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Abstract: Parameter estimation for a parabolic linear stochastic partial
differential equation in one space dimension is studied observing the solu-
tion field on a discrete grid in a fixed bounded domain. Considering an infill
asymptotic regime in both coordinates, we prove central limit theorems for
realized quadratic variations based on temporal and spatial increments as
well as on double increments in time and space. Resulting method of mo-
ments estimators for the diffusivity and the volatility parameter inherit the
asymptotic normality and can be constructed robustly with respect to the
sampling frequencies in time and space. Upper and lower bounds reveal
that in general the optimal convergence rate for joint estimation of the pa-
rameters is slower than the usual parametric rate. The theoretical results
are illustrated in a numerical example.
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1. Introduction

Stochastic partial differential equations (SPDEs) combine the ability of deter-
ministic PDE models to describe complex mechanisms with the key feature of
diffusion models, namely a stochastic signal which evolves within the system.
While SPDEs have been intensively studied in stochastic analysis, their statis-
tical theory is only at its beginnings. Since we first need to have a thorough
statistical understanding for basic SPDEs before more complex models can be
studied, let us consider the prototype for the large class of parabolic SPDEs
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given by the stochastic heat equation on [0, 1]:⎧⎪⎨
⎪⎩
dXt(x) = ϑ2

∂2

∂x2Xt(x) dt+ σ dWt(x),

Xt(0) = Xt(1) = 0,

X0 = ξ,

(1)

where dW denotes white noise in space and time, ξ is some independent initial
condition and we impose Dirichlet boundary conditions. More general, we will
later incorporate also a first and zero order term in the differential operator. The
statistical aim is to infer on the diffusivity parameter ϑ2 > 0 and the diffusion
or volatility parameter σ2 > 0.

In the seminal works by Huebner et al. [17] as well as Huebner and Ro-
zovskii [18] a spectral approach has been considered where the processes t �→
u�(t) := 〈Xt, e�〉L2 are observable for the eigenfunctions e� of the underlying
differential operator. These so called Fourier modes u� are independent and sat-
isfy Ornstein-Uhlenbeck dynamics. Consequently, classical results from statistics
for stochastic processes can be applied directly. While the spectral approach is
studied in numerous papers, see Lototsky [26] or Cialenco [6] for a review, this
specific observation scheme is limiting and too restrictive in potential applica-
tions. Especially, for more general equations the eigenfunctions will depend on
unknown parameters, which is already the case if we add a first order term
ϑ1

∂
∂xXt(x)dt with unknown ϑ1 ∈ R in (1).
Complementarily to this spectral approach, the canonical problem of param-

eter estimation based on discrete observations of the solution field of the SPDE
recently attracted an increased research activity. Assuming X is observed on a
discrete grid

{(ti, yk)}i=0,...,N,k=0,...,M ⊂ [0, T ]× [0, 1],

approximate maximum likelihood estimators have been first investigated by
Markussen [28] for T → ∞. For various linear SPDEs central limit theorems
for method of moment type estimators based on realized quadratic variations
have been studied by Torres et al. [36], Cialenco and Huang [7], Cialenco and
Kim [8], Bibinger and Trabs [2, 3], Chong [4, 5], Shevchenko et al. [35], Liu
and Tudor [25], as well as Kaino and Uchida [22]. However, all these works only
give partial answers to the estimation problem. Even for the stochastic heat
equation, there is neither a sharp analysis for joint estimation of ϑ2 and σ2 nor
the case where the number of spatial observations M dominates the number of
temporal observations N has been explored in general.

Therefore, in this relatively young research field basic and elementary ques-
tions even for simple (linear, parabolic) SPDEs still need to be answered. This
becomes most important with regard to an increasing number of SPDE models
in applications, e.g., in neurobiology [38], for the description of oceans [13, 32],
climate modelling [16] or the description of interest rates [9, 34].

In order to provide a complete statistical analysis of parametric estimation
for linear parabolic SPDEs in dimension one based on discrete observations on
a finite time horizon T > 0, our main contributions reveal that:
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(i) ϑ2 and σ2 cannot be jointly estimated if N or M is fixed.
(ii) The optimal convergence rate for estimating (ϑ2, σ

2) jointly is given by

1/
√
M3∧N3/2 which is generally slower than the parametric rate 1/

√
MN .

(iii) Quadratic variations based on space-time increments, see (4) below, satisfy
a central limit theorem with 1/

√
MN -rate, regardless of the relation of N

and M . Furthermore, they can be used to implement a joint estimator for
(σ2, ϑ2) that reaches the optimal rate 1/

√
M3∧N3/2.

In view of (i), we will consider the double asymptotic regime M,N → ∞ in
our analysis which results in infill asymptotics in time and space. Since the vec-
tor of observations (Xti(yk))i,k is normally distributed with only two unknown
parameters in equation (1), it might surprise that, in general, there is no joint
estimator for (σ2, ϑ2) with parametric rate. The lower bound which verifies this
statement is at the heart of our analysis. It shows that the parametric rate can
only be achieved if N and M2 are of the same order of magnitude. In view
of the parabolic nature of the stochastic heat equation, this particular asymp-
totic regime N � M2 implies that we add the same amount of information in
time and space as N and M increase. In this sense we have a balanced design.
An unbalanced regime N = o(M2) or M = o(

√
N) causes a deterioration of

the convergence rate. Note the resemblance of the well known consequence of
the parabolicity of equation (1), that its solution admits a (nontrivial finite)
quadratic variation in space versus a quartic variation in time.

Our statistical analysis also gives insights into the relation between the spec-
tral and the discrete observation scheme. While both are heuristically com-
parable in view of the discrete Fourier transform, it turns out that there are
important differences. In particular, the fully discrete observation scheme is not
statistically equivalent (in the sense of Le Cam) to time discrete observations of
the first M Fourier modes in general.

Our estimators rely on realized quadratic variations, taking into account time
and space increments

(ΔN
i X)(yk) := Xti+1(yk)−Xti(yk), (2)

(δMk X)(ti) := Xti(yk+1)−Xti(yk), (3)

respectively, as well as the space-time increments or double increments

Dik := (δMk ◦ΔN
i )X = (ΔN

i ◦ δMk )X

= Xti+1(yk+1)−Xti+1(yk)−Xti(yk+1) +Xti(yk). (4)

In contrast to the maximum likelihood approach which requires inversion of
the large MN × MN covariance matrix, method of moments type estimators
based on (2)–(4) are easy to implement. For one-parameter processes, power
variations are a standard tool in the statistical literature. Also, from a proba-
bilistic point of view, there is a certain amount of literature devoted to variations
based on double increments for some random field models, see e.g. [31, 33].

For the stochastic heat equation it is observed in [3] that a central limit the-
orem for realized temporal quadratic variations requires that the observation
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frequency in time dominates the observation frequency in space, more precisely,
M = o(

√
N) is necessary. Complementarily, we show that the realized spatial

quadratic variation satisfies a central limit theorem if N = o(M). The remaining
gap can be filled by double increments and the corresponding realized space-
time quadratic variation turns out to be robust with respect to the sampling
frequencies M and N . Based on these statistics, we construct method of mo-
ments estimators for ϑ2 and σ2 (as well as ϑ1 from a first order term). Our
rate optimal joint estimator of all identifiable parameters is a least-squares es-
timator relying on double increments. Our proofs employ directly the Gaussian
distribution of X which allows for an explicit covariance condition for asymp-
totic normality of quadratic forms of Gaussian triangular schemes. Also, our
estimators could be directly generalized to a nonparametric model with time
dependent coefficients, as indicated in [3, 5].

Note that the solution process X to the SPDE (1) admits continuous tra-
jectories only in one spatial dimension. In the multi-dimensional case one could
consider noise processes which are more regular in space as studied by Chong
[5]. Alternatively, Kriz and Maslowski [24] as well as Altmeyer and Reiß [1]
generalize the spectral approach to the observation of functionals 〈Xt,K〉 for
some (localizing) kernel K. In one space dimension, a second canonical problem
is to analyze equation (1) on the whole real line instead of the unit interval, as
considered in, e.g., [2, 7]. In this case, the Laplacian does not have a discrete
spectrum and the solution together with its covariance structure changes. Nev-
ertheless, in accordance with the previously named works, we expect a similar
behavior of our estimators on both spatial domains [0, 1] and R.

This work is organized as follows: In Section 2 we give a precise definition of
the model and study probabilistic properties of the solution field. In Section 3
we present the central limit theorems for realized quadratic variations based on
space and double increments. The resulting method of moments estimators are
constructed in Section 4. Lower bounds are derived in Section 5. In Section 6 we
illustrate our results with a numerical example. The proofs of the main results
are collected in Section 7 while auxiliary results are postponed to the appendix.

2. Properties of the solution process

For parameters σ2 > 0 and ϑ = (ϑ2, ϑ1, ϑ0) ∈ R+ × R2, we consider the linear
parabolic SPDE⎧⎪⎪⎨

⎪⎪⎩
dXt(x) =

(
ϑ2

∂2

∂x2Xt(x) + ϑ1
∂
∂xXt(x) + ϑ0Xt(x)

)
dt+ σ dWt(x),

Xt(0) = Xt(1) = 0,

X0 = ξ,

(5)

x ∈ (0, 1), t ≥ 0, driven by a cylindrical Brownian motion W and where ξ
is some independent initial condition, satisfying ξ ∈ L2((0, 1)) almost surely.
More precisely, we study the weak solution X = (Xt(x), t ≥ 0, x ∈ [0, 1]) of
the equation dXt = AϑXt dt + σdWt associated with the differential operator
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Aϑ = ϑ2
∂2

∂x2 + ϑ1
∂
∂x + ϑ0. As usual, the Dirichlet boundary condition in (5)

is implemented in the domain D(Aϑ) = H2((0, 1)) ∩ H1
0 ((0, 1)) of Aϑ where

Hk((0, 1)) denotes the L2-Sobolev spaces of order k ∈ N and with H1
0 ((0, 1))

being the closure of C∞
c ((0, 1)) in H1((0, 1)). The cylindrical Brownian motion

W is defined as a linear mapping L2((0, 1)) � u �→ W·(u) such that t �→ Wt(u) is
a one-dimensional standard Brownian motion for all normalized u ∈ L2((0, 1))
and such that the covariance structure is Cov (Wt(u),Ws(v)) = (s∧ t) 〈u, v〉, for
u, v ∈ L2((0, 1)), s, t ≥ 0. W can thus be understood as the anti-derivative in
time of space-time white noise.

The differential operator Aϑ has a complete orthonormal system of eigenvec-
tors. Indeed, the eigenpairs (−λ�, e�)�≥1 associated with Aϑ are given by

e�(y) =
√
2 sin(π�y)e−κy/2, λ� = ϑ2(π

2�2 + Γ), y ∈ [0, 1], � ∈ N,

where

κ :=
ϑ1

ϑ2
and Γ :=

ϑ2
1

4ϑ2
2

− ϑ0

ϑ2
.

The functions (e�)�≥1 are orthonormal with respect to the weighted L2-inner
product

〈u, v〉 := 〈u, v〉ϑ :=

∫ 1

0

u(x)v(x)eκx dx, u, v ∈ L2((0, 1)).

Note that in absence of the first derivative in Aϑ, i.e ϑ1 = 0, the system
(e�)�≥1 reduces to the usual sine-base and 〈·, ·〉 to the standard inner prod-
uct on L2([0, 1]). In general, both the eigenpairs and the inner product depend
on the model parameters. Hence, they are not accessible from a statistical point
of view.

Throughout, we restrict the parameter space to

Θ =

{
(σ2, ϑ2, ϑ1, ϑ0) ∈ R4 : σ2, ϑ2,

ϑ2
1

4ϑ2
2

− ϑ0

ϑ2
+ π2 > 0

}
such that all the eigenvalues are negative and Aϑ is a negative self-adjoint op-
erator. Consequently, the weak solution to the SPDE (5) exists and is given by

the variation of constants formula Xt = etAϑξ+ σ
∫ t

0
e(t−s)Aϑ dWs, t ≥ 0, where

(etAϑ)t≥0 denotes the strongly continuous semigroup generated by Aϑ, see [10,
Theorem 5.4].

Since (e�)�≥1 is a complete orthonormal system, the cylindrical Brownian
motion W can be realized via Wt =

∑
�≥1 β�(t)e� in the sense that Wt(·) =∑

�≥1 β�(t)〈·, ek〉 for a sequence of independent standard Brownian motions
(β�)�≥1. In terms of the projections or Fourier modes u�(t) := 〈Xt, e�〉, t ≥
0, � ∈ N, we obtain the representation

Xt(x)=
∑
�≥1

u�(t)e�(x), t ≥ 0, x ∈ [0, 1], (6)
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where (u�)�≥1 are one-dimensional independent processes satisfying the Orn-
stein-Uhlenbeck dynamics du�(t) = −λ�u�(t) dt+ σ dβ�(t) or, equivalently,

u�(t) = u�(0)e
−λ�t + σ

∫ t

0

e−λ�(t−s) dβ�(s), u�(0) = 〈ξ, e�〉

in the sense of the usual finite-dimensional stochastic integral. We will as-
sume throughout that {β�, u�(0), � ∈ N} is an independent family and u�(0) ∼
N (0, σ2/(2λ�)) such that each coefficient process u� is stationary with covari-

ance Cov(u�(s), u�(t)) =
σ2

2λ�
e−λ�|t−s|, s, t ≥ 0. Note that this assumption is only

imposed for the sake of simplicity. As follows from a perturbation argument as
in [3, 15], our estimation methods apply to general sufficiently regular initial
conditions.

From representation (6) it is evident that X is a two-parameter centered
Gaussian field. Therefore, the model is completely specified by its covariance
structure

Cov (Xs(x), Xt(y)) = σ2
∑
�≥1

e−λ�|t−s|

2λ�
e�(x)e�(y), s, t ≥ 0, x, y ∈ [0, 1]. (7)

While σ2 is only a multiplicative factor, the covariance structure depends on ϑ
through λ� and e�. By Kolmogorov’s criterion there is a continuous version of
the process (Xt(x), t ≥ 0, x ∈ [0, 1]), cf. [10, Chapter 5.5]. In particular, point
evaluations Xt(x) for fixed values of t and x are well defined.

For a fixed spatial location x the sample paths of the process X·(x) are no
semi-martingales. In fact, t �→ Xt(x) is only Hölder continuous of order almost
1/4 [10, Theorem 5.22] and thus has infinite quadratic variation over any time
interval. On the other hand, regarding X as a function of space at a fixed point
in time substantially simplifies the probabilistic structure of the process:

Proposition 2.1. Fix t ≥ 0 and define Γ0 =
√

|Γ|.

(i) For x ≤ y,

Cov (Xt(x), Xt(y)) =
σ2

2ϑ2
e−

κ
2 (x+y) ·

⎧⎪⎨
⎪⎩

sin(Γ0(1−y)) sin(Γ0x)
Γ0 sin(Γ0)

, Γ < 0,

x(1− y), Γ = 0,
sinh(Γ0(1−y)) sinh(Γ0x)

Γ0 sinh(Γ0)
, Γ > 0.

(ii) The process [0, 1] � x �→ Z(x) := Xt(x) is an Itô diffusion. In particular,

dZ(x) =

√
σ2

2ϑ2
e−

κ
2 x dB(x)−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Γ0 cos(Γ0(1−x))
sin(Γ0(1−x)) + κ

2

)
Z(x) dx, Γ < 0,(

1
1−x + κ

2

)
Z(x) dx, Γ = 0,(

Γ0 cosh(Γ0(1−x))
sinh(Γ0(1−x)) + κ

2

)
Z(x) dx, Γ > 0,

where B(·) = Bt(·) is a standard Brownian motion.
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Note the similarity between the covariance structures of Xt(·) and of the
Brownian bridge, especially in the case Γ = 0. This resemblance is in line with
the Dirichlet boundary conditions Xt(0) = Xt(1) = 0 in our model.

Remark 2.2. For N ≥ 2 and fixed 0 ≤ t1 < t2 < . . . < tN the multi-dimensional
process x �→ (Xt1(x), . . . , XtN (x)) is not an Itô diffusion. Indeed, it is not even
a Markov process: Take N = 2 and let s < t. It is a well known fact that
for Markov processes past and future are independent, given the present state.
For x < y < z on the other hand, using the Gaussianity of X, the (Gaussian)
conditional distribution of (Xs(x), Xt(z)) given (Xs(y), Xt(y)) can be computed
explicitly. From here, independence is easily disproved by checking the non-
diagonal entries of the conditional covariance matrix.

We conclude this section by studying absolute continuity properties for dif-
ferent parameter values (σ2, ϑ) which in particular has implications for their
identifiability. To that aim we introduce the notations

(Xt(·), t ∈ [0, T ]) ∼ P(σ2,ϑ) on C([0, T ], L2[0, 1]),

(Xt0(x), x ∈ [0, 1]) ∼ P
(t0,·)
(σ2,ϑ) on L2[0, 1],

(Xt(x0), t ∈ [0, T ]) ∼ P
(·,x0)
(σ2,ϑ) on L2[0, T ]

for fixed values t0 ≥ 0, x0 ∈ (0, 1) and a finite time horizon T > 0. Further, for
probability measures Q and P we write Q ∼ P if they are equivalent.

Proposition 2.3. Let t0 ≥ 0, x0 ∈ (0, 1) be fixed and consider a finite time
horizon T > 0. For any two sets of parameters (σ2, ϑ), (σ̃2, ϑ̃) ∈ Θ we have

(i) P(σ2,ϑ) ∼ P(σ̃2,ϑ̃) if and only if (σ2, ϑ2, ϑ1) = (σ̃2, ϑ̃2, ϑ̃1),

(ii) P
(t0,·)
(σ2,ϑ) ∼ P

(t0,·)
(σ̃2,ϑ̃)

if and only if

(
σ2

ϑ2
, κ

)
=

(
σ̃2

ϑ̃2

, κ̃

)
,

(iii) P
(·,x0)
(σ2,ϑ) ∼ P

(·,x0)

(σ̃2,ϑ̃)
if and only if

σ2

√
ϑ2

e−κx0 =
σ̃2√
ϑ̃2

e−κ̃x0 ,

where κ = ϑ1/ϑ2, κ̃ = ϑ̃1/ϑ̃2.

Firstly, (i) shows that it is impossible to estimate ϑ0 consistently on a finite
time horizon. Secondly, (ii) and (iii) reveal that an estimator that only exploits
the temporal or spatial covariance structure cannot consistently estimate any
other parameters than

(
σ2/

√
ϑ2, κ

)
or

(
σ2/ϑ2, κ

)
, respectively. On the other

hand, such estimators can be constructed by using squared time increments at
least at two different spatial positions (cf. [3, Theorem 4.2]) or squared space
increments (cf. Section 4), respectively.

3. Central limit theorems for realized quadratic variations

We will now study central limit theorems for realized quadratic variations based
on the space and double increments from (3) and (4), respectively. To fix assump-
tions and notation, let X be given by (6) and suppose we have (M + 1)(N + 1)
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time and space discrete observations

Xti(yk), i = 0, . . . , N, k = 0, . . . ,M,

on a regular grid (ti, yk) ⊂ [0, T ] × [0, 1] with a fixed time horizon T > 0 and
M,N ∈ N0. More precisely, assume that

yk = b+ kδ and ti = iΔ where δ =
1− 2b

M
, Δ =

T

N

for some fixed b ∈ [0, 1/2). The spatial locations yk are thus equidistant inside a
(possibly proper) sub-interval [b, 1 − b] ⊂ [0, 1]. For most of our estimators,
we will require a strictly positive value for b in order to exclude undesired
boundary effects that lead to biased estimates. Note that whenever M → ∞
or/and N → ∞, we obtain infill asymptotics in space δ → 0 or/and time
Δ → 0, respectively.

