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quantiles for heavy–tailed data that are right-censored. We study a general
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domly right-censored tail estimators. Through an averaging procedure over
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tion of this approach to simulated as well as to real-world MTPL insurance
data.
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1. Introduction

In recent years the problem of tail estimation with right-censored data has
received considerable attention starting with Beirlant et al. (2007) and Einmahl
et al. (2008), who considered the problem for different domains of attraction.
Most efforts however have been dedicated to heavy-tailed distributions, with
several papers being motivated by heavy-tailed insurance claim data with long
development times of the claims, see e.g. Beirlant et al. (2010, 2016, 2018, 2019);
Worms and Worms (2014, 2016, 2018); Ndao et al. (2014). The underlying model
assumption here is that the random variable of interest X has a Pareto-type
distribution function

F (x) = P(X ≤ x) = 1− x−1/ξ�(x), ξ > 0, x > 1, (1)

where � is slowly varying at infinity:

lim
x→∞

�(tx)

�(x)
= 1, for every t > 1.

Worms and Worms (2019) discuss the analogous problem for Weibull-type dis-
tributions. Right-censoring for heavy-tailed distributions in a regression setting
was discussed in Ndao et al. (2016); Dierckx et al. (2019); Goegebeur et al.
(2019a); Stupfler (2016), while Goegebeur et al. (2019b) is on a bivariate exten-
sion. Stupfler (2019) discusses the case of dependent censoring.

Here we revisit the case of heavy-tailed data. More specifically, we consider
the random right-censoring model, where the independent and identically dis-
tributed (i.i.d.) observations X1, . . . , Xn of X may be preceded by censoring
variables C1, . . . , Cn, and it is known if that happens. One then observes

Zi = min{Xi, Ci}, ei = 1{Xi ≤ Ci}, i = 1, . . . , n,

where C1, . . . , Cn is an i.i.d. sequence of censoring random variables, indepen-
dent of the observations Xi. Here 1{Xi ≤ Ci} denotes the indicator of the
event {Xi ≤ Ci}. In order to obtain non-degenerate and tractable identities,
one assumes that also the censoring variables are Pareto-type distributed with
distribution function

G(x) = P(C1 ≤ x) = 1− x−1/ξc�c(x), ξc > 0, x > 1,
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with �c another slowly varying function at infinity. This choice also motivates
the asymptotic Pareto behaviour to be introduced in the sequel. Then we have
that for x > 1,

H(x) = P(Z1 ≤ x) = 1− x−1/ξz�z(x), ξz =
ξξc

ξ + ξc
,

where �z(x) = �(x)�c(x). As explained in Einmahl et al. (2008), the parameter
p = ξz/ξ = ξc

ξ+ξc
is the limit of p(z) := P(e1 = 1|Z1 = z) as z → ∞, and can

be interpreted as the non-censoring probability in the limit, or the tail limiting
proportion of non-censored data. In the exact Pareto setting (i.e. � and �c being
constant) the censoring indicators e1, . . . , en turn out to be i.i.d. Bernoulli(p)
random variables, independent of Z1, . . . , Zn.

Within this censoring and regularly varying context, Beirlant et al. (2007)
proposed a first estimator of ξ in the spirit of the classical Hill estimator. Con-
cretely, define the order statistics of the observed sample as

Z1,n ≤ · · · ≤ Zn,n,

and ei,n the corresponding censoring indicators, i = 1, . . . , n. Then the Hill
estimator adapted for censoring is given by

Hk =

∑k
i=1 log(Zn−i+1,n/Zn−k,n)∑k

i=1 en−i+1,n

=
HZ

k

pk
, 1 < k < n, (2)

with

pk =
1

k

k∑
i=1

en−i+1,n

the fraction of non-censored data in the top k observations, and

HZ
k =

1

k

k∑
i=1

log(Zn−i+1,n/Zn−k,n)

the classical Hill estimator (cf. Hill (1975)) based on the top k observations.
Einmahl et al. (2008) showed that, under some regularity assumptions, Hk is
consistent whatever the value of p ∈ (0, 1):

Hk =
HZ

k

pk
→p

ξz
p

= ξ,

as k, n → ∞ and k/n → 0. Moreover Einmahl et al. (2008) derived the asymp-
totic normality of Hk under general conditions.

