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Abstract: Count-valued time series data are routinely collected in many
application areas. We are particularly motivated to study the count time
series of daily new cases, arising from the COVID-19 spread. First, we
propose a Bayesian framework to study the time-varying semiparametric
AR(p) model for the count and then extend it to a more sophisticated
time-varying INGARCH model. We calculate posterior contraction rates
of the proposed Bayesian methods with respect to the average Hellinger
metric. Our proposed structures of the models are amenable to Hamiltonian
Monte Carlo (HMC) sampling for efficient computation. We substantiate
our methods by simulations that show superiority compared to some of the
existing methods that closely fit this setting. Finally, we analyze the daily
time series data of newly confirmed cases in NYC to study the spread of
COVID for three months.
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1. Introduction

Modeling count time series is important in many applications such as disease
incidence, accident rates, integer financial datasets such as price movement, etc.
This relatively new research stream was introduced in [50] and interestingly
he analyzed another outbreak namely the US 1970 Polio incidence rate. This
stream was furthered by [8] where Poisson generalized linear models (GLM)
with an autoregressive latent process in the mean are discussed. A wide range
of dependence was explored in [13] for simple autoregressive (AR) structure
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and external covariates. On the other hand, a different stream explored integer-
valued time series counts such as ARMA structures as in [6, 5] or INGARCH
structure as done in [51, 54, 52, 53]. However, from a Bayesian perspective, the
only work to the best of our knowledge is that of [45] where the authors discussed
an ARMA model for different count series parameters. However, their treatment
of ignoring zero-valued data or putting the MA structure by demeaned Poisson
random variable remains questionable. None of these works focused on the time-
varying nature of the coefficients except for a brief mention in [33].

Our goals are motivated by both the application and methodological develop-
ment. To the best of our knowledge, ours is the first attempt to model possibly
autoregressive count time series with time-varying coefficients which can be re-
garded as the time-varying analog of [19]. We consider a linear link-based GLM
route instead of the traditional exponential link [20], since linear link helps in
better interpretability of the coefficient functions. Linear link however requires
more stringent shape restrictions on the functions. We impose those by putting
constraints on the B-spline coefficients while modeling those coefficient func-
tions. However, it is possible to extend all the computations of the current
paper to an exponential link-based GLM framework. The mean function stands
for the overall spread and the autoregressive coefficients stand for the effect of
different lags. We are particularly motivated to study the spread of COVID-19
in New York City (NYC) from 23rd January, 2020 to 14th July, 2020 using
the daily count data of new cases. In terms of our motivating data application,
we wish to identify which lags are significant in our model so that it can be
directly linked to the incubation period for the symptoms to show up. We find
that some higher-order lags like 6, 7, and 8 are also significant. These findings
are in line with several research articles discussing the incubation length for
the novel coronavirus with a median of 6-7 days and 98% below 11 days. For
example, see [35]. We also find that after the lockdown or stay-at-home orders
it takes about 12-16 days to reach the peak and then the intercept coefficient
function starts decreasing. This is also an interesting find which characterizes
the fact that the number of infected but asymptomatic cases is large compared
to the new cases reported. Additional to the time-varying AR model proposal,
we also offer an analysis via a time-varying Bayesian integer-valued generalized
autoregressive conditional heteroscedasticity (TVBINGARCH) model that as-
sumes an additional recursive term in the conditional expectation (cf. (2.1)).
This extension offers some more comprehensiveness in the modeling part as
even TVBINGARCH with small orders can help us get rid of choosing an ap-
propriate maximum lag value. Since for a Poisson model, the mean is the same
as the variance, this can also be thought of as an extension to the GARCH
model in the context of count data. First introduced by [17], these models were
thoroughly analyzed in [54, 52, 51, 53, 1]. Our proposal for the time-varying
TVBINGARCH model adapts to the general non-stationary time-series theme
and also can be viewed as a new contribution from a Bayesian point of view.
Finally, we contrast the time-varying AR and the GARCH for both simulations
and real-data applications under different metrics of evaluation. We show that
our semiparametric time-varying model provides better estimates.
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Regression models with varying coefficients were introduced by [28]. They
modeled the varying coefficients using cubic B-splines. Later, these models have
been further explored in various directions [26, 4, 16, 21, 49]. Spline bases have
been routinely used to model the time-varying coefficients within non-linear time
series models [7, 30, 29, 2]. We also consider the B-spline series-based priors to
model the time-varying coefficient functions. We develop efficient computational
algorithms for the proposed models.

Apart from developing a computationally tractable hierarchical model, we
also establish posterior contraction rates of the proposed models. [24] established
posterior contraction for a general stationary Markov chain with much stricter
conditions. However, they relaxed some of those conditions in Theorem 8.29 of
[25]. To the best of our knowledge, the posterior contraction rate result of this
paper is a first for the time-varying Markov model based on minimal assumptions
under Poisson-link. We establish our results based on the approach, used to relax
the conditions in Theorem 8.29 of [24]. Our posterior contraction rate is with
respect to the average Hellinger metric. The primary theoretical hurdle is to
construct exponentially consistent tests in a time-varying Markov setup. Our
proposed test construction is inspired by [31, 37]. We construct the test relying
on the Neyman-Pearson lemma with respect to negative average log affinity
distance and calculate contraction rates. Then we show that the same rate holds
for the average Hellinger metric as well. We also discuss a pointwise inferential
tool by drawing credible intervals. Such tools are important to keep an objective
perspective in terms of the evolution of the time-varying coefficients without
restricting it to some specific trend models. See [33] ([32] for an earlier version)
for a comprehensive discussion on time-varying models and their applications.

The rest of the paper is organized as following. Section 2 describes the pro-
posed Bayesian models in detail. Section 3 discusses an efficient computational
scheme for the proposed method. We calculate posterior contraction rates in Sec-
tion 4. The performance of our proposed method in capturing true coefficient
functions is studied in Section 5 and we show excellent performance over other
existing methods. Section 6 deals with an application of the proposed method on
COVID-19 spread for NYC. Then, we end with discussions and possible future
directions in Section 7. Section 8 contains detailed theoretical proofs.

2. Modeling

Given the rapidly evolving nature of the pandemic, the patterns and num-
ber of new affected cases were changing rapidly over different geographical re-
gions. The rapid change in the observed counts makes all earlier time-constant
analysis inappropriate and builds a path where we can explore methodologi-
cal and inferential development in tracking down the trajectory of this spread.
Thus, we propose two novel semiparametric time-varying autoregressive mod-
els for counts to study the spread and examine the effects of these interven-
tions in the spread based on the time-varying coefficient functions. We first
consider the most general case where we model the data using a time-varying
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Bayesian integer-valued generalized autoregressive conditional heteroscedastic-
ity (TVBINGARCH) model where the conditional mean depends on the past
observations as well as past conditional means. However, the relatively simpler
process consisting of a time-varying mean/intercept function along with time-
varying autoregressive coefficient functions up to lag-p is also important keeping
in mind the scope of application to real data and its interpretation. For example,
the particular lags in an AR(p) model for the COVID-19 count data can crave
an interesting phenomenon in the lag dynamics of the spread. This might be
lost if we model the same using a TVBINGARCH(1,1) model since typically for
GARCH type models it is a standard practice to only consider smaller orders.

2.1. Time-varying generalized autoregressive conditional
heteroscedasticity model for counts

The integer-valued analog of generalized autoregressive conditional heteroscedas-
ticity model (GARCH) was proposed in [17] in the light of the observation
that the variability in the number of cases of campylobacterosis infections also
changes with level. We consider here a time-varying analog of such process. The
conditional distribution for count-valued time-series Xt given Ft−1 = {Xi : i ≤
(t− 1)} and Gt−1 = {λi : i ≤ (t− 1)} is,

Xt|Ft−1,Gt−1 ∼ Poisson(λt),

where λt = μ(t/T ) +

p∑
i=1

ai(t/T )Xt−i +

q∑
j=1

bj(t/T )λt−j . (2.1)

We call our method time-varying Bayesian Integer valued Generalized Auto
Regressive Conditional Heteroscedastic (TVBINGARCH) model. We impose
following constraints on the parameter space similar to [18],

P1 = {μ, ai : 0 < μ(x) < ∞, sup
x

∑
i,j

(ai(x) + bj(x)) < 1}. (2.2)

This constraint ensures a unique solution of the time-varying GARCH process as
discussed in [14, 38, 18]. Now, we put priors on the functions μ(·), ai(·) and bj(·)
such that they are supported in P1. Using the B-spline bases, we put following
hierarchical prior on the unknown functions,

μ(x) =

K1∑
j=1

αjBj(x) (2.3)

ai(x) =

K2∑
j=1

θijMiBj(x), 0 ≤ θij ≤ 1, 1 ≤ i ≤ p, (2.4)

bk(x) =

K3∑
j=1

ηkjMk+pBj(x), 0 ≤ ηkj ≤ 1, 1 ≤ k ≤ q, (2.5)
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Mi =
τi∑p

k=0 τk
, i = 1, . . . , p+ q, (2.6)

θij ∼U(0, 1) for 1 ≤ i ≤ p, 1 ≤ j ≤ K2, (2.7)

ηkj ∼U(0, 1) for 1 ≤ k ≤ q, 1 ≤ j ≤ K3, (2.8)

λ0 ∼Inverse-Gamma(d1, d1), (2.9)

where λ0 is the rate parameter for X0. The specification for the density of X0 is
required for computation. Otherwise we need to assume λ0 to be known which
is not reasonable for a real data application. We primarily focus on the special
case where p = 1, q = 1. Based on the constraints on the parameter space we
consider following prior for αj ’s and τi’s,

αj ∼ TN(0, c21, 0,∞), τi ∼ U(0, 1), (2.10)

where TN stands for the truncated normal with mean 0, variance c21 and trun-

cated to [0,∞). In above construction,
∑P

j=0 Mj = 1. Thus
∑p+q

j=1 Mj < 1 if

M0 > 0. As Π(M0 > 0) = 1, we have Π(
∑p+q

j=1 Mj < 1) = 1. Since 0 ≤ θij ≤ 1,

we have supx ai(x) ≤ Mi, and supx bj(x) ≤ Mp+j . Thus supx
∑p

i=1 ai(x) +∑q
j=1 bj(x) ≤

∑p+q
i=1 Mi < 1. We have

∑p+q
j=1 Mj = 1 if and only if τ0 = 0, which

has zero prior probability. On the other hand, we also have μ(·) ≥ 0 as we have
αj ≥ 0. Thus, the induced priors, described in (2.3)− (2.9) are well supported
in P1.