Throughout, M,N → ∞ should be understood in the sense of min(M,N) →
∞. For two sequences (an), (bn), we write an � bn to indicate that there exists
some c > 0 such that |an| ≤ c · |bn| for all n ∈ N and we write an � bn if
an � bn � an. If an = a for some a ∈ R and all n ∈ N, we write (an) ≡ a. The
Euclidian norm on Rd is denoted by ‖ · ‖. Moreover, ‖ · ‖2 denotes the spectral
norm and ‖ · ‖F denotes the Frobenius norm for matrices.

The realized quadratic variations of X can be regarded as sums of squares
of certain Gaussian random vectors. Hence, our central limit theorems embed
into the literature on quadratic forms in random variables and their asymptotic
properties, see e.g. [29]. Our key tool for proving asymptotic normality is the
following proposition which is tailor made for the situation present in this work
and which gives an explicit covariance condition that ensures convergence to the
normal distribution.

Proposition 3.1. Let (Zi,n, 1 ≤ i ≤ dn, n ∈ N) be a triangular array satisfying
(Z1,n . . . , Zdn,n) ∼ N (0,Σn) for a covariance matrix Σn ∈ Rdn×dn , n ∈ N, and
let (αi,n, 1 ≤ i ≤ dn, n ∈ N) be a deterministic triangular array with values

in {−1, 1}. Define Sn :=
∑dn

i=1 αi,nZ
2
i,n for n ≥ 1. If ‖Σn‖22/Var(Sn) → 0 as

n → ∞, then we have

Sn −E(Sn)√
VarSn

D−→ N (0, 1) for n → ∞.

The proof relies on the fact that Sn can be represented as a linear combination
of independent χ2(1)-distributed random variables. ‖Σn‖22/Var(Sn) → 0 then
implies that the corresponding Lyapunov condition is fulfilled. In this section
we only require αi,n = 1 for all i and n, i.e. Sn = ‖Z•,n‖2. The general case
will be necessary to verify asymptotic normality of the least-squares estimator
in Section 4. It is worth noting that Proposition 3.1 reveals a quite elementary
proof strategy to verify several central limit theorems in [3, 7, 35, 36] instead of
advanced techniques from Malliavin calculus or mixing theory.
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Remark 3.2.

1. If αi,n = 1 for all i, n, it follows from Isserlis’ theorem [21] that Var(Sn) =
2‖Σn‖2F and thus, the condition for asymptotic normality may be written
as ‖Σn‖2/‖Σn‖F → 0. This condition is essentially optimal: In case of
independent observations it is in fact equivalent to asymptotic negligibility
of the individual normalized and centered summands and hence equivalent
to Lindeberg’s condition.

2. The spectral norm is bounded by the maximum absolute row sum. Writ-

ing Σn =
(
σ
(n)
ij

)
i,j
, asymptotic normality thus holds under the sufficient

condition (
maxi≤dn

∑dn

j=1

∣∣∣σ(n)
ij

∣∣∣)2

VarSn
−→ 0, n → ∞. (8)

So far, the double asymptotic regime M,N → ∞ has only been studied for
time increments (ΔN

i X)(yk) = Xti+1(yk)−Xti(yk): If b > 0 and if there exists
ρ ∈ (0, 1/2) such that M = O(Nρ), then the rescaled realized temporal quadratic
variation

Vt :=
1

MN
√
Δ

N−1∑
i=0

M−1∑
k=0

eκyk(ΔN
i X)2(yk) (9)

satisfies

√
MN

(
Vt −

σ2

√
πϑ2

)
D−→ N

(
0,

Bσ4

πϑ2

)
, N,M → ∞, (10)

where

B = 2 +
∞∑

J=1

(
2
√
J −

√
J + 1−

√
J − 1

)2

, (11)

cf. [3, Thm. 3.4]. Note that this result is only valid under the condition (roughly)
M = o(

√
N), i.e., if the observation frequency in time is much higher than in

space. This constraint is due to a non-negligible correlation of realized temporal
quadratic variations at two neighboring points in space if the distance δ of these
points is small compared to Δ or, equivalently, if M is large compared to N .

In the situation where the number of spatial observations dominates the
number of temporal observations the above result is not applicable. In this case,
spatial increments (δMk X)(ti) = Xti(yk+1) − Xti(yk) and the corresponding
rescaled realized spatial quadratic variations

Vsp(ti) :=
1

Mδ

M−1∑
k=0

eκyk(δMk X)2(ti)

at time ti turn out to be useful. In contrast to squared time increments, which
have to be renormalized by

√
Δ due to the roughness of t �→ Xt(y), squared space

increments have to be renormalized by δ due to the semi-martingale nature of
y �→ Xt(y).
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In the extreme case where observations are only available at one point t in
time (and assuming ϑ1 = ϑ0 = 0 as well as X0 = 0) Cialenco and Huang [7]
showed that Vsp(t) is asymptotically normal with 1/

√
M -rate of convergence.

An analogous result has been proved by Shevchenko et al. [35] for the wave equa-
tion. Proposition 2.1 reveals that Vsp(t) is in fact a rescaled realized quadratic
variation of the Itô diffusion y �→ Xt(y). Hence,

√
M

(
Vsp(t)−

σ2

2ϑ2

)
D−→ N

(
0,

σ4

2ϑ2
2

)
, M → ∞,

follows from standard theory on quadratic variation for semi-martingales. In
order to generalize this central limit theorem to the double asymptotic regime
M,N → ∞, we define the time average of the rescaled realized spatial quadratic
variations :

Vsp :=
1

N

N−1∑
i=0

Vsp(ti) =
1

NMδ

N−1∑
i=0

M−1∑
k=0

eκyk(δMk X)2(ti). (12)

Theorem 3.3. Let b ∈ [0, 1/2). If N/M → 0 then

√
MN

(
Vsp − σ2

2ϑ2

)
D−→ N

(
0,

σ4

2ϑ2
2

)
, M,N → ∞.

Remark 3.4.

1. The condition N/M → 0 is necessary in order to to neglect the bias: The

proof of the theorem reveals that δ−1E
(
e−κyk(δMk X)2(ti)

)
− σ2

2ϑ2
� δ and

consequently, the overall bias is of the order

E

(√
MN

(
Vsp − σ2

2ϑ2

))
�

√
MN · δ �

√
N

M
.

2. A similar central limit theorem (with asymptotic mean and variance de-
pendent on κ) can also be expected to hold when neglecting the exponen-
tial factors eκyk in the definition of Vsp. However, considering this rescaled
version of the quadratic variation is useful with a view to parameter esti-
mation (especially of κ), as shall become clear in the following section.

We conclude that the central limit theorem for realized temporal quadratic
variations Vt holds when (roughly) M = o(

√
N), whereas the central limit the-

orem for realized spatial quadratic variations Vsp is fulfilled if N = o(M). To
close the remaining gap, we finally study the space-time increments Dik from
(4). The corresponding rescaled realized quadratic variations are robust with
respect to the sampling regime, as indicated by the representation

Dik =
∑
�≥1

(
u�(ti+1)− u�(ti)

)(
e�(yk+1)− e�(yk)

)
in terms of the series expansion (6).
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In contrast to the case of space increments (and in line with the result for
time increments), we impose b > 0 for the remainder of this section. Inspection
of the proofs suggests that this condition may be relaxed to b → 0 as long as
the decay is sufficiently slow. As a first step, we calculate the expectation of the
double increments

Proposition 3.5. Let b ∈ (0, 1/2). Then:

(i) It holds uniformly in 0 ≤ k ≤ M − 1 and 1 ≤ i ≤ N − 1 that

E
(
D2

ik

)
= σ2e−κyk Φϑ(δ,Δ) +O

(
δ
√
Δ

(
δ ∧

√
Δ
))

, max(δ,Δ) → 0,

where

Φϑ(δ,Δ) := Fϑ2(0,Δ)
(
1 + e−κδ

)
− 2Fϑ2(δ,Δ)e−κδ/2 and

Fϑ2(δ,Δ) :=
∑
�≥1

1− e−π2ϑ2�
2Δ

π2ϑ2�2
cos(π�δ).

(ii) Assuming that r = lim δ/
√
Δ ∈ [0,∞] exists, Φϑ admits three different

asymptotic regimes:

Φϑ(δ,Δ) =

⎧⎪⎨
⎪⎩

1
ϑ2

· δ + o (δ) , r = 0,

ψϑ2(r) ·
√
Δ+ o(

√
Δ), r ∈ (0,∞),

2√
ϑ2π

·
√
Δ+ o(

√
Δ), r = ∞,

where

ψϑ2(r) :=
2√
πϑ2

⎛
⎝1− e−

r2

4ϑ2 +
r√
ϑ2

∫ ∞

r

2
√

ϑ2

e−z2

dz

⎞
⎠ . (13)

If, moreover, δ/
√
Δ ≡ r ∈ (0,∞), we have

Φϑ(δ,Δ) = e−κδ/2ψϑ2(r) ·
√
Δ+O(Δ3/2). (14)

Remark 3.6. The first order constants appearing in the asymptotic expressions
in (ii) stem from a first derivative of Fϑ2(·,Δ) in 0 in case r = 0 and a Riemann
sum approximation of Fϑ2(δ,Δ) in case r �= 0, respectively. Assuming for sim-
plicity that κ = 0, the proof of Proposition 3.5 shows a more precise expression
for the remainder terms in case r ∈ {0,∞}:

E
(
D2

ik

)
=

{
1
ϑ2

· δ +O(δ2/
√
Δ), r = 0,

2√
πϑ2

·
√
Δ+O(Δ3/2/δ2), r = ∞.

Thus, if our analysis of the remainder terms is sharp (which we believe is the
case), the first order approximations have a poor quality if δ/

√
Δ converges

slowly.
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Proposition 3.5 suggests to renormalize double increments with δ if δ/
√
Δ →

0 and with
√
Δ otherwise, which is in line with the renormalization of Vsp

and Vsp, respectively. However, this approach might not be feasible: Firstly, it
requires the knowledge which asymptotic regime is present, i.e., whether or not
δ/
√
Δ → 0. Especially for one given set of observations this information may

be inaccessible. In this case renormalizing with Φϑ(δ,Δ) automatically captures
the correct asymptotic regime. Secondly, if r ∈ {0,∞}, the previous remark
shows that the asymptotic expressions for Φϑ(δ,Δ) may lead to an undesirably
large bias. In fact, in order to obtain a central limit theorem with 1/

√
MN -

rate of convergence, we would have to impose the assumptions N2/M → 0 and
M5/N → 0, respectively. These constraints are even more restrictive than the
ones required for time or space increments.

Therefore, we renormalize with Φϑ(δ,Δ) and introduce the rescaled realized
quadratic space-time variation

V :=
1

MNΦϑ(δ,Δ)

M−1∑
k=0

N−1∑
i=0

eκykD2
ik.

Theorem 3.7. Let b > 0. If either δ/
√
Δ → r ∈ {0,∞} or δ/

√
Δ ≡ r ∈ (0,∞),

then √
MN(V− σ2)

D−→ N
(
0, C

(
r/

√
ϑ2

)
σ4

)
, N,M → ∞,

where C(·) is a bounded continuous function on [0,∞], given by (26), satisfying

C(0) = 3 and C(∞) = 3 +
3

2

∞∑
J=1

(√
J − 1−

√
J + 1− 2

√
J
)2

.

The condition δ/
√
Δ ≡ r ∈ (0,∞) can be relaxed to δ/

√
Δ → r ∈ (0,∞) as

long as the convergence is fast enough which we omit for the sake of simplic-
ity. If δ/

√
Δ ≡ r ∈ (0,∞) holds, (14) shows that the renormalization Φϑ(δ,Δ)

and its first order approximation are close enough to be exchanged in the pre-
vious theorem. In this case we obtain a central limit theorem with a simpler
renormalization which particularly does not depend on the model parameters:

Corollary 3.8. If b > 0 and δ/
√
Δ ≡ r ∈ (0,∞), then

Vr :=
1

MN
√
Δ

M−1∑
k=0

N−1∑
i=0

exp
(κ
2
(yk + yk+1)

)
D2

ik (15)

satisfies with ψϑ2(r) from (13) and C(·) from (26):

√
MN

(
Vr − ψϑ2(r)σ

2
)

D−→ N
(
0, C(r/

√
ϑ2)ψ

2
ϑ2
(r)σ4

)
, N,M → ∞.

Although the above corollary is only valid in the very particular regime δ �√
Δ, it will also prove to be enormously useful for general sampling regimes when

applied to appropriate subsets of the data. Indeed, its power stems from the fact
that its asymptotic mean value σ2ψϑ2(r) enables separating the parameters σ2

and ϑ2 by considering multiple values of r, see Section 4.
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Remark 3.9.

1. The previous central limit results are satisfied for a possibly growing time
horizon TN,Δ := NΔ, too. Theorem 3.3 only requires that TN,Δ > ε
for some ε > 0. Theorem 3.7 holds if TN,Δ = o(M) and, in particular,
Corollary 3.8 is applicable if NΔ3/2 → 0.

2. Having obtained the asymptotic distribution of the different types of qua-
dratic variations, future research should also be devoted to deriving cor-
responding Berry-Esseen type theorems. As in, e.g., [27], this usually re-
quires advanced tools from Malliavin calculus.

To end this section, we compare the realized quadratic variations Vt, Vsp and
V and their asymptotic variances. For this purpose, we scale the statistics in
such a way that they are asymptotically centered around the same mean, say
σ2:

Ṽt =
√
πϑ2Vt, Ṽsp = 2ϑ2Vsp, Ṽ = V. (16)

For simplicity, let κ = 0. Plugging in the asymptotic expressions for Φϑ(δ,Δ)
from Proposition 3.5 shows that

Ṽ ≈ 1

2

M−1∑
k=0

N−1∑
i=0

D2
ik ·

⎧⎪⎪⎨
⎪⎪⎩

2ϑ2

NMδ
, δ/

√
Δ → 0,

√
ϑ2π

NM
√
Δ
, δ/

√
Δ → ∞.

Therefore, Ṽ approximately coincides with Ṽsp and Ṽt for r ∈ {0,∞}, respec-
tively, except for the factor 1/2 and using double increments instead of time or
space increments, respectively.

Further, denoting the asymptotic variances of Ṽt, Ṽsp and Ṽ by St, Ssp and
S(r), respectively, we observe the relations S(∞) = 3

2St and S(0) = 3
2Ssp,

where the factor 3/2 occurs since each double increment consists of two space
or time increments, respectively.

4. Parameter estimation

In view of the covariance structure of the observation vector and the fact that
the value of ϑ0 is irrelevant from a statistical point of view (cf. Proposition 2.3),
we consider the parameter vector

η = (σ2, ϑ2, κ).

It is straightforward to use the results from the previous section to construct
method of moments estimators for the volatility parameter σ2 or the diffusivity
parameter ϑ2, provided that the other two parameters in (σ2, ϑ2, κ) are known,
respectively. Doing so, we generalize the spatial increments based estimator from
[7] to the double asymptotic regime and we complement the time increments
based methods in [3, 5]. Our estimators do not hinge on ϑ0 (or Γ) such that the
knowledge of its true value is not required.
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Assuming firstly that ϑ2 and κ are known, we obtain the following volatility
estimators:

σ̂2
sp := Ṽsp, σ̂2

t := Ṽt and σ̂2 := V

where Ṽsp and Ṽt have been introduced in (16).

Proposition 4.1.

(i) If N = o(M), then we have

√
MN

(
σ̂2
sp − σ2

) D−→ N (0, 2σ4), N,M → ∞.

(ii) If M = O(Nρ) for some ρ ∈ (0, 1/2), then we have with B defined in (11):

√
MN

(
σ̂2
t − σ2

) D−→ N (0, Bσ4), N,M → ∞.

(iii) If
√
N = o(M), M = o(

√
N) or

√
N/M � δ/

√
Δ ≡ r > 0, then we have

C(·) from (26):

√
MN(σ̂2 − σ2)

D−→ N (0, C(r/
√
ϑ2)σ

4), N,M → ∞,

As discussed above, the double increments estimator has a larger variance
than the single increments estimators. Hence, if one of the regimes N = o(M)
orM = o(

√
N) certainly applies, the single increments estimators are preferable.

If none of the regimes is present or the situation is unclear, one can profit from
the robustness of the double increments estimator with respect to the sampling
regime.

If N = o(M), the situation is close to that of N independent semi-martingales
(cf. Proposition 2.1) and the asymptotic variance 2σ4 of the spatial increments
estimator equals the Cramér-Rao lower bound for estimating σ2, as can be
seen by a simple calculation. Consequently, σ̂2

sp is an asymptotically efficient
estimator. The efficiency loss of the other estimators is due to the fact that
for increasingly more temporal observations the infinite dimensional nature of
the process X becomes apparent, leading to non-negligible covariances between
increments.

If σ2 and κ are known, the diffusivity ϑ2 can be estimated by

ϑ̂2,sp :=
σ2

2Vsp
and ϑ̂2,t :=

σ4

πV 2
t

using Vsp and Vt from (12) and (9), respectively. Due to the non-trivial depen-
dence of the renormalization Φϑ(δ,Δ) on ϑ, it is not apparent how to construct
a method of moments estimator for ϑ2 based on Theorem 3.7 in general. How-
ever, if δ/

√
Δ ≡ r > 0, the renormalization can be decoupled from the unknown

parameter as exploited in Corollary 3.8. Since the function ϑ2 �→ ψϑ2(r) has
range (0,∞) and is monotonic, there is an inverse Qr(·) and we can define the
method of moments estimator

ϑ̂2,r = Qr(Vr/σ
2)
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with Vr from (15). As a direct consequence of the delta method, the relation

Q′
r(ψϑ2(r)) =

( ∂

∂ϑ2
ψϑ2(r)

)−1

= −ϑ
3/2
2

√
π
(
1− e−

r2

4ϑ2 +
2r√
ϑ2

∫
r

2
√

ϑ2

e−z2

dz
)−1

and the above central limit theorems, we obtain:

Proposition 4.2.

(i) If N = o(M), then we have
√
MN

(
ϑ̂2,sp − ϑ2

)
D−→ N

(
0, 2ϑ2

2

)
, N,M → ∞.

(ii) If M = O(Nρ) for some ρ ∈ (0, 1/2), then we have with B from (11):
√
MN

(
ϑ̂2,t − ϑ2

)
D−→ N (0, 4ϑ2

2B), N,M → ∞.

(iii) If
√
N/M � δ/

√
Δ ≡ r > 0, then we have with C(·) from (26):

√
MN(ϑ̂2,r − ϑ2)

D−→ N
(
0, C

( r√
ϑ2

)(
ψϑ2(r)

/ ∂

∂ϑ2
ψϑ2(r)

)2
)

for N,M → ∞.

We now consider parameter estimation when (σ2, ϑ) is unknown. Recall from
Proposition 2.3 and its subsequent discussion that ϑ0 cannot be estimated
consistently on a finite time horizon. Moreover, it is not possible to estimate
other parameters than (σ2/

√
ϑ2, κ) or (σ2/ϑ2, κ) only based on the tempo-

ral or the spatial covariance structure, respectively. Estimation of (σ2/
√
ϑ2, κ)

via a least squares procedure based on temporal increments is disussed in [3]
in the M = o(

√
N) regime. Analogously, it is possible to estimate (ρ2, κ),

where ρ2 = σ2/ϑ2, using spatial increments and Theorem 3.3: Provided that
N = o(M), classical minimum-contrast estimation theory reveals that

(ρ̂2, κ̂) := argmin
(ρ̃2,κ̃)

M−1∑
k=0

(
2

Nδ

N−1∑
i=0

(δMk X)2(ti)− ρ̃2e−κ̃yk

)2

satisfies a central limit theorem with rate 1/
√
MN . We omit a detailed analysis

of this estimator.
To estimate all three identifiable parameters η = (σ2, ϑ2, κ), we employ a

least squares approach based on double increments. Due to the highly nontrivial
dependence of the normalization Φϑ(δ,Δ) on ϑ, a direct application of Theorem
3.7 is impossible. Assuming, however, a balanced design in the sense of δ/

√
Δ ≡

r ∈ (0,∞), we can use Corollary 3.8 where the normalization is decoupled from
the unknown parameter ϑ.

