0,Σk′)| dyk′

≤
[
tr(Σ−1

k′ Σ̂k′ − Ik′)− log det(Σ̂k′Σ−1
k′ )

]1/2
,

using that 0 ≤ glimit, αlimit, π(k | Dn) ≤ 1 in the first inequality and then
Proposition 2.1 of Devroye, Mehrabian and Reddad (2018) in the second one,
where Ik′ is the identity matrix of size dk′ , and tr( · ) and det( · ) are the trace
and determinant operators, respectively. The upper bound converges to 0 under
Assumption 3. For the first term in (19), it is less direct. Using that 1 ∧ x is a
Lipschitz function with constant 1 for all x ≥ 0 and the triangle inequality,∫

g(k, k′)ϕ(yk′ ;0, Σ̂k′)πK,ZK
(k, zk | Dn)

× |α((k, zk), (k′,yk′)− αlimit(k, k
′)| dyk′ dzk

≤
∫ ∣∣∣πK,ZK

(k′,yk′ | Dn) g(k
′, k)ϕ(zk;0, Σ̂k)

−g(k, k′)ϕ(yk′ ;0, Σ̂k′)πK,ZK
(k, zk | Dn)

π̄(k′) glimit(k
′, k)

π̄(k) glimit(k, k′)

∣∣∣∣ dyk′ dzk
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=

∫ ∣∣∣πZK
(yk′ | k′,Dn)π(k

′ | Dn) g(k
′, k)ϕ(zk;0, Σ̂k)

−g(k, k′)ϕ(yk′ ;0, Σ̂k′)πZK
(zk | k,Dn)π(k | Dn)

π̄(k′) glimit(k
′, k)

π̄(k) glimit(k, k′)

∣∣∣∣ dyk′ dzk

≤
∫ ∣∣∣πZK

(yk′ | k′,Dn)π(k
′ | Dn) g(k

′, k)ϕ(zk;0, Σ̂k)

−ϕ(yk′ ;0, Σ̂k′)πZK
(zk | k,Dn) π̄(k

′) glimit(k
′, k)

∣∣∣ dyk′ dzk

+

∣∣∣∣1− π(k | Dn) g(k, k
′)

π̄(k) glimit(k, k′)

∣∣∣∣ π̄(k′) glimit(k
′, k)

×
∫

ϕ(yk′ ;0, Σ̂k′)πZK
(zk | k,Dn) dyk′ dzk.

The last term is easily seen to converge towards 0 by Slutsky’s theorem.
We now analyse the other term. Using the triangle inequality,∫ ∣∣∣πZK

(yk′ | k′,Dn)π(k
′ | Dn) g(k

′, k)ϕ(zk;0, Σ̂k)

−ϕ(yk′ ;0, Σ̂k′)πZK
(zk | k,Dn) π̄(k

′) glimit(k
′, k)

∣∣∣ dyk′ dzk

≤ |π(k′ | Dn) g(k
′, k)− π̄(k′) glimit(k

′, k)|

×
∫

πZK
(yk′ | k′,Dn)ϕ(zk;0, Σ̂k) dyk′ dzk

+ π̄(k′) glimit(k
′, k)

×
∫ ∣∣∣πZK

(yk′ | k′,Dn)ϕ(zk;0, Σ̂k)− ϕ(yk′ ;0, Σ̂k′)πZK
(zk | k,Dn)

∣∣∣ dyk′ dzk.

The first term is seen to converge towards 0 by Slutsky’s theorem.
Using again the triangle inequality, we obtain the following bound on the

other term:∫ ∣∣∣πZK
(yk′ | k′,Dn)ϕ(zk;0, Σ̂k)− ϕ(yk′ ;0, Σ̂k′)πZK

(zk | k,Dn)
∣∣∣ dyk′ dzk

≤
∫ ∣∣∣πZK

(yk′ | k′,Dn)ϕ(zk;0, Σ̂k)− ϕ(yk′ ;0, Σ̂k′)ϕ(zk;0, Σ̂k)
∣∣∣ dyk′ dzk

+

∫ ∣∣∣ϕ(yk′ ;0, Σ̂k′)ϕ(zk;0, Σ̂k)− ϕ(yk′ ;0, Σ̂k′)πZK
(zk | k,Dn)

∣∣∣ dyk′ dzk.

We prove the convergence to 0 of the first term. The other convergence follows
from a similar argument.