2.2. Time-varying auto-regressive model for counts

Although our previous modeling framework is more general, one may only wish
to study higher-order lag dependence from the past observations. Thus we con-
sider a simplified model in this subsection. The linear Poisson autoregressive
model [50, 6] is popular in analyzing higher order lag-dependence in count val-
ued time series. Due to the assumed non-stationary nature of the data, we
propose a time-varying version of this model. The conditional distribution for
count-valued time-series Xt given Ft−1 = {Xi : i ≤ (t− 1)} is,

Xt|Ft−1 ∼Poisson(λt) where λt = μ(t/T ) +

p∑
i=1

ai(t/T )Xt−i. (2.11)

We call our method time-varying Bayesian Auto Regressive model for Counts
(TVBARC). The rescaling of the time-varying parameters to the support [0,1]
is usual for in-filled asymptotics. Due to the Poisson link in (2.11), both condi-
tional mean and conditional variance depend on the past observations. The con-
ditional expectation of Xt in the above model (2.11) is E(Xt|Ft−1) = μ(t/T ) +∑p

i=1 ai(t/T )Xt−i, which needs to be positive-valued. To ensure that, we impose
the following constraints on parameter space for the time-varying parameters,

P2 = {μ, ai : 0 < μ(x) < ∞, sup
x

∑
k

ak(x) < 1}. (2.12)
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Note that, the conditions imposed (2.12) on the parameters are somewhat mo-
tivated by the stationarity conditions for the time-constant versions of these
models. This is not uncommon in time-varying AR literature. See [12, 22, 33]
for example. Even though the condition on μ(·) seems restrictive in the light of
what we need for invertible time-constant AR(p) process with Gaussian error, it
is not unusual when it is used to model variance parameters to ensure positivity;
it was unanimously imposed for all the literature mentioned above. Addition-
ally, the above references heavily depend on local stationarity: namely, for every
rescaled time 0 < t < 1, they assume the existence of an X̃i process which is
close to the observed process. One key advantage of our proposal is that it is
free of any such assumption. Our assumption of only the first moment is also
very mild for theoretical exploration in Section 4. Moreover, except for a very
general linear model discussed in [33], to the best of our knowledge, this is the
very first analysis of the time-varying parameter for count time-series modeled
by Poisson regression. Thus we choose to focus on the methodological devel-
opment rather than proving the optimality of these conditions. When p = 0,
our proposed model reduces to routinely used nonparametric Poisson regression
model as in [44].

To proceed with Bayesian computation, we put priors on the unknown func-
tions μ(·) and ai(·)’s such that they are supported in P2. The prior distributions
on these functions are induced through basis expansions in B-splines. Suitable
constraints on the coefficients are imposed to ensure the shape constraints as in
P2. Detailed description of the priors are given below,

μ(x) =

K1∑
j=1

αjBj(x) (2.13)

ai(x) =

K2∑
j=1

θijMiBj(x), 0 ≤ θij ≤ 1, (2.14)

Mi =
τi∑p

k=0 τk
, i = 1, . . . , p, (2.15)

θij ∼U(0, 1) for 1 ≤ i ≤ p, 1 ≤ j ≤ K2. (2.16)

Here Bj ’s are the B-spline basis functions. The parameters δj ’s are unbounded.
Based on the constraints on the parameter space we consider following prior for
αj ’s and τi’s,

αj ∼ TN(0, c21, 0,∞), τi ∼ U(0, 1), (2.17)

where TN stands for the truncated normal distribution with mean 0, variance c21
and truncated in [0,∞). The priors induced by the above construction are P2-
supported. The verification is very straightforward and similar to the previous
subsection.
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2.3. Model properties

In this paper, we only consider TVBINGARCH(1,1) which is commonly used for
the GARCH class of models. One drawback of TVBARC is the proper selection
of lag. To alleviate this, one may then consider the TVBINGARCH framework.
As in the stationary case, TVBINGARCH(1,1) can be viewed as TVBARC
with infinite order. Then the higher values in b1(·)’s are an indication that there
might be important higher lags in TVBARC. Besides, to infer about higher
lag dependence TVBARC is more suitable than TVBINGARCH. In our real
data illustration, we find that the TVBARC model identifies three important
higher-order lags 6,7, and 8 in COVID-19 spread. Such inference is difficult
to obtain from TVBINGARCH. If the CH coefficient b1(·) is uniformly zero,
TVBINGARCH(1,1) reduces to TVBARC(1). However, the computational steps
for TVBARC(1) do not easily follow from TVBINGARCH(1,1). Furthermore,
our theoretical result of TVBINGARCH requires a lower bound for the true CH
coefficient which is standard for time-varying GARCH class of models. Thus the
theoretical result of TVBARC does not easily follow from TVBINGARCH.

Towards writing the likelihood, note that our proposed models are non-
stationary since the coefficient functions ai(·), bj(·) are possibly not constant.
However, we still take a simple product of individual conditional likelihoods
for Xt’s rather than first locally approximating it by a stationary process. The
latter approach is more prominent in the frequentist framework and this phe-
nomenon is known as ‘locally stationary approximation’. This was introduced
in some seminal papers by [9, 10] and was later used in many time-varying lit-
eratures. See [12, 11, 46] among many others. Towards the Bayesian approach
of modeling such approximating phenomenon, interested readers can refer to
[39, 40]. However, the assumption of the existence of such an approximating
stationary process is somewhat stringent and is probably not required in the
Bayesian paradigm. For example, see [15] where the likelihood is formed by tak-
ing the product of individual conditional likelihoods for a non-stationary time-
series. Other approaches can be found in [27, 48] where the likelihoods for the
proposed non-stationary processes were computed without any local stationary
approximation. Moreover, note that such approximating stationary processes
can be shown to exist under the general smoothness conditions as outlined in
Theorem 1 in [12] (for tvARCH case) or Proposition 2.3 in [38](for tvGARCH
case). These are easily extendible to the Poisson setting and for more general
Holder smooth coefficient functions with probably an amended approximation
rate. So in a sense, our smoothness assumption and the parameter restriction
as (2.2) or (2.12) implies the existence of such stationary processes without us
implicitly putting additional assumption.

3. Posterior computation

In this section, we discuss the Markov Chain Monte Carlo (MCMC) sampling
method for posterior computation. Our proposed sampling is dependent on
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the gradient-based Hamiltonian Monte Carlo (HMC) sampling algorithm [36].
Hence, we show the gradient computations of the likelihood with respect to dif-
ferent parameters for TVBARC(p) and TVBINGARCH(p, q) in the following
two subsections.

We obtain the likelihood from the joint density of the data based on our
Poisson error model. Since the joint density can be written as the product of
conditionals, we can thus write the joint likelihood of the data as a product of
conditional densities. Detailed expressions for each case are separately presented
below. The likelihoods of the two models are constructed differently, thus we
present them separately.