Let δ/
√
Δ ≡ r ∈ (0,∞) and define D̄ik := Dik + D(i+1)k as well as zk =

(yk + yk+1)/2. Corollary 3.8 suggests that

1

N
√
Δ

N−1∑
i=0

D2
ik ≈ e−κzkσ2ψϑ2(r) and

1

N
√
2Δ

N−2∑
i=0

D̄2
ik ≈ e−κzkσ2ψϑ2(r/

√
2).
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By considering the two different sampling frequency ratios r and r/
√
2, we

can distinguish σ2 and ϑ2 instead of recovering only the product σ2ψϑ2(r). To
estimate η = (σ2, ϑ2, κ), we thus introduce the contrast process

KM,N (η̃) := K1
M,N (η̃) +K2

M,N (η̃) where

K1
M,N (η̃) :=

1

M

M−1∑
k=0

( 1

N
√
Δ

N−1∑
i=0

D2
ik − f1

η̃ (zk)
)2

,

K2
M,N (η̃) :=

1

M

M−1∑
k=0

( 1

N
√
2Δ

N−2∑
i=0

D̄2
ik − f2

η̃ (zk)
)2

,

and fν
η (z) := σ2e−κzψϑ2(r/

√
ν), ν = 1, 2. The corresponding minimum-contrast

estimator is given by
η̂ = argmin

η̃∈H
KM,N (η̃), (17)

where H is some subset of (0,∞)2 × R containing the true parameter η.

Theorem 4.3. Assume b > 0 and δ/
√
Δ ≡ r > 0. If η = (σ2, ϑ2, κ) lies in

the interior of H for some compact set H ⊂ (0,∞)2 ×R, then the least squares
estimator η̂ from (17) satisfies

√
MN(η̂ − η)

D−→ N (0,Ωr
η), M,N → ∞,

where Ωr
η ∈ R3×3 is a strictly positive definite covariance matrix, explicitly given

by (30).

Remark 4.4.

1. Based on η̂, we can define ϑ̂1 := η̂2η̂3 = ϑ̂2κ̂ to estimate ϑ1. The delta
method then yields a central limit theorem for (σ̂2, ϑ̂2, ϑ̂1).

2. If ϑ1 is known and the sample size is sufficiently large, the estimator for
(σ2, ϑ2) can be computed without solving a minimization problem: For
simplicity, assume ϑ1 = 0 and let

V 1 :=
1

MN
√
Δ

M−1∑
k=0

N−1∑
i=0

D2
ik, V 2 :=

1

MN
√
2Δ

M−1∑
k=0

N−1∑
i=0

D̄2
ik.

Further, denote by Gr the inverse function of ϑ2 �→ ψϑ2(r)/ψϑ2(r/
√
2),

whose existence is part of the proof of the above theorem. Then, we have

ϑ̂2 = Gr(V
1/V 2), σ̂2 = V 1/ψϑ̂2

(r),

provided that V1/V2 lies in the range of ϑ2 �→ ψϑ2(r)/ψϑ2(r/
√
2). Due to

consistency of (V 1, V 2), the latter is true with probability tending to one.

Even when δ/
√
Δ ≡ r > 0 does not hold, there are always subsets of the data

having the balanced sampling design. Hence, the estimation procedure treated
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in Theorem 4.3 can be generalized to an arbitrary set {Xti(yk), i ≤ N, k ≤ M}
of discrete observations by considering an averaged version of the above contrast
process. To that aim, choose v, w ∈ N such that v � max(1, N/M2) and w �

max(1,M/
√
N). Then, Δ̃ := vΔ and δ̃ := wδ satisfy

r := δ̃/
√

Δ̃ � 1.

Using double increments on the coarser grid

Dv,w(i, k) = Xti+v (yk+w)−Xti(yk+w)−Xti+v (yk) +Xti(yk),

we set

Kν
N,M (η̃)

:=
1

M − w + 1

M−w∑
k=0

(
1

N − νv + 1

N−νv∑
i=0

D2
νv,w(i, k)√
νvΔ

− fν
η̃

(yk + yk+w

2

))2

where fν
η (z) := 2σ2ψϑ2(r/

√
ν)e−κz and ν = 1, 2. The final estimator for η is

then defined as

η̂v,w := argmin
η̃∈H

(
K1

N,M (η̃) +K2
N,M (η̃)

)
. (18)

The rate of convergence of this estimation procedure is inherited from the
observations on the coarser grids {(ti+jv, yk+lw) : 0 ≤ j ≤ N/v − 1, 0 ≤ l ≤
M/w − 1}, i = 0, . . . , v − 1, k = 0, . . . , w − 1, on which we calculate the double
increments. Each such subset consists of

M

w
· N
v

� (M ∧N1/2)(N ∧M2) = M3 ∧N3/2

observations and has a balanced design by construction. Therefore, Theorem 4.3
implies the convergence rate 1/

√
M3 ∧N3/2.

Proposition 4.5. Assume b > 0 and let η = (σ2, ϑ2, κ) lie in the interior of H
for some compact set H ⊂ (0,∞)2×R. If there exist values v � max(1, N/M2) ∈
N and w � max(1,M/

√
N) ∈ N such that wδ/

√
vΔ is constant, then the esti-

mator given by (18) satisfies

‖η̂v,w − η‖ = OP

( 1√
M3 ∧N3/2

)
, M,N → ∞.

Remark 4.6.

1. The same rate of convergence is achieved if, instead of averaging, one com-
putes the contrast process from a single balanced sub-sample and discards
the remaining data. Thus, if M2/N → {0,∞}, the optimal rate of con-
vergence can be reached by using only a small portion of the available
data. On the other hand, our simulation study in Section 6 suggests that
using the whole data set is beneficial for the asymptotic variance of the
estimator.
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2. Integer values v and w such that wδ/
√
vΔ is constant exist, for instance,

if the observations are recorded at a dyadic grid, i.e. M = 2m and N = 4n

where m,n → ∞.

Compared to the thinning method of [22], this rate is a considerable im-
provement. Indeed, it is (almost) optimal in the minimax sense, as shown in
Section 5.

We conclude this section by remarking that estimation of all four parameters
(σ2, ϑ2, ϑ1, ϑ0), which requires T → ∞, is treated in Markussen [28] from a time
series perspective and in Kaino and Uchida [22] as well as Hildebrandt [15],
assuming high frequency observations in time and space.

5. Lower bounds

Our next theorem proves that the estimator η̂ from (18) for η = (σ2, ϑ2, κ) is
optimal in the minimax sense, up to a logarithmic factor. To obtain a lower
bound, it suffices to consider the sub-problem where ϑ1 = ϑ0 = 0 and only
(σ2, ϑ2) has to be estimated.

Theorem 5.1. Let ϑ1 = ϑ0 = 0, (σ2, ϑ2) ∈ H for some open set H ⊂ (0,∞)2

and consider observations at ti = i/N, i ≤ N , and yk = b + kδ, k ≤ M , for
some b ∈ [0, 1/2) ∩Q. Then:

(i) If min(M,N) remains finite, there is no consistent estimator of (σ2, ϑ2).
(ii) There is a constant c > 0 such that

lim inf
M,N→∞

inf
T

sup
(σ2,ϑ2)∈H

P(σ2,ϑ2)

(∥∥∥T −
(
σ2

ϑ2

)∥∥∥ > c · rM,N

)
> 0,

where rM,N :=

⎧⎪⎪⎨
⎪⎪⎩
N−3/4,

M√
N

� 1,

(
M3 log

N

M2

)−1/2

,
M√
N

→ 0.

and infT is taken over all estimators T of (σ2, ϑ2) based on observations
{Xti+1(yk)−Xti(yk), i < N, k ≤ M}.

Remark 5.2. The lower bound for the case M/
√
N � 1 is also valid for estima-

tors based on {Xti(yk), i ≤ N, k ≤ M} instead of the increments. We conjecture
that this is also true for the case M/

√
N → 0.

This lower bound shows that, in general, (σ2, ϑ2) cannot be estimated with
the parametric rate 1/

√
MN , in contrast to a conjecture in [7]. Instead, we

observe a phase transition in the rate depending on the sampling frequency.
The parametric rate can only be attained for a balanced design N � M2.

The proof of Theorem 5.1 relies on the standard lower bound technique, cf.
Tsybakov [37]. Using an inequality by Ibragimov and Has’minskii [20], we will
bound the Hellinger distance of the laws of the observations in terms of the corre-
sponding Fisher information for suitably chosen reparametrizations of (σ2, ϑ2).
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For each sampling regime we choose a reparametrization (γ1, γ2) of (σ
2, ϑ2) in

such a way that γ1 can be estimated with parametric rate, even without knowl-
edge of γ2. Bounding the Fisher information for γ2, we then obtain a lower
bound for the simpler problem of estimating the one dimensional parameter γ2,
assuming that γ1 is known. Clearly, the resulting lower bound for γ2 carries
over to (γ1, γ2) and consequently to (σ2, ϑ2). The main effort, noting that the
observations are significantly correlated, is to derive sharp upper bounds for the
Fisher information in the different sampling regimes.

In the case M/
√
N � 1 we apply the following bound on the Fisher informa-

tion for discrete observations of the first M coefficient processes. Thanks to the
Markov property, the probability density function for discrete observations of
an Ornstein-Uhlenbeck process is provided by the transition density and allows
for explicit computations.

Proposition 5.3. Let ϑ1 = ϑ0 = 0 and consider a sample (u�(iΔ), � ≤ M, i ≤
N) where (u�, � ∈ N) are independent Ornstein-Uhlenbeck processes given by

du�(t) = −λ�u�(t) dt+ σ dβ�(t), u�(0) ∼ N
(
0,

σ2

2λ�

)
.

Consider the reparametrization (σ2, ρ2) where ρ2 = σ2/ϑ2 and the corresponding
Fisher information JN,M . For max(M,N) → ∞, the diagonal entries of JN,M

satisfy

JN,M (σ2) = O(N3/2 ∧ (MN)) and JN,M (ρ2) = O(M3 ∧ (MN)). (19)

In particular, min
(
JN,M (σ2), JN,M (ρ2)

)
� N3/2 ∧M3 for max(N,M) → ∞.

Remark 5.4.

1. If M �
√
N and σ2 is known, Proposition 5.3 suggests a lower bound of

M−3/2 for estimation of ϑ2 in the spectral approach. Indeed, this rate is
achieved by the maximum likelihood estimator for time continuous obser-
vations of the coefficient processes, cf. [26].

2. The reparametrization was chosen since σ2 can be computed from the
quadratic variation of any coefficient process u� when N → ∞, while
ρ2 can be computed from the empirical variance of �u�(ti), � ≤ M , for
a fixed ti as M → ∞, even without knowledge of the other parameter,
respectively.

Letting M → ∞, Proposition 5.3 suggests that based on observations of the
coefficient processes it is not possible to estimate σ2 (and in particular (σ2, ϑ2))
at a rate faster than N−3/4. Further, assuming ϑ1 = 0, the eigenfunctions
e�(·) do not depend on unknown parameters and hence, the space-time discrete
observations of the SPDE may be reconstructed from {u�(ti), i ≤ N, � ∈ N}.
Consequently, the lower bound N−3/4 carries over to discrete observations of
the SPDE.

Although the lower bounds resulting from Proposition 5.3 and Theorem 5.1
are almost the same, their proofs require a very different reasoning if M/

√
N →
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0: In this case, if σ2 is known, Proposition 4.2 shows that it is possible to estimate
ϑ2 with parametric rate of convergence based on discrete observations of the
SPDE whereas Proposition 5.3 suggests that ϑ2 = σ2/ρ2 cannot be estimated
at a faster rate than M−3/2 based on the coefficient processes. In particular,
both observation schemes are not asymptotically equivalent in the sense of Le
Cam.

To derive the lower bound in the case M/
√
N → 0, we consider the situation

where observations are recorded at rational positions yk = k
M , k = 1, . . . ,M−1,

where we work with M−1 instead of M spatial observations for ease of notation.
Thus, we potentially add spatial observations on the margin [0, b) ∪ (1 − b, 1]
which can only increase the amount of information contained in the data. Since
e�(·) =

√
2 sin(π� ·) is the sine basis, trigonometric identities imply that the

vectors

ēk := (ek(y1), . . . , ek(yM−1)) ∈ RM−1, k ∈ N,

satisfy ēk+2M = ēk for all k ∈ N and 〈ēk, ēl〉 = M1{k=l 	=M} −M1{k+l=2M} for
k, l ≤ 2M . Equivalently, (ek)k=1,...,M−1 form an orthonormal basis with respect
to the empirical scalar product and the relations for (ēk)k≥1 follow from the
symmetry of the sine. Therefore, observing {Xti(yk), i ≤ N, k ≤ M − 1} is
equivalent to observing {Uk(ti), i ≤ N, k ≤ M − 1} with

Uk(t) :=
1

M
〈Xt(y·), ēk〉 =

∑
�∈I+

k

u�(t)−
∑
�∈I−

k

u�(t) (20)

and I+
k := {k + 2M�, � ≥ 0}, I−

k := {2M − k + 2M�, � ≥ 0}. Since the sets
Ik = I+

k ∪I−
k are disjoint for different values of k, the processes {U1, . . . , UM−1}

are independent which simplifies the calculation of the Fisher information con-
siderably. Based on their spectral densities and Whittle’s formula (35) for the
asymptotic Fisher information of a stationary Gaussian time series, we obtain
the following result for the increment processes Ūk, k ≤ M − 1, defined by

Ūk(j) := Uk(tj+1)− Uk(tj), j = 0, . . . , N − 1. (21)

Proposition 5.5. Consider the parametrization (σ2
0 , ϑ2) where σ2

0 := σ2/
√
ϑ2.

If M/
√
N → 0, the Fisher information JM,N with respect to ϑ2 of a sample

{Ūk(j), j ≤ N − 1, k ≤ M − 1} satisfies

JM,N (ϑ2) = O
(
M3 log

N

M2

)
.

Note that the reparametrization allows for estimation of σ2
0 = σ2/

√
ϑ2 with

parameteric rate based on time increments in the regime M/
√
N → 0, even

when ϑ2 is unknown. We have considered Ūk instead of Uk due to the technical
reason that the N -th order Fourier approximation of the spectral density of the
increment process is positive and hence, a spectral density as well. We conjecture
that the same bound holds for the Fisher information of Uk.
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6. Simulations

The following numerical example illustrates the asymptotic results for the esti-
mators derived in Section 4. In order to simulate X on a grid in time and space,
we use the replacement method developed in [14]: We choose L � 1/

√
Δ and

simulate for � ≤ L the coefficient processes (u�(ti))i≤N from the representation
Xti(yk) =

∑
�≥1 u�(ti)e�(yk) exploiting their AR(1)-structure, namely

u�(0) =
σ√
2λ�

N �
0 , u�(ti+1) = e−λ�Δu�(ti) + σ

√
1− e−2λ�Δ

2λ�
N �

i , i ∈ N,

where (N �
i ) are independent standard normal random variables. Then, the re-

maining values u�(ti) for � > L are replaced by independent random variables

with distribution N (0, σ2

2λ�
). Thanks to relation (20) and the stability of the

normal distribution under summation, this can be done without truncation in
terms of the number of coefficient processes. It is shown in [14] that — in con-
trast to naive truncation of the series representation of X — the distribution of
the random vector obtained by the replacement method is close to the true one
in total variation distance. Hence, the same holds for the limiting distribution
of statistics computed from the simulated data.

Letting T = 1, we have considered a fixed number N = 210 or N = 214 of
temporal observations, while M varies in the set {15, 29, 57, 113, 225, 449, 897,
1793, 3585, 7169}. The precise values for M stem from the procedure of lying a
dyadic grid on [0, 1] and then removing the points on the margin [0, b)∪(b−1, 1]
where b = 2−4. In fact, all observations are obtained as subsets of a simulation
of X on the full grid

(
(i/N̄ , k/M̄), i ≤ N̄ , k ≤ M̄

)
with M̄ = 213 and N̄ = 214.

We have used the replacement method with L = M̄ which is justified in view
of M̄ = 213 � 27 =

√
N̄ . The parameters are chosen to be σ2 = 0.1, ϑ2 =

0.5, ϑ1 = −0.4 and ϑ0 = 0.3.
First, we consider the estimators for the volatility σ2 and the diffusivity ϑ2

which have been analyzed in Propositions 4.1 and 4.2, respectively. Figure 1
shows the normalized (with respect to 1/(MN) as well as the constants σ4 and
ϑ2
2, respectively) mean squared errors based on 500 Monte Carlo iterations plot-

ted against the logarithm of the sampling ratio
√
N/M . The simplified double

increments estimator ϑ̂2,r is computed with r = (1 − 2b)
√
N

M . Using the same
value for r, the simplified double increments estimator for σ2 is computed by
replacing the normalization Φϑ(δ,Δ) with e−κδ/2ψϑ2(r)

√
Δ.

As expected, the estimators based on temporal increments only achieve the
parametric rate of convergence as long as M is not too large, whereas estimators
based on space increments only work well when M is not too small. The esti-
mators based on double increments perform very well throughout any regime
depicted in the plot. Even the simplified versions work surprisingly well, al-
though their applicability is only supported by our theory as long as M �

√
N .

In particular, the double increments estimator for σ2 can barely be distinguished
from the simplified one. Furthermore, as suggested by the theory, the simula-
tions show that the estimators based on space increments or time increments
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Fig 1. Normalized mean squared errors of estimators for σ2 (left) and ϑ2 (right) with T = 1,
N = 210 and M ∈ [15, 7169].

have a smaller mean squared error than the double increments estimators in the
regimes

√
N/M → 0 or

√
N/M → ∞, respectively.

The above estimators require all but one of the parameters (σ2, ϑ2, κ) to
be known. Within the more difficult statistical problem where all parameters
are unknown, η = (σ2, ϑ2, ϑ1) can be estimated by η̂ from (17) and by η̂v,w
from (18). Furthermore, we have implemented a data-thinning version of the
estimator where the contrast process uses only a single balanced sub-sample
and discards the remaining data instead of averaging. For the estimator η̂v,w
and its thinning version, we set v = [max(1, N

M2 )] and w = [max(1,M/
√
N)]

where [·] indicates rounding to the next integer. The minimization problems
were numerically solved using the nonlinear least squares function nls from
R. Figure 2 shows the logarithm of the mean squared errors plotted against
the logarithm of the sampling ratio

√
N/M , again based on 500 Monte Carlo

iterations. Here, displaying the mean squared errors on the logarithmic scale
helps in distinguishing the different curves and provides a close-up view at their
behavior when they are very small.

For the fixed value N = 214, taking M = 113 results in a balanced regime
and, in particular, we have v = w = 1. Thus, the definitions of all estimators
agree, leading to an intersection of the three curves at log(

√
N/M) ≈ 0.12.