Using the triangle inequality,∫ ∣∣∣πZK
(yk′ | k′,Dn)ϕ(zk;0, Σ̂k)− ϕ(yk′ ;0, Σ̂k′)ϕ(zk;0, Σ̂k)

∣∣∣ dyk′ dzk

=

∫ ∣∣∣πZK
(yk′ | k′,Dn)− ϕ(yk′ ;0, Σ̂k′)

∣∣∣ dyk′
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≤
∫

|πZK
(yk′ | k′,Dn)− ϕ(yk′ ;0,Σk′)| dyk′

+

∫ ∣∣∣ϕ(yk′ ;0,Σk′)− ϕ(yk′ ;0, Σ̂k′)
∣∣∣ dyk′ .

The first term converges to 0 by Assumption 3 after a change of variables, and
the second one converges to 0 as well by Proposition 2.1 of Devroye, Mehrabian
and Reddad (2018) and Assumption 3 as seen above. This concludes the proof.

Proof of Proposition 1. Because π̄(k∗) = 1, we only have to establish the in-
equality for any set A = {(k, zk) ∈ {k∗} ×B}. So A \ {(k∗, zk∗)} implies that a
parameter update is proposed and accepted with a parameter proposal, denoted
here by yk∗ , in B. When the chain is in stationarity, Plimit,1 always proposes to
update the parameters. Therefore,

Plimit,1((k
∗, zk∗), A \ {(k∗, zk∗)}) = P(yk∗ ∈ B is accepted).

In contrast,

Plimit,2((k
∗, zk∗), A \ {(k∗, zk∗)}) = g(k∗, k∗)P(yk∗ ∈ B is accepted)

≤ P(yk∗ ∈ B is accepted)

= Plimit,1((k
∗, zk∗), A \ {(k∗, zk∗)}).

The fact that π̄(k∗) = 1 implies the order on the asymptotic variances (Tierney,
1998).

Proof of Proposition 2. We prove the result for the case T = 1 (without anneal-
ing intermediate distributions), to simplify; the general case is proved similarly.
When T = 1, rRJ2 = rRJ which is the ratio in (1). We prove that the probability

to reach the state {k′} × {y(j∗)
k′ ∈ Ak′}, from {k} × {xk ∈ Ak}, is equal to the

probability of the reverse move. We denote by P the Markov kernel. We thus
prove that∫

{xk∈Ak}
π(k,xk | Dn)

∫
{y(j∗)

k′ ∈Ak′}
P ((k,xk), (k

′, dy
(j∗)
k′ )) dxk

=

∫
{y(j∗)

k′ ∈Ak′}
π(k′,y

(j∗)
k′ | Dn)

∫
{xk∈Ak}

P ((k′,y
(j∗)
k′ ), (k, dxk)) dy

(j∗)
k′ .

Note that we abused notation by denoting the integration variables y
(j∗)
k′ and

xk because a group of vectors like y
(0,•)
• are used in the transitions and they are

not of the same dimension as yk′ and xk. To simplify, we will use notation like

y
(j)
s := y

(0,j)
s to denote the j-th proposal, j ∈ {1, . . . , N}.

We now introduce notation to improve readability. We define three joint
densities that are used to enhance the approximations when Step 2.(i) is applied
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to sample the proposal:

q̄k �→N(k)\{k′}(y
(•)
N(k)\{k′}) :=

∏
l∈N(k)\{k′}

N∏
j=1

qk �→l(y
(j)
l ),

q̄k �→k′(y
(•)
k′ ) :=

N∏
j=1

qk �→k′(y
(j)
k′ ),

¯̄qk′ �→N(k′)\{k}(z
(•)
N(k′)\{k}) :=

∏
l∈N(k′)\{k}

qk′ �→l(z
(j∗)
l )

N∏
j=1(j �=j∗)

ql �→k′(z
(j)
k′ ).

The densities q̄k �→N(k)\{k′} and q̄k �→k′ together represent the joint density of the
random variables sampled in the first part of Step 2.(i). ¯̄qk′ �→N(k′)\{k} represents
the joint density of the random variables sampled in the second part of Step
2.(i).

We now define three joint densities that are used to enhance the approxima-
tions when Step 2.(ii) is applied to sample the proposal:

q̃k �→N(k)\{k′}(y
(•)
N(k)\{k′}) :=

∏
l∈N(k)\{k′}

qk �→l(y
(j∗)
l )

N∏
j=1(j �=j∗)

ql �→k(y
(j)
k ),

q̃k �→k′(y
(•)
k′ ) := qk �→k′(y

(j∗)
k′ )

N∏
j=1(j �=j∗)

qk′ �→k(y
(j)
k ),

˜̃qk′ �→N(k′)\{k}(z
(•)
N(k′)\{k}) :=

∏
l∈N(k′)\{k}

N∏
j=1

qk′ �→l(z
(j)
l ).