Worms and Worms (2014) proposed an alternative generalization of the Hill
estimator based on the fact that

E(log(Z/t)|Z > t) =

∫ ∞

1

F (ut)

F (t)

1

u
du → ξ as t → ∞, (3)



Trimmed extreme value estimators for censored heavy-tailed data 3115

where F (x) = 1−F (x). In the exact Pareto case, the above limit is an equality.
Replacing F with the Kaplan-Meier estimator

F̂ (x) =
∏

Zj,n≤x

(
n− j

n− j + 1

)ej,n

, (4)

for F (x) yields the estimator

HW
k =

k∑
i=1

F̂ (Zn−i,n)

F̂ (Zn−k,n)
log(Zn−i+1,n/Zn−i,n), (5)

which was shown to be consistent in Worms and Worms (2014). Observe that
both (2) and (5) reduce to HZ

k when there is no censoring. Based on simu-
lation studies, see e.g. Beirlant et al. (2018), the estimator HW

k is known to
exhibit superior behaviour in comparison with Hk, especially with respect to
bias. The mathematical treatment of this estimator turns out to be difficult and
the asymptotic normality of HW

k has only be derived in Beirlant et al. (2019)
under light censoring, i.e. ξ < ξc or p > 1/2, and some regularity conditions.
Here we will propose a novel family of estimators on the basis of a trimming
procedure that will exhibit competitive behaviour and for which the mathemat-
ical treatment is simpler. This then also yields a generalization to the censoring
case of the classical class of kernel estimators introduced in Csörgő et al. (1985).

Before introducing the trimming procedure, we first propose simplified ver-
sions of HW

k , that will be more amenable for the approach in the sequel. To this
end, note that one can write

HW
k =

k∑
i=1

⎡⎣ k∏
j=i+1

(1− 1/j)en−j+1,n

⎤⎦ log(Zn−i+1,n/Zn−i,n). (6)

In the exact Pareto case one has p(z) = p and the term in the square bracket
has expectation

E

⎡⎣ k∏
j=i+1

(1− 1/j)en−j+1,n

⎤⎦= E

⎡⎣ k∏
j=i+1

(1− 1/j)ej

⎤⎦
=

k∏
j=i+1

E [(1− 1/j)ej ] =

k∏
j=i+1

(1− p/j), (7)

where we have used the fact that the en−j+1,n are i.i.d. Bernoulli random vari-
ables with the same law as the ej . Notice that for Pareto-type variables, this
only holds asymptotically, as k, n/k → ∞. The Rényi representation also entails
for the exact Pareto case that

E(Vj) =
1∑k

m=i m
−1

E(log(Zn−j+1,n/Zn−k,n)) = ξz, (8)
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with Vj = j log
Zn−j+1,n

Zn−j,n
. Based on (7) and (8) and using the approximations 1−

pk/j ≈ exp(−pk/j) and
∑k

j=i+1 j
−1 ≈ log((k + 1)/i), we propose the following

estimator which is closely related to HW
k :

HA
k =

1

k + 1

k∑
i=1

(
i

k + 1

)pk−1
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), k < n,

(9)

where the log-spacings in the sum are all taken with respect to the same baseline
order statistic Zn−k,n. The latter will allow to apply the trimming operation
of removing low importance observations in the tail estimation, developed in
Bladt et al. (2020b) for the non-censoring case, to the present situation with
censoring.

In this paper, we extend the trimming method proposed in Bladt et al.
(2020b) to the case of random right censoring, both for Hk and HA

k . Aver-
aging the trimmed statistics over the amount of trimming then leads to new
estimators which belong to a general family of kernel estimators comprising Hk

and HA
k . This family turns out to be closed under the proposed averaging op-

eration after trimming. Then we study the basic asymptotic properties of the
kernel estimators in Section 3, even in case of heavy censoring, i.e. p ≤ 1/2.
Trajectories of the trimmed statistics as a function of the amount of trimming
turn out to be quite flat near the optimal threshold value minimizing the mean
squared error (MSE). Based on this, in Section 4 – for the first time in this
setting – an adaptive selection method for the amount of top data used in tail
estimation is proposed. In Sections 5 and 6, we show through simulations and
a case study from insurance that the new kernel estimators and the threshold
selection method exhibit promising properties.

2. Trimmed estimators for ξ

2.1. Trimming tail estimators

In Bladt et al. (2020b), lower trimming of the classical Hill estimator was shown
to be an effective strategy to obtain Hill-type plots with lower variance aris-
ing from the changes of the baseline order statistic, which aids in the visual
selection of a horizontal part of the trajectory. Here, we extend this approach
to the censored case, and consider lower trimming of the estimators Hk and
HA

k , deleting the smallest k− b (b ≤ k) peaks over thresholds Zn−i+1,n/Zn−k,n,
i = b+1, . . . , k: trimming HZ

k as in Bladt et al. (2020b) one obtains a trimmed
version of Hk

Hb,k =
1

1 +
∑k

j=b+1 j
−1

·
1
b

∑b
i=1 log(Zn−i+1,n/Zn−k,n)

pk
, (10)
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for b ≤ k ≤ n− 1, while for HA
k we propose

HA
b,k =

1

b+ 1

b∑
i=1

(
i

b+ 1

)pk−1
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (11)

since, when pk is replaced by the exact value p, using (8) the expected value

equals ξz
b+1

∑b
i=1(

i
b+1 )

p−1
∑k

m=i m
−1

log((k+1)/i) ≈ ξ for b sufficiently large. Note also that

Hk,k = Hk and HA
k,k = HA

k .