In contrast to the double increments estimators for single parameters, η̂ only
produces good results as long as M �

√
N , which is covered by the theoretical

foundation. In fact, with the smallest number of spatial observations, M = 15,
the optimization algorithm was even unable to detect a minimum in almost 3/5
of the simulation runs and the mean squared error is computed based on the
remaining data. Unsurprisingly, the other two estimators have, overall, a much
better performance. On the contrary, when M = 57 (log(

√
N/M) ≈ −0.56) the

estimator η̂ works slightly better. This can be explained by the fact that, here,
the choice of v and w is too conservative in the sense that v∨w > 1 although the
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Fig 2. Logarithm of the mean squared errors of the least squares estimator η̂, its averaging
version η̂v,w and a thinning version exploiting only one balanced sub-sample. The time horizon
is T = 1 and the sample sizes are N = 214 and M ∈ [15, 7169].

regime is still reasonably balanced. Furthermore, we see that it is only possible to
profit from an increasing number of spatial observations up to a certain degree:
For M ≤

√
N , the optimal rate is M−3/2 and the empirical mean squared

error of η̂v,w as well as its thinning version becomes increasingly smaller. For

M ≥
√
N , the optimal rate is N−3/4 and, indeed, the empirical mean squared

errors become stationary. Furthermore, while the latter two estimators have
a similar qualitative behavior, the mean squared error of η̂v,w is consistently
smaller. As announced in Remark 4.6, this indicates that using the whole data
results in an improved asymptotic variance.

7. Proofs of the main results

7.1. Proofs for the central limit theorems for realized quadratic
variations

First, we prove the generic central limit result in Proposition 3.1. Afterwards,
we can verify the central limit theorems for realized quadratic variations based
on spatial increments (Theorem 3.3) and double increments (Theorem 3.7).

Proof of Proposition 3.1. Since Σn = Q

nΛnQn for an orthogonal matrix Qn ∈

Rdn×dn and a diagonal matrix Λn, the vector Z•,n has the same distribution
as BnX

n for Bn := QT
nΛ

1/2 and Xn := (X1, . . . , Xdn) with independent stan-
dard normal random variables (Xk)k∈N. Denoting An = diag(α1,n, . . . , αdn,n),

we obtain Sn = Z

•,nAnZ•,n

D
= Xn
B


n AnBnX
n. Furthermore, B


n AnBn

is symmetric such that B

n AnBn = P


n ΓnPn where Pn is an orthogonal ma-
trix and Γn is a diagonal matrix. Since PnX

n ∼ N (0, Edn), we conclude as in
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[29, p. 36]

Sn
D
= Xn
B


n AnBnX
n = (PnX

n)
Γ(PnX
n)

D
= Xn
ΓnX

n =

dn∑
i=1

γi,nX
2
i ,

where γi,n, i ≤ dn are the eigenvalues of B

n AnBn. The statement now follows

by Lyapunov’s condition and ‖Bn‖22 = ‖Σn‖2:∑dn

i=1 γ
4
i,nE

((
X2

k −EX2
k

)4)
(VarSn)

2 �

∑dn

i=1 γ
4
i,n(∑dn

i=1 γ
2
i,n

)2 �
maxi≤dn γ2

i,n∑dn

i=1 γ
2
i,n

=
‖BT

nAnBn‖22
VarSn

≤ (‖Bn‖22‖An‖2)2
VarSn

=
‖Σ‖22
VarSn

.

Throughout, for a function f : R → R we use the notation

Dδf(x) := f(x+ δ)− f(x) and D2
δf(x) := f(x+ 2δ)− 2f(x+ δ) + f(x).

Proof of Theorem 3.3. We abbreviate the (rescaled) space increments by

Sik := (δMk X)(ti) and S̃ik := eκyk/2(δMk X)(ti).

Step 1. We calculate the asymptotic mean of Vsp. Application of the trigono-
metric identity sin(α) sin(β) = 1

2 (cos(α− β)− cos(α+ β)) yields

eκx/2(e�(x+ δ)− e�(x))e
κy/2(e�(y + δ)− e�(y))

= g(δ) (2 cos(π�(y − x))− cos(π�(y − x− δ))− cos(π�(y − x+ δ))) (22)

+ (g(2δ) + g(0)− 2g(δ))(cos(π�(y − x)))

+ 2g(δ) cos(π�(y + x+ δ))− g(0) cos(π�(y + x))− g(2δ) cos(π�(x+ y + 2δ)),

where g(x) = exp(−κx/2). Plugging in x = y gives

eκy(e�(y + δ)− e�(y))
2

= 2(1− cos(π�δ)) + 2(1− g(δ))(cos(π�δ)− 1) + (g(2δ) + g(0)− 2g(δ))

+ 2g(δ) cos(π�(2y + δ))− g(2δ) cos(2π�(y + δ))− g(0) cos(2π�y).

(23)

Thus, in terms of

f(y) :=
∑
�≥1

1

2λ�
cos(π�y), y ∈ [0, 1],

we have

E
(
eκy (Xt(y + δ)−Xt(y))

2
)
= σ2

∑
�≥0

1

2λ�
eκy (e�(y + δ)− e�(y))

2

= σ2
(
−2Dδf(0)− 2Dδg(0)Dδf(0) + f(0)D2

δg(0)−D2
δ(g(·)f(2y + ·))(0)

)
.
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Owing to its closed form expression in (41) below, we see that f ∈ C∞
b ([0, 2])

and f ′(0) = − 1
4ϑ2

. Hence,

E
(
eκy(Xt(y + δ)−Xt(y))

2
)
= −2σ2f ′(0) · δ +O(δ2) =

σ2

2ϑ2
· δ +O(δ2).

For y = yk we obtain the asymptotic mean E(Vsp) =
σ2

2ϑ2
+O(δ) and in partic-

ular, under the condition N/M → 0,

√
MN

(
Vsp − σ2

2ϑ2

)
=

√
MN(Vsp −E(Vsp)) + o(1).

Step 2. We calculate the asymptotic variance. By Isserlis’ Theorem [21] we have

Cov((S̃ik)
2, (S̃jl)

2) = 2Cov(S̃ik, S̃jl)
2.

Together with the symmetry Cov(S̃ik, S̃jl) = Cov(S̃jk, S̃il), this implies

Var(Vsp) =
2

N2M2δ2
(v1 + v2 + v3 + v4), where

v1 :=

N−1∑
i=0

M−1∑
k=0

Var(S̃ik)
2,

v2 := 2

N−2∑
i=0

N−1∑
j=i+1

M−1∑
k=0

Cov(S̃ik, S̃jk)
2,

v3 := 2

N−1∑
i=0

M−2∑
k=0

M−1∑
l=k+1

Cov(S̃ik, S̃il)
2,

v4 := 4

N−2∑
i=0

N−1∑
j=i+1

M−2∑
k=0

M−1∑
l=k+1

Cov(S̃ik, S̃jl)
2.

We have already shown that Var(S̃ik) = E((S̃ik)
2) = σ2

2ϑ2
· δ+O(δ2). Therefore,

v1 = NMδ2 · σ4

4ϑ2
2

+O
(

N

M2

)
= NMδ2 · σ4

4ϑ2
2

+ o

(
N

M

)
.

In the sequel, we show that the remaining covariances do not contribute to the
asymptotic variance.

For v2 we define ω := ϑ2(π
2 ∧ (π2 +Γ)) > 0 such that λ� ≥ ω�2 for all � ∈ N.

Since (e�(yk+1)− e�(yk))
2 � �2δ2, we get for J = |i− j| ≥ 1

Cov(S̃ik, S̃jk) = σ2
∑
�≥1

e−λ�JΔ

2λ�
eκyk (e�(yk+1)− e�(yk))

2
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� δ2
∑
�≥1

e−ω�2JΔ � δ2√
JΔ

where the last step follows by Riemann summation with mesh size
√
JΔ. Since

logN
M2Δ ≤ N

M2Δ = N2

M2
1
T → 0,

v2 � Mδ4

Δ

N−1∑
i=0

N∑
j=i+1

1

(j − i)
≤ NMδ4

Δ

N∑
i=1

1

i
= O

(
N logN

M3Δ

)
= o

(
N

M

)
.

To bound v3 we follow the same strategy as for the mean: Since (22) consists
exclusively of second order differences we have Cov(S̃ik, S̃il) = O(δ2) for k �= l.
Therefore, v3 = O(NM2δ4) = o(N/M).

To estimate v4, we deduce from (22) for k < l and J = |i− j| ≥ 1 that

Cov(S̃ik, S̃jl) =− g(δ)D2
δfJΔ (yl − yk+1)

+ fJΔ (yl − yk)D
2
δg(0)−D2

δ (g(·)fJΔ (yl + yk + ·)) (0), where

ft(y) :=σ2
∑
�≥1

e−λ�t

2λ�
cos(π�y).

By Riemann summation we have f ′′
t (y) �

∑
�≥1 e

−λ�t � 1√
t
. On the other hand,

by Lemma A.7,

f ′′
t (y) � 1

y ∧ (2− y)
sup
k

∣∣∣∣ k2λk
e−λkt

∣∣∣∣ � 1

y ∧ (2− y)
.

Therefore,

f ′′
t (y) � B(t, y) :=

1

y ∧ (2− y)
∧ 1√

t
.

Similarly, ft(y), f
′
t(y) � B(t, y) can be shown. We conclude

v4 � NM
N−1∑
i=0

2M−2∑
k=0

δ4B

(
iΔ,

k

M

)2

� N

M3

N∑
i=1

M∑
k=0

M2

k2
∧ 1

iΔ

=
N

M3

N∑
i=1

⎛
⎝ ∑

k<M
√
iΔ

1

iΔ
+

∑
M≥k≥M

√
iΔ

M2

k2

⎞
⎠ � N

M3

N∑
i=1

M√
iΔ

� N3/2

M2
√
Δ

= o

(
N

M

)

where the last step follows from
√
N

M
√
Δ

= N
M

1√
T

→ 0. Summing up, we have

proved that

Var(Vsp) =
σ4

2ϑ2
2

· 1

MN
+ o

(
1

NM

)
.
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Step 3. To prove asymptotic normality, we interpret the number of temporal
and spatial observations as sequences M = Mn, N = Nn indexed by n ∈ N and
consider the triangular array (Zik,n, n ∈ N, k < Mn, i < Nn), where Zik,n =

S̃ik/
√
NMδ. Since Var(

∑
i,k Z

2
ik) � (MN)−1, Proposition 3.1 applies if:

1

MNδ2

(∑
i,k

|Cov(S̃ik, S̃jl)|
)2

→ 0

uniformly in j < N, l < M in view of criterion (8). The covariance bounds in
Step 2 yield uniformly in j < N, k < M :∑

k<M

|Cov(S̃jk, S̃jl)| = O(δ),
∑
i<N

|Cov(S̃il, S̃jl)| = O(δ2
√
N/

√
Δ),

( ∑
i 	=j,k 	=l

|Cov(S̃ik, S̃jl)|
)2

� MN
∑

i 	=j,k 	=l

|Cov(S̃ik, S̃jl)|2 = o(N/M),

where we have used the Cauchy-Schwarz inequality to obtain the last bound. It
remains to note N/M → 0 and NΔ � 1.

The proof of Theorem 3.7 is similar to the previous one but the more com-
plex covariance structure of the double increments has to be taken into account
carefully, see Section A.1. The (asymptotic) mean of the realized quadratic
space-time variation is provided by Proposition 3.5, which we prove first. In
the following, we write

D̃ik := eκyk/2Dik. (24)

Proof of Proposition 3.5. Step 1. We show asymptotic independence of Γ, i.e.,

E
(
(Dik)

2
)
= σ2

∑
�≥1

1− e−π2ϑ2�
2Δ

π2ϑ2�2
(e�(yk+1)− e�(yk))

2 +O
(
δ
√
Δ

(
δ ∧

√
Δ
))

.

Define f(x) := 1−e−x

x . A first order Taylor approximation of f yields

E
(
(Dik)

2
)
= σ2Δ

∑
�≥1

f
(
π2ϑ2�

2Δ
)
(e�(yk+1)− e�(yk))

2 +R

where R � Δ2
∑

�≥1 f
′(ϑ2(π

2�2 + ξ�)Δ)(e�(x+ δ)− e�(x))
2 for some |ξk| ≤ |Γ|.

Since

(e�(y + δ)− e�(y))
2

�
(
e−κδ/2(sin(π�(y + δ))− sin(π�y)) + sin(π�y)(e−κδ/2 − 1)

)2

� 1 ∧ (�δ)
2

and noting that f ′(x2) and x2f ′(x2) are integrable, we deduce

R � Δ2
∑
�≥1

(1 ∧ (�δ)2)f ′(ϑ2(π
2�2 + ξ�)Δ)
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= O
(
Δ3/2 ∧ (δ2

√
Δ)

)
= O

(
(δΔ) ∧ (δ2

√
Δ)

)
.

Step 2. We verify (i). Thanks to Step 1 we may assume λ� = π2ϑ2�
2. It

follows from (23) that

E(D̃2
ik) =σ2e−κy

(
Fϑ2(0,Δ)

(
1 + e−κδ

)
− 2Fϑ2(δ,Δ)e−κδ/2

)
− σ2e−κyD2

δ

(
g(·)Fϑ2(2yk + · ,Δ)

)
(0).

Consequently, it remains to show

D2
δ

(
g(·)Fϑ2(2y + · ,Δ)

)
(0) = O

(
δ
√
Δ

(
δ ∧

√
Δ
))

uniformly in y ∈ [b, 1− b]. As before, this is done by showing

Fϑ2(x,Δ) � Δ,
∂Fϑ2(x,Δ)

∂x
� Δ and

∂2Fϑ2(x,Δ)

∂x2
�

√
Δ

uniformly in x ∈ [2b, 2(1 − b)]. From Lemma A.8 it follows that Fϑ2(x,Δ) =
Δ

∑
�≥1 f(λ�Δ) cos(π�x) = O(Δ). In order to access the first two derivatives of

Fϑ2(·,Δ), we split it into two summands,

Fϑ2(x,Δ)=Δ
∑
�≥1

1

1 + λ�Δ
cos(π�x)

︸ ︷︷ ︸
=:HΔ(x)

+Δ
∑
�≥1

(
1− e−λ�Δ

λ�Δ
− 1

1 + λ�Δ

)
cos(π�x)

︸ ︷︷ ︸
=:GΔ(x)

.

Using the cosine series formula (41), we can compute

HΔ(x) =
1

ϑ2π2

∑
�≥1

1

�2 + 1
π2ϑ2Δ

cos(π�x) =

√
Δ

2
√
ϑ2

cosh
(

1√
ϑ2Δ

(x− 1)
)

sinh
(

1√
ϑ2Δ

) − Δ

2
,

from which it easily follows that H ′
Δ(x) � Δ and H ′′

Δ(x) �
√
Δ. The derivatives

of

GΔ(x) = Δ
∑
�≥1

h(�
√
Δ) cos(π�x), where h(z) :=

1− e−z(1 + z)

z(1 + z)
,

can be bounded summand-wisely,

G′
Δ(x) �

√
Δ

∑
�≥1

(�
√
Δ)h(�

√
Δ) sin(π�x) � Δ,

G′′
Δ(x) �

∑
�≥1

(�2Δ)h(�
√
Δ) cos(π�x) �

√
Δ,

where the bounds follow from the Riemann sum approximations in Lemma A.8,
owing to xh(x)|x=0 = x2h(x)|x=0 = 0.
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Step 3. We show the asymptotic expressions in (ii). Due to a Riemann sum
argument, we have ‖Fϑ2(·,Δ)‖∞ �

√
Δ and consequently,

Φϑ(δ,Δ) = 2 (Fϑ2(0,Δ)− Fϑ2(δ,Δ)) + Fϑ2(0,Δ)
[
1 + e−κδ − 2e−κδ/2

]
− 2 (Fϑ2(δ,Δ)− Fϑ2(0,Δ))

(
e−κδ/2 − 1

)
= 2 (Fϑ2(0,Δ)− Fϑ2(δ,Δ)) +O(δ

√
Δ).

In the case δ/
√
Δ → 0 Taylor’s formula yields

Fϑ2(0,Δ)− Fϑ2(δ,Δ) = −δ
∂Fϑ2(0,Δ)

∂x
− δ2

2

∂2Fϑ2(η,Δ)

∂x2

for some η ∈ [0, δ]. We employ the representation Fϑ2(·,Δ) = HΔ + GΔ from

Step 2: Since sin(0) = 0 we have
∂Fϑ2

(0,Δ)

∂x = H ′
Δ(0) = − 1

2ϑ2
. Further, H ′′

Δ(η) =

1/
√
Δ and the Riemann sum argument yields G′′

Δ(η) �
∑

�≥1(�
2Δ)h(�

√
Δ) �

1/
√
Δ. Therefore, Fϑ2(0,Δ)− Fϑ2(δ,Δ) = 1

2ϑ2
· δ +O

(
δ2√
Δ

)
.

If δ/
√
Δ → ∞, Lemma A.8 implies Fϑ2(δ,Δ) = −Δ

2 +O(Δ
3/2

δ2 ) and Lemma
A.9 yields

Fϑ2(0,Δ) =
√
Δ

∫ ∞

0

1− e−π2ϑ2z
2

π2ϑ2z2
dz − Δ

2
+O(Δ3/2). (25)

Since
∫∞
0

1−e−π2ϑ2z2

π2ϑ2z2 dz = 1√
ϑ2π

, we obtain Fϑ2(0,Δ) − Fϑ2(δ,Δ) =
√
Δ√

ϑ2π
+

O(Δ
3/2

δ2 ).

Finally, we derive the asymptotic expression for the case δ/
√
Δ ≡ r, while

δ/
√
Δ → r can be handled similarly. We have

Φϑ(δ,Δ) = 2(Fϑ2(0,Δ)− Fϑ2(δ,Δ))e−κδ/2 + Fϑ2(0,Δ)(1 + e−κδ − 2e−κδ/2)

= 2(Fϑ2(0,Δ)− Fϑ2(δ,Δ))e−κδ/2 +O(Δ3/2)

and since 1− cos(0) = 0, Lemma A.9 yields

Fϑ2(0,Δ)− Fϑ2(r
√
Δ,Δ) =

∑
�≥1

1− e−π2ϑ2�
2Δ

π2ϑ2�2

(
1− cos

(
π�r

√
Δ
))

=
√
Δ

∫ ∞

0

1− e−π2ϑ2z
2

π2ϑ2z2
(1− cos (πrz)) dz +O(Δ3/2).

It remains to compute the integral. By substituting r̃ = r/
√
ϑ2 we can pass to

∫ ∞

0

1− e−π2ϑ2z
2

π2ϑ2z2
(1− cos (πrz)) dz =

1

π
√
ϑ2

(
h1(r̃)− h2(r̃)

)
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where

h1(r̃) =

∫ ∞

0

1− cos(r̃z)

z2
dz, h2(r̃) =

∫ ∞

0

e−z2 1− cos(r̃z)

z2
dz.

To compute h1, note that S(z) + cos(z)−1
z is an antiderivative of 1−cos(z)

z , where

S(z) =
∫ z

0
sin(h)

h dh is the sine integral. Consequently, a substitution and the
property limz→∞ S(z) = π/2 yield

h1(r̃) = r̃

∫ ∞

0

1− cos(z)

z2
dz =

πr̃

2
.

To treat h2, note that h2(0) = h′
2(0) = 0 and hence, h2(r̃) =

∫ r̃

0

∫ s

0
h′′
2(u) du ds.

Now, plugging in h′′
2(r̃) =

∫∞
0

e−z2

cos(r̃z) dz =
√
π
2 e−r̃2/4 and integrating by

parts yields

h2(r̃) =

√
π

2

∫ r̃

0

∫ s

0

e−u2/4 du =
√
πr̃

∫ r̃/2

0

e−u2

du+
√
π
(
e−r̃2/4 − 1

)
.

The claim thus follows from

h1(r̃)− h2(r̃) =
πr̃

2

(
1− 2√

π

∫ r̃/2

0

e−u2

du

)
+
√
π
(
1− e−r̃2/4

)

= r̃
√
π

∫ ∞

r̃/2

e−u2

du+
√
π
(
1− e−r̃2/4

)
.