3.1. TVBINGARCH structure

We only derive the computational steps for TVBINGARCH(1,1) which is the
frequent choice among GARCH-type models. While fitting this model, we as-
sume for any t < 0 Xt = 0, λt = 0. The expression for λ1 also involves λ0.
Thus, we need to additionally estimate the parameter λ0, the Poisson rate
parameter for X0. Here the likelihood for TVBINGARCH(1,1) is given by

P (X0)
∏T

t=1 P (Xt|Ft−1). We assume that the marginal distribution of X0 is
Poisson(λ0) and the prior for λ0 is Inverse-Gamma(d1, d2) as described in Sec-
tion 2.1. The complete likelihood L2 of the proposed Bayesian method of (2.1)
is given by

L2 ∝ exp

( T∑
t=1

[
− {μ(t/T ) + a1(t/T )Xt−1 + b1(t/T )λt−1

}
+Xt log

{
μ(t/T )

+ a1(t/T )Xt−1 + b1(t/T )λt−i}
]
−

K1∑
j=1

α2
j/(2c

2
1)

− (d1 + 1) log λ0 − d1/λ0

)
10≤θ11,ηij≤1,,0≤τi≤1,αj≥0,

We calculate the gradients of negative log-likelihood (− logL2) with respect to
the parameters β, θ, η and δ. The gradients are given below,

− d logL2

α1

=

(
1−

∑
t

B1(t/T )Xt−j

(μ(t/T ) + a1(t/T )Xt−j) + b1(t/T )λt−1)

)
+ αj/(2c

2
1),

− d logL2

θ11
= Mi

(
1−

∑
t

B1(t/T )Xt−j

(μ(t/T ) + aj(t/T )Xt−j) + bk(t/T )λt−1)

)
,

− d logL2

ηkj
= Mp+k

(
1−

∑
t

B1(t/T )λt−j

(μ(t/T ) + aj(t/T )Xt−j) + bk(t/T )λt−1)

)
,
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− d logL2

τj
=
∑
k

(Mj1{j=k} −MjMk)×
[ ∑

i≤p

θijBj(x)

(
1−

∑
t

Bj(t/T )Xt−j

(μ(t/T ) + aj(t/T )Xt−j) + b1(t/T )λt−1)

)
1{j≤p}+

∑
1≤k≤q

ηkjBj(x)

(
1−

∑
t

Bj(t/T )λt

(μ(t/T ) + aj(t/T )Xt−1) + b1(t/T )λt−1)

)
1{j>p}

]
.

The derivative of the likelihood concerning λ0 is calculated numerically by differ-
entiating from the first principles. Hence, it is sampled using the HMC algorithm
too.

3.2. TVBARC structure

Since we do not have any information of the process for t < 0, our computation
for TVBARC(p) is based on the likelihood

∏T
t=p P (Xt|Ft−1). This likelihood

may thus be regarded as a quasi-likelihood as we are looking at the joint density
of last T − p + 1 time points given the first p observations and it is similar to
the likelihood from [15]. This likelihood also shares some commonality with the
objective functions used for computation in [12, 22]. The complete posterior
likelihood L1 of the proposed Bayesian method in (2.11) is given by

L1 ∝ exp

( T∑
t=p

[
− {μ(t/T ) +

p∑
i=1

ai(t/T )Xt−i

}
+Xt log

{
μ(t/T )

+

p∑
i=1

ai(t/T )Xt−i}
]
−

K1∑
j=1

α2
j/(2c

2
1)

)
10≤θij≤1,0≤τi≤1,αj≥0,

where we have μ(x) =
∑K1

j=1 exp(βj)Bj(x), ai(x) =
∑K2

j=1 θijMiBj(x) and Mj =
exp(δj)∑p

k=0 exp(δk)
. We develop efficient MCMC algorithm to sample the parameter β, θ

and δ from the above likelihood. The derivatives of above likelihood with respect
to the parameters are easily computable. This helps us to develop an efficient
gradient-based MCMC algorithm to sample these parameters. We calculate the
gradients of negative log-likelihood (− logL1) with respect to the parameters β,
θ and δ. The gradients are given below,

− d logL1

αj
=

(
1−

∑
t

Bj(t/T )Xt

(μ(t/T ) +
∑

j aj(t/T )Xt−j)

)
+ αj/(2c

2
1),

− d logL1

θij
= Mi

(
1−

∑
t

Bj(t/T )Xt

(μ(t/T ) +
∑

j aj(t/T )Xt−j)

)
,
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− d logL1

τj
=

∑
k

(Mj1{j=k} −MjMk)
∑
i

θijBj(x)

(
1−

∑
t

Bj(t/T )Xt−j

(μ(t/T ) +
∑

j aj(t/T )Xt−j)

)
,

where 1{j=k} stands for the indicator function which takes the value one when
j = k.

As the parameter spaces of θij ’s and ηkj ’s have bounded support, we map
any Metropolis candidate, falling outside of the parameter space back to the
nearest boundary point of the parameter space. To obtain a good acceptance
rate, we tune our HMC sampler periodically. There are two tuning parameters
in HMC namely the leapfrog step, and the step size parameter. The step size
parameter is tuned to maintain an acceptance rate within the range of 0.6 to
0.8. The step size is reduced if the acceptance rate is less than 0.6 and increased
if the rate is more than 0.8. This adjustment is done automatically after every
100 iterations. However, we choose to pre-specify the leapfrog step at 30 and
obtain good results. Due to the increasing complexity of the parameter space
in TVBINGARCH, we consider updating all the parameters involved in ai(·)’s,
bk(·)’s, and λ0 together.

4. Large-sample properties

In this section, we obtain posterior contraction rates for the two proposed mod-
els. Posterior contraction measures the speed at which we can recover the true
parameter from the posterior distribution with increasing sample size. The no-
tion of recovery is specified by a semi- metric d.

Definition [25]: The posterior contraction rate at the true parameter κ0 ∈
A with respect to the semi-metric d on A is a sequence εT → 0 such that
Pκ0Π(κ : d(κ, κ0) > MT εT |X(T )) → 0 for every MT → ∞, where A denotes the
parameter space of θ0. Here X(T ) stands for the complete dataset.

Although TVBINGARCH(1,1) may reduce to TVBARC(1) assuming b1(x) =
0 for all x ∈ [0, 1], the required technical assumptions do not allow us to derive
the results for TVBARC as a special case for TVBINGARCH. For clarity in
presenting the assumptions under which the respective results are established,
we will make the conditions in (2.12) and (2.2) more specific. Since TVBARC
is a simpler model, we first develop the theoretical results for this model and
then make modifications to obtain the results for TVBINGARCH.

4.1. TVBARC structure

We start by studying large sample properties of the simpler AR model in (2.11).
For simplicity, we fix order p at p = 1 for this section however the results are
easily generalizable for any fixed order p with some additional assumptions. The
posterior distribution will be the same as in the previous section. The posterior
consistency is studied in the asymptotic regime of increasing sample size T . Let
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κ = (μ, a1) stand for the complete set of parameters. For sake of generality of
the method, we put a prior on K1 and K2 with probability mass function given
by,

Π(Ki = k) = bi1 exp[−bi2k(log k)
bi3 ], (4.1)

with bi1, bi2 > 0 and 0 ≤ bi3 ≤ 1 for i = 1, 2. Poisson and geometric probability
mass functions appear as special cases of the above prior density for bi3 = 1 or 0
respectively. These priors have not been considered while fitting the model as it
would require computationally expensive reversible jump MCMC strategy. We
study the posterior consistency with respect to the average Hellinger distance
on the coefficient functions which is

d21,T =
1

T
d2H(κ1, κ2) =

1

T

∫
(
√

f1 −
√
f2)

2,

where f1 =
∏T

t=1 Pκ1(Xt|Xt−1). Here P stands for the conditional Poisson den-
sity defined in (2.11). The contraction rate will depend on the smoothness of
true coefficient functions μ and a and the parameters b13 and b23 from the prior
distributions of K1 and K2. Let κ0 = (μ0, a10) be the truth of κ.

Assumptions (A): There exists constants 0 < Mμ < MX such that,

(A.1) At time t = 0, Eκ0(X0) < MX .
(A.2) The coefficient functions supx∈[0,1] μ0(x) < Mμ and supx∈[0,1] a10(x) <

1−Mμ/MX .
(A.3) infx∈[0,1] min(μ0(x), a10(x)) > ρ for some small ρ > 0.

Assumptions (A.1), (A.2) ensure

Eκ0(Xt) = Eκ0(Eκ0(Xt|Xt−1)) < Mμ +

(
1− Mμ

MX

)
MX < MX

by recursion. Assumption (A.3) is imposed to ensure strict positivity of param-
eters and is standard in time-varying literature that deals with such constrained
parameters.

Posterior consistency theory studies recovery of the ‘true’ parameter κ0 with
increasing sample size when the data is sampled from the distribution charac-
terized by κ0. Our notion of recovery is based on the average Hellinger metric
d21,T defined above.

Theorem 1. Under assumptions (A.1)-(A.3), let the true functions μ0(·) and
a10(·) be Hölder smooth functions with regularity level ι1 and ι2 respectively,
then the posterior contraction rate with respect to the distance d21,T is

max

{
T− ι1

2ι1+1 (log T )ι1/(2ι1+1)+(1−b13)/2, T− ι2
2ι2+1 (log T )ι2/(2ι2+1)+(1−b23)/2

}
.

where bij’s are specified in (4.1).
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For the proof, the first step is to calculate posterior contraction rate with

respect to average log-affinity r2T (f1, f2) = − 1
T log

∫
f
1/2
1 f

1/2
2 and then show

that r2T (f1, f2) � ε2T implies 1
T d

2
H(f1, f2) � ε2T . The average log-affinity provides

a unique advantage to construct exponentially consistent tests leveraging on the
famous Neyman-Pearson Lemma as has also been used in [37] for a multivariate
linear regression setup under group sparsity. The proof is postponed to Section 8.
The proof is based on the general contraction rate result from [25] and some
results on B-splines-based finite random series.