2.2. Averaging and kernels

The above trimming procedure naturally leads to new estimators when consid-
ering the empirical mean of the trimmed estimators across b = 1, . . . , k:

1

k

k∑
b=1

Hb,k,
1

k

k∑
b=1

HA
b,k.

For instance, in case of HA
b,k this is asymptotically equivalent to

H
A

k =
1

k

{
k∑

i=1

1

1− pk

((
i

k + 1

)pk−1

− 1

)

× 1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n)

}
, k < n, (12)

as can be seen using partial summation and a simple Riemann sum approxima-
tion 1

k

∑k
b=i(

b
k+1 )

−pk ≈ 1
1−pk

(1− ( i
k+1 )

1−pk) for k → ∞.

In fact Hk, H
A
k and H

A

k can all be put into a kernel framework, by defining

HK
k =

1

k

k∑
i=1

K
(

i

k + 1
, pk

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (13)

where K is a positive kernel function satisfying∫ 1

0

K(u; p) du =
1

p
, for all p ∈ (0, 1].

In particular, we get

Hk = HK0

k , with K0(u, p) =
1

p
log

(
1

u

)
,

HA
k = HK1

k , with K1(u, p) = up−1,

H
A

k = HK2

k , with K2(u, p) =
up−1 − 1

1− p
.
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Note that HW
k does not fall into this framework, but its simplified version HA

k

does.
Also notice that, when trimming any kernel estimator HK

k to obtain

HK
b,k =

1

b+ 1

b∑
i=1

K
(

i

b+ 1
, pk

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (14)

the averaging operation 1
k

∑k
b=1 H

K
b,k leads to an associated kernel estimator

HK̄
k =

1

k

k∑
i=1

K̄
(

i

k + 1
, pk

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (15)

with

K̄(u, p) =

∫ 1

u

K(v, p)

v
dv,

where K̄( i
k+1 , p) is obtained using a Riemann approximation of

1

k

k∑
b=i

k

b+ 1
K
(

i

k + 1

k + 1

b+ 1
, p

)
,

as k → ∞ for fixed i.
Rewriting the kernel estimators HK

k from (13) in terms of the random vari-
ables Vj (j = 1, . . . , k) has some theoretical advantage, since for the exact Pareto
case these are independent and exponentially distributed with mean ξz thanks
to the Rényi representation:

HK
k =

1

k

k∑
i=1

K
(

i

k + 1
, pk

)
1

log((k + 1)/i)

k∑
j=i

Vj

j

=
1

k

k∑
j=1

Vj

j

j∑
i=1

K
(

i

k + 1
, pk

)
1

log((k + 1)/i)

=
1

k

k∑
j=1

Vj K̃k

(
j

k + 1
, pk

)
,

with

K̃k

(
j

k + 1
, pk

)
=

1

j/(k + 1)

1

k + 1

j∑
i=1

K
(

i

k + 1
, pk

)
1

log((k + 1)/i)
.

Using a Riemann approximation, one can also propose to use

H̃K
k =

1

k

k∑
j=1

K̃
(

j

k + 1
, pk

)
Vj , (16)
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with associated kernel

K̃ (u, p) =
1

u

∫ u

0

K(v, p)

log(1/v)
dv,

that also satisfies the norming
∫ 1

0
K̃ (u, p) du = 1/p. The class of estimators H̃K

k

can be considered as generalizations of the kernel estimators proposed in Csörgő
et al. (1985) from the non-censoring to the censoring case.

2.3. Quantile estimation

Following the approach fromWeissman (1978) it is possible to construct quantile
estimators as a function of the sample size as follows. Let the quantile function
of a regularly varying tail be Q(p). The regular variation property implies that
the ratio of increasingly large quantiles satisfies

Q(1− p)

Q(1− k/n)
∼

(
k

np

)ξ

, as p ↓ 0, k/n → 0, np = o(k), (17)

as discussed in Section 4.3 in de Haan and Ferreira (2007). This then leads to a
quantile estimator based on k order statistics and the kernel K as

Q̂k(1− p) = Q̂KM (1− k/n) ·
(

k

np

)HK
k

, (18)

where Q̂KM is the quantile function derived from the Kaplan-Meier estimator

F̂ defined in (4).