The densities q̃k �→N(k)\{k′} and q̃k �→k′ together represent the joint density of the

random variables sampled in the first part of Step 2.(ii). ˜̃qk′ �→N(k′)\{k} represents
the joint density of the random variables sampled in the second part of Step
2.(ii).

We have that

P ((k,xk), (k
′, dy

(j∗)
k′ )) =

1

2
q̄k �→N(k)\{k′}(y

(•)
N(k)\{k′}) q̄k �→k′(y

(•)
k′ )

× gimp.(k, k
′,xk,y

(•)
N(k)\{k′},y

(•)
k′ )

rRJ((k,xk), (k
′,y

(j∗)
k′ ))

Nr̄(k, k′,xk,y
(•)
k′ )

× ¯̄qk′ �→N(k′)\{k}(z
(•)
N(k′)\{k})

×

⎛⎝1 ∧
gimp.(k

′, k,xk,y
(•)
k′ , z

(•)
N(k′)\{k})

gimp.(k, k′,xk,y
(•)
N(k)\{k′},y

(•)
k′ )

r̄(k, k′,xk,y
(•)
k′ )

⎞⎠
× dz

(•)
N(k′)\{k} dy

(•)
N(k)\{k′} dy

(•)
k′

+
1

2
q̃k �→N(k)\{k′}(y

(•)
N(k)\{k′}) q̃k �→k′(y

(•)
k′ ) gimp.(k, k

′,xk,y
(•)
N(k)\{k′},y

(•)
k′ )

1

N
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× ˜̃qk′ �→N(k′)\{k}(z
(•)
N(k′)\{k})

×

⎛⎝1 ∧
gimp.(k

′, k,xk,y
(•)
k′ , z

(•)
N(k′)\{k})

gimp.(k, k′,xk,y
(•)
N(k)\{k′},y

(•)
k′ )

r̄(k′, k,xk,y
(•)
k′ )

−1

⎞⎠
× dz

(•)
N(k′)\{k} dy

(•)
N(k)\{k′} dy

(•)
k′

+ δ(k,xk)(k
′, dy

(j∗)
k′ )P(rejection | (k′,y(j∗)

k′ )),

where P(rejection | (k′,y(j∗)
k′ )) is the rejection probability given that the current

state is (k′,y
(j∗)
k′ ). Note that we considered that in Step 2.(ii) we set uniformly

at random the index of the proposal. This is however in practice not important
(which is why in Algorithm 5 we set it to be 1) because of the form of the

acceptance ratio. Note also that we use the notation r̄(k, k′,xk,y
(•)
k′ ) to be clear

about which variables is involved.

The probability of reaching the state {k′}× {y(j∗)
k′ ∈ Ak′}, from {k}× {xk ∈

Ak}, is thus given by∫
{xk∈Ak}

π(k,xk | Dn)

∫
{y(j∗)

k′ ∈Ak′}

1

2
q̄k �→N(k)\{k′}(y

(•)
N(k)\{k′}) q̄k �→k′(y

(•)
k′ )

× gimp.(k, k
′,xk,y

(•)
N(k)\{k′},y

(•)
k′ )

rRJ((k,xk), (k
′,y

(j∗)
k′ ))

Nr̄(k, k′,xk,y
(•)
k′ )

× ¯̄qk′ �→N(k′)\{k}(z
(•)
N(k′)\{k})

×

⎛⎝1 ∧
gimp.(k

′, k,xk,y
(•)
k′ , z

(•)
N(k′)\{k})

gimp.(k, k′,xk,y
(•)
N(k)\{k′},y

(•)
k′ )

r̄(k, k′,xk,y
(•)
k′ )

⎞⎠
× dz

(•)
N(k′)\{k} dy

(•)
N(k)\{k′} dy

(•)
k′ dxk

+

∫
{xk∈Ak}

π(k,xk | Dn)

∫
{y(j∗)

k′ ∈Ak′}

1

2
q̃k �→N(k)\{k′}(y

(•)
N(k)\{k′}) q̃k �→k′(y

(•)
k′ )

× gimp.(k, k
′,xk,y

(•)
N(k)\{k′},y

(•)
k′ )

1

N
˜̃qk′ �→N(k′)\{k}(z

(•)
N(k′)\{k})

×

⎛⎝1 ∧
gimp.(k

′, k,xk,y
(•)
k′ , z

(•)
N(k′)\{k})

gimp.(k, k′,xk,y
(•)
N(k)\{k′},y

(•)
k′ )

r̄(k′, k,xk,y
(•)
k′ )

−1

⎞⎠
× dz

(•)
N(k′)\{k} dy

(•)
N(k)\{k′} dy

(•)
k′ dxk

+

∫
{xk∈Ak}

π(k,xk | Dn)

×
∫
{y(j∗)

k′ ∈Ak′}
δ(k,xk)(k

′, dy
(j∗)
k′ )P(rejection | (k′,y(j∗)

k′ )) dxk.