4.2. TVBINGARCH structure

Next, we discuss the more comprehensive tvBINGARCH model (2.1). To main-
tain simplicity in the proof, we again assume p = 1, q = 1. Similar to the previous
subsection, we put a prior on the number of B-spline bases, Ki with probability
mass function given by,

Π(Ki = k) = bi1 exp[−bi2k(log k)
bi3 ],

with bi1, bi2 > 0 and 0 ≤ bi3 ≤ 1 for i = 1, 2, 3. Let us assume that ψ = (μ, a1, b1)
be the complete set of parameters. We study the posterior consistency with
respect to the Hellinger distance on the coefficient functions which is

d22,T =
1

T
d2H(ψ1, ψ2) =

1

T

∫
(
√
f1 −

√
f2)

2,

where f1 = Pφ1(X0)
∏T

t=1 Pψ1(Xt|Xt−1, λt−1). Here P stands for the condi-
tional Poisson density defined in (1) and the marginal density of X0, Pφ1(X0)
is Poisson(λ10) as described in our computational steps.
For this structure, we modify the assumptions as
Assumptions(B): There exists constants 0 < Mμ < MX such that,

(B.1) At time t = 0, Eψ0(X0), λ0 < MX .
(B.2) The coefficient functions supx∈[0,1] μ0(x) < Mμ and supx∈[0,1](a10(x) +

b10(x)) < 1−Mμ/MX .
(B.3) infx∈[0,1] min(μ0(x), a10(x), b10(x)) > ρ for some small ρ > 0.

Assumptions (B.1), (B.2) ensure

Eψ0(Xt) = Eψ0(Eψ0(Xt|Xt−1, λt−1)) < Mμ +

(
1− Mμ

MX

)
MX < MX

by recursion. Thus we have, by Assumption (B.1-B.2)

Eψ0(Xt) < MX , Eψ0(λt) = Eψ0(Xt|Xt−1, λt−1) = Eψ0(Xt) < MX .

Assumption (B.3) is imposed to ensure strict positivity of parameters and is
standard in time-varying literature that deals with such constrained parameters.
Now we present our posterior contraction rate theorem below. The definition of
the contraction rate is the same as before.
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Theorem 2. Under assumptions (B.1)-(B.3), let the true functions μ0(·), a10(·)
and b10(·) be Hölder smooth functions with regularity level ι1, ι2 and ι3 respec-
tively, then the posterior contraction rate with respect to the distance d22,T is

max

{
T− ι1

2ι1+1 (log T )ι1/(2ι1+1)+(1−b13)/2, T− ι2
2ι2+1 (log T )ι2/(2ι2+1)+(1−b23)/2,

T− ι3
2ι3+1 (log T )ι3/(2ι3+1)+(1−b33)/2

}
.

The proof follows from a similar strategy as in Theorem 1. An outline of the
proof can be found in the Section 8.

5. Simulation studies

In this section, we study the performance of our proposed Bayesian method
in capturing the true coefficient functions. We compare both TVBARC and
TVBINGARCH methods with some other competing models. It is important to
note that, this is to the best of our knowledge first work in Poisson autoregression
with a time-varying link. Thus, we compare our method with the existing time-
series models with time-constant coefficients for count data and time-varying AR
with Gaussian error. We also examine the estimation accuracy of the coefficient
functions for estimating the truth.

The hyperparameter c1 of the truncated normal prior is set to 10 to ensure
weak informativeness. The hyperparameters for Inverse-Gamma prior d1 = 0.1,
which is also weakly informative. We consider 6 equidistant knots for the B-
splines based on comparing the AMSE scores. We choose the knot number after
which the AMSE score does not change significantly. We collect 10000 MCMC
samples and consider the last 5000 as post-burn-in samples for inferences. In
absence of any alternative method for the time-varying AR(p) model of count-
valued data, we compare the estimated functions with the true functions in terms
of the posterior estimates of functions along with its 95% pointwise credible
bands. The credible bands are calculated from the MCMC samples at each point
t = 1/T, 2/T, . . . , 1. We also compare different competing methods in terms
of average MSE (AMSE) score using the INGARCH method of tsglm from
R package tscount, GARMA using tscount as well, tvAR and our proposed
Bayesian methods. The AMSE is defined as 1

T

∑
t(Xt − λ̂t)

2. We estimate this
in terms of the posterior mean of AMSEs across MCMC as

AMSE =
1

5000

5000∑
S=1

1

T

∑
t

(Xt − λ̂S
t )

2,

where λ̂S
t is the posterior estimate of λt at S-th postburn sample.

5.1. Case 1: TVBINGARCH structure

For the tvBINGARCH case, we only consider one simulation settings p = 1, q =
1;Xt ∼ Poisson(μ(t/T ) + a1(t/T )Xt−1 + b1(t/T )λt−1). Two different choices
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for T have been considered, T = 100 and 200 and for x ∈ [0, 1] the coefficient
functions are,

μ0(x) =25 exp
(
− (x− 0.5)2/0.1

)
,

a1(x) =0.3(x− 1)2 + 0.1,

b1(x) =0.1x1.5 + 0.1

Figure 1 compares the estimated functions with the truth for sample size 200
for the model in (2.1) with p = 1, q = 1. The performance of our method is
compared to other competing methods in Tables 1.

Fig 1. Estimated coefficient functions for the TVBINGARCH(1,1) and sample size 1000.
Red is the true function, black is the estimated curve along with the 95% pointwise credible
bands in green.

Table 1

Average MSE comparison for different sample sizes across different methods when the true
model is (2.1) with p = 1, q = 1.

INGARCH(1,1) GARMA(1,1) tvAR(10) TVBINGARCH(1,1)
T = 100 27.38 27.60 24.50 22.83
T = 500 24.02 24.07 22.90 21.23

T = 1000 23.23 23.32 22.93 21.19

5.2. Case 2: TVBARC structure

Here, we consider two model settings p = 1;Xt ∼ Poisson(μ(t/T )+a1(t/T )Xt−1)
and p = 2;Xt ∼ Poisson(μ(t/T )+a1(t/T )Xt−1+a2(t/T )Xt−2) for t = 1, . . . , T .
Three different choices for T have been considered, T = 100, 500 and 1000. The
true functions are for x ∈ [0, 1],

μ0(x) =10 exp
(
− (x− 0.5)2/0.1

)
,

a10(x) =0.3(x− 1)2 + 0.1,

a02(x) =0.4x2 + 0.1.

We compare the estimated functions with the truth for sample size 1000 in
Figures 2 and Figure 3 for the models p = 1 and p = 2 respectively. Tables 2
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Table 2

AMSE comparison for different sample sizes across different methods when the true model
is (2.11) with p = 1.

INGARCH(1,0) GARMA(1,0) TVAR(1) TVBARC(1)
T = 100 11.60 11.18 11.41 8.65
T = 500 11.35 11.04 11.24 8.12

T = 1000 11.05 10.73 10.94 7.02

Table 3

AMSE comparison for different sample sizes across different methods when the true model
is (2.11) with p = 2.

INGARCH(2,0) GARMA(2,0) TVAR(2) TVBARC(2)
T = 100 18.02 17.28 13.04 11.01
T = 500 16.42 15.86 12.61 10.79

T = 1000 15.79 15.25 12.75 10.61

Fig 2. Estimated mean function in 1st column and estimated AR(1) coefficient function in
the 2nd column for the case p = 1 and sample size 1000. Red is the true function, black is
the estimated curve along with the 95% pointwise credible bands in green.

Fig 3. Estimated coefficient functions for the simulation case p = 2 and sample size 1000.
Red is the true function, black is the estimated curve along with the 95% pointwise credible
bands in green.
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and 3 illustrate the performance of our method with respect to other competing
methods.

Figure 1 and 2 show that our proposed Bayesian method captures the true
functions quite well for both of the two simulation experiments. We find that
the estimation accuracy improves as the sample size increases. As the sample
size grows, the 95% credible bands are also getting tighter, implying lower un-
certainty in estimation. This gives empirical evidence in favor of the estimation
consistency which has also been verified theoretically in Section 4. The average
mean square error (AMSE) is always the lowest for our method in Tables 2, 3
and 1.

6. COVID-19 spread at NYC

We collect the data on daily newly affected cases from 23rd January, 2020
to 14th July, 2020 from an open-source platform {https://www.kaggle.com/
sudalairajkumar/novel-corona-virus-2019-dataset}. The end date 14th July, 2020
is chosen as around that time NYC started the process of re-opening. The data
on daily new cases are illustrated in Figure 4. We were particularly interested
in NYC data as this city remained an epicenter in the US for about a month.
With the help of government interventions and sustained lock-down, the recov-
ery was significant in about 3 months. Such a time-varying nature of the data
motivated us to retrospect as to how the mean trend and AR trend behave
which can also shed some insight about effects of a lockdown or the contagious
spread.

Based on the findings on the incubation of the virus in [35] and others, it is un-
derstood that the symptoms often take some time after the virus affects through
contagion. Our idea is to consider different models with a varying number of lags
for this. We consider TVBARC(1), TVBARC(10), and TVBINGARCH(1,1)
here. The results for the TVBARC(1) are illustrated in Figure 5. We see that
during the spike in daily new cases the function a1(·) is the highest. Figure 6 de-
picts the estimated mean and coefficient functions from a TVBARC(10) model.
We find that the estimated a1(·) functions show a similar trend. On top of
that, we see that a6(·), a7(·) and a8(·) also have some effect. Finally, we fit our
TVBINGARCH(1,1) which might be considered TVBARC with infinite order.
Figure 7 depicts the estimated functions, the mean {μ(·)}, AR(1) {a1(·)} and
CH(1) {b1(·)} coefficient functions. In Table 4, we compare the AMSE scores
across different models. For all the models, we consider 12 equidistant knots
based on the AMSE scores as discussed in Section 5.