3. Asymptotic representations

In this section we derive the asymptotic distributions of the kernel estimators
and their trimmed counterparts as introduced in the preceding section. In Ein-
mahl et al. (2008) the asymptotics for Hk = HK0

k was discussed in detail.
Beirlant et al. (2019) provided an asymptotic normality result for HW

k when
p > 1/2, but that estimator is not in the current kernel framework. Here we
provide asymptotic representations for the class of kernel estimators in the form
H̃K

k . To this end, we make use of second-order assumptions which were first
proposed in Hall and Welsh (1985) and which have widely been used in papers
on the estimation of the extreme value index for Pareto-type distributions both
in the non-censoring case such as Csörgő et al. (1985) and the censoring case as
in Beirlant et al. (2019):

�(x) = C(1 +Dx−β(1 + o(1))), �c(x) = Cc(1 +Dcx
−βc(1 + o(1))), x → ∞,

(19)
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where β, βc, C, Cc are positive constants and D,Dc are real constants. It now
follows that

�z(x) = Cz(1 +Dzx
−βz (1 + o(1)),

where

Cz = CCc, βz = min{β, βc}, Dz = D · 1β≤βc +Dc · 1βc≤β .

Further we set ρz = −βzξz, Q0,z(t) = −ξ2zβzDzC
ρz tρz . Concerning the scaled

spacings Vj , j = 1, . . . , k, one then has the following expansion as n, k → ∞
and k/n → 0 as given in Theorem 4.1 in Beirlant et al. (2004):

Vj =

(
ξz +Q0,z(n/k)(

j

k + 1
)−ρz

)
Ej +Rj,n + op(Q0,z(n/k)), (20)

with Ej standard exponential random variables, independent with each n, and∣∣∑k
j=i Rj,n/j

∣∣ = op(Q0,z(n/k))max(log((k+1)/i, 1)). Next, from Einmahl et al.
(2008) and Beirlant et al. (2016) one obtains that

√
k(pk − p) =

√
p(1− p)N(1 + op(1)) +

√
kQ0,z(n/k)

κz

1− ρz
(1 + op(1)), (21)

where N ∼ N(0, 1) can be chosen appropriately independent of {V1, V2, . . .},
and κz = − (Dξ)z

Dzξξc
, with (Dξ)z = (Dξ)1β≤βc − (Dcξc)1βc≤β . Based on (20) and

(21) we now derive that

H̃K
k − ξ =

1

k

k∑
j=1

(
K̃(

j

b+ 1
, pk)− K̃(

j

k + 1
, p)

)
Vj

+

⎛⎝1

k

k∑
j=1

K̃(
j

k + 1
, p) Vj − ξ

⎞⎠
=: T1,k + T2,k. (22)

Using the mean value theorem, we have from (21) that

T1,k ∼p ξz(pk − p)αK̃
b

= ξzα
K̃
b

(√
p(1− p)

N√
k
+Q0,z(n/k)

κz

1− ρz
(1 + o(1))

)
, (23)

with αK̃
k = 1

k

∑k
j=1

∂K̃
∂p (

j
k+1 , p). Next, using (20),

T2,k = ξz

⎛⎝1

k

k∑
j=1

K̃k(
j

k + 1
, p)− 1

p

⎞⎠
+ξz

1

k

k∑
j=1

K̃k(
j

k + 1
, p)(Ej − 1)
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+Q0,z(n/k)
1

k

k∑
j=1

K̃k(
j

k + 1
, p)

(
j

k + 1

)−ρz

Ej

+
1

k

k∑
j=1

Rj,nK̃k(
j

k + 1
, p) + op(Q0,z(n/k)). (24)

Concerning the second last term in (24) we find that

1

k

k∑
j=1

Rj,nK̃k(
j

k + 1
, p) =

1

k

k∑
j=1

Rj,n

j

j∑
i=1

K( i
k+1 , p)

log((k + 1)/i)

=
1

k

k∑
i=1

K( i
k+1 , p)

log((k + 1)/i)

k∑
j=i

Rj,n

j
= op(Q0,z(n/k)).

From (23) and (24) we can now state an asymptotic expansion for HK
k − ξ.

Theorem 3.1. Under (19) we have as k, n → ∞ and k/n → 0

HK
k − ξ =−

√
p(1− p)

ξz
p2

N√
k
+ ξz

1

k

k∑
j=1

K̃k(
j

k + 1
, p)(Ej − 1)

+Q0,z(n/k)

{
−κzξz

p2(1− ρz)
+

∫ 1

0

u−ρz K̃(u, p)du

}
(1 + o(1))

+ op(Q0,z(n/k)) + ξz

⎛⎝1

k

k∑
j=1

K̃k(
j

k + 1
, p)− 1

p

⎞⎠ , (25)

where N and {Ej , j ≥ 1} are introduced respectively in (21) and (20).

In order to select an optimal k, we minimize then the following asymptotic
mean squared error of HK

k :

AMSE(HK
k ) = ξ2z vk,p +Q2

0,z(
n

k
) bk,p, (26)

with

vk,p =
1

k

1− p

p3
+

1

k2

k∑
j=1

K̃2
k(

j

k + 1
, p),

bk,p =

{
−κzξz

p2(1− ρz)
+

∫ 1

0

u−ρz K̃(u, p)du

}2

.