Proof of Theorem 3.7. Asymptotic normality follows just like in the proof of
Theorem 3.3. Using the notation from the proof of the latter theorem (with
space increments replaced by double increments) we have

Var(V) =
2

M2N2Φ2
ϑ(δ,Δ)

(v1 + v2 + v3 + v4).

To determine the asymptotic variances, we have to treat the three different
sampling regimes separately.

Case δ/
√
Δ → 0. By Lemmas A.1 and A.2 we have

Var(D̃ki)
2 =

σ4

ϑ2
2

e−κδ · δ2 + o(δ2), Cov(D̃ki, D̃k(i+1))
2 =

σ4

4ϑ2
2

e−κδ · δ2 + o(δ2)

as well as

Cov(D̃ki, D̃kj)
2 = o

(
δ2

|i− j|5
)
, |i− j| ≥ 2,

Cov(D̃ki, D̃lj)
2 = O

(
δ4

(|i− j|+ 1)4

(
M2

(k − l)2
∧ 1

Δ

))
, k �= l.
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Since
∑

k≤M (M
2

k2 ∧ 1
Δ ) � M√

Δ
(cf. the proof of Theorem 3.3), the latter covari-

ances are negligible for the asymptotic variance. Inserting Φ2
ϑ(δ,Δ) = e−κδ

ϑ2
2
δ2 +

o(δ2) from Proposition 3.5 yields the claim.
Case δ/

√
Δ → ∞. By Lemmas A.1 and A.3 we have

Var(D̃ki)
2 =

4σ4

πϑ2
e−κδ ·Δ+ o(Δ), Cov(D̃ki, D̃(k+1)i)

2 =
σ4

πϑ2
e−κδ ·Δ+ o(Δ).

From d(J) :=
√
J − 1 +

√
J + 1 − 2

√
J = O(J−3/2) and

√
Δ/δ → 0, it follows

for J = |i− j| ≥ 1 that

Cov(D̃ki, D̃kj)
2 =

σ4

πϑ2
d(J)2e−κδ ·Δ+ o

(
Δ

J3/2

)
+O(Δ3),

Cov(D̃ki, D̃(k+1)j)
2 =

σ4

4πϑ2
d(J)2e−κδ ·Δ+ o

(
Δ

J3/2

)
+O(Δ3).

Note that the O(Δ3)-term is negligible for the asymptotic variance since

N2MΔ3 = MNΔ ·NΔ2 = MNΔ · T

M
·M

√
Δ ·

√
Δ = o(NMΔ).

The remaining covariances do not contribute to the asymptotic variance since
for |k − l| ≥ 2 we have

Cov(D̃ki, D̃lj)
2 = O

(
Δδ4

(J + 1)3

)
+O

(
Δ2

(J + 1)2
M2

(k − l)2

)
.

The claim is now proved by inserting Φ2
ϑ(δ,Δ) = 4

πϑ2
e−κδΔ+ o(Δ) and noting

that we have

1

N

N−1∑
i,j=0

i 	=j

d(|i− j|)2 =
2

N

N−1∑
i=1

i∑
j=1

d(j)2 −→ 2
∑
j≥1

d(j)2, N → ∞

by Cesàro summation.
Case δ/

√
Δ ≡ r ∈ (0,∞). For f : R2 → R define

D2
xf(x, y) := f(x+ 2, y) + f(x, y)− 2f(x+ 1, y),

D2
yf(x, y) := f(x, y + 2) + f(x, y)− 2f(x, y + 1).

We show that the asymptotic variance is given by C(r/
√
ϑ2)σ

4 where

C(h) :=
2

Λ2
0,0(h)

∑
j,l∈Z

Λ2
j,l(h), Λj,l(h) :=

(
D2

xD
2
yGh

)
(|j| − 1, |l| − 1) (26)

with Gh(j, l) :=
√
|j|P

(
h|l|√
|j|

)
1{j 	=0} (27)
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and P (x) := 1
2
√
π

(
exp

(
−x2

4

)
− x

∫∞
x/2

e−z2

dz
)
: Define

ξΔi−j,k−l :=

{
2DδF|i−j|,Δ(0), l = k,

D2
δF|i−j|,Δ((|k − l| − 1)δ), l �= k,

with δ = r
√
Δ such that Lemma A.1 reads as

Cov(D̃ik, D̃ik) = −σ2e−κδ/2ξΔi−j,k−l +O
(

Δ3/2

(J + 1)3/2

)
. (28)

Since each term ξΔJ,L is a Riemann sum multiplied by
√
Δ, we have for J, L ≥ 0

lim
Δ→0

Δ−1/2ξΔJ,L = −
{
2(Ψr(J, 1))−Ψr(J, 0)), L = 0,

Ψr(J, L− 1) + Ψr(J, L+ 1)− 2Ψr(J, L), L ≥ 1,

where

Ψr(J, L) :=⎧⎪⎪⎨
⎪⎪⎩
∫ ∞

0

1− e−π2ϑ2z
2

π2ϑ2z2
cos (πrLz) dz, J = 0,∫ ∞

0

2e−Jπ2ϑ2z
2 − e−(J+1)π2ϑ2z

2 − e−(J−1)π2ϑ2z
2

2π2ϑ2z2
cos (πrLz) dz, J ≥ 1.

By symmetry of the cosine,

lim
M,N→∞

Δ−1/2ξJ,L =−
(
Ψr(J, |L| − 1) + Ψr(J, |L|+ 1)− 2Ψr(J, |L|)

)
also holds for negative L. Hence, we can write for all L ∈ Z and J ≥ 0 and with
G from (27)

Ψr(J, L) =

∫ ∞

0

2e−Jπ2ϑ2z
2 − e−(J+1)π2ϑ2z

2 − e−|J−1|π2ϑ2z
2

2π2ϑ2z2
cos (πrLz) dz

=
(
Gr/

√
ϑ2
(J + 1, L) +Gr/

√
ϑ2
(J − 1, L)− 2Gr/

√
ϑ2
(J, L)

)
/
√

ϑ2,

where the last equality follows from

Gr/
√
ϑ2
(j, l)

√
ϑ2

=

∫ ∞

0

1− e−|j|π2ϑ2z
2

2π2ϑ2z2
cos (πrlz) dz, j, l ∈ Z,

which may be shown analogously to the calculation of ψϑ2(r). Consequently, for
all J ∈ {1−N, . . . , N − 1} and L ∈ {1−M, . . . ,M − 1} we have

lim
M,N→∞

Δ−1/2ξJ,L = −ΛJ,L(r/
√
ϑ2)/

√
ϑ2.
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The usual Riemann sum argument yields FJ,Δ(0) �
√
Δ

(J+1)3/2
�

√
Δ

(J+1) for J ≥ 0

and Lemma A.3 (more precisely (45)) yields FJ,Δ(Lδ) � Δ
(J+1)Lδ �

√
Δ

(J+1)(L+1)

for J ∈ N0 and L ≥ 1. We obtain

Δ−1/2ξΔJ,L = O
(

1

(|J |+ 1)(|L|+ 1)

)
, J, L ∈ Z. (29)

Therefore,

Var

(
1√

NMΔ

N−1∑
i=0

M−1∑
k=0

D̃2
ik

)
=

2σ4

NMΔ

N−1∑
i,j=0

M−1∑
k,l=0

(ξΔi−j,k−l)
2 + o(1).

By dominated convergence and taking Cesàro limits twice, we conclude

lim
M,N→∞

Var

(
1√

NMΔ

N−1∑
i=0

M−1∑
k=0

D̃2
ik

)

= lim
M,N→∞

2σ4

ϑ2NM

N−1∑
i,j=0

M−1∑
k,l=0

Λ2
i−j,k−l(r/

√
ϑ2) =

2σ4

ϑ2

∑
i,k∈Z

Λ2
i,k(r/

√
ϑ2).

Since ψϑ2(r) = −Λ0,0(r/
√
ϑ2)/

√
ϑ2, we have Φ2

ϑ(δ,Δ) = e−κδΛ2
0,0(r/

√
ϑ2)/ϑ2 ·

Δ+o(Δ) and dividing by limM,N→∞ Δ−1Φ2
ϑ(δ,Δ) = Λ2

0,0(r/
√
ϑ2)/ϑ2 yields the

claimed asymptotic variance.

7.2. Proofs for the estimators

Propositions 4.1 and 4.2 follow immediately from the central limit theorems for
the realized quadratic variations and the delta method. Before proving Theo-
rem 4.3, we introduce some notation that will be used throughout the proof
and we state the asymptotic covariance matrix explicitly. Recall the definition
of Λi,k(·) from (26) and for any i, k ∈ Z let

Ar
ik := −Λik(r/

√
ϑ2)/

√
ϑ2, Ar :=

∑
i,k∈Z

(Ar
ik)

2,

Br
ik := 2Ar

ik +Ar
(i−1)k +Ar

(i+1)k, Br :=
∑
i,k∈Z

(Br
ik)

2,

Cr
ik := Ar

ik +Ar
(i−1)k, Cr :=

∑
i,k∈Z

(Cr
ik)

2.

In terms of

H(x) :=
4x√
π

(
1− e−x2

+ 2x

∫ ∞

x

e−z2

dz

)
,

H ′(x) =
4√
π

(
1− e−x2

+ 4x

∫ ∞

x

e−z2

dz

)
, x ≥ 0,
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we have ψϑ2(r) =
1
rH

(
r

2
√
ϑ2

)
and ∂

∂ϑ2
ψϑ2(r) = −H ′( r

2
√
ϑ2

)
1

4ϑ
3/2
2

. Denoting ri :=

r/
√
i, let hi

η(z) := e−κzgiη(z) where

giη(z) := e−κz

(
1

ri
H

( ri

2
√
ϑ2

)
,− σ2

4ϑ
3/2
2

H ′
( ri

2
√
ϑ2

)
,−z

σ2

ri
H

( ri

2
√
ϑ2

))


is the gradient of η �→ f i
η(z) with i = 1, 2 and z ∈ [b, 1− b]. Moreover, we write

〈f, g〉b := 1
1−2b

∫ 1−b

b
f(x)g(x)dx for f, g ∈ L2([b, 1 − b]). We will prove that the

asymptotic covariance matrix equals

Ωr
η := V −1UV −1, (30)

where U = U(η) and V = V (η) are defined via

Uij := 4σ4
(
2Ar〈(h1

η)i, (h
1
η)j〉b +Br〈(h2

η)i, (h
2
η)j〉b

+
√
2Cr

(
〈(h1

η)i, (h
2
η)j〉b + 〈(h2

η)i, (h
1
η)j〉b

))
,

Vij := 2
(
〈(g1η)i, (g1η)j〉b + 〈(g2η)i, (g2η)j〉b

)
, i, j ∈ {1, 2, 3}.

Proof of Theorem 4.3. The proof uses the classical theory on minimum contrast
estimators, see e.g. [11]. In particular, the mean value theorem yields

−K̇N,M (η) = K̇N,M (η̂)− K̇N,M (η) =

(∫ 1

0

K̈N,M (η + τ(η̂ − η)) dτ

)
(η̂ − η)

as soon as [η̂, η] ⊂ H, where K̇N,M and K̈N,M denote gradient and Hessian with
respect to η, respectively. In the sequel, we will verify that KN,M is associated
with the contrast function K(η, η̃) := K1(η, η̃) +K2(η, η̃), where

Ki(η, η̃) :=
1

1− 2b

∫ 1−b

b

(f i
η(z)− f i

η̃(z))
2 dz

(Steps 1-2), show consistency of η̂ (Step 3), prove asymptotic normality of
K̇N,M (η) with covariance matrix U (Steps 4-7) and deduce stochastic conver-

gence of
∫ 1

0
K̈N,M (η + τ(η̂ − η)) dτ to the invertable matrix V (Steps 8-9). The

result then follows from Slutsky’s Lemma and −
√
MNV (η)−1K̇N,M (η)

D−→
N (0,Ωr

η).
Step 1. We show that K is a contrast function in the sense that for each η the

function η̃ �→ K(η, η̃) attains its unique minimum in η̃ = η. Since f i
η(·) is contin-

uous it is sufficient to show that (f1
η , f

2
η ) = (f1

η̃ , f
2
η̃ ) if and only if η = η̃. Clearly,

(f1
η , f

2
η ) = (f1

η̃ , f
2
η̃ ) holds if and only if κ = κ̃ and σ2ψϑ2(ri) = σ̃2ψϑ̃2

(ri) for
i = 1, 2. Therefore, in order to prove identifiability, it is sufficient to show that
ϑ2 �→ ψϑ2(r1)/ψϑ2(r2) is injective, which in turn is implied by strict monotonic-
ity of H(r1z)/H(r2z) in z > 0. We show that the corresponding derivative or,
equivalently, the function z �→ H ′(r1z)H(r2z)r1 −H ′(r2z)H(r1z)r2, is strictly
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negative for all z > 0: For x > 0 define p(x) =
∫∞
x

e−z2

dz and q(x) = 1− e−x2

.
A simple calculation shows that

H ′(r1z)H(r2z)r1 −H ′(r2z)H(r1z)r2

=
32

π
r1r2z

(
p(r1z)q(r2z)r1z − p(r2z)q(r1z)r2z

)
which is strictly negative if we can show that p(b)q(a)b − p(a)q(b)a < 0 for

all 0 < a < b. Now, a substitution yields p(x) = x
∫∞
1

e−x2t2 dt and q(x) =

2x2
∫ 1

0
se−x2s2 ds and therefore,

p(b)q(a)b− p(a)q(b)a = 2a2b2
∫ 1

0

∫ ∞

1

s
(
e−b2t2−a2s2 − e−a2t2−b2s2

)
dt ds < 0

follows from negativity of the integrand.
Step 2. K is the contrast function associated with the process KN,M in the sense

that KN,M (η̃)
Pη−→ K(η, η̃), N,M → ∞, for all η̃ ∈ H: Recall from the proof of

Theorem 3.7 that for i, j, k, l ∈ N we have

Cov(Dik, Djl) = σ2e−κ
zk+zl

2 ξΔi−j,k−l +O
(

Δ3/2

(|i− j|+ 1)3/2

)
, (31)

ξΔi,k = O
( √

Δ

(|i|+ 1)(|k|+ 1)

)
(32)

and limN,M→∞ Δ−1/2ξΔi−j,k−l = Ar
ik = −Λik(r/

√
ϑ2)/

√
ϑ2. Now, in terms of

rik(η) = D2
ik/

√
Δ− f1

η (zk), Rk(η) =
1

N

N−1∑
i=0

rik(η)

we can write

K1
N,M (η̃) =

1

M

M−1∑
k=0

(
f1
η (zk)− f1

η̃ (zk)
)2

+
2

M

M−1∑
k=0

Rk(η)
(
f1
η (zk)− f1

η̃ (zk)
)
+

1

M

M−1∑
k=0

R2
k(η). (33)

Clearly, the first summand converges to K1(η, η̃). To prove that the other two
summands are negligible, note that

E(rikrjl)

= E
(
(D2

ik/
√
Δ−E(D2

ik/
√
Δ) +O(Δ))(D2

jl/
√
Δ−E(D2

jl/
√
Δ) +O(Δ))

)
=

1

Δ
Cov(D2

ik, D
2
jl) +O(Δ2) =

2

Δ
Cov(Dik, Djl)

2 +O(Δ2)
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= O
(

1

(|i− j|+ 1)2(|k − l|+ 1)2

)
+O(Δ2).

By Markov’s inequality and boundedness of φ(·) = f1
η (·) − f1

η̃ (·), we have for
any ε > 0,

P

(∣∣∣∣∣ 1

M

M−1∑
k=0

Rkφ(zk)

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2M2

M−1∑
k,l=0

|E (RkRl)φ(zk)φ(zl)|

� 1

M2

M−1∑
k,l=0

|E (RkRl) | ≤
1

M2N2

M−1∑
k,l=0

N−1∑
i,j=0

|E (rikrjl) | = o(1),

hence, the second summand in (33) converges to zero in probability. For the
third summand the same conclusion holds since

E

(
1

M

M−1∑
k=0

R2
k

)
=

1

M

M−1∑
k=0

E
(
R2

k

)
=

1

MN2

M−1∑
k=0

N−1∑
i,j=0

E (rikrjk) = o(1)

and L1-convergence implies convergence in probability. K2
N,M can be handled

similarly by considering a decomposition into two sums of non-overlapping in-
crements:

R̄k(η) = 2

⎛
⎜⎝ 1

2N

∑
i≤N−1
i even

r̄ik(η) +
1

2N

∑
i≤N−1
i odd

r̄ik(η)

⎞
⎟⎠

where r̄ik = D̄2
ik/

√
2Δ− f2

η (zk).
Step 3. Consistency of η̂ follows from uniform convergence in probability of the
contrast process. Since KN,M and K are continuous, this in turn follows from

∀ε > 0 : lim
h→0

lim sup
M,N→∞

Pη

(
sup

|η1−η2|<h

|KN,M (η1)−KN,M (η2)| ≥ ε

)
= 0 :

By compactness of the parameter space, for each a > 0 there exists h > 0 such
that ‖f i

η1
− f i

η2
‖∞, ‖(f i

η1
)2 − (f i

η2
)2‖∞ ≤ a for all |η1 − η2| < h. Therefore,

|K1
N,M (η1)−K1

N,M (η2)| ≤
2

M

M−1∑
k=0

(
1

N
√
Δ

N−1∑
i=0

D2
ik

)
|f1

η2
(zk)− f1

η1
(zk)|

+
1

M

M−1∑
k=0

|f1
η1
(zk)

2 − f1
η2
(zk)

2|

≤a

(
2

M

M−1∑
k=0

(
1

N
√
Δ

N−1∑
i=0

D2
ik

)
+ 1

)

and, hence,

lim sup
M,N→∞

Pη

(
sup

|η1−η2|<h

|K1
N,M (η1)−K1

N,M (η2)| ≥ ε

)
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≤ lim sup
M,N→∞

1

ε
E

(
sup

|η1−η2|<h

|K1
N,M (η1)−K1

N,M (η2)|
)

≤ lim sup
M,N→∞

a

ε
E

(
2

M

M−1∑
k=0

(
1

N
√
Δ

N−1∑
i=0

D2
ik

)
+ 1

)
� a

ε
.

The same argument applies to K2
N,M and the result follows.

Step 4. Let F1, F2 ∈ C1([0, 1]) and (ak)k∈Z be absolutely summable. Then we
can write

1

n

n−1∑
k,l=0

ak−lF1(zk)F2(zl) =
a0
n

(F1(z0)F2(z0) + · · ·+ F1(zn−1)F2(zn−1))

+
a1
n

(F1(z1)F2(z0) + · · ·+ F1(zn−1)F2(zn−2))

+
a−1

n
(F1(z0)F2(z1) + · · ·+ F1(zn−2)F2(zn−1))

+ · · ·

and, consequently, we have 1
n

∑n−1
k,l=0 ak−lF1(zk)F2(zl) → 〈F1, F2〉b ·

∑
k∈Z

ak for
n → ∞ by dominated convergence.
Step 5. We show that the asymptotic covariance matrix of

√
NMK̇N,M (η) is

given by U : We have K̇N,M (η) = K̇1
N,M (η) + K̇1

N,M (η) as well as

K̇1
N,M (η) = − 2

M

M−1∑
k=0

(
1

N
√
Δ

N−1∑
i=0

D2
ik − f1

η (zk)

)
g1η(zk)

and similarly for K̇2
N,M (η). From Isserlis’ theorem, (31) and D̄ik = Dik+D(i+1)k

it follows that

Cov(D2
ik, D

2
jl) =2

(
σ2e−

zk+zl
2 ξΔi−j,k−l +O

( Δ3/2

(|i− j|+ 1)3/2

))2

,

Cov(D̄2
ik, D̄

2
jl) =2

(
σ2e−

zk+zl
2

(
2ξΔi−j,k−l + ξΔi−j−1,k−l + ξΔi−j+1,k−l

)
+O

( Δ3/2

(|i− j|+ 1)3/2

))2

,

Cov(D2
ik, D̄

2
jl) =2

(
σ2e−

zk+zl
2 (ξΔi−j,k−l + ξΔi−j−1,k−l) +O

( Δ3/2

(|i− j|+ 1)3/2

))2

.