Figure 6 suggests that even lag 6, 7, and 8 have some significant contribution.
The effect of this lag is suppressed in Figure 5 and is expressed in terms of
b1(·) of Figure 7. The estimated mean functions also behave similarly for all
three cases. It shows a spike during the rise of daily new cases. After that, it
decreases which can talk about successful containment strategies in NYC. More
specifically it decreases after around 15 days since the strict implementation
of statewide lockdown on 20th March, 2020. This is consistent with what was

https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
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Fig 4. Daily new COVID-19 cases from 31st January, 2020 to 14th July, 2020 recorded at
NYC.

found in our unsubmitted preprint [43] through an empirical early-stage analysis
of the spread in different cities and countries.

The effect of lags 6, 7, and 8 can be attributed to the incubation period of the
virus. It can also lead to the finding that there was a weekly periodicity which is
probably due to shorter testing/administrative facilities being available during
the weekend. Note that our choice of fitting a TVBARC(10) model is more
general than separately fitting a seasonal/periodic time-series model. Another
important finding is coming from the overall trend of a1(·). It starts to decrease
when the number of cases starts going down. However later on it varies around
0.6 which can be attributed to the fact that the number of new cases did not
vary much and remained around the same level from the middle of May. The
credible bands look very small around the mean function which is probably due
to the large magnitude of the estimated function.

Table 4

Average MSE comparison for different methods on NYC data.

Method AMSE Method AMSE Method AMSE
INGARCH(1,1) 318056.3 GARMA(10,0) 1682976.1 TVBARC(1) 210258.9
GARMA(1,1) 329610.1 tvAR(1) 338970.6 TVBARC(10) 185777.9

AR(10,0) 1376133.7 tvAR(10) 274913.7 TVBINGARCH(1,1) 212168.1

7. Discussion

We propose a time-varying Bayesian autoregressive model for counts (TVBARC)
and a time-varying Bayesian integer-valued generalized autoregressive condi-
tional heteroskedastic model (TVBINGARCH) with linear link function within
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Fig 5. Estimated mean functions in 1st column and estimated AR coefficient functions in the
2nd column for NYC using TVBARC(1). Black is the estimated curve along with the 95%
pointwise credible bands in green for the mean and AR(1) function.

Fig 6. Estimated mean functions in 1st column and estimated AR coefficient functions in the
2nd column for NYC using TVBARC(10). Black is the estimated curve along with the 95%
pointwise credible bands in green for the mean function.

Poisson error to study the time series of daily new confirmed cases of COVID-19.
We develop a novel hierarchical Bayesian model that satisfies the stability con-
dition for the respective time-varying models and propose an HMC algorithm-
based MCMC sampling scheme. We also establish posterior contraction rate re-
sults of the proposed Bayesian methods. The ‘R’ function with an example code
can be found at https://github.com/royarkaprava/TVBARC. Relying on the
proposed hierarchical Bayesian model, one can develop a time-varying Bayesian

https://github.com/royarkaprava/TVBARC
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Fig 7. Estimated coefficient functions for the TVBINGARCH(1,1) on NYC data. Black is
the estimated curve along with the 95% pointwise credible bands in green.

model for positive-valued time-series data too. Our analysis of NYC data shows
that there is a time-varying effect of lags 6, 7 and 8. Some preliminary analyses
on COVID data using our model based on the data until April 24 are archived in
our unpublished pre-print [43]. There are some more interesting findings related
to significant lags for different countries.

The definition of the posterior contraction rate we followed involves a diverg-
ing sequence MT → ∞. If it is possible to replace MT with a large constant
M without changing εT , the contraction rate then holds in a slightly stronger
sense (see Chapter 8, [25]). Local stationary approximation of the proposed
non-stationary process is expected to help to establish such a result. Establish-
ing the Bernstein von-Mises type theorem to ensure asymptotic normality of
the posterior distribution will also be interesting. However, such results are not
yet available for the corresponding stationary cases. Nevertheless, it is also an
important direction of future research.

As future work, it will be interesting to include some country-specific infor-
mation such as demographic information, geographical area, the effect of envi-
ronmental time-series, etc in the model. These are usually important factors for
the spread of any infectious disease. We can also categorize the different types of
government intervention effects to elaborate more on the specific impacts of the
same. In the future we wish to analyze the number of deaths, number of recov-
ered cases, number of severe/critical cases, etc. for these diseases as those will
hopefully have different dynamics than the one considered here and can provide
useful insights about the spread and measures required. For computational ease,
we have considered the same level of smoothness for all the coefficient functions.
Fitting this model with different levels of smoothness might be able to provide
more insights. Lag selection is a difficult task for time-varying auto-regressive
models. One potential future direction would be to put sparsity inducing prior to
the time-varying coefficient functions in TVBARC for automatic lag detection.
Other than building time-varying autoregressive models for count-valued data
using the hierarchical structure from this article, one interesting future direction
is to extend this model for vector-valued count data. In general, it is difficult
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to model multivariate count data. There are only a limited number of methods
to deal with multivariate count data [3, 47, 41]. Building on these multivari-
ate count data models, one can extend our time-varying univariate AR(p) to a
time-varying vector-valued AR(p). On the same note, even though we imposed
the Poisson assumption for increased model interpretation, in the light of the
upper bounds for the KL distance, it is not a necessary criterion and can be
applied to a general multiple non-stationary count time-series. Extending some
of the continuous time-series invariance results for nonlinear non-stationary and
multiple series from [34] to a count series regime will be an interesting chal-
lenge. Finally, we wish to undertake an autoregressive estimation of the basic
reproduction number with the time-varying version of compartmental models
in epidemiology.

8. Proof of Theorems

We study the frequentist property of the posterior distribution in increasing T
regime assuming that the observations are coming from a true density f0 char-
acterized by the parameter κ0. We follow the general theory of [23] to study
the posterior contraction rate for our problem. In the Bayesian framework, the
density f is itself a random measure and has distribution Π which is the prior
distribution induced by the assumed prior distribution on κ. The posterior dis-
tribution of a neighborhood UT = {f : d(f, f0) < εT } around f0 given the
observation X(T ) = {X0, X1, . . . , XT } is

ΠT (U
c
T |X(T )) =

∫
Uc

T
f(X(T ))dΠ(κ)∫
f(X(T ))dΠ(κ)

8.1. General proof strategy

The posterior consistency would hold if above posterior probability almost surely

goes to zero in F
(T )
κ0 probability as T goes to ∞, where F

(T )
κ0 is the true distribu-

tion ofX(T ). Recall the definition of posterior contraction rate; for a sequence εT
if ΠT (d(f, f0)|X(T ) ≥ MT εT |X(T )) → 0 in F

(T )
κ0 -probability for every sequence

MT → ∞, then the sequence εT is called the posterior contraction rate. If the
assertion is true for a constant MT = M , then the corresponding contraction
rate becomes slightly stronger.

Note that for two densities f0, f characterized by κ0 and κ respectively, the
Kullback-Leibler divergences are given by

KL(κ0, κ) =

∫
f0 log

f0
f

= Eκ0

[
log

PQκ0
(X0)

∏T
t=1 Pκ0(Xt|Ft−1, λ0)

PQκ(X0)
∏T

t=1 Pκ(Xt|Ft−1, λ0)

]
.

Assume that there exists a sieve in parameter space such that we have Π(W c
T ) ≤

exp(−(CT + 2)Tε2T ) and tests χT such that

Eκ0(χT ) ≤ e−LTTε2T /2 sup
κ∈WT :d2(f,f0)>LT ε2T

Eκ(1− χT ) � e−LTTε2T
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for some LT > CT + 2.

Say UT = {f : d2(f, f0) ≤ LT ε
2
T } and also define ST = {

∫ f(XT )
f0(XT )

dΠ(κ) ≥
ΠT (

1
T KL(κ0, κ) < εT ) exp(−CTTε

2
T )}. We can bound the posterior probability

from above by,

ΠT (d(f, f0) ≥ MT εT |X(T )) (8.1)

≤ χT + (1− χT )

∫
Uc

T
f(XT )dΠ(κ)∫

f(X(T ))dΠ(κ)

= χT + (1− χT )

∫
Uc

T

f(X(T ))
f0(X(T ))

dΠ(κ)∫ f(X(T ))
f0(X(T ))

dΠ(κ)

≤ χT + �{Sc
T }+ (1− χT )

∫
Uc

T

f(X(T ))
f0(X(T ))

dΠ(κ)

exp(−CTTε2T )ΠT { 1
T KL(κ0, κ) < εT }

≤ χT + �{Sc
T }+

exp(CTTε
2
T )

ΠT { 1
T KL(κ0, κ) < εT }

(1− χT )

∫
Uc

T
f(X(T ))

f0(X(T ))
dΠ(κ) (8.2)

Taking expectation with respect to κ0, first term goes to zero by construction
of χT . The second term Eκ0�{Sc

T } goes to zero due to Lemma 8.21 of [25]
for any sequence CT → ∞. We would require that ΠT { 1

T KL(κ0, κ) < εT } ≥
exp(−Tε2T ). Then for the third term,

Eκ0 exp((CT + 1)Tε2T )(1− χT )

∫
Uc

T
f(X(T ))

f0(X(T ))
dΠ(κ)

= exp((CT + 1)Tε2T )

∫
Uc

T

f(X(T ))(1− χT )dΠ(κ)

≤ exp(CT + 1)Tε2T )

[∫
Uc

T∩WT

f(X(T ))(1− χT )dΠ(κ) + Π(W c
T )

]

= exp((CT + 1)Tε2T )

[
sup

κ∈WT :d2(f,f0)>LT ε2T

Eκ(1− χT ) + Π(W c
T )

]

� exp(−Tε2T ). (8.3)

Thus we need three things to calculate posterior contraction rate.