Remark 3.2. Note that the first two terms in (25) concern the estimation of p
and ξ, respectively. The third term can be regarded as a bias term arising from
the second order assumption, which commonly appears in classical extreme value
theory. The fourth and final term is proportional to ξz and can be regarded as
a discretization error term, since the sum inside the parenthesis is a Riemann

approximation to
∫ 1

0
K̃k (u, p) du = 1/p. In general, this error is small but non-

zero.
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Examples. Let us consider the expressions of vk,p and bk,p for some of the
kernels K considered above.

1. For the adapted Hill estimator Hk with K0(u, p) = log(1/u)/p we have

that K̃0(u, p) = 1/p and 1
k2

∑k
j=1 K̃2

0,k(
j

k+1 , p) ∼ k−1
∫ 1

0
K̃2

0(v, p)dv = (kp2)−1

as k → ∞ for all p ∈ (0, 1) so that vk,p = 1
kp

−3. Moreover
∫ 1

0
u−ρz K̃0(u, p)du =

1
p (1 − ρz)

−1. In case β ≤ βc, i.e. when the bias is largest compared with the

classical Hill estimator in case of no censoring, we have that −κz = ξ−1
c and

then bk,p = p−4(1− ρz)
−2. Hence, under β ≤ βc,

AMSE(Hk) =
1

p4

(
p
ξ2z
k

+
Q2

0,z(n/k)

(1− ρz)2

)
. (27)

2. The estimator H
A

k = HK2

k with K2(u, p) =
up−1−1
1−p exhibits excellent finite

sample behaviour as shown below through the simulations. Here K̃2(u, p) ∼
1

1−p
p−1up−1−1
log(1/u) as u → 0.

For the bias we have
∫ 1

0
u−ρz K̃2

2(u, p)du =
∫ 1

0
k1−p(1/v)kρz (1/v)

dv
log(1/v) with

ka(w) = (wa − 1)/a for any a > 0. As k → ∞

bk,p ∼ b2,p :=

{
−κzξz

p2(1− ρz)
+

∫ 1

0

k1−p(1/v)kρz (1/v)
dv

log(1/v)

}2

.

Only in case of weak censoring, i.e. p ≥ 1/2,
∫ 1

0
K̃2

2(u, p)du < ∞ as k → ∞, so

that then 1
k2

∑k
j=1 K̃2

2,k(
j

k+1 , p) ∼ k−1
∫ 1

0
K̃2

2(u, p)du. Hence as
√
kQ0,z(n/k) →

λ ∈ R √
k(H

A

k − ξ) →d N (λb2,p , σ
2
2,p),

with σ2
2,p = (1− p)/p3 +

∫ 1

0
K̃2

2(u, p)du.
Under heavy censoring, i.e. p < 1/2,

lim
k→∞

k2p(log k)2

⎛⎝ 1

k2

k∑
j=1

K̃2
2,k(

j

k + 1
, p)

⎞⎠ = σ2
h,2,p < ∞,

so that, as kp(log k)Q0,z(n/k) → λ ∈ R,

kp(log k)(H
A

k − ξ) →d N (λb2,p , σ
2
h,2,p).

4. Optimal choice of k when estimating ξ

Denoting the trimmed version of the Hill estimator in the fully observed case
by HZ

b,k = Hb,k pk, it was shown in Bladt et al. (2020b) that the value kopt(H
Z
k )

of k minimizing the asymptotic MSE of HZ
k satisfies

kopt(H
Z
k ) =

(
K

(1− ρz)2f(ρz)

) −1
1−2ρz

kopt(H
Z
b,k),
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for a universal constant K and a specific function f . Here kopt(H
Z
b,k) is the

optimal sample fraction minimizing the expectation of the empirical variance
S2
k = 1

k

∑k
b=1(H

Z
b,k − 1

k

∑k
b=1 H

Z
b,k)

2.

On the other hand, from (27) we obtain that under β ≤ βc that

kopt(Hk) =

(
p−1 K

(1− ρz)2f(ρz)

)− 1
1−2ρz

kopt(H
Z
b,k). (28)

This means that the optimal k for the estimator Hk with respect to minimiza-
tion of the AMSE is linked to the optimal k of its trimmed versions for the
minimization of the expected empirical variance in the non-censored case. A
consequence of the above formula is that

kopt(Hk) = p
1

1−2ρz kopt(H
Z
k ).

That is, a larger percentage of censoring leads to a higher threshold, when
compared to the non-censored case. This can already be seen from the expression
of the AMSE given in (27), where a smaller p leads to more weight being given
to the bias term. From an intuitive point of view, when dealing with censored
datasets, two sources of bias have to be accounted for, and hence a smaller
sample fraction k is needed to control them.