Now, for any 1 ≤ e, f ≤ 3, the first summand in the expansion

Cov((K̇N,M )e, (K̇N,M )f )

= Cov((K̇1
N,M )e, (K̇

1
N,M )f ) + Cov((K̇2

N,M )e, (K̇
2
N,M )f )

+ Cov((K̇1
N,M )e, (K̇

2
N,M )f ) + Cov((K̇2

N,M )e, (K̇
1
N,M )f ) (34)
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is given by

Cov((K̇1
N,M )e, (K̇

1
N,M )f )=

4

M2N2Δ

N−1∑
i,j=0

M−1∑
k,l=0

Cov(D2
ik, D

2
jl) (g

1
η)e(zk) (g

1
η)f (zl).

Like in the proof of Theorem 3.7, the covariances may be replaced by their
asymptotic expressions due to dominated convergence. Further, using (hi

η)e(z) =

e−κz(giη)e(z) and Step 4, we have

MN · Cov((K̇1
N,M )e, (K̇

1
N,M )f ) → 8σ4

∑
i,k∈Z

(Ar
i,k)

2 · 〈(h1
η)e, (h

1
η)f 〉b

for M,N → ∞. Analogously,

MN · Cov((K̇2
N,M )e, (K̇

2
N,M )f ) → 4σ4

∑
i,k∈Z

(Br
i,k)

2 · 〈(h2
η)e, (h

2
η)f 〉b,

MN · Cov((K̇1
N,M )e, (K̇

2
N,M )f ) → 4

√
2σ4

∑
i,k∈Z

(Cr
i,k)

2 · 〈(h1
η)e, (h

2
η)f 〉b

and insertion into (34) yields the claimed asymptotic covariance matrix.
Step 6. U is strictly positive definite: It is sufficient to show that Cr <

√
ArBr,

then it follows for any α ∈ R3 \ {0} and Hi
α =

∑3
j=1 αj(h

i
η)j , i = 1, 2 that

α
Uα = 4σ4
(
2Ar‖H1

α‖2b +Br‖H2
α‖2b + 2

√
2Cr〈H1

α, H
2
α〉b

)
> 4σ4

(
2Ar‖H1

α‖2b +Br‖H2
α‖2b + 2

√
2ArBr〈H1

α, H
2
α〉b

)
= 8σ4

∥∥∥√2ArH
1
α +

√
BrH

2
α

∥∥∥2

b
≥ 0,

where we may assume 〈H1
α, H

2
α〉b < 0 since otherwise α
Uα > 0 follows imme-

diately from the first equality. Now, consider (Ar
i,k) and (Br

i,k) as elements in

the Hilbert space �2 of square summable sequences indexed by Z × Z. Clearly,
Ar = ‖(Ar

i,k)‖2�2 , Br = ‖(Br
i,k)‖2�2 and a direct calculation shows that Cr =

〈(Ar
i,k), (B

r
i,k)〉�2 . Thus, by the Cauchy-Schwarz inequality we have Cr ≤

√
ArBr

and equality is ruled out by the fact that (Ar
i,k) and (Br

i,k) are not linearly de-
pendent.

Step 7. We show
√
NMK̇1

N,M (η)
D−→ N (0, U) under Pη. In view of the Cramér-

Wold device, we have to prove
√
NMα
K̇N,M

D−→ N (0, α
Uα) for any α ∈
R3. Let sik and Zik be given by the relation sikZ

2
ik = −2αT ḟ1

η (zk)√
NMΔ

D2
ik where

sik ∈ {−1, 1} is deterministic. Analogously, define s̄ik and Z̄2
i,k. Then, ZN,M =

(Zik, Z̄j,l)i,j,k,l is a Gaussian vector and from Proposition 3.5 it follows that
√
NMα
K̇N,M (η) = SN,M −E(SN,M ) + o(1)

where SN,M =
∑N−1

i=0

∑M−1
k=0 sikZ

2
ik +

∑N−1
i=0

∑M−2
k=0 s̄ikZ̄

2
ik. From Steps 5 and

6 we can deduce that Var (SN,M ) → α
Uα > 0, N,M → ∞ and thus, in
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view of criterion (8), asymptotic normality follows if the absolute row sums
of the covariance matrix of ZN,M vanish uniformly. This in turn is a simple
consequence of (31) and (32).

Step 8. In order to prove
∫ 1

0
K̈N,M (η+ τ(η̂− η)) dτ

Pη−→ V (η), it suffices to show

K̈N,M (ηN,M )
Pη−→ V (η) for any consistent estimator ηN,M of η. We have

K̈1
N,M (η)=

2

M

M−1∑
k=0

g1η(zk)g
1
η(zk)


 − 2

M

M−1∑
k=0

(
1

N
√
Δ

N−1∑
i=0

D2
ik − f1

η (zk)

)
f̈1
η (zk)

and analogously for K̈2
N,M . By using Pη(ηN,M ∈ H) → 1 and the uniform conti-

nuity of f i
η(z) and its derivatives in the parameter (z, η) ∈ [0, 1]×H, it is straight-

forward to show K̈N,M (ηN,M ) − K̈N,M (η)
Pη−→ 0. Now, write V = 2(V 1 + V 2)

where V i is the Gram matrix of the functions {(giη)1, (giη)2, (giη)3} with respect

to the inner product 〈·, ·〉b, i.e. V i
ef = 〈(giη)e, (giη)f 〉b, 1 ≤ e, f ≤ 3. Clearly, first

summand of K̈1
N,M (η) converges to 2V 1 while the calculations of Step 2 show

that the second summand converges to 0 in probability. The same reasoning
holds for K̈2

N,M (η) and the result follows.

Step 9. V is strictly positive definite: Being Gram matrices, V 1 and V 2 are
positive semi-definite and consequently, the same holds for V . Clearly, the only
way V can be singular is if there exists α ∈ R3 such that 0 = α
V iα =∥∥∑3

e=1 αe(g
i
η)e

∥∥2

b
holds for both i ∈ {1, 2}. From the particular form of the func-

tions (giη)e it is apparent that this would imply that α1ψϑ2(ri)+α2σ
2 ∂ψϑ2

(ri)

∂ϑ2
=

α3 = 0 for both i ∈ {1, 2}, which is impossible.

Proof of Proposition 4.5. We have to prove

∀ε > 0 ∃C > 0 : lim sup
N,M→∞

Pη

(√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

)
≤ ε.

Similar calculations as in Theorem 4.3 show that Steps 1-3 and 8-9 of the
corresponding proof remain valid. Consequently, we have the representation

−K̇N,M (η) = VN,M (η̂v,w, η)(η̂v,w − η), where VN,M (η̃, η) =
∫ 1

0
K̈N,M (η + τ(η̃ −

η)) dτ as well as VN,M (η̂v,w, η)
Pη−→ V (η) where V (η) is an invertible determin-

istic matrix. In particular, the set

AN,M =
{
VN,M (η̂v,w, η) is invertible and ‖VN,M (η̂v,w, η)

−1‖2 ≤ ‖V (η)−1‖2+1
}

satisfies Pη(AN,M ) → 1. Further, K̇N,M (η) can be written as an average of

expressions of the type K̇N,M from Theorem 4.3 so that the calculations of Step

5 show together with the Cauchy-Schwarz inequality that Eη

(
‖K̇N,M (η)‖2

)
=

O((M3 ∧N3/2)−1). Now,

Pη

(√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

)
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≤ Pη

({√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

}
∩AN,M

)
+Pη(A

c
N,M ).

The second summand becomes arbitrarily small as M,N → ∞. For the first
summand, let γ(η) = ‖V (η)−1‖2 + 1, then it follows from Markov’s inequality
that

Pη

(
{
√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C} ∩AN,M

)
= Pη

(
{
√
M3 ∧N3/2‖VN,M (η̂v,w, η)

−1K̇N,M (η)‖ ≥ C} ∩AN,M

)
≤ Pη

(
{
√
M3 ∧N3/2‖K̇N,M (η)‖ ≥ C

γ(η)
} ∩AN,M

)

≤ Pη

(√
M3 ∧N3/2‖K̇N,M (η)‖ ≥ C

γ(η)

)

≤ (M3 ∧N3/2)Eη(‖K̇N,M (η)‖2)γ(η)
2

C2
� 1

C2
.

7.3. Proofs of the lower bounds

Before we prove Theorem 5.1, we verify its ingredients Proposition 5.3 and
Proposition 5.5.

Proof of Proposition 5.3. By setting a = k2, μ = π2ϑ2 and ν2 = σ2

π2ϑ2
in Lemma

A.4 and using independence of (u�, � ∈ N), we get the Fisher information matrix
I for the parameters (μ, ν2), namely

I11 = N

M∑
�=1

�4Δ2(e−4μ�2Δ + e−2μ�2Δ)

(1− e−2μ�2Δ)2
= N

M∑
�=1

g11(�
√
Δ),

I12 = N

M∑
�=1

�2Δe−2μ�2Δ

ν2(1− e−2μ�2Δ)
= N

M∑
�=1

g12(�
√
Δ),

I22 =
(N + 1)M

2ν4

with g11(x) :=
x4(e−4μx2

+ e−2μx2

)

(1− e−2μx2)2
, g12(x) :=

x2e−2μx2

ν2(1− e−2μx2)
.

The Fisher information matrix J = JM,N for the parameters (σ2, ρ2) can be
computed via the change of variables formula J = A
IA where

A =

(
π2/ρ2 −π2σ2/ρ4

0 1/π2

)
is the Jacobian of the function transforming (σ2, ρ2) to (μ, ν2). Hence, the di-
agonal entries of J are given by

J11 =
π4

ρ4
I11, J22 =

π4σ4

ρ8
I11 −

2σ2

ρ4
I12 +

1

π4
I22.
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If M
√
Δ is bounded away from 0, then I11 can be interpreted as a Riemann

sum. We obtain

J11 � I11 � N3/2

∫ M
√
Δ

0

g11(x) dx � N3/2.

On the other hand, if M
√
Δ → 0, it follows from Lemma A.10 and g11(0) =

1
2μ2 = ρ4

2π4σ4 , g12(0) =
1

2μν2 = 1
2σ2 as well as g′11(0) = g′12(0) = 0 that

I11=N3/2
(
M

√
Δg11(0) +

M2Δ

2
g′11(0) +O(M3Δ3/2)

)
=

ρ4

2π4σ4
NM +O(M3),

I12=N3/2
(
M

√
Δg12(0) +

M2Δ

2
g′12(0) +O(M3Δ3/2)

)
=

NM

2σ2
+O(M3),

I22=
π4

2ρ4
MN +O(M).

Therefore, the leading terms in J22 cancel and consequently, J22 = O(M3).

Proof of Proposition 5.5. For a discrete time, centered, stationary Gaussian pro-
cess (Zj)j∈Z whose covariance function depends on an unknown parameter θ ∈ R

we denote the Fisher information of a sample (Z0, . . . , Zn−1) with respect to θ
by In(Z). A particularly useful result to calculate In(Z) for the above class of
Gaussian processes is given by Whittle [39]:

lim
n→∞

1

n
In(Z) =

1

4π

∫ π

−π

(
∂
∂θφθ(ω)

φθ(ω)

)2

dω, n → ∞, (35)

where φ(ω) =
∑

j∈Z
E[Z0Zj ]e

−ijω, ω ∈ [−π, π], is the spectral density of Z.

Setting θ = π2ϑ2, (35) cannot be directly applied to the process Z = Ūk,
for 1 ≤ k ≤ M − 1, since Ūk arises from high-frequency increments of the
continuous time process Uk. In this case, the spectral density ΦΔ

k of Ūk hinges
on Δ = 1/N and therefore, even for large N , IN (Ūk)/N is not necessarily close
to the asymptotic Fisher information defined in (35).

To circumvent this difficulty, consider the N -th order Fourier approximation
to ΦΔ

k :

ΦN,Δ
k (ω) =

N−1∑
j=1−N

E[Ūk(0)Ūk(j)]e
−ijω ≥ 0, ω ∈ [−π, π]. (36)

Lemma A.6(i) verifies that ΦN,Δ
k is positive. Therefore, there exists a stationary

Gaussian process Yk = (Yk(j))j∈Z with spectral density ΦN,Δ
k . Clearly,

(Yk(j), . . . , Yk(j +N − 1)))
D
=

(
Ūk(0), . . . , Ūk(N − 1)

)
, j ∈ N0,

and (Yk(j), . . . , Yk(j +N − 1))) is independent of (Yk(h), . . . , Yk(h+N − 1)))
whenever |j − h| > 2N . Consequently, it is possible to extract L independent
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copies of
(
Ūk(0), . . . , Ūk(N − 1)

)
from a sample (Yk(0), . . . , Yk(2NL− 1)) for

any L ∈ N. Now, using the fact that a statistic never has larger information
than the data from which it is constructed (cf. [20, Theorem I.7.2]) yields

L · IN (Ūk) ≤ I2NL(Yk). (37)

For fixed Δ = 1/N we can now apply Whittle’s formula (35) for L → ∞: For
each ε > 0 we can choose L ∈ N such that

I2NL(Yk) ≤ 2NL(1 + ε)Ik, (38)

where

I N,Δ
k :=

1

4π

∫ π

−π

S2(ω) dω, S :=
∂

∂ϑ2
log ΦN,Δ

k .

By combining (37) and (38) we get IN (Ūk) ≤ 2NIk. Proving below that uni-
formly in k = 0, . . . ,M − 1

I N,Δ
k � M2Δlog

1

M2Δ
, (39)

we obtain IN (Ūk) � M2 log 1
M2Δ and the results follows by independence of the

processes Ū1, . . . , ŪM−1.
In order to verify (39), we only have to consider the integral over [0, π] by

symmetry. From Lemma A.6 we can deduce for ω ≥ k2Δ that

S(ω) �
{

M
√
Δ√

ω
, ω ≥ M2Δ,

1, ω ∈ [k2Δ,M2Δ],

implying
∫ π

k2Δ
S2(ω) dω � M2Δlog 1

M2Δ . For ω ≤ k2Δ, Lemma A.6 gives

S(ω) � ( ω2

k4Δ2 + k2e−θk2

)/( ω2

k4Δ2 + e−θk2

). Since

∫ 1

0

dω

(ω2 + e−θk2)2
≤

∫ e−θk2/2

0

1

e−2θk2 dω +

∫ 1

e−θk2/2

1

ω4
dω � exp

(
3

2
θk2

)
,

a substitution yields

∫ k2Δ

0

S2(ω) dω � k2Δ

∫ 1

0

(
ω2 + k2e−θk2

ω2 + e−θk2

)2

dω � M2Δ.

We can now conclude the main lower bound.

Proof of Theorem 5.1. The proof of the lower bound relies on the fact that if
(Pγ)γ∈G is a dominated family of distributions with a convex parameter space
G ⊂ R, then the Hellinger distance H can be bounded in terms of the Fisher
Information J : Let ν be a dominating measure, p(·, γ) = dPγ/dν and g =

√
p.

Then, as shown in [20, Theorem I.7.6], Jensen’s inequality yields

H2(Pγ , Pγ+h) =

∫
(g(x, γ)− g(x, γ + h))2 ν(dx)
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≤ h2

∫ ∫ 1

0

∂g

∂γ
(x, γ + sh)2 ds ν(dx)

=
h2

4

∫ 1

0

∫ (
∂

∂θ
log p(x, γ + sh)

)2

Pγ+sh(dx) ds =
h2

4

∫ 1

0

J(γ + sh) ds.

Combining this bound of the Hellinger distance (in the setting of Theorem 5.1)
with Theorem 2.2 by Tsybakov [37], it suffices that for each sampling regime
there is a reparametrization (γ1, γ2) of (σ2, ϑ2) such that the corresponding
Fisher information satisfies JM,N (γ2) � r−2

M,N locally uniformly. Inspection of
the proofs of Propositions 5.3 and 5.5 shows that the bounds on the Fisher
information are indeed locally uniform.

(ii) Case M/
√
N � 1. For L ∈ N define the process XL via XL

t (y) =∑L
�=1 u�(t)e�(y), t ≥ 0, y ∈ [0, 1], and let XL

N,M = {XL
ti(yk), i = 0, . . . , N −

1, k = 0, . . . ,M} as well as XN,M = X∞
N,M . Denoting the corresponding covari-

ance matrices by ΣL
N,M and ΣN,M and using the result of [12], we can bound

the total variation distance of the Gaussian distributions by TV(ΣN,M ,ΣL
N,M ) ≤

3
2‖Σ

−1/2
N,M (ΣL

N,M−ΣN,M )Σ
−1/2
N,M ‖F ≤ 3

2‖Σ
−1/2
N,M ‖2F ‖ΣL

N,M−ΣN,M‖F . Consequently,
we can pick a sequence LN,M → ∞ such that XLN,M

N,M and XN,M are statistically
equivalent in the sense of Le Cam and it is sufficient to derive a lower bound

for XLN,M

N,M , or even {u�(ti), i ≤ N, � ≤ LN,M}. Assuming LN,M ≥ M without
loss of generality, for this observation scheme Proposition 5.3 yields under the
parametrization (σ2/ϑ2, σ

2):

JM,N (σ2) � N3/2 ∧ L3
N,M = N3/2 = r−2

N,M .

Case M/
√
N → 0. For b ∈ Q ∩ (0, 1/2) write b = p/q where p ∈ Z and q ∈ N

such that yk = pM+k(q−2p)
qM , k ≤ M , and consequently {yk, k = 0, . . . ,M} is

a subset of {zk, k = 1, . . . , qM − 1} where zk = k
qM . Now, qM

√
Δ → 0 and

since q3M3 log
(

1
q2M2Δ

)
� M3 log

(
1

M2Δ

)
Proposition 5.5 implies under the

parametrization (σ2/
√
ϑ2, ϑ2):

JM,N (ϑ2) � M3 log(
1

M2Δ
) = r−2

N,M .

(i) If min(M,N) remains finite and M/
√
N � 1, then N necessarily remains

finite and the result follows from (ii). On the other hand, ifM/
√
N → 0, thenM

must remain finite. Like in the proof of (ii), extend the set of spatial locations to
{zk, k < qM} and consider the corresponding processes Uk, k = 1, . . . , qM − 1
from (20). A similar calculation as in the proof of Proposition 2.3 shows that for
any k < qM , the laws of the independent continuous processes {Uk(t), t ≤ 1}
are absolutely continuous for different parameter values (σ2, ϑ2) and (σ̃2, ϑ̃2) as

long as σ2/
√
ϑ2 = σ̃2/

√
ϑ̃2 and hence, consistent estimation of (σ2, ϑ2) based

on continuous or discrete observations is impossible: Note that the continuous

spectral density of Uk is fk(u) = 1
2u2

∑
�∈Ik

h(σ2,ϑ2)

(
�√
|u|

)
, u ∈ R, where
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h(σ2,ϑ2) is defined in the proof of Proposition 2.3. Now, a Riemann sum midpoint
approximation, cf. Lemma A.9, shows that

f+
k (u) :=

1

2u2

∑
�≥0

h(σ2,ϑ2)

(k + 2M�√
u

)

=
1

2u2

(√
u

2M

∫ ∞

(k−M)/
√
u

h(σ2,ϑ2)(z) dz +O
( 1√

u

))
,

f−
k (u) :=

1

2u2

∑
�≥0

h(σ2,ϑ2)

(2M − k + 2M�√
u

)

=
1

u2

(√
u

4M

∫ ∞

(M−k)/
√
u

h(σ2,ϑ2)(z) dz +O
( 1√

u

))
.

as u → ∞. Since h(σ2,ϑ2) is symmetric around 0 we obtain

fk(u) = f+
k (u) + f−

k (u) =
1

u2

(√
u

2M

∫ ∞

0

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
from which equivalence follows as in Proposition 2.3.