(20)
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We now prove that the first integral can be rewritten as that corresponding to
Step 2.(ii) for the reverse move; the second integral corresponds instead to Step
2.(i) for the reverse move, and the last term to the probability of rejecting from

(k′,y
(j∗)
k′ ).

By changing the integration variables yk′ ← y
(j∗)
k′ , x

(j∗)
k ← xk and x

(•)
k ←

y
(•)
k′ but with yk′ replaced by x

(j∗)
k , the first integral can be rewritten as∫

{yk′∈Ak′}×{x(j∗)
k ∈Ak}

π(k′,yk′ | Dn)
1

2
q̃k′ �→N(k′)\{k}(z

(•)
N(k′)\{k}) q̃k′ �→k(x

(•)
k )

× gimp.(k
′, k,yk′ ,x

(•)
k , z

(•)
N(k′)\{k})

1

N
˜̃qk �→N(k)\{k′}(y

(•)
N(k)\{k′})

×

⎛⎝1 ∧
gimp.(k, k

′,yk′ ,y
(•)
N(k)\{k′},x

(•)
k )

gimp.(k′, k,yk′ ,x
(•)
k , z

(•)
N(k′)\{k})

r̄(k, k′,yk′ ,x
(•)
k )−1

⎞⎠
× dz

(•)
N(k′)\{k} dx

(•)
k dy

(•)
N(k)\{k′} dyk′ ,

given that

rRJ((k,x
(j∗)
k ), (k′,yk′)) =

π(k′,yk′ | Dn) qk′ �→k(x
(j∗)
k )

π(k,x
(j∗)
k | Dn) qk �→k′(yk′)

,

q̄k �→N(k)\{k′}(y
(•)
N(k)\{k′}) =

˜̃qk �→N(k)\{k′}(y
(•)
N(k)\{k′})

q̄k �→k′(y
(•)
k′ )

qk′ �→k(x
(j∗)
k )

qk �→k′(yk′)
= q̃k′ �→k(x

(•)
k )

¯̄qk′ �→N(k′)\{k}(z
(•)
N(k′)\{k}) = q̃k′ �→N(k′)\{k}(z

(•)
N(k′)\{k}).

The analysis of the second integral in (20) uses the same arguments. Finally,
the third integral in (20) can be rewritten as∫

{yk′∈Ak′}
π(k′,yk′ | Dn)

∫
{xk∈Ak}

δ(k′,yk′ )(k, dxk)P(rejection | (k,xk)) dyk′ ,

which concludes the proof.

Proof of Proposition 3. The proof essentially relies on straightforward calcula-
tions. We have

π(k,βk, σk | γn) ∝ π(k)
1

σk

n∏
i=1

1√
2π σk

exp

(
− 1

2σ2
k

(γi − cTi,k βk)
2

)

∝ π(k)
1

σn+1
k

exp

(
− 1

2σ2
k

n∑
i=1

(γi − cTi,k βk)
2

)
.

In Gagnon, Desgagné and Bédard (2020b), it is proved that

n∑
i=1

(γi − cTi,k βk)
2 = (βk − β̂k)

TCT
KCK(βk − β̂k) + ‖γn − γ̂k‖22,
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where β̂k := (CT
kCk)

−1CT
k γn. Multiplying and dividing by the appropriate

terms yield

π(k,βk, σk | γn) ∝ π(k)
Γ((n− dk)/2)π

dk/2

‖γn − γ̂k‖n−dk
2 |CT

kCk|1/2

× 21−
n−dk

2 ‖γn − γ̂k‖n−dk
2

Γ((n− dk)/2)σ
n−dk+1
k

exp

{
− 1

2σ2
k

‖γn − γ̂k‖22
}

× |CT
kCk|1/2

(2π)dk/2σdk

k

exp

(
− 1

2σ2
k

(βk − β̂k)
TCT

KCK(βk − β̂k)

)
,

which concludes the proof.
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