In practice, for a given sample, one finds an estimate k̂0 = k̂opt(H
Z
b,k) of

kopt(H
Z
b,k) through minimization of S2

k over k, from which an adaptive choice of
k is found through

(
p−1

k̂0
K

(1− ρ̂z)2f(ρ̂z)

)− 1
1−2ρ̂z

k̂0, (29)

using an estimate ρ̂z of ρz and replacing p by pk̂0
. Estimators of the second-

order parameter ρz have been proposed for instance in Fraga Alves et al. (2003).
Estimators exhibit a high variability and many authors consider the use of a
fixed value for ρz such as ρz = −1. In the next section we use the choices
ρz = −1,−1/2,−3/2, but the results are not very sensitive to this parameter,
and we here also propose to stick to the choice ρz = −1.

Remark 4.1. For kernels different from K0, if we restrict to the case β ≤ βc

and p > 1/2, and consider the expressions kvk,p =: ṽk,p and bk,p taken from
(26) as constant in k (i.e. converging fast enough to its limit for k → ∞) we
find from (26) that the optimal kopt for any kernel equals

(
− 1

2ρz
ξ2z/M

2

)1/(1−2ρz)

n−2ρz/(1−ρz)

(
ṽk,p
bk,p

)1/(1−ρz)

= kopt(Hk)

(
ṽk,p

bk,p(1− ρz)2

)1/(1−ρz)

,
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with M = −ξ2zβzDzC
ρz , from which one can deduce that

kKopt =

(
ṽk,p
bk,p

)1/(1−ρz)
(

K

f(ρz)pk̂0

)−1/(1−ρz)

k̂0.

This is then basically the same formula as for Hk, (29), but one has to calculate
ṽk,p and bk,p at every k with p estimated by pk̂0

. In heavy censoring cases the
rates of convergence of the estimators are different and the approach becomes
more involved. This makes the procedure significantly more computer-intensive.
In practical applications, however, the difference between the optima across
kernels and heavy and light censoring cases is rather small and does not justify
the extra calculations.

5. Simulations

We performed simulations using the following distributions.

• Burr distribution with survival function 1−F (x) = ( θ
θ+xβ )

λ with (θ, β, λ)
taken as (10,2,1) for X and (10,3,1) for C so that p < 1/2, next to (10,3,1)
for X and (10,2,1) for C so that p > 1/2, and (10,2,1) for both X and C
with p = 1/2.

• Fréchet distribution with F (x) = exp(−x−1/ξ) with ξ taken as 1/2 for X
and 1/4 for C and correspondingly p < 1/2, as 1/4 for X and 1/2 for C
and correspondingly p > 1/2, and finally as ξ = 1/4 for both X and C, so
that p = 1/2.

• Log-gamma distribution with density f(x) = λα

Γ(α) (log x)
α−1x−λ−1 with

(α, λ) taken as (3/2,2) for X and (3/2,4) for C so that p < 1/2, as (3/2,4)
for X and (3/2,2) for C so that p > 1/2, and as (3/2,4) for X and C so
that p = 1/2. Note that in this case the conditions (19) are not satisfied.

The results are based on 200 simulations of sample size n = 200 each. The first-
order tail-determining parameters were chosen such that 1/ξ = 3/2, 2, 4, which
seem to be realistic magnitudes for insurance applications, as will be illustrated
in the next section. The remaining parameters were chosen in order to satisfy
inequalities such as p > 1/2 or p ≤ 1/2 but are otherwise arbitrary.

In Figures 1, 2 and 3 we plot the bias, variance and mean squared error as
a function of k of the various estimators considered above. Observe that the
plots are in logarithmic scale for display purposes. For the bias term this means
that there is an asymptote corresponding to limt↓0 log(t). Note that the MSE

characteristics of the estimator HK2

k are quite comparable to those of HW
k in

the Burr and Fréchet cases, and are even better for the log-gamma model. The
corresponding analysis for the quantile estimators is given in Figures 4, 5 and
6, which are in agreement with the former plots.

In Figures 7, 8 and 9 we provide violin plots for the K0 and K2-based estima-
tor at the threshold selected according to the automatic procedure given in the
previous section. We have taken ρz = −1,−3/2,−1/2 respectively for the three
distributions that we consider. These values were permuted (the resulting plots
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Fig 1. Burr distributions: bias, variance and mean squared error of the kernel estimator

(Hk = HK0
k in solid blue, HA

k = HK1
k in dashed red, HK2

k in dotted orange) and the Worms

estimator HW
k (dashed and dotted green), as a function of k. The top, middle and bottom

levels correspond to 2p < 1, 2p > 1 and 2p = 1, respectively.