(i) (Prior mass Condition) We need ΠT { 1
T KL(κ0, κ) < εT } ≥ exp(−Tε2T ),

(ii) (Sieve) construct the sieve WT such that Π(W c
T ) ≤ exp(−(CT + 2)Tε2T )

and
(iii) (Test construction) exponentially consistent tests χT .

We first study the contraction properties with respect to d2(f, f0) = r2T (f, f0) =
− 1

T log
∫ √

ff0 and then show that the same rate holds for average Hellinger
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1
T d

2
H(f, f0). Note that LT can be taken as LT = M2

T . With the above gen-
eral structure, we now proceed to prove individual theorems focusing on the
TVBARC and the TVINGARCH cases.

8.2. Proof of Theorem 1

For the sake of technical convenience we show our proof for time-varying AR
model with 1 lag only. All the proofs go through for higher lags with the same
technical tools.

8.2.1. KL Support

The likelihood based on the parameter space κ is given, Pκ(X0)
∏T

t=1Pκ(Xt|Xt−1).
Let Qκ,t(Xt) be the distribution of Xt with parameter space κ.

We have

R = log

∏T
t=1 Pκ0(Xt|Ft−1, λ0)∏T
t=1 Pκ(Xt|Ft−1, λ0)

=
T∑

t=1

[−{μ0(t/T )− μ(t/T )} − {a01(t/T )− a1(t/T )}Xt−1

+Xt{log(μ0(t/T ) + a01(t/T )Xt−1)

− log(μ(t/T ) + a1(t/T )Xt−1)}] (8.4)

Then KL(κ0, κ) = Eκ0(R). We have in light of MVT,

|R| ≤
T∑

t=1

[|μ(t/T )− μ0(t/T )|+ |a1(t/T )− a01(t/T )|Xt−1 (8.5)

+
Xt

μ∗(t/T ) + a1∗(t/T )Xt−1
{|μ(t/T )− μ0(t/T )|+ |a1(t/T )− a01(t/T )|Xt−1}]

≤ T‖μ− μ0‖∞ + ‖a1 − a01‖∞
∑
t

Xt−1

+ ‖μ− μ0‖∞/ρ
∑
t

Xt + ‖a1 − a01‖∞/ρ
∑
t

Xt, (8.6)

under the assumption that κ(·) = (μ(·), a1(·), b1(·)) and κ0(·) = (μ0(·), a10(·),
b10(·)) are close and also κ∗ is close to both and also in conjunction with
Assumption (A.3) to imply inft a1∗(t/T ) > ρ and Assumption (A.2) which
implies E(Xt) < MX . Then for the first term we use the bound μ∗(t/T ) +
a1∗(t/T )Xt−1 > ρ and for the second term the bound μ∗(t/T )+a1∗(t/T )Xt−1 >

ρXt−1 is used to have |μ(t/T )−μ0(t/T )|+|a(t/T )−a(t/T )|Xt−1

μ∗(t/T )+a1∗(t/T )Xt−1
≤ ‖μ−μ0‖∞/ρ+‖a1−

a01‖∞/ρ for all t. Thus,

1

T
E(R) � ‖μ− μ0‖∞ + ‖a1 − a01‖∞. (8.7)
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8.2.2. Posterior contraction in terms of average negative log-affinity

In this section, we focus on the requirements to calculate posterior contraction
rate as in Section 8.1.We first show posterior consistency in terms of average

negative log-affinity which is defined as r2T (f1, f2) = − 1
T log

∫
f
1/2
1 f

1/2
2 between

f1 and f2. Here, we have f1 =
∏T

i=1 Pκ1(Xi|Xi−1). Then we show that, having
r2T (f1, f0) � ε2n implies that our distance metric d22,T (f1, f0) � ε2n.

Proceeding with the rest of the proof of Theorem 1, we use the results of
B-Splines, ‖μ − μ0‖∞ ≤ ‖α − α0‖∞, where α = {αj} and ‖a1 − a10‖∞ ≤
‖γ − γ0‖∞, where γj = θ1jM1, such that γj < 1. The Hölder smooth functions
with regularity ι can be approximated uniformly up to order K−ι with K many
B-splines. Thus we have εT � max{K−ι1

1T ,K−ι2
2T }.

We need to provide a lower bound to the prior probability as required by (i).
We have the result (8.7) and the prior probabilities Π(‖α − α0‖∞ � εT , ‖γ −
γ0‖∞ � εT ) � εK1T+K2T

T based on the discussion of A2 from [44]. The rate of
contraction cannot be better than the parametric rate T−1/2, and so log(1/εT ) �
log T . Thus (i) requires that in terms of pre-rate ε̄T , we need (K1T+K2T ) log T �
T ε̄2T .

In our problem, we consider following sieve as required by (ii)

WT = {K1,K2, α, γ : K1 ≤ K1T ,K2 ≤ K2T , ‖α‖∞ ≤ AT ,min(α, γ) > ρT ,

γ ≤ 1−AT /BT , λ0 ≤ BT , AT < BT }, (8.8)

where AT , BT are at least polynomial in T and λ0 is the mean of X0 and
KT = max{K1T ,K2T }. We take ρT � T−a with a < 1, AT � T a1 , BT � T a2

with a2 > a1 for technical need. Note that, for κ ∈ WT , we have Eκ(Xt) < BT .
We need to choose these bounds carefully so that we have Π(W c

T ) ≤ exp(−(1 +
C1)Tε

2
T ), which depend on tail properties of the prior. We have, Π(W c

T ) =
Π[K1 > K1T ,K2 > K2T , αK1T

∈ {x : inf x > ρT , supx < AT , γK2T
/∈ {x :

inf x > ρT , supx < 1− AT

BT
}, λ0 > BT ].

Hence we have, Π(W c
T ) ≤ Π(K1 > K1T ) + Π(K2 > K2T ) + Π{αK1T

/∈
[ρT , AT ]

K1T } + Π{γK2T
/∈
[
ρT , 1− AT

BT

]K2T

} + Π{λ0 > BT } where αK1T
is

the vector of full set of coefficients of length K1T and γK2T
is the vector of

coefficients of length K2T . The quantity Π[αK1T
/∈ [ρT , AT ]

K1T can be fur-
ther upper bounded by K1TΠ(α1 /∈ [ρT , AT )]) ≤ K1T exp{−R1T

a3}, for some
constant R1, a3 > 0 which can be verified from the discussion of the assump-
tion A.2 of [44] for our choice of prior which exponential. On the other hand,

Π{γK2T
/∈
[
ρT , 1− AT

BT

]K2T

≤ K2TΠ(γ1 /∈ [ρT , 1 − AT

BT
]) ≤ K2T exp{−R2T

a4}
for some constant R2, a4 > 0 which can be verified from the proof of [42]. The
inverse-gamma prior of λ0 has exponential tail similar to α1 and thus can be
ignored as K1T grows with T . Since BT > AT , the tail of λ0 can be upper
bounded by tail of α1

Hence, Π(W c
T ) � F1(K1T ) + F2(K2T ) + (K1T +K2T ) exp{−RT a5}. The two

functions F1 and F2 in the last expression stand for the tail probabilities of
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the prior of K1 and K2. We can calculate their asymptotic order as, F1(x) =
Π(K1 > x) � exp{−x(log x)b13} and F2(x) = Π(K2 > x) � exp{−x(log x)b23}.
We need Π(W c

T ) � exp{−(1 + CT )Tε
2
T }. Hence, we calculate pre-rate from the

following equation for some sequence HT → ∞,

K1T (log T )
b13 +K2T (log T )

b23 � HTT ε̄
2
T , log(K1T +K2T ) +HTT ε̄

2
T � T a5 .

(8.9)

Now, we construct test χT such that

Eκ0(χT ) ≤ e−LTTε2T /2 sup
κ∈WT :r2T (κ,κ0)>LT ε2T

Eκ(1− χT ) � e−LTTε2T

for some LT > CT + 2.
To construct the test as required in (iii), we first construct the test for point

alternative H0 : κ = κ0 vs H1 : κ = κ1. The most powerful test for such problem
is Neyman-Pearson test φ1T = �{f1/f0 ≥ 1}. For r2T > LT ε

2
T , we have

Eκ0φ1T = Eκ0(
√

f1/f0 ≥ 1) ≤
∫ √

f1f0 ≤ exp(−LTTε
2
T ),

Eκ1(1− φ1T ) = Eκ1(
√

f0/f1 ≥ 1) ≤
∫ √

f0f1 ≤ exp(−LTTε
2
T ).