7.4. Proofs for Section 2

Proof of Proposition 2.1. Due to (7) and the trigonometric identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α+ β)) , (40)

we have

Cov(Xt(x), Xt(y))

=
σ2

2π2ϑ2
e−

κ
2 (x+y)

∑
�≥1

1

�2 + Γ/π2
(cos(π�(y − x))− cos(π�(x+ y))).

The claimed formulas now follow by inserting the closed expressions

∑
�≥1

1

�2 + β
cos(π�x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−π cos(π

√
|β|(x−1))

2
√

|β| sin(π
√

|β|)
+ 1

2|β| , −1 < β < 0

π2(x−1)2

4 − π2

12 , β = 0
π cosh(π

√
β(x−1))

2
√
β sinh(π

√
β)

− 1
2β , β > 0

(41)

for x ∈ [0, 1] and again applying (40) and sinh(α) sinh(β) = 1
2 (cosh(α + β) −

cosh(α − β)), respectively. To prove the second statement we use the ansatz
Z(x) = u(x)B(v(x)), u, v positive and v non-decreasing, which is the general
form of a Gaussian Markov process, cf. [30]. Comparison of covariance func-

tions yields explicit expressions for u and v. Further, one has u(x)B(v(x))
(d)
=

u(x)
∫ x

0

√
v′(z) dB(z) for v(0) = 0 and, thus, the claimed semi-martingale rep-

resentation follows from Itô’s formula.
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Proof of Proposition 2.3. The necessity of the conditions on the parameters fol-
low from the fact that (i) the parameter σ2/

√
ϑ2e

−κx0 may be consistently

estimated using time increments, see [3], and (ii) the parameters σ2

ϑ2
and κ may

be consistently estimated by computing the quadratic variation of the process
x �→ Xt(x) on two different sub-intervals of [0, 1] in view of Proposition 2.1.

It remains to prove sufficiency of the conditions on the parameters:
(i) is a simple consequence of [23, Proposition 1]: Set λ� = ϑ2(π

2�2 +Γ) and

λ̃� = ϑ2(π
2�2 + Γ̃) where Γ =

ϑ2
1

4ϑ2
2
− ϑ0

ϑ2
and Γ̃ =

ϑ2
1

4ϑ2
2
− ϑ̃0

ϑ2
. Then, absolute

continuity follows from
∑

�≥1
(λ�−λ̃�)

2

λ�
< ∞. Thanks to (i) and due to the one

to one correspondence between Γ and ϑ0 we may assume Γ = Γ̃ = 0 for the
remainder of the proof.

(ii) follows from the fact that Cov(Xt0(x), Xt0(y)) only depends on
(

σ2

ϑ2
, κ

)
in view of the Gaussianity of X.

For (iii) note that t �→ Xt(x0) is a stationary Gaussian process with covari-
ance function

ρ(t) = σ2
∑
k≥1

e−λkt

2λk
e2k(x0).

Let

f(σ2,ϑ)(u) =
1

2π

∫
e−iutρ(|t|) dt = 1

π

∫ ∞

0

cos(ut)ρ(t) dt =
σ2

2π

∑
�≥1

e2�(x0)

λ2
� + u2

be the spectral density of t �→ Xt(x0). By Theorem 17 and its preceding discus-
sion in [19] it suffices to show

∃r > 1 : lim
u→∞

urf(σ2,ϑ)(u) ∈ (0,∞) and
f(σ2,ϑ) − f(σ̃2,ϑ̃)

f(σ2,ϑ)
∈ L2(R).

To prove these statements, we may assume κ = 0 without loss of generality. Set

h(σ2,ϑ2)(z) =
σ2

π(π4ϑ2
2z

4+1)
, z ∈ R. By Lemma A.9 (ii) we have for u → ∞

f(σ2,ϑ)(u) =
1

u2

∑
�≥1

h(σ2,ϑ2)

(
�√
u

)
sin2(π�x0)

=
1

u2

(√
u

2

∫ ∞

0

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
,

which proves the first condition. Now, if σ2/
√
ϑ2 = σ̃2/

√
ϑ̃2, a substitution

yields
∫∞
0

h(σ2,ϑ2)(z) dz =
∫∞
0

h(σ̃2,ϑ̃2)
(z) dz and, therefore, the second condition

follows due to

f(σ2,ϑ)(u)− f(σ̃2,ϑ̃)(u)

f(σ2,ϑ)(u)
= O

(
1

u

)
, u → ∞.
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Appendix A: Remaining proofs and auxiliary results

A.1. Covariances of double increments

The following three lemmas are used to calculate the asymptotic variance of V.
Recall the definition of D̃ik from (24).

Lemma A.1. Let b ∈ (0, 1/2). For J ≥ 1 define

FJ,Δ(z) =
∑
�≥1

2e−π2ϑ2J�
2Δ − e−π2ϑ2(J+1)�2Δ − e−π2ϑ2(J−1)�2Δ

2π2ϑ2�2
cos(π�z)

and F0,Δ = Fϑ2(· ,Δ). Then, for J = |i− j|,

Cov(D̃ik, D̃jl) =− σ2e−κδ/2 ·
{
2DδFJ,Δ(0), l = k,

D2
δFJ,Δ(yl − yk+1), l > k

+O
( √

Δδ2

(J + 1)3/2

)
.

Proof. It immediately follows from the covariance structure Cov(u�(s), u�(t)) =
σ2

2λ�
e−λ�|t−s|, s, t ≥ 0, of the coefficient processes that

Cov(Dik, Djl) = σ2
∑
�≥1

(e�(yk+1)− e�(yk))(e�(yl+1)− e�(yl))

·
{

1−e−λ�Δ

λ�
, J = 0,

2e−λ�JΔ−e−λ�(J+1)Δ−e−λ�(J−1)Δ

2λ�
, J ≥ 1.

Step 1. We show negligibilty of Γ. From the first step of the last proof we already
know that

Cov(Dik, Dil)

= σ2
∑
�≥1

1− e−π2ϑ2�
2Δ

π2ϑ2�2
(e�(yk+1)− e�(yk))(e�(yl+1)− e�(yl)) +O

(√
Δδ2

)
.

For J ≥ 1 we will show now that

Cov(Dik, Djl) = σ2
∑
�≥1

2e−π2ϑ2�
2JΔ − e−π2ϑ2�

2(J+1)Δ − e−π2ϑ2�
2(J−1)Δ

2π2ϑ2�2

· (e�(yk+1)− e�(yk))(e�(yl+1)− e�(yl)) +O
( √

Δδ2

(J + 1)3/2

)
.

If J = 1 this directly follows from the case J = 0 since

2e−λ�Δ − e−2λ�Δ − 1

2λ�
=

1− e−2λ�Δ

2λ�
− 1− e−λ�Δ

λ�
. (42)
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For J ≥ 2 define gJ(x) =
2e−Jx−e−(J+1)x−e−(J−1)x

2x . A first order Taylor approxi-
mation of gJ gives

Cov(Dik, Djl) = Δ
∑
�≥1

gJ(λ�Δ)(e�(yk+1)− e�(yk))(e�(yl+1)− e�(yl))

= Δ
∑
�≥1

gJ(π
2ϑ2�

2Δ)(e�(yk+1)− e�(yk))(e�(yl+1)− e�(yl)) +R,

where R � Δ2
∑

�≥1 g
′
J(ϑ2(π

2�2+ξ�)Δ)�2δ2 for some |ξ�| ≤ |Γ|. It can be shown

easily that g′J(x) � e−(J−1)x/2. Therefore, for some ω > 0 and by regarding R

as a Riemann sum with lag
√

(J − 1)Δ,

R � Δ2
∑
�≥1

e−ω(J−1)�2Δ�2δ2 �
√
Δδ2

(J − 1)3/2
�

√
Δδ2

(J + 1)3/2
.

Step 2. By Step 1 we may assume λ� = π2ϑ2�
2. By (23), we have

Cov(D̃ik, D̃jk) =− 2σ2g(δ)DδFJ,Δ(0) + σ2FJ,Δ(0)D
2
δg(0)

− σ2D2
δ (g(·)FJ,Δ(2yk + ·)) (0)

and by (22) for l > k

Cov(D̃ik, D̃jl) =− σ2g(δ)D2
δFJ,Δ(yl − yk+1) + σ2FJ,Δ(yl − yk)D

2
δg(0)

− σ2D2
δ (g(·)FJ,Δ(yl + yk + ·)) (0).

Hence, as in previous Lemmas it is sufficient to establish

FJ,Δ(0), FJ,Δ(z), F
′
J,Δ(z)F

′′
J,Δ(z) �

√
Δ

J3/2
, z ∈ [2b, 2(1− b)].

For J = 0 this was already proven in Proposition 3.5. The case J = 1 follows
from the case J = 0 since (42) shows

F1,Δ(z) =
1

2
F2Δ(z)− FΔ(z). (43)

For J ≥ 2 we have

2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ � e−λ�(J−1)Δ(λ�Δ)2, (44)

and therefore, again using a Riemann sum approximation with lag
√
(J − 1)Δ,

FJ,Δ(z) � FJ,Δ(0) �
∑
�≥1

λ�Δ
2e−λ�(J−1)Δ = O

( √
Δ

(J − 1)3/2

)
.

The bound on the first derivative is provided by Lemma A.7,

F ′
J,Δ(z) �

∑
�≥1

2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ

2λ�
� sin(π�z)
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� sup
�

∣∣∣∣2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ

2λ�
�

∣∣∣∣ 1

z ∧ (2− z)

� sup
�

∣∣λ�Δ
2e−λ�JΔ�

∣∣ �
√
Δ

J3/2
.

Finally, to bound F ′′
J,Δ we define hJ(z) = 2e−Jz2−e−(J+1)z2−e−(J−1)z2

. Clearly,
hJ(0) = 0 and

h′
J(z)=−2(J − 1)ze−(J−1)z2

(2e−z2 − e−2z2 − 1)︸ ︷︷ ︸
�z4

−4e−(J−1)z2

(ze−z2 − ze−2z2

)︸ ︷︷ ︸
�z3

,

implying ‖h′
J‖∞ � J−3/2. In view of Lemma A.8 this shows

F ′′
J,Δ(z) �

∑
�≥1

2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ

2λ�
�2 cos(π�z)

�
∑
�≥1

hJ(
√

λ�Δ) cos(π�z) = O
(

1

(z ∧ (2− z))
2

√
Δ

J3/2

)
.

Lemma A.2. For J ∈ N0 and z ∈ (0,2) it holds that

(i) FJ,Δ(0)− FJ,Δ(δ) = δ 1
2ϑ2

1{J=0} − δ 1
4ϑ2

1{J=1} +O
(

δ2

(J+1)5/2
√
Δ

)
(ii) 2FJ,Δ(z)− FJ,Δ(z + δ)− FJ,Δ(z − δ) = O

(
δ2

(J+1)2

(
1√
Δ
∧ 1

z∧(2−z)

))
.

Proof. (i) The validity for the case J = 0 follows from the proof of Proposition
3.5 (ii), the case J = 1 follows from (43). For J ≥ 2 we have by Taylor’s theorem

FJ,Δ(0)− FJ,Δ(δ) = −δF ′
J,Δ(0)−

δ2

2
F ′′
J,Δ(ξ)

for some ξ ∈ [0, δ]. Now, the claim is proved by inserting F ′
J,Δ(0) = 0 and noting

due to (44): ∥∥F ′′
J,Δ

∥∥
∞ �

∑
�≥1

(
2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ

)
�

∑
�≥1

λ2
�Δ

2e−λ�(J−1)Δ � 1

J5/2
√
Δ
.

(ii) As in previous Lemmas it suffices to establish

F ′′
J,Δ(z) � 1

(J + 1)2

(
1√
Δ

∧ 1

z ∧ (2− z)

)
.

For the case J = 0 we employ the representation FΔ = HΔ +GΔ from Propo-
sition 3.5. The validity of the bound on H ′′

Δ follows from H ′′
Δ(z) � 1√

Δ
∧

1
z∧(2−z) . The bound on G′′

Δ(z) follows from ‖G′′
Δ‖∞ � 1/

√
Δ and G′′

Δ(z) �
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sup�

∣∣∣ 1−e−λ�Δ(1+λ�Δ)
1+λ�Δ

∣∣∣ 1
z∧(2−z) � 1

z∧(2−z) , see Lemma A.7. The case J = 1 fol-

lows from the case J = 0, see (43). For J ≥ 2 we proceed in the same way:
In the proof of (i) it was shown that ‖F ′′

Δ,J‖∞ � 1
J5/2

√
Δ

� 1
J2

√
Δ
. Finally, by

Lemma A.7,

F ′′
J,Δ(z) � sup

�

∣∣∣2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ
∣∣∣ 1

z ∧ (2− z)

� sup
�

∣∣∣(λ�Δ)2e−λ�(J−1)Δ
∣∣∣ 1

z ∧ (2− z)
� 1

(J + 1)2
1

z ∧ (2− z)
.

Lemma A.3. For J ∈ N0 and z ∈ (0, 2) we have

(i) FJ,Δ(0)− FJ,Δ(δ)

=

⎧⎨
⎩

√
Δ√

ϑ2π
+O

(
Δ3/2

δ2

)
, J = 0,

√
Δ

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)
+O

(
Δ3/2 + Δ

(J+1)δ

)
, J ≥ 1,

(ii) 2FJ,Δ(δ)− FJ,Δ(0)− FJ,Δ(2δ)

=

⎧⎨
⎩−

√
Δ√

ϑ2π
+O

(
Δ3/2

δ2

)
, J = 0,

−
√
Δ

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)
+O

(
Δ3/2 + Δ

(J+1)δ

)
, J ≥ 1,

(iii) 2FJ,Δ(z)− FJ,Δ(z − δ)− FJ,Δ(z + δ) = O
(

Δ

J + 1

1

z ∧ (2− z)

)
.

Proof. (iii) It is sufficient to show

FJ,Δ(z) = O
(

Δ

J + 1

1

z ∧ (2− z)

)
(45)

for J ∈ N0 and z ∈ (0, 2): If J = 0, Lemma A.7 gives

FΔ(z) � sup
�≥1

∣∣∣∣1− e−λ�Δ

λ�

∣∣∣∣ 1

z ∧ (2− z)
� Δ

z ∧ (2− z)
.

By (43) this bound is also valid for F1,Δ(z). For J ≥ 2 the same method gives

FJ,Δ(z) � sup
�≥1

∣∣∣∣2e−λ�JΔ − e−λ�(J+1)Δ − e−λ�(J−1)Δ

λ�

∣∣∣∣ 1

z ∧ (2− z)

� sup
�≥1

∣∣λ�Δ
2e−λ�JΔ

∣∣ 1

z ∧ (2− z)
� Δ

J

1

z ∧ (2− z)
,

where we have used (44).
(i) The case J = 0 was already shown in the proof of Proposition 3.5. For J ≥ 1
we prove

FJ,Δ(0) =

√
Δ

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)
+O(Δ3/2),
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then (ii) follows in view of (45): If J = 1 we use (25) to calculate

F1,Δ(0) =
1

2
F2Δ(0)− FΔ(0) =

1

2

( √
2Δ√
πϑ2

−Δ

)
−

( √
Δ√
πϑ2

− Δ

2

)
+O

(
Δ3/2

)

=

√
Δ

2
√
πϑ2

(√
2− 2

)
+O

(
Δ3/2

)
.

For J ≥ 2 define gJ(z) =
2e−Jπ2ϑ2z2−e−(J+1)π2ϑ2z2−e−(J−1)π2ϑ2z2

2π2ϑ2z2 . Then,

∫ ∞

0

gJ(z) dz =
1

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

and since gJ (0) = 0 we have by Lemma A.9

FJ,Δ(0)= Δ
∑
�≥1

gJ(�
√
Δ) =

√
Δ

∫ ∞

0

gJ(z) dz +O
(
Δ3/2

)

=

√
Δ

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)
+O(Δ3/2).

Finally, (ii) is a direct consequence of (i).

A.2. Auxiliary results for the lower bounds

For the proofs of Propositions 5.3 and 5.5 we require the following auxiliary
lemmas.

Lemma A.4. Consider a discrete sample (u(iΔ), i = 0, . . . , N) of an Ornstein-
Uhlenbeck process given by

du(t) = −aμu(t) dt+ ν
√
μdBt, u(0) ∼ N

(
0,

ν2

2a

)

and assume Δ = 1/N . Then, the Fisher information I = IN for the parameter
(μ, ν2) is given by

I11 =
a2Δ(e−4μaΔ + e−2μaΔ)

(1− e−2μaΔ)2
, I12 =

ae−2μaΔ

ν2(1− e−2μaΔ)
, I22 =

N + 1

2ν4
.

Proof. By the Markov property of u, the log-likelihood function of (μ, ν2) is
given by

�(μ, ν2) = log π0(u(0)) +
N−1∑
i=0

log pΔ(u(iΔ), u((i+ 1)Δ)),
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where pt(x, y) = 1√
πν2(1−e−2μat)/a

exp
(
− (y−xe−μat)2

ν2(1−e−2μat)/a

)
is the transition den-

sity of u and π0 is the density of the initial distribution N
(
0, ν2

2a

)
. By station-

arity of u, the Fisher information simplifies to

I = −E
(
D2�(μ, ν2)

)
= −E

(
D2 log π0(u(0))

)
−NE

(
D2 log pΔ(u(0), u(Δ))

)
,

where we write D2g for the Hessian of a function g. This expression can be
computed explicitly, yielding the claimed formulas.

Lemma A.5. The function g : [0,∞)× [−π, π] → R defined by

g(x, ω) =
2x2 − sinh(x2) cosh(x2) + cos(ω)(sinh(x2)− 2x2 cosh(x2))

x2(cosh(x2)− cos(ω))2
(1−cos(ω))

satisfies

(i)
∫∞
0

g(x, ω) dx = 0, for all ω ∈ [−π, π],

(ii) sup|ω|≤π ‖ ∂
∂xg(·, ω)‖L1 < ∞.

(iii) |g(x, ω)| � 1+x2

x4 ω2 uniformly in ω ∈ [−π, π], x > 0.

Proof. (i) follows from the fact that

G(x, ω) :=
sinh(x2)(1− cos(ω))

x(cosh(x2)− cos(ω))
, x > 0, ω ∈ [−π, π],

is a primitive of x �→ g(x, ω) and since limx→∞ G(x, ω) = limx→0 G(x, ω) = 0
for all ω ∈ [−π, π].

(ii) can be shown by writing G(·, ω) as a sum of monotonic functions and
noting that for a monotonic function g : R+ → R it holds that ‖g′‖L1 =
| limx→∞ g(x)− limx→0 g(x)|.

Finally, (iii) follows by direct calculations.

Lemma A.6. Consider the parametrization of Proposition 5.5 and the function
ΦN,Δ

k from (36). If M
√
Δ → 0, then

(i) ΦN,Δ
k (ω) > 0 for all ω ∈ [−π, π],

(ii)

ΦN,Δ
k (ω) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
Δ

M

√
|ω|, |ω| ≥ M2Δ, (46a)

Δ, k2Δ ≤ |ω| ≤ M2Δ, (46b)

ω2

k4Δ
+Δe−ϑ2k

2

, |ω| ≤ k2Δ, (46c)

(iii)

∂

∂ϑ2
ΦN,Δ

k (ω) �

⎧⎨
⎩

Δ, ω ∈ [−π, π], (47a)

ω2

k4Δ
+Δk2e−ϑ2k

2

, |ω| ≤ k2Δ. (47b)
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Proof. Without loss of generality let θ = π2ϑ2 and σ2
0 = π2. We denote the

covariance function of Ūk by ρk : Z → R and write ΦN
k instead of ΦN,Δ

k , i.e.