are omitted) and the results were not very sensitive to the choice of ρz. To avoid
degeneracies, a cutoff of 1/5 of the size of the data set was used for the empiri-
cal variance estimates. We also add the results of the parameter estimates when
taking k fixed at the theoretical optimal value. The latter theoretical optimum
is only available in the light-censoring cases and for distributions properly be-
longing to the Fréchet domain of attraction (not the log-gamma case). A general
observation is that the violin plots bundle together close to zero, as is desired.
Looking closer, we observe that in the regularly varying setup, the adaptive
selection of k together with the use of the kernels K0 and K2 comes very close
to the performance of the Hill estimator evaluated at the theoretical optimum
(essentially an oracle estimator, since we input the parameters of the simulated
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Fig 2. Fréchet distributions: bias, variance and mean squared error of the kernel estimator

(Hk = HK0
k in solid blue, HA

k = HK1
k in dashed red, HK2

k in dotted orange) and the Worms

estimator HW
K (dashed and dotted green), as a function of k. The top, middle and bottom

levels correspond to 2p < 1, 2p > 1 and 2p = 1, respectively.

data into this theoretical optimum). As rough guidelines, we observe that the
heavy censoring case has significantly worse behaviour than the light censoring
case, and that the K2-based estimator has the best behaviour, agreeing with the
conclusions from Figures 1, 2 and 3. We believe that this regime-shift between
light and heavy censoring is responsible for the increased number of outliers in
cases where p �> 1/2.

6. Insurance application: censored claims data vs ultimates

We now proceed to analyze an insurance dataset consisting of 837 motor third-
party liability (MTPL) insurance claims from 1995 till 2010. This data set has
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Fig 3. Log-gamma distributions: bias, variance and mean squared error of the kernel estimator

(Hk = HK0
k in solid blue, HA

k = HK1
k in dashed red, HK2

k in dotted orange) and the Worms

estimator KW
k (dashed and dotted green), as a function of k. The top, middle and bottom

levels correspond to 2p < 1, 2p > 1 and 2p = 1, respectively.

been previously described and studied in Albrecher et al. (2017), Bladt et al.
(2020b) (without censoring, using ultimate values instead) and Bladt et al.
(2020a) (using both censoring and ultimate values).

The data exhibit right-censoring, that is, a claim size is partially observed
whenever the development of the claim payment is ongoing and the claim is
not yet closed. Closed claim sizes are thus considered as observed data points,
and open claims are considered as right-censored observations. In Bladt et al.
(2020a) it was argued that the assumption of random censoring and heavy-
tailedness is adequate. In the top panel of Figure 10 we have the three kinds
of data that are available (open claims, closed claims and ultimates), and on
the bottom panel the survival function of the open and closed claims using the
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Fig 4. Burr distributions. Bias, variance and mean squared error of the quantile estimator

based on: the kernel estimator (Hk = HK0
k in solid blue, HA

k = HK1
k in dashed red, HK2

k in

dotted orange) and the Worms estimator HW
k (dashed and dotted green), as a function of k.

The top, middle and bottom levels correspond to 2p < 1, 2p > 1 and 2p = 1, respectively.

Kaplan-Meier estimator together with the empirical survival function of the
ultimates. We observe that the tail of the latter under-estimates the tail index
that is suggested by using survival-analysis techniques.

We now apply the censored tail estimators introduced in this paper to the
data. Using the same mechanism as for the simulation study (and ρz = −1)
we find that k = 35 is the optimal threshold for the estimator using the kernel
K0 (see Figure 11). As observed in the simulations, it is perfectly reasonable
to consider the other estimators (HK1

k , HK2

k and the Worms estimator HW
k ) at

this value as well. This yields the estimates

ξ̂ = 0.841, 0.761, 0.654, 0.664.
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Fig 5. Fréchet distributions. Bias, variance and mean squared error of the quantile estimator

based on: the kernel estimator (Hk = HK0
k in solid blue, HA

k = HK1
k in dashed red, HK2

k in

dotted orange) and the Worms estimator HW
K (dashed and dotted green), as a function of k.

The top, middle and bottom levels correspond to 2p < 1, 2p > 1 and 2p = 1, respectively.

The latter two values correspond to the kernel K2 and to the Worms estimator
HW

k . Notice that they are quite close, and although the simulations suggest that
the two last values are the best performing, the 95% confidence interval for the
first of these estimators is given by [0.415, 1.267] which amply accommodates
all four estimates. Hence, in practice, with only one sample available, it is not
possible to make overly conclusive claims regarding the superiority of these point
estimates, since they are not statistically distinguishable. The corresponding
99.5% quantile estimators are given by

14957214, 12093195, 9129021, 9355831,
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Fig 6. Log-gamma distributions. Bias, variance and mean squared error of the quantile es-

timator based on: the kernel estimator (Hk = HK0
k in solid blue, HA

k = HK1
k in dashed

red, HK2
k in dotted orange) and the Worms estimator KW

k (dashed and dotted green), as a
function of k. The top, middle and bottom levels correspond to 2p < 1, 2p > 1 and 2p = 1,
respectively.

illustrating how small changes in tail estimation can lead to large differences in
the quantile scale. Note however that the quantile estimates based on HW

k and

HK2

k are quite stable for k ≤ 80.