It is natural to have a neighborhood around κ1 such that the Type II error
remains exponentially small for all the alternatives in that neighborhood under
the test function φ1T . By Cauchy-Schwarz inequality, we can write that

Eκ(1− φ1T ) ≤ {Eκ1(1− φ1T )}1/2{Eκ1(f/f1)
2}1/2.

In the above expression, the first factor is already exponentially decaying. The
second factor can be allowed to grow at most of order ecTε2T for some positive
small constant c. We show that Eκ1(f/f1)

2 is bounded for every κ such that

‖μ− μ1‖∞ ≤
√
ρT√
T

, ‖a− a1‖∞ ≤
√
ρT√
TBT

.

We have, in the light of AM-GM inequality,

Eκ1(f/f1)
2 =

∫
f2

f2
1

f1 =

∫
f

f1
f = Eκ

f

f1
= Eκ

T∏
t=1

f(Xt|Xt−1)

f1(Xt|Xt−1)

≤ 1

T

∑
t=1

Eκ

(
f(Xt|Xt−1)

f1(Xt|Xt−1)

)T

Towards uniformly bounding the summand in the above display, we write

Eκ

(
f(Xt|Xt−1)

f1(Xt|Xt−1)

)T
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= EXt−1,κ

∞∑
Xt=0

{f(Xt|Xt−1)}T
{f1(Xt|Xt−1)}T

f(Xt|Xt−1)

= EXt−1,κ exp[−T (λ− λ1)− λ]

∞∑
Xt=0

(
λT+1

λT
1

)Xt

/Xt!

= EXt−1,κ exp[−T (λ− λ1)− λ+
λT+1

λT
1

]

= EXt−1,κ exp

[
− T{μ(t/T )− μ1(t/T )} − T{a1(t/T )− a11(t/T )}Xt−1

− μ(t/T )− a1(t/T )Xt−1 +
(μ(t/T ) + a1(t/T )Xt−1)

T+1

(μ1(t/T ) + a11(t/T )Xt−1)T

]
. (8.10)

where, λ = μ(t/T )+a1(t/T )Xt−1, λ1 = μ1(t/T )+a11(t/T )Xt−1 and EXt−1,κ de-
notes unconditional expectation over Xt−1 under the density f with parameter
κ. Let us define r1 = ‖μ− μ1‖∞ and r2 = ‖a1 − a11‖∞

Assuming μ(t/T )−μ1(t/T ) and a1(t/T )− a11(t/T ) very small, we can write[
(μ(t/T ) + a1(t/T )Xt−1)

T+1

(μ1(t/T ) + a11(t/T )Xt−1)T

]

=

{
1 +

μ(t/T )− μ1(t/T ) + (a1(t/T )− a11(t/T ))Xt−1

μ1(t/T ) + a11(t/T )Xt−1

}T

(8.11)

× (μ(t/T ) + a1(t/T )Xt−1)

≈
{
1 + T

μ(t/T )− μ1(t/T ) + (a1(t/T )− a11(t/T ))Xt−1

μ1(t/T ) + a11(t/T )Xt−1

}
(8.12)

× (μ(t/T ) + a1(t/T )Xt−1) (8.13)

For the above approximation to hold, we need

μ(t/T )− μ1(t/T ) + (a1(t/T )− a11(t/T ))Xt−1

μ1(t/T ) + a11(t/T )Xt−1

to be small. To verify that, observe that∣∣∣∣μ(t/T )− μ1(t/T ) + (a1(t/T )− a11(t/T ))Xt−1

μ1(t/T ) + a11(t/T )Xt−1

∣∣∣∣ ≤ r1
ρT

+
r2
ρT

=
1√
TρT

(1 +
1√
BT

).

As we have ρT = T−a with a < 1, it follows directly. Thus (8.10) before EXt−1,κ

applying on (8.13) becomes

exp

[
[T{μ( t

T )− μ1(
t
T )}+ T{a1( t

T )− a11(
t
T )}Xt−1]

μ1(
t
T ) + a11(

t
T )Xt−1

]
(8.14)
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× exp

[
[{μ( t

T )− μ1(
t
T )}+ {a1( t

T )− a11(
t
T )}Xt−1]

μ1(
t
T ) + a11(

t
T )Xt−1

]
≤ exp[Tr21/ρT + 2Tr1r2/ρT + Tr22Xt−1/ρT ] (8.15)

The bound in (8.15) is obtained by applying a combination of the following
inequalities μ(t/T ) + a1(t/T )Xt−1 > ρT or > ρTXt−1, |μ(t/T )− μ1(t/T )| < r1
and |a1(t/T )−a11(t/T )| < r2. Taking q = Tr22/ρT , last part becomes E(eqXt−1)
after taking exectation over (8.15). We have E(eqX0) = eλ0(e

q−1) < eBT (eq−1) =
eQ for Q = BT (e

q − 1) =⇒ (eq − 1) = Q/BT , BT is the upper bound for λ0

in the sieve). We will show E(eqX1) < Q under the above choice of r1 and r2.
Then by recursion it holds for all t. We use the result eq − 1 ≤ 2q for q < 1.
With λ1(X0) = μ(1) + a1(1)X0, we have

E(eqX1) = E(E(eqX1 |X0)) = E(eλ1(X0)(e
q−1)) = e(e

q−1)μ(1)eλ0(e
(eq−1)a1(1)−1)

Then choose sieve parameters such that Qa1/BT = a1(1)(e
q − 1) ≤ 2a1(1)q is

very small which is ensured as q is very small. Then μ(1)Q/BT +λ0(e
Qa1(1)/BT −

1) ≈ Qμ(1)/BT + λ0(
Qa1(1)
BT

) ≤ Q{μ(1)/BT + a1(1)} < Q as within the sieve

μ(1)/BT + a1(1) < AT /BT + (1 − AT /BT ) = 1. Hence, E(eqX1) < eQ. Recur-
sively, for all t, we can show E(eqXt) < eQ.

Our primary goal of showing Eκ1(f/f1)
2 < ∞ can be fulfilled if Q is a

constant, independent of T . To ensure Q is independent of T we need BT (e
q−1)

is constant. It suffices to make qBT constant as qBT < BT (e
q − 1) < 2qBT .

Thus, for r2 ≤
√
ρT√

TBT
and in the light of (8.15) r1 ≤

√
ρT√
T

we have Eκ1

(
f
f1

)2
bounded.

The test function χT satisfying exponentially decaying Type I and Type II
probabilities is then obtained by taking maximum over all tests φjT ’s for each
ball, having above radius. Thus χT = maxj φjT . Type I and Type II probabilities
are given by

P0(χT ) ≤
∑
j

P0φjT ≤ DTP0φjT ,

sup
κ∈WT :r2T (κ,κ0)>LT ε2T

P (1− χT ) ≤ exp(−TLT ε
2
T ).

Hence, we need to show that logDT � Tε2T , where DT is the required number
of balls of above radius needed to cover our sieve WT . We have

logDT ≤ logD(r1, ‖α‖∞ ≤ AT ,min(α) > ρT , ‖ · ‖∞)

+ logD(r2, ‖γ‖∞ ≤ 1− AT

BT
,min(γ) > ρT , ‖ · ‖∞)

≤ K1T log(3K1TAT /r1) +K2T log(3K2T /r2) (8.16)

Given our choices of AT , BT and ρT , the two radii r1 and r2 are some fractional
polynomials in T . Thus logDT � (K1T + K2T ) log T , which is required to be
� Tε2T as in the prior mass condition due to (i).
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Based on (8.9), we thus have K̄1T � T 1/(2ι1+1)(log T )−1/(2ι1+1), K2T �
T 1/(2ι2+1)(log T )−1/(2ι2+1). A pre-rate may thus be expressed as

ε̄T = max

{
T−ι1/(2ι1+1)(log T )ι1/(2ι1+1), T−ι2/(2ι2+1)(log T )ι2/(2ι2+1)

}
.

The actual rate will be slower that pre-rate. Now, the covering number con-
dition, prior mass conditions and basis approximation result give us (K1T +
K2T ) log T � Tε2T and εT � max{K−ι1

1T ,K−ι2
2T }. Combining all these condi-

tions, we would thus require that K1T � T 1/(2ι1+1)(log T )2ι1/(2ι1+1)−b13 , K2T �
T 1/(2ι2+1)(log T )2ι2/(2ι2+1)−b23 . Hence we calculate the posterior contraction
rate as εT equal to

max

{
T

− ι1
2ι1+1) (log T )ι1/(2ι1+1)+(1−b13)/2, T

− ι2
2ι2+1) (log T )ι2/(2ι2+1)+(1−b23)/2

}
.

8.2.3. Posterior contraction in terms of average Hellinger

We can write Reyni divergence as r2T = − 1
T log

∫ √
f0f1 = − 1

T logEκ0

√
f1
f0
. We

need to show r2T � ε2T implies that d22,T (κ0, κ) � ε2T as εT goes to zero.