ΦN
k (ω) =

∑N−1
j=1−N ρk(j)e

−ijω, ω ∈ [−π, π]. (i) Let rk be the covariance function
of the process (Uk(t0), Uk(t1), . . .), i.e.

rk(j) =
∑
�∈Ik

e−θ�2|j|Δ

2
√
θ�2

, j ∈ Z,

where Ik = I+
k ∪I−

k . Note that rk and ρk are related by ρk(j) = 2rk(j)−rk(j−
1) − rk(j + 1), j ∈ Z, which is a second order difference. Since x �→ e−x has a
positive second derivative, it follows that ρk(j) < 0 if j �= 0. On the other hand,
for j = 0 we have ρk(0) = Var(Ūk(t0)) > 0 and therefore,

ΦN
k (ω) = ρk(0) + 2

N−1∑
j=1

ρk(j) cos(jω)

≥ ρk(0) + 2

N−1∑
j=1

ρk(j) = 2(rk(N − 1)− rk(N)) > 0.

To treat (ii) and (iii) we calculate

ΦN
k (ω) =

N−1∑
j=1−N

ρk(j)e
−ijω

= 2(1− cos(ω))

N−2∑
j=2−N

rk(j)e
−ijω + 4rk(N − 1) cos((N − 1)ω)

− 2rk(N) cos((N − 1)ω)− 2rk(N − 1) cos((N − 2)ω).

From
∑J−1

j=0 zj = 1−zJ

1−z for z ∈ C \ {1} it follows that

J−1∑
j=1−J

e−θ�2|j|Δe−ijω

=
1− e−2θ�2Δ + 2e−(J+1)θ�2Δ cos((J − 1)ω)− 2e−Jθ�2Δ cos(Jω)

1 + e−2θ�2Δ − 2e−θ�2Δ cos(ω)

=
sinh(θ�2Δ) + e−Jθ�2Δ cos((J − 1)ω)− e−(J−1)θ�2Δ cos(Jω)

cosh(θ�2Δ)− cos(ω)

for J ≥ 1 and by elementary manipulations we can pass to the representation
ΦN

k = Φ+RN , where

Φ(ω) = (1− cos(ω))
∑
�∈Ik

1√
θ�2

sinh(θ�2Δ)

cosh(θ�2Δ)− cos(ω)
,
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RN (ω) =
∑
�∈Ik

(1− cosh(θ�2Δ))
e−θ�2(N−1)Δ

√
θ�2

e−θ�2Δ cos((N − 1)ω)− cos(Nω)

cosh(θ�2Δ)− cos(ω)
.

Note that we have suppressed the dependence on k for ease of notation. We
remark that Φ(ω) =

∑
j∈Z

ρk(j)e
−ijω, ω ∈ [−π, π], is the spectral density of the

process (Ūk(j))j≥0.
(ii) To prove (46a) we note that for ω ≥ M2Δ we have∣∣∣e−θ�2Δ cos((N − 1)ω)− cos(Nω)

∣∣∣
=

∣∣∣(e−θ�2Δ − 1) cos((N − 1)ω) + cos((N − 1)ω)− cos(Nω)
∣∣∣ � �2Δ+ ω � �2ω.

Consequently,

RN (ω) �
∑
�∈Ik

�2Δsinh(θ�2Δ)
e−θ�2(N−1)Δ

√
θ�2

�2ω

cosh(θ�2Δ)− cos(ω)

� Δ

ω

∑
�∈Ik

sinh(θ�2Δ)

�2(cosh(θ�2Δ)− cos(ω))
(1− cos(ω)) � 1

M2
Φ(ω)

and, hence, RN is negligible compared to Φ. In order to compute an asymptotic
expression for Φ, set

h(x, ω) =
sinh(θx2)(1− cos(ω))

x2(cosh(θx2)− cos(ω))
, x > 0, ω ∈ [−π, π].

We have ∂h
∂x ≤ 0 and therefore,

∥∥ ∂
∂xh(·, ω)

∥∥
L1 = h(0, ω)− limx→∞ h(x, ω) = θ is

uniformly bounded in ω. Thus, using the mean value theorem and a Riemann
sum approximation with mesh size M

√
Δ for ∂

∂xh(·, ω), we obtain

Φ(ω) � Δ
∑
�∈Ik

h(�
√
Δ, ω) = Δ

∞∑
�=1

h(2�M
√
Δ, ω) +O(Δ).

Further, since ∣∣∣ε∑
�≥1

f(�ε)−
∫ ∞

0

f(x) dx
∣∣∣ ≤ ε‖f ′‖L1 (48)

for any function f ∈ C1[0,∞), we get Φ(ω) �
√
Δ

M

∫∞
0

h(x, ω) dx+O(Δ). Finally,
due to

a+ b � max(a, b), a, b > 0, (49)

we have (cosh(θωx2)− cos(ω)) � max
(
cosh(θωx2)− 1, 1− cos(ω)

)
and, conse-

quently,

h(
√
ωx, ω) =

sinh(θωx2)(1− cos(ω))

ωx2(cosh(θωx2)− cos(ω))
� sinh(θωx2)

ωx2
� 1, x ≤ θ−1/2.
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Therefore, ∫ ∞

0

h(x, ω) dx =
√
ω

∫ ∞

0

h(
√
ωx, ω) dx �

√
ω,

finishing the proof of (46a).
To prove (46b) and (46c), let us write Φ =

∑
�∈Ik

ϕ� and RN =
∑

�∈Ik
�N� .

Since the argument in the proof of (i) was on a summand-wise level, also each
of the functions ϕ� + �N� is positive, � ∈ N. Therefore, we can bound ΦN

k from
below with the first summand,

ΦN
k ≥ ϕk + �Nk = �Nk (0) + ϕk +

(
�Nk − �Nk (0)

)
.

We show that there exists an environment U around zero and some δ ∈ (0, 1)
such that

|�Nk (ω)− �Nk (0)| ≤ (1− δ)ϕk(ω), ω ∈ U : (50)

A simple calculation yields

�Nk (ω)− �Nk (0)

= e−(N−1)θk2Δ (cos((N − 1)ω))− cos(Nω))(1− cosh(θk2Δ))√
θk2(cosh(θk2Δ)− cos(ω))

+ e−(N−1)θk2Δ (1− e−θk2Δ)(1− cos((N − 1)ω)))(1− cosh(θk2Δ))√
θk2(cosh(θk2Δ)− cos(ω))

+ e−(N−1)θk2Δ

(
e−θk2Δ − 1

)
(1− cos(ω))

√
θk2(cosh(θk2Δ)− cos(ω))

.

Since cos(x)− cos(y) = −2 sin x+y
2 sin x−y

2 , x, y ∈ R, we have

∣∣∣ cos((N − 1)ω)− cos(Nω)
∣∣∣ = ∣∣∣2 sin(

(2N − 1)ω

2

)
sin

(ω
2

) ∣∣∣ ≤ Nω2. (51)

Therefore, for any α > 0 there exists an environment U of 0 such that

| cos((N − 1)ω)− cos(Nω)| ≤ Nω2 ≤ N(1− cos(ω))(2 + α)

1− cos((N − 1)ω) ≤ N2ω2

2
≤ N2

2
(1− cos(ω))(2 + α)

holds for all ω ∈ U . Further, for all x ≥ 0 we have cosh(x) − 1 ≤ sinh(x)x
2 ,

1− e−x ≤ sinh(x), and consequently,

|�Nk (ω)− �Nk (0)|
ϕk(ω)

≤ e−(N−1)θk2Δ(1 +
2 + α

2
θk2 +

2 + α

4
θ2k4)

≤ 2 + α

2
eΔθk2

e−θk2

(1 + θk2 +
θ2k4

2
) <

2 + α

2
eΔθk2

.
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Clearly, for Δ sufficiently small one can choose α in such a way that this bound is
strictly less than 1 for all k ≤ M −1, yielding (50). Consequently, it is sufficient
to prove (46b) and (46c) with ΦN

k replaced by ϕk + �Nk (0): Now,

ϕk(0) + �Nk (0) = �Nk (0) = e−θk2(N−1)Δ 1− e−θk2Δ

k2
� Δe−θk2

and again by using (49), we get

ϕk(ω) � sinh(θk2Δ)

k2
� Δ, ω ≥ k2Δ,

ϕk(ω) � (1− cos(ω))
1√
θk2

sinh(θk2Δ)

cosh(θk2Δ)− 1
� ω2

k4Δ
, ω ≤ k2Δ.

(iii) We show (47a): We have ∂
∂θΦ(ω) =

Δ
2
√
θ

∑
�∈Ik

g(�
√
θΔ, ω) with g defined

in Lemma A.5. Using the properties of g derived in Lemma A.5 and the Riemann
sum approximation (48) with mesh size M

√
Δ, we obtain

∂

∂θ
Φ(ω) � Δ

∑
�≥1

g(�M
√
Δ, ω) +O(Δ) =

√
Δ

M

∫ ∞

0

g(x, ω) dx+O(Δ) = O(Δ).

To show that also ∂
∂θRN is of the claimed order, we write

�N� = α�β� where α�(ω) =
1− cosh(θ�2Δ)√

θ�2 (cosh(θ�2Δ)− cos(ω))
,

β�(ω) = e−θ�2(N−1)Δ
(
e−θ�2Δ cos((N − 1)ω)− cos(Nω)

)
.

The corresponding derivatives are given by

∂

∂θ
α�(ω) =

cosh(θ�2Δ)− 1

2θ3/2�2 (cosh(θ�2Δ)− cos(ω))︸ ︷︷ ︸
=:a1

�(ω)

− Δsinh(θ�2Δ) (1− cos(ω))√
θ (cosh(θ�2Δ)− cos(ω))

2︸ ︷︷ ︸
=:a2

�(ω)

and

∂

∂θ
β�(ω) = e−θ�2(N−1)Δ�2Δ

(
−Ne−θ�2Δ cos((N − 1)ω) + (N − 1) cos(Nω)

)
.

Using the estimates

cosh(x)− 1

cosh(x)− cos(ω)
� x2

x2 ∨ ω2
,

x sinh(x)(1− cos(ω))

(cosh(x)− cos(ω))2
� x2

x2 ∨ ω2

in combination with β�(ω) � e−θ�2(N−1)Δ
(
(�2Δ) ∨ ω

)
and b�(ω) :=

∂
∂θβ�(ω) �

e−θ�2(N−1)Δ�2
(
(�2Δ) ∨ ω

)
shows that any of the three products in

∂

∂θ
RN =

∑
�∈Ik

a1�β� + a2�β� + α�b� (52)
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can be bounded by

∑
�∈Ik

e−θ�2(N−1)Δ �4Δ2

(�4Δ2) ∨ ω2

(
(�2Δ) ∨ ω

)
≤ Δ

∑
�∈Ik

e−θ�2(N−1)Δ�2 � Δ.

Consequently, we have ∂
∂θRN = O(Δ), which finishes the proof of (47a).

To prove (47b), we use property (iii) of Lemma A.5 to deduce

∂

∂θ
Φ(ω) � ω2Δ

∑
�∈Ik

1 + θ�2Δ

θ2�4Δ2
� ω2

Δ

(1 + θk2Δ

θ2k4
+

∑
�≥1

1 + θ(2�M)2Δ

θ2(2�M)4

)
� ω2

k4Δ
,

where the last step follows from k2Δ ≤ M2Δ → 0. Further, using (52),

∂

∂θ
(RN (ω)−RN (0))

=
∑
�∈Ik

a1�(ω)(β�(ω)− β�(0)) +
∑
�∈Ik

(a1�(ω)− a1�(0))β�(0) +
∑
�∈Ik

a2�(ω)β�(ω)

+
∑
�∈Ik

α�(ω)(b�(ω)− b�(0)) +
∑
�∈Ik

(α�(ω)− α�(0))b�(0). (53)

Now, by (51), we have

β�(ω)− β�(0)

= e−θ�2(N−1)Δ
(
(e−θ�2Δ − 1)(cos((N − 1)ω)− 1) + cos((N − 1)ω)− cos(Nω)

)
� e−θ�2(N−1)Δ�2Nω2.

In a similar way, using ω ≤ k2Δ ≤ �2Δ for � ∈ Ik, we can bound

β�(ω) � e−θ�2(N−1)Δ
(
(�2Δ) ∨ ω

)
� e−θ�2(N−1)Δ�2Δ

as well as

β�(0) � e−θ�2(N−1)Δ�2Δ,

b�(ω)− b�(0) � e−θ�2(N−1)Δ�4Nω2, b�(0) � e−θ�2(N−1)Δ�4Δ.

Also,

a1�(ω)− a1�(0) � 1− cos(ω)

cosh(θ�2Δ)− cos(ω)
� 1− cos(ω)

(cosh(θ�2Δ)− 1)
� ω2

k4Δ2

and similarly, α�(ω)− α�(0) � ω2

k4Δ2 , a
2
�(ω) � ω2

k4Δ2 , a
1
�(ω) � 1 and α�(ω) � 1.

Using the bounds just developed in combination with e−θ�2(N−1)Δ � 1
k4�m ,

m ∈ N, shows that any of the five terms in (53) is of order O( ω2

k4Δ ) and hence,
∂
∂θ (RN (ω)−RN (0)) � ω2

k4Δ . Now, the proof of (47b) is finalized by

∂

∂θ
RN (0)
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=
∑
�∈Ik

e−θ�2(N−1)Δ 2θ�2(N − 1)Δ(e−θ�2Δ − 1) + 2θ�2Δe−θ�2Δ + e−θ�2Δ − 1

2θ3/2�2

� Δ
∑
�∈Ik

e−θ�2(N−1)Δ�2 � Δk2e−θk2

.

A.3. Bounds on Fourier series and Riemann summation

The Lemmas in this section provide bounds for Fourier series and Taylor ex-
pansions for Riemann sums. Similar results are stated in Lemma 7.2 of [3].

Lemma A.7. Let (an) be a real sequence and τ ∈ {sin, cos}. Then,∣∣∣∣∣
N∑

k=1

akτ(ky)

∣∣∣∣∣ ≤ 1 + 2KN

y ∧ (2π − y)
sup
n≤N

|an|

holds for any y ∈ (0, 2π) where KN is the number of monotone sections of
(an)1≤n≤N .

Proof. By Lagrange’s trigonometric identities,

N∑
k=1

cos(ky) =
sin ((N + 1/2)y)− sin(y/2)

2 sin(y/2)
,

N∑
k=1

sin(ky) =
cos(y/2)− cos ((N + 1/2)y)

2 sin(y/2)
,

we have
∣∣∣∑N

k=M τ(ky)
∣∣∣ ≤ 1

sin(y/2) ≤ 1
y∧(2π−y) uniformly in M ≤ N . Therefore,

|
∑N

k=1 akτ(ky)| can be decomposed into

∣∣∣a1 N∑
k=1

τ(ky) + (a2 − a1)
N∑

k=2

τ(ky) + (a3 − a2)
N∑

k=3

τ(ky)

+ · · ·+ (aN − aN−1)τ(Ny)
∣∣∣

≤ |a1|
∣∣∣ N∑
k=1

τ(ky)
∣∣∣+ |a2 − a1|

∣∣∣ N∑
k=2

τ(ky)
∣∣∣+ |a3 − a2|

∣∣∣ N∑
k=3

τ(ky)
∣∣∣

+ · · ·+ |aN − aN−1| |τ(Ny)|

≤ 1

y ∧ (2π − y)

(
|a1|+

N−1∑
k=1

|ak+1 − ak|
)

≤ 1 + 2KN

y ∧ (2π − y)
sup
n≤N

|an|,

where the last inequality follows from the fact that if (ak)N0≤k≤N1 is monotone

for some N0 ≤ N1 ≤ N , then
∑N1−1

k=N0
|ak+1−ak| = |aN1 −aN0 | ≤ 2 supn≤N |an|.
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Lemma A.8. Let g ∈ C1 (R+) be such that g′ is bounded and has a finite
number K of monotone sections. Then, for y ∈ (0, 2π), as ε → 0,

∞∑
k=1

g(kε) cos(ky) = −g(0)

2
+O

(
ε ‖g′‖∞

(y ∧ (2π − y))
2

)
∞∑
k=1

g(kε) sin(ky) =
g(0)

2
cot

(y
2

)
+O

(
ε ‖g′‖∞

(y ∧ (2π − y))
2

)
.

Proof. We use the formula sin(α) − sin(β) = 2 cos α+β
2 sin α−β

2 , α, β ∈ R, to
calculate

g(0)

2
+

∞∑
k=1

g(kε) cos(ky)

=
g(0)

2
+

1

2 sin y
2

∞∑
k=1

g(kε)
(
sin ((k + 1/2) y)− sin ((k − 1/2) y)

)

=
g(0)

2
− g(ε)

2
+

1

2 sin y
2

∞∑
k=1

sin ((k + 1/2) y)
(
g(kε)− g((k + 1)ε)

)

= −1

2

(
g′(ξε0) +

1

sin y
2

∞∑
k=1

sin ((k + 1/2) y) g′(ξεk)

)
ε

≤ 1 + 2K

(y ∧ (2π − y))
2 ‖g′‖∞ ε,

where ξεk ∈ [kε, (k + 1)ε]. Here, the last step follows from sin((k + 1/2)y) =
sin(ky) cos(y/2) + cos(ky) sin(y/2) and then applying Lemma A.7. The sec-
ond statement can be proved analogously, using the relation cos(α)− cos(β) =

−2 sin
(

α+β
2

)
sin

(
α−β
2

)
, α, β ∈ R.

Lemma A.9. Let g ∈ C2(R+)∩L1(R+), g
′ ∈ L∞(R+) and g′′ ∈ L1(R+). Then,

(i) ε
∑
k≥1

g(kε) =

∫ ∞

0

g(z) dz − g(0)

2
ε+O(ε2 ‖g′′‖L1),

(ii) ε
∑
k≥1

g(kε) sin2(ky) =
1

2

∫ ∞

0

g(z) dz +O
(
ε2

( ‖g′‖∞
(y ∧ (π − y))2

∧ ‖g′′‖L1

))
.

Proof. For a detailed proof of (i) we refer to [3, Lemma 7.2]. The main idea is to
regard each term εg(kε) as a midpoint integral approximation. Since sin2(y) =
(1 − cos(2y))/2, statement (ii) is a direct consequence of (i) and the previous
lemma.

Lemma A.10. Let g ∈ C2(R+) and M → ∞, Mε → 0. Then,

ε

M∑
k=1

g(kε) = Mεg(0) +
(M2 +M)ε2

2
g′(0) +O((Mε)3).
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Proof. First of all, by the midpoint rule there exist ηk ∈ [(k− 1/2)ε, (k+1/2)ε]
such that∣∣∣∣∣ε

M∑
k=1

g(kε)−
∫ (M+1/2)ε

ε/2

g(x) dx

∣∣∣∣∣ =
∣∣∣∣∣
M∑
k=1

∫ (k+1/2)ε

(k−1/2)ε

(g(kε)− g(x)) dx

∣∣∣∣∣
≤ ε3

M∑
k=1

|g′′(ηk)| � M3ε3

and secondly, a Taylor approximation shows that∫ (M+1/2)ε

ε/2

g(x) dx = Mεg(0) +
(M2 +M)ε2

2
g′(0) +O((Mε)3).
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