A more refined analysis of ρz is known to be unstable, but can be routinely
applied (for instance using the mop function from the R package evt0). For the
Hill estimator of the Zi variates (ignoring censoring) this gives the estimate ρ̂z =
−0.616, which is relatively close to our choice of −1, given the high variability
of second-order parameter estimators. Repeating the above analysis with this
value has small quantitative influence and no additional qualitative insight, and
is thus omitted.



Trimmed extreme value estimators for censored heavy-tailed data 3131

Fig 7. Violin plots for the simulation results in case of Burr distributions under different non-
censoring asymptotic probabilities. We take the difference between estimated and theoretical
ξ. The cases 2p < 1 and 2p ≥ 1 correspond to heavy and light censoring, respectively. The

labels kern0 and kern2 correspond to the use of the estimators HK0
k and HK2

k . The specified
k = 34 is the theoretical optimal sample fraction.

Previous studies, using the ultimate values (cf. Bladt et al. (2020b), with sub-
sequent agreement in Albrecher et al. (2019)), that is, internal projected values
of the claim sizes at closure, suggested a tail index of about 0.48. In Bladt et al.
(2020a), combining this expert information with the estimator corresponding to
K0, intermediate values between the purely statistical 0.87 and the purely ex-
pert information 0.48 were suggested. The present value of 0.66 is an interesting
intermediate value that arises from a purely statistical procedure.

7. Conclusion

In this paper we developed novel extreme value estimators under right-censoring
in a kernel framework. The latter class is closed (in the asymptotic sense) under
the averaging operation of their trimmed versions, by a simple replacement of
kernel. The asymptotic behaviour is given for arbitrary kernels, which allows us
to compute, for instance, the expression for the MSE as a function of k. The
choice of the optimal threshold with respect to MSE is explored in connection
with the empirical variance of the trimmed trajectories, which leads to an au-
tomated way of selecting a threshold. As for the non-censored case, the idea of
selecting a threshold by exploiting this link, circumvents the usual estimation
difficulties and instabilities which arise in previous approaches in the literature
which typically require the estimation of the second-order parameter D, and
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Fig 8. Violin plots for the simulation results in case of Fréchet distributions under different
non-censoring asymptotic probabilities. We take the difference between estimated and theoret-
ical ξ. The cases 2p < 1 and 2p ≥ 1 correspond to heavy and light censoring, respectively. The

labels kern0 and kern2 correspond to the use of the estimators HK0
k and HK2

k . The specified
k = 30, 15 are the theoretical optimal sample fractions.

Fig 9. Violin plots for the simulation results in case of log-gamma distributions under dif-
ferent non-censoring asymptotic probabilities. We take the difference between estimated and
theoretical ξ. The cases 2p < 1 and 2p ≥ 1 correspond to heavy and light censoring, respec-

tively. The labels kern0 and kern2 correspond to the use of the estimators HK0
k and HK2

k .
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Fig 10. MTPL insurance claims data. Top: open (empty circle) and closed (full circle) claims,
together with the ultimate values (triangle) for the open claims. Bottom: Kaplan-Meier sur-
vival estimate for the open and closed claims, together with the empirical survival function of
the ultimates (dotted).

of ξ itself. Despite its simplicity, simulation studies suggest that the method
is also efficient. In fact, when compared with the theoretically optimal value,
the latter sometimes is too small to be of any practical relevance, and then our
adaptive estimator is superior. In the other cases, when the theoretically optimal
value is sensible, our estimator also performs well against it. We finally apply
the procedure to a well-understood insurance dataset, and the simulation stud-
ies suggest that the instances where K0 has been used in the literature (either
alone, or in combination with expert information) to analyze these data could
very possibly be improved by considering K2 instead. Interesting directions for
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Fig 11. Estimates of ξ for the MTPL insurance claim size data: Hk = HK0
k in solid blue,

HA
k = HK1

k in dashed red, HK2
k in dotted orange and the Worms estimator HW

k in dashed

and dotted green. The vertical line is at the estimated optimal k for Hk = HK0
k .

Fig 12. Estimates of the 99.5% quantile for the MTPL insurance claim size data based on the

tail estimators: Hk = HK0
k in solid blue, HA

k = HK1
k in dashed red, HK2

k in dotted orange and

the Worms estimator HW
k in dashed and dotted green. The vertical line is at the estimated

optimal k for Hk = HK0
k .

further research include trimming the kernel estimators from above, to remove
outliers from data, and to apply combined tail information using censored data
and expert information with the new kernels, improving the previous methods.
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Finally, it will be interesting to consider optimality criteria for the choice of k
for any kernel, and to work out criteria for the selection of the optimal kernel
from a purely mathematical point of view.
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