If r2T ≤ ε2T , we have
(
Eκ0

√
f1
f0

)−1/T

≤ exp(ε2T ) which implies for small ε2T ,

we have
(
Eκ0

√
f1
f0

)1/T
≥ 1 − ε2T . By Cauchy-Squarz inequality

(∫ √
f0f1

)2 ≤∫
f0
∫
f = 1. Thus we have,

1− ε2T ≤
(
Eκ0

√
f1
f0

)1/T

≤ 1,

Since d2H(f1, f0) = 2(1− Eκ0

√
f1
f0
)

(
Eκ0

√
f1
f0

)1/T

=

{
1−

(
1− Eκ0

√
f1
f0

)}1/T

≈ 1− 1

2T
d2H(f1, f0).

Thus 1
T d

2
H(f1, f0) � ε2T . Thus it is consistent under average Hellinger distance.

8.3. Proof of Theorem 2

The proof will follow similar path as in the previous section. Thus we just specif-
ically touch upon the parts that require different treatment. We can rewrite
history of the INGARCH process as {Ft−1,Gt−1} = {Ft−1, λ0}. For the IN-
GARCH case, the likelihood based on the parameter space κ is different from
above and is given by, Pψ0(X0, λ0)

∏T
t=1 Pψ(Xt|Ft−1, λ0). Since all the steps are

similar for the proof of Theorem 2, we only provide an outline. First to bound
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KL by the sup-norm distances among functions, we need to tackle |b11(t/T )λ1t−
b01(t/T )λ0t|. For this term we have

|b11(t/T )λ1t − b01(t/T )λ0t| ≤ λ0t‖b11 − b01‖∞ +max
t

b11(t)|λ1t − λ0t|. (8.17)

When ψ1 is near ψ0, we have for all t

|λ1t − λ0t| ≤ ‖μ1 − μ0‖∞ +Xt−1‖a11 − a01‖∞ + (1− Mμ

MX
)|λ1,t−1 − λ0,t−1|

+ λ0,t−1|b11 − b01|∞

as we can upper bound maxt b11(t) by (1− Mμ

MX
) since ψ1 is close to ψ0. We have

T−1∑
t=1

Mμ

MX
|λ1t − λ0t|+ |λ1T − λ0T |

≤ T‖μ1 − μ0‖∞ +
∑
t

Xt−1‖a11 − a01‖∞ + (1− Mμ

MX
)|λ10 − λ00|

+
∑
t

λ0,t−1|b11 − b01|∞

As Mμ < MX ,

T∑
t=1

|λ1t − λ0t| ≤
MX

Mμ
{T‖μ1 − μ0‖∞ +

∑
t

Xt−1‖a11 − a01‖∞

+ (1− Mμ

MX
)|λ10 − λ00|+

∑
t

λ0,t−1|b11 − b01|∞}.

which implies,

E

T∑
t=1

|λ1t − λ0t| ≤
MX

Mμ
{T‖μ1 − μ0‖∞ + TMX‖a11 − a01‖∞

+ (1− Mμ

MX
)|λ10 − λ00|+ TMX |b11 − b01|∞}. (8.18)

Using the definition of R as in (8.4), we have

|R| ≤
T∑

t=1

[
|λ1t − λ0t|+

Xt

μ∗(t/T ) + a1∗(t/T )Xt−1
|λ1t − λ0t|

]
(8.19)

The first part follows directly. For the second part as ψ1 and ψ0 are close

∑
t

E

(
E

(
Xt

λ∗t
|λ1t − λ0t|

∣∣ Ft

))
≤
∑
t

MX

ρ
E(|λ1t − λ0t|)

=
MX

ρ
E(
∑
t

|λ1t − λ0t|).
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Thus E(RT ) can again be bounded by sup-norm differences in functions as before
and |λ10 − λ00| using (8.18). Next, we need to construct a sieve and construct
tests. We consider similar sieve

WT = {K1,K2,K3α, γ1, γ2 : K1 ≤ K1T ,K2 ≤ K2T ,K3 ≤ K3T , ‖α‖∞ ≤ AT ,

min(α, γ1, γ2) > ρT ,max γ1 +max γ2 ≤ 1−AT /BT , λ0 ≤ BT },
(8.20)

as in the previous problem. Within the sieve, we have EEt−1(max(Xt, λt)) < BT .
Here the extra terms such as K3 stand for number of basis in b1(t) and the vec-
tors γ1 and γ2 correspond to the B-spline coefficients of the functions a1(t) and
b1(t) respectively. Also note that we now have a lower bound for AT for technical
need. We take ρT ≈ T−a with a < 1, AT = BT (1− exp(log T/T )ρT ), BT ≈ T a2

for sufficiently large T such that exp(log T/T )ρT < 1. Within the sieve again we
use a variant of above inequality. Note that within the sieve E(Xt) ≤ BT and
E(λt) ≤ BT .

We have that,

|λ1t − λt| ≤ ‖μ1 − μ‖∞ +Xt−1‖a11 − a1‖∞ + (1− AT

BT
)|λ1,t−1 − λt−1|

+ λt−1|b11 − b01|∞ (8.21)

and also,

|λt − λ1t|
λt

≤ 1

ρT
‖μ− μ1‖∞ +

1

ρT
‖a1 − a11‖∞ +

1−AT /BT

ρT

|λt−1 − λ1,t−1|
λt−1

+
1

ρT
‖b1 − b11‖∞

By recursion,

|λt − λ1t|
λt

≤ Gt
T − 1

(GT − 1)ρT
[‖μ− μ1‖∞ + ‖a1 − a11‖∞ + ‖b1 − b11‖∞]

+
Gt−1

T

ρT
|λ0 − λ01|, (8.22)

where GT = 1−AT /BT

ρT
> 1. Since RHS is increasing in t, we only need to

find a bound for t = T . If AT , BT and ρT are chosen in such a way that GT �
exp(log T/T ). This entailsGT

T � T . Based on that r1, r2, r3 and r4 can be chosen.
For sufficiently large T (> 1/a) we have (1−exp(log T/T )ρT ) < 1. Let us assume
that ‖μ− μ1‖∞ = r1, ‖a− a1‖∞ = r2, ‖b− b1‖∞ = r3, |λ0 − λ01| = r4. Then for

ri ≤ ρT

T 1+a3
, we have that |λt−λ1t|

λt
≤ 1/T a3 for all t with a3 > 0. The choice of

a3 is shown later. Next goal is to find the radii for which Eψ

(
f
f1

)2
is bounded.

Similar steps as before first give us Eψ1

(
f
f1

)2
≤ 1

T

∑
t=1 Eψ

(
f(Xt|Ft−1,λ0)
f1(Xt|Ft−1,λ0)

)T
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and then the following,

Eψ

(
f(Xt|Ft−1, λ0)

f1(Xt|Ft−1, λ0)

)T

≈ Eψ exp
T (λ1t − λt)(λ1t − λt)

λt

≤ Eψ exp(T 1−a3 |λ1t − λt|) ≤ Eψ exp
λt

T 2a3−1
.

We have by Jensen’s inequality, Eψ exp
[

λt

T 2a3−1

]
≤ Eψ exp

[
Xt

T 2a3−1

]
as λt =

Eψ(Xt|Ft−1, λ0). We can again show by induction that within the sieve E(eqXt) <
eQ for some constant Q following similar argument with q = T 1−2a3 . We again
need qBT independent of T . Hence our choice for a3 will be a3 = 1+a2

2 > 1/2.
Thus q is small for sufficiently large T and hence eq−1 ≈ q. We have from MGF
of Poisson,

E(eqXt)

= E(exp{λt(e
q − 1))) ≈ E(exp(μ(t)q + a1(t)Xt−1q) + b1(t)λt−1q}

= E(Et−1(exp{μ(t)q + a1(t)Xt−1q})(exp{b1(t)Et−1(Xt−1)q}))
≤ E(Et−1(exp{μ(t)q + a1(t)Xt−1q})Et−1(exp{b1(t)Xt−1q}))

≤ E(Et−1(exp{μ(t)q + a1(t)Xt−1q + b1(t)Xt−1q}))
= E(exp{μ(t)q + (a1(t) + b1(t))Xt−1q}), (8.23)

by first Jensen’s inequality as λt = Eψ(Xt|Ft−1, λ0) and positive correlation
between exp{a1(t)Xt−1q} and exp{b1(t)Xt−1q} under the expectation Et−1. For
two positively correlated random variables Y and Z under the sample space, we
have E(Y Z) > E(Y )E(Z). Now using this recurrence result (8.23) of E(eqXt),

we again arrive at similar type of bounds for r1 ≤
√
ρT√
T
, r2 ≤

√
ρT√

TBT
to ensure

that E(eqXt) < eQ for some constant Q for all t. We also need that r4 �
r1, r3 � r2, where � means asymptotically equivalent. Finally we need r1 ≤
min{

√
ρT√
T
, ρT

T 1+a3
} and r2 ≤ min{

√
ρT√

TBT
, ρT

T 1+a3
} and r4 � r1, r3 � r2. These radii

are also of polynomial order in T . Rest of the pieces of the proof follow similar
arguments as before.

References

[1] Ali Ahmad and Christian Francq. Poisson QMLE of count time series mod-
els. Journal of Time Series Analysis, 37(3):291–314, 2016. MR3512959

[2] Leila D Amorim, Jianwen Cai, Donglin Zeng, and Mauŕıcio L Barreto. Re